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gliang ¥y Wave dynamics reflect a broad spectrum of natural phenomena and are often character-

ized by wave equation such as in the development of meta-devices used to steer wave
propagation. Modeling synchronization of wave dynamics is critical in various applica-
tions such as in communications and neuroscience. In this paper, we study the synchroni-
zation problem for oscillations governed by wave equation with nonlinear (van der Pol
type) boundary conditions through a single boundary coupling. The dynamics of the mas-
ter system is self-excited and presents sensitive and rapid oscillations. With the only sig-
nal received at one end of the boundary, by constructing a mathematical model, we show
the existence of a slave system that can be synchronized with the master system via the
study of wave reflections on the boundary to recover the actual wave dynamics. The cou-
pling gain, which represents the strength of the connection between the master system
and the slave system, has been identified. The obtained result can be also viewed as an
observer construction when the measurable output is only on the boundary. Numerical
simulations are provided to demonstrate the effectiveness of the theoretical outcomes.
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1 Introduction

Synchronization is a rich phenomenon and a multidisciplinary
discipline with broad range applications such as in physics, tele-
communication, and neuroscience (see, e.g., Refs. [1-4] and
references therein). There are many results for synchronizing non-
spatiotemporal systems in the literature (e.g., see Ref. [5] and
references therein), however, synchronizing spatiotemporal sys-
tems remains to be challenging and few results are available in the
current literature. This is mainly due to the complexity of the spa-
tiotemporal system (such as partial differential equations (PDEs))
as well as the restriction of available signals for the construction
of a desirable slave system. In particular, for the chaotic systems
which usually associate with high frequency (HF) oscillations,
even two identical systems starting from slightly different initial
conditions would evolve in time in an unsynchronized manner
(e.g., see Ref. [6]) due to the weak stability [7]. In general, it is
quite challenging to synchronize a spatiotemporal system when its
state is only accessible in a finite number of locations such as
measurement output from the boundary, which results in the so-
called weak coupling (see Refs. [8—10] and references therein).

In this paper, we consider the synchronization problem of
vibrations governed by the wave equation associated with nonlin-
ear boundary condition in the form of

Wy —wy =0, x€(0,1), >0,
wy(0,1) = —nw(0,7), n#1, >0,
we(1,8) = aw,(1,0) — pwi(1,1), 0<a<1,B>0, t>0,
w(x,0) =wo(x), w/(x,0) =wi(x), 0<x<1
(1.1)
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where «, 5, and 5 are given real constants. When 1 = 1, the system
(1.1) is not well-posed. This is mainly because in such a case, the
initial conditions will coincide with one of the characteristic direc-
tions that leads to being indistinguishable with each other. More
specifically, the general solution can be expressed as w(x,r)
= F(x — 1) + G(x + 1), that is, x=¢ are characteristics of the sys-
tem. If we plug it into the boundary condition at x =0, one can
see that

F(=1) +G'(t) = —n(=F'(-1) + G'(1))

Then, #=1 would lead to that F'(—t) can be arbitrary while
G'(t) = 0. Hence, in such a case, the solution either does not exist
or cannot be uniquely determined. This is true even for weak solu-
tions, and detailed discussions can be found in Ref. [11]. Thus,
throughout this paper, we assume 1 # 1. The wave equation itself
is linear and represents the infinite-dimensional harmonic oscilla-
tor. The right-handed side boundary condition (at x = 1) is nonlin-
ear when f§ # 0, which is usually called a van der Pol type
boundary condition (see, e.g., Refs. [11-17]). The left-handed
side boundary condition (at x =0) is linear, where 1 > 0 indicates
that energy is being injected into the system at x =0. If we denote
the total energy as

N =

E(r) = %L [Vw(x, 1) Pdx =

1
[ [w.%(x, 1) +wi(x, l)} dx

Jo

and assume that Eq. (1.1) admits a classical solution (i.e., w has
second continuous derivatives with respect to ¢ and x, satisfying
the system (1.1)), then by applying the boundary conditions, we
have

(@) = i (0.0) 4w (1,0) [~ p?(1,0)]
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Thus, if # > 0, the system (1.1) has a self-excited mechanism that
supplies energy to the system itself, which induces persistent (and
irregular) vibrations [12,14]. Due to the energy expression, as
long as f# > O(which is a more interesting case since the problem
is nonlinear), it is not difficult to show that w(-,7) is bounded in
H'(0,1) norm [18,19].

The existence and uniqueness of the classical solution of
Eq. (1.1) can be found in Refs. [12] and [13]. Furthermore, the
system (1.1) has a classical solution w if the initial data satisfy

wo € C3([0,1]), wy € Cy([0,1]) (1.2)

where

cs([0,1]) = {f € ¢*([0,1]) | £ (0)
=f(1)=0,0<i<k},i=0,1,k=12 (13)

FfO.=f fO stands for the ith derivative for i+#0, and
[[fl|c0 = maxq 7|f (x)|. The weak solution as well as its numerical
approximation is discussed in Ref. [11]. When f# =0, discussions
on the stabilization and the reconstruction of initial state of
Eq. (1.1) with similar boundary conditions can be found in
Refs. [20-22].

The PDE system (1.1) represents a broad spectrum of mathe-
matical models in real applications and has received considerable
attention since it exhibits many interesting and complicated
dynamical phenomena, such as limit cycles and chaotic behavior
of (w;, w,) when the parameters o, 3, and 1 assume certain values
[12,14]. Different from dynamics of a system of ordinary differen-
tial equations (ODEs), this is a simple and useful infinite-
dimensional model for the study of spatiotemporal behaviors as
time develops. For instance, the propagation of acoustic waves in
a long pipe satisfies the linear wave equation

82w()c7 1) B (f?zw(x7 1)

=0
or? Ox?

Its general solution is the d’Alembert solution
wlx, ) =F(x—1) +G(x+1)

where F and G are arbitrary functions. This solution describes a
superposition of two traveling waves with arbitrary profiles, one
propagating with unit speed to the left and the other with unit
speed to the right. The boundary conditions appeared in Eq. (1.1)
can create irregular acoustical vibrations [12,14,15]. This type of
vibrations, for example, can be generated by noise signals radiated
from underwater vehicles, and there are intensive research for the
properties of acoustical vibrations in the current literature (see,
e.g., Refs. [23-25] and references therein). Hence, the study of
synchronization of this type of vibration is not only important but
also may lead to a better understanding of the dynamics of acous-
tic systems.

More specifically, for instance, in the development of meta-
devices that are common to be used to steer wave propagation, the
traditional models in 1D virtual space in the absence of body
forces can be written as

o(x,t) =c—o—

ol O*w
o B =Pop (%1

where x is the virtual space coordinate, ¢ denotes time, w is the
displacement along the coordinate axis, p is the longitudinal
stress, ¢ is the stiffness, and ¢ is the mass density. When ¢ and p
are constants, it models the wave traveling along homogeneous
media. A key issue for the effectiveness of long-distance commu-
nication is the frequency. HF for the range of radiofrequency
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electromagnetic waves (radio waves) between 3 and 30 MHz, is
suitable to be used for long-distance communication and is used
by international shortwave broadcasting stations, aviation commu-
nication, government time stations, weather stations, amateur
radio, and citizens band services, among other uses (see, e.g., Ref.
[26]). The boundary condition setting of Eq. (1.1) can produce
sustainable high frequencies within a range value of parameters o
and f (see the discussion below). Here, the “sustainable” means
that there is no external energy required to do so. Therefore, syn-
chronization in such cases is practically useful in order to recover
the true signals (for the receivers) for the purpose of a physical
realization in practices.

For most systems associated with spatiotemporal time-
dependent variables, in practice only certain selected points in the
interior or the boundary of the spatial domain are accessible for
sensing, and thus, the linking of two systems (between the master
and the slave) usually is quite restrictive. Thus, this leads to a sig-
nificant challenge in the construction of a suitable slave system
from the theoretical point of view to achieve a desirable synchro-
nization for both systems.

In this paper, we consider the case in which the only available
signal is given by

) = B((%’tﬂ t>0 (1.4)

that is, only the signal on the boundary x=0 can be used as an
input for a slave system, which is often seen in applications. Our
goal is to seek a slave (or responding) system via input signal
(1.4) to synchronize

(1) the gradient (w,, w,) of Eq. (1.1) and
(2) the gradient and the state (w, wy, w;) of Eq. (1.1).

According to Ref. [14], assuming f# > 0 and 0 < a < 1, if one
defines

3v3 — (1 +a)

Np=—r7—"—"— 1.
A (1 +a) (1.5)
and either y < <1 or 1 <5 <n,', the gradient of Eq. (1.1)
presents chaotic spatiotemporal behaviors that reflect the com-
plexity of the system dynamics, including high frequency oscilla-
tion as the time develops. Here, the characterization of chaos is to
use the total variation V;(f) of a function f on an interval /, which
is defined to be the supremum of all sums

S 1) — F)
k=1

with respect to all partitions {x;} on /. Chen et al. [27,28] show
that both V;(w;(-,#)) and V;(w,(+, 7)) on a given interval I (spatial
variable in /) grow exponentially with respect to ¢, thus they
appear to be chaotic in the sense of Li-Yorke’s definition.

By making use of the Riemann invariant approach, the chaotic
dynamics of (w,, w,) can be generated by an iterated map with
respect to time ¢ (for more discussion, see Ref. [11], e.g., let
o =0.5, f=1, and n = 0.58). To synchronize such sensitive high
frequency (spatial dependence) dynamics via boundary signal
(1.4) usually is challenging and required subtle analysis of wave
traveling.

In Sec. 3, we will construct a slave system that synchronizes
(W, wy) and (w,wy,w,) of Eq. (1.1), respectively, after a short
transition period, regardless of the choice of the initial condition
of Eq. (1.1).

We mention here that the approach of this paper can also be
viewed as observer construction for Eq. (1.1) in terms of the out-
put measurement (1.4). It is significantly broader than our recent
work for the observer design [19]. In Ref. [19], we are not able to
construct a dynamical system such that its state w converges to
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the state w (1.1) with (1.4). In this paper, a dynamical (slave) sys-
tem is constructed (by a delay input) and its state converges to the
state of the master system (1.1) globally and exponentially. The
introduced delay output reflects a fundamental characteristic from
the viewpoint of wave reflections on the boundary: in order to
synchronize the wave dynamics of Eq. (1.1), one not only needs
to know the outgoing wave at the boundary x =0 but also the
incoming wave at x=0 that is characterized by the delay.
Recently, the delay introduced in wave system is also used to
stabilize the wave equation when the boundary condition is linear,
see Ref. [29], whose approach is not applicable to our case due to
the nonlinear boundary condition (ff # 0) in our model.

The paper will be organized as follows. In Sec. 2, we will pres-
ent the main result of our developed synchronizer that uses the
boundary observation of Eq. (1.1) at x =0 as an input signal. The-
oretical justification will be provided in Sec. 3. The main
approach is to convert the system (1.1) to a first-order hyperbolic
system by making use of the Riemann invariant transformation
and to study the wave reflection on the boundary. The coupling
gain that determines the exponential transition rate is obtained. In
Sec. 4, numerical examples are provided to demonstrate the effec-
tiveness of the proposed approach. In Sec. 5, we present a general
approach to synchronize the state (w,,w,,w) of Eq. (1.1) via set-
ting delay as a parameter. Further numerical simulations are also
provided. The paper ends with concluding remarks in Sec. 6.

2 Main Result for Modeling: Synchronizer

By studying the wave reflections on the boundary, we construct
the following synchronized slave system (Eq. (1.1)):

Wou — e =0, x € (0,1),£> 0
wy(0,7) = L(¢), t >0,
Wwe(l,1) =R(1), t >0, @D
w(x,0) = wo(x), w(x,0)=w;(x), 0<x<1
where
L(1) = (k = n)wi(0,1) + (k —n + 1)yw(0,1)
— ko, (0,8) — (k= + 1)yw(0,£), £ > 0 2.2)
and
(1, 1) = B (1,2) + ( (0 0) — w(0,0))]*
R(1) = +(a+1)y(w(0,0) — 0)), <1, .
o, (1,8) = B (1,1) + ( (Of—l) w(0,2— 1))
+(a+1)y(w (0,1 — 1) —w(0,t — 1)), 1> 1
(2.3)

and o € C*([0, 1]) and w, € C'([0, 1]). Both constants k and 7
are parameters. It is easy to see that when £ = y = 0, system (2.1)
is identical to Eq. (1.1). Let wy € C*([0, 1]) and wy € C'([0,1]) be
the initial states of Eq. (1.1). If we have
(1) the mltlal data ey = wy — W € C2 5([0,1]) and e; = wy
—wy € Cy([0, 1]), and
(2) the parameter £ is chosen so that

k—n—1 14«
k—n+1 1—a| ™

then, when 7y =0, we have that (W, w,) of Eq. (2.1) synchronizes
(wy, w)) of Eq. (1.1), and when y > 0, we have that (W, w,, w,) of
Eq. (2.1) synchronizes (w, wy, w;) of Eq. (1.1), after a short transi-
tion period of time, respectively. Notice that the synchronizer
(2.1) only receives output signal at x =0 from the master system

(1.1).
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Remark 2.1. Here, we use delay= 1 as the normalized wave
speed in our system is 1. In Sec. 5, we further discuss the case in
which more delay is introduced. |

3 Theoretical Approach

In this section, we will provide a detailed justification of our
proposed approach. Let us denote the error of states between
Egs. (1.1) and (2.1) to be

e=w—w 3.1
Then, the error dynamics satisfies the following wave equation:
—ey(x, 1) =0,

e.v,\'(-x7l) 0<x< 1, f>0,

e.(0,1) = (k—n)e,

(0,1) + (k — 1+ 1)ye(0,1), t >0,
ex(1,1) = { h(o) (e,E ;1) +7€(0,0)) +7¢(0,0), <1,
o

)
Lt) +ye(0,t — 1)) +vye(0,r = 1), t>1,
Co([0,1])

[Oa ID (70) 261(') €
3.2)

where eg = wo — Wo, €1 = wy — Wy, and h(r):= o — {(¢) with

w2 (1, 1) + w,(1,8) (W, (1, ) — y¢(0,0))

() = +((1,1) — 7e(0,0))*, t<1
’ w2(1,6) +w, (1,0) (W (1,£) — ye(0,¢ — 1))
+ 0, (1,7) = ye(0,1 — 1)), 1> 1
(3.3)

It is not difficult to see that () > 0 and —co < A(r) < o.

THEOREM 3.1. Assume o€ (0,1), f>0,k—n+# —1, and
7 > 0. For any initial data ey € C3([0,1]) and e; € Cy([0,1]), we
have

(1) When y=0, the error dynamics (e, e,) is asymptotically
stable in C'-norm, i.e.,

,E?M(He"(" Dl + le(- )]|0) =0 (CX)

(2) When y > 0, the error dynamics (e, e;, e;) is asymptotically
stable in Co-norm, ie.,

tim ([le(, D)o + llex( Do + llec (- D)l|0) =0 (3.5)

t
if and only if

k—n—1 1+«
k—n+1 1—-a

(3.6)

Proof. For the simplicity of later discussion, we denote ¢ = k — 1.
We define two variables (U, V) on [0, 1] x [0, c0) to be

ex(x,1) +e/(x,1)

Ux,r) = ; (3.7)
and
X 7t - 7t
%, 2e(0,0),  t<nx,
Vix,n) = ex(x, 1) — e(x,1) (3-8)
f—ye(o,t—x)7 t>x

Note that U and V are invariant along the characteristics
X+t =constant and x — ¢ =constant of Eq. (3.2), respectively,
and they are called Riemann invariants. The boundary condition
of Eq. (3.2) provides the relationship at the left-end x=0 and at
the right-end x = 1, respectively, as
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h(t) +1
h(t) =1

Since Vi >0, h(r) <a <1, one can see that U(l,7) is well-
defined. For the convenience of following discussion, we denote

U(l,1) =

V(0.0 =5 U0.0, VL) G9)

+1

h(t—(2n—1))+1
hit—(02n—-1)) -1’
n=20,1,2,...,and t > 2n—1 (3.10)

Fn(t):: F(h(tf (21’! - 1)) =

1
F1(x+t)~~~Fn(x+t)(§—+1

¢

Ur1) = ﬂ&+0~qu+0Qil
n+1
) Wt e-2), 2-x<eso

Fl(x+t)"'Fn+l(x+l)<

and

Fl(t—x)-~~Fn(t—x)(

Vix,t) = Fl(t—x).,.Fn(t—x)<€_

Fili=2) - Fr(r=)

where (Up, V o) is the initial data. Denote M = max,[,
{|Uo(x)|, [Vo(x)|}. Then, Egs. (3.12) and (3.13) imply that for ¢
= 2n + © we have

(E=1)(x+1) o+ 1
'U““) S‘@+1Ma71)' a—l"
E=—D+1)|" |E-1
‘V””) <W<f+1xa—1> '¢+1’
Thus, when
(-1 (a+1)
‘@+nw—n‘<l

we then have
im (U, 0o + [[V(- 1)) = 0

Next, we assume that

—
i
|
—_
=
—
K
+
—_
=

—
i
+
—_
=
—
53
I
—_
=

Let us denote
g(t) = [U(1,1)]|

In the following, we will show that lim, .. g(t) = 0.

Without loss of generality, we may assume max,cjo,i{|Uo(x)],
[Vo(x)|} < Joe — 1 /o + 1] for simplicity by scaling both Ug and V.
We proceed it by contradiction. Suppose lim,_, g(#) # 0, then

121007-4 / Vol. 14, DECEMBER 2019

) @ata+2),
)Q%@fxfﬂx

-1
&+

)"(VO(X— 7)),

m) (Uo(t — x)),

[}
E+1

By noticing that F' is a decreasing function of 4, a direct estima-
tion yields

[Fa(r)] < (3.11)

a—1

oc—l—l‘

When ¢ # —1, for t=2n+1,n=0,1,2,...,0 <t <2, by the
method of characteristics and the induction, the solution (U, V)
can be expressed explicitly as follows:

0<7t<1 —y,

l—x<1<2—x, (3.12)

0<1t<uy,
x<1<14ux, (3.13)

n+1
) Volx—t+2)), 14+x<1<2

there exists &y > 0 such that for any given 7> 0, 3ty > T so that
we have g(fo) > . Let 1y > 0 satisfy g(19) = |U(1,10)] > .
Let ¢ be small enough with &y > ¢ > 0 and denote

_ 23¢? - Ine
= — - -, e
32(1 —a)” + (1 — ) e 1n<1 s

=)

Let us choose T = 2N + 7o with 0 < 79 < 2. Choose a fy = 2ng
+7 with 0 <7 <2 such that tp > T +2 and g(t) = |U(1,1)|
> &. Thus, typ > T + 2 implies nyp > N.

Now, we consider the set

S = {|Fu(to + 1)|,where 1 <m < ng+ 1}.

If all elements in S satisfy the following:

o+ 1

Fu(to+1)| <
Fnlto + 1) < | 21

o

then, according to Eq. (3.12) and the choice of N, we would have

B 2t 1 -1\
g@»—ﬂ«Lmﬂg((a_J—6>g;;D
g(l—é%) <<1—5 -1

E+1
which leads to a contradiction.

N
) <e<g (3.14)
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Therefore, there must exist a smallest m with 1 < m < ny + 1,
such that

1
o+ ‘_57
a—1

[Fo(to +1)] € ( p—

a+1‘

First, we denote A= |o+ 1/a— 1| —|F,(to+ 1)]. When ¢ is
small enough (so is d), one has h(fg —2m +2) > 0. Thus, we
have the expression

14 h(tg —2m+2)
F.(to+1)=——-——"-—"=
Fnlto +1)] 1—h(to — 2m+2)
Hence, we arrive at

a+1
o—1

a+1 o+ 1Bt —2m+2)

A= l—o 1 —o+ pi(tg—2m+2)

|~ Falo+ 1l =
where ( is defined by Eq. (3.3). For simplicity and clarity, we
write {(tp — 2m + 2) briefly as (o

a1 ot 1-pL 2B
T—o 1—a+pl (1—a)(l—oa+pl)

A= <0

which implies, by the choice of 9, that

2
P
Co<3—2

Following from the fact (a® + b*/2) < a@* + ab + b* and the defi-
nition of {,, we have

Wwe(1, 0 — 2m +2)| < 2,

o1, 10 — 2m + 2) — ye(0, 19 — 2m + 1)) <§

By the boundary conditions of Egs. (1.1) and (2.1), we obtain

3
(1,0 — 2m +2)| < a§+/3(§> <§,

3
(1,2 = 2m +2) + (0,1 — 2m + 1)| < a§+ﬁ(§) <§

when ¢ is small enough. Let u and # be the Riemann invariants of
Egs. (1.1) and (2.1), respectively, that is,

Wy + Wy L Wy
== =—""1

2 2
Then, it yields

wy(l,tg—2m+2)+w, (1,0 —2m+2)

u(1,t0—2m+2)| = 5

and

wi(l,to—2m+2)+w,(1,t0—2m+2)| ¢
2

m(1,t0—2m+2)|:'

respectively. Thus, this leads to the Riemann invariant U of
Eq. (3.2) satisfying

U(1,t0—2m+2)| < [u(1,t0 —2m+2)| + i (1,10 —2m+2)| <&
(3.15)
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which thus implies that

1 m—1
ot =|(557) WA+ @000 - 2m+2)

<|U(xo,t0 —2m+2)| < e
(3.16)

and gives g(ty) = |U(1,19)| < &, and this leads to a contradiction.
Therefore, we have
lim |U(1,7)] =0 (3.17)
1—00

and obtain

thm sup |U(x,1)| = hm sup [U(L,t+x—1)|=0 (3.18)
T xel0 1] x€[0,1]

Following from the reflection at the left end x =0, we have

lim [V(0,7)] =0 (3.19)

1—00
and hence

lim sup |V(x,1)| = hm sup [V(0,t—x)| =0 (3.20)

=2 xef0,1] vel0,1]

When y =0, for 7> 1 and x € [0, 1], the following expressions

imply

tim (llex(,0)lleo + [lec(- D)lleo) = O

=400

If we choose & such that

k—n—1 1+ua
ri=—
k—n+1 1—ua
then, by the expressions (3.12) and (3.13), one can see the conver-

gence is exponentially decaying with the rate In(1/+/7).
If y > 0, (0, 7) can be obtained as

t

e(0,1) = ef""[‘[ e”(U(0,s) —

0

V(0,s))ds, Vi>0 (321

Since lim,_, o, |U(0,1) — V(0,1)| = 0, we have

lim |e(0,7)| =0 (3.22)

t——+00

It follows from Eqgs. (3.22) and expressions (3.7) and (3.8) that

i (llect Alls + ()l ) =0

Moreover, the solution e of error system (3.2) can be written as

Vi >0, Vx € [0, 1], e(x,7) = J ex(s, t)ds + e(0,1)
0

Thus, we have obtained

lim {le(:,7)[|0 =0

—+00

If equality (3.4) or (3.5) holds, according to Egs. (3.12) and
(3.13), we arrive at
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E—1 1+« 1
E4+1 1—u
Therefore, the proof is complete. |

Remark 3.1. Here, we make some remarks:

(1) Theorem 3.1 also shows that the slave system (2.1) admits
a classical solution provided that the initial condition of Eq.
(1.1) satisfies (wo, wy), (Wo, 1) € C3([0, 1]) x C5([0,1]).

(2) In spite of the gradient (w,, w,) presenting chaotic dynam-
ics, we show not only the convergence of error dynamics
but also the gradient (e,, e,) is convergent in terms of
¢5([0, 1]) norm.

(3) Itis easy to see the following equivalence:

k—n—1 1+ua
k—n+1 1—-ua

1
<l<=kec {n+a,n+;}

(4) To synchronize (w,, w,), we can set y =0, thus the slave
system only needs the input signal w,(0,¢) for > 0.
Moreover, if k € (4 o, + (1/a)), the transition time is
exponentially fast with the transition rate

. k—n—1 1+ua
Ck-n+1 1-ua

(5) To synchronize (w,w,,w;), we require y >0 as well as
delay input w(0,7 — 1). This is because in order to syn-
chronize the state w, one not only needs to know the
reflected (outgoing) wave w(0, ) but also the incoming
wave w(0,7 — 1) for ¢ > 1.

(6) Theoretically, we can choose k such that k —n = 1, thus
r=0. This implies that the error dynamics becomes zero in
a finite time; hence, the slave system synchronizes with the
master system in a finite time. In numerical implementa-
tions, however, due to rounding errors, we may not exactly
have r = 0; therefore, considering < 1 and r ~ 0 in such a
case is more realistic due to the sensitivity of both master
and slave systems.

Next, we provide the details of the parameter setting.
Corollary 3.1. Let 0. € (0,1), p > 0 and n # 1. If the parame-
ters k and y are chosen to satisfy

k—n—1 1+ua
k—n+1 1—-a

7>0,0< <1 (3.23)

then, for any initial functions ey € C3([0,1]) and e; € C}([0, 1]),
the solution of error dynamics (3.2) is exponentially stable. More
specifically, there exist constants M > 0 and p > 0 such that

Vi 20, [le(; D)o + [l Dl + [led, D)l < Me™™ (3.24)

Proof. For simplicity and clarity in the following analysis, we
denote

|k=n—-1 1+«
Clk—n+1 1-u

r (3.25)

For any ey € C2([0, 1]) and ¢; € C}([0, 1]), we then have

/
ey —
2

/
:eo+el

Uy >

€ Ch([0,1]), Vo =L —e0(0) € Ci([0, 1))

121007-6 / Vol. 14, DECEMBER 2019

Let My > 0 such that
—1
Va € [0,1], |Up(x)] < ‘% ’Mo, Vo) <My (3.26)

By choosing a constant p € (0, 1), where 2 = min{y, In(1//r)}.
For t =2n+t with n € Nandt € [0,2), from Egs. (3.12) and
(3.13), we have

n M() 1 MO
UG 1)l < Mor" < 7exp(f (lnj;)z> < =exp(—p1),

n My 1 My
V()| < Mor" < Texp<f (IHW) t) <= exp(—pr)
(3.27)

From the expression (3.21), we arrive at the following estimation:

oM
< Lexp(—pr) (3.28)
.

e(0,1)

Wheny > 0, for 7> 1 and x € [0, 1], the following expressions
EX(X, t) = U()‘v I) + V(X, [) + ”/6(0, t— X)v

e (x, 1) = U(x, 1) — V(x,1) — ye(0,1 — x),

"X

e(x,t) = L ec(s,t)ds + e(0,1)

as well as both obtained estimations (3.27) and (3.28) yield the
following inequality:

lleC Dller + llex(s Dlleo + llex(- Do < Me™

where M > (M /r)(10 + 4y). Therefore, the proof is completed.
|
Remark 3.2. According to the proof of Corollary 3.1, the condi-
tion can be described, equivalently, as

1
<1, Vpe (O,min{%lnﬁ})

Thus, one can always control the convergent rate p by choosing
appropriate y and k. |

k—n—1 14+«
ri=|—:-:
k=n+11-uo

4 Numerical Simulations

In this section, we will provide some numerical simulations to
validate the theoretical results of this paper.

For the main system (1.1), we first consider the case o = 0.5,
f =1 with the following initial data:

Vx € [0,1], wo(x) = 0, wy(x) = 8sin*(2mx) (4.1)

According to Ref. [14], the gradient (w,, w,) of Eq. (1.1)
undergoes chaotic vibrations when 1 € [y, 75']\{1}, where
no ~ 0.552, discussed in Sec. 1. Without loss of generality, we
use wo =0 and w; =0 as the initial data of the slave system
(2.1). In the simulation of Fig. 1, we set y=0. One can see that
the gradient (w,,w,) of the slave system (2.1) synchronizes the
gradient (w,, w,) of Eq. (1.1) in about 4 s even with the very sensi-
tive output y(7) = w,(0,¢). It is interesting to observe that in this
case the displacement state w of Eq. (2.1) does not synchronize
the state w of Eq. (1.1). They are different from a constant. This is
due to the fact that the state w of Eq. (1.1) is unobservable by
using a single output y(7) = w,(0, ¢) (see recent work [18]). Recall
here that
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NS = ma X 1)
et o = ma s )

t
max le:(x, 1),

(Dl = ma [e(x. )

lle: (-, D)o

Next, we let y = 1.5, which implies that the delay output takes
into effect. Figure 2 shows that all states (w,w,, w,) of Eq. (2.1)
synchronize the states (w,wy, w;) of Eq. (1.1) in about 4. In the
simulated results, one can see that a sharp stepwise decrease in e,
and e, can be observed but not in the total error term e. This is
because (e,, ¢,) at the beginning is quite chaotic before the syn-
chronizing control takes into effect. Also, the total error term is
always smaller than the other two since e is the integration of (e,,
e,). Thus, e’s behavior appears to be better than (e,, ¢,) due to the
smoothing effect by integration.

Next, we conduct a different simulation. Let o = 0.4
and f = 0.1. Small § implies that the master system has less
damping and more self-excited energy is being injected to the sys-
tem, thus the chaotic behavior will become more severe. For this
case, we have 7y ~ 0.5755 and choose n = 0.58. The initial data
are set to be

7 e Hlles

lle Do ]

lleC-Blle

. : |

Fig. 1 The profiles of ||ex(-, )||0, ||€:(-, )[|0, and ||e(-, t)||0 for
y=0and tc|0,8]

lle,(-Hllgo

—>lle (i

i —> lle(-Hllgo ]

1 1 1 1 | 1 | 1
0 1 2 3 4 5 6 7 8
t-axis

Fig. 2 The profiles of ||ex(-, t)||x, ||e:(-, t)||0, and ||e(-, T)||o for
y=15and te(0, 8]
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Vx € [0, 1], wo(x) = 1—10(277:)6— sin(2mx)), wy (x) = 2(1 —x)2

4.2)

to avoid the similar dynamics as the previous one. The initial
states of system (2.1) stay the same, i.e., wo = w; = 0. The simu-
lations for y =0 and y =2 are given in Figs. 3 and 4, respectively.
The results show that the previous arguments remain valid.

5 To Synchronize the States (w,, w;, w) by Using Delay
as a Parameter

In this section, we further generalize our approach by using
delay as a parameter. Throughout this section, let ¢ > 0 be the
delay parameter (Eq. (1.1)). The synchronized slave system is still
in a form of

Wy — Wy =0, x€(0,1), 1> 0,

wy(0,1) = L(1), t >0,

wy(l,1) =R(t), t > 0,

w(x,0) = wo(x), wi(x,0)=wi(x), 0<x<]l,

(5.1)

where L(7) and R(f) will be given later. Let us denote the error of
states between Egs. (1.1) and (5.1) to be

lle,¢-bll o

i, le (-llo

0.6
04 le(:Hllo 1

0.2

1 2 3 4 5 6 7 8

Fig. 3 The profiles of ||ex(-, t)||x, ||e:(-. t)||0, and ||e(-, T)||0 for
y=0and tc[0, 8]

1.6 T T T T

14 >l 0=04, p=0.1; | -
n=0.58;
k=2;

¥=2.

0.8
0.6
0.4

> lle(-llco
0.2

ot

02 L L L L L L I
0 1 2 3 4 5 6 7 8

Fig. 4 The profiles of ||ex(-, t)||x, ||e:(-. t)||0, and ||e(., )| for
y=2and tc[0, 8]
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e=w—w 5.2)

In order to synchronize the states (w,, w,, w) of Eq. (1.1), the chal-
lenge results from that the slave system only has the signal
w;(0,7) and w(0,7) from the master system. Our proposed
approach, method of characteristics, is still applicable when we
use delay as a parameter. It will involve a transport equation,
which has the same characteristics with the Riemann invariant u
or v of Eq. (1.1), as shown below. Let us denote

v(x, 1) = {W(O,t—x—f)7 t>x+4,

w(0,0), 0<r<x+/¢ (5-3)

ﬁl(X7t):{W(0,t—x—€), t> x4, 5.4)

w(0,0), 0<r<x+/¢

which are solutions of the transport equation v, + v, = 0 and are
constant along the characteristic direction § = (1, 1).
We construct the boundary conditions L(f) and R(¢) of the slave
system, respectively, as follows:
L(Z) = _WWI(OJ) - ke[(O,t) - y(k —n+ 1)(Vl - ‘;l)(07 [)7 1>0
(5.5)

R(1) =alv,(1,0) = y(vi = 90)(1,0)] = BPu(1,0) = y(vi = 91)(1,0)]°
—V(Vl —\;1)(1,2‘), t>0
5.6)

Then, the error dynamics satisfies the following wave equation:

ew(x,1) —ex(x,1) =0, 0<x<1,t>0,
ex(0,1) = (k—n)e,(0,1) + p(k —n+1)(vi — $1)(0,7), 1 >0,
ex(1,0) =h(0)[e,(1,6) + (vi = v1)(1,0)] +y(vi = v1)(1,2), >0,
e(-,0)=eo(-), e(0)=ei()

5.7

where ey = wy — Wy, ey = wy — Wy, and h(r) = o — B{(¢) with

C(Z) = sz(lvt) + Wf(17l)[wt(]7t) - V(Vl - ‘31)(]71)}
+e(1,0) = (v = 01)(1,O)], >0 (5.8)

One can verify that {(r) > 0 and —co < h(f) < o.
Similar to the discussion given in Sec. 3, the following two
Riemann invariants

_ecte [

e ~
U o 5 LT (5.9)

approach to zero exponentially as t — +oo if

k—n—11
’ n Ty (5.10)

k—=n+1 1—«

ie.,

1
ke (114-0(,11—0—&)

The next step is to choose appropriate y such that v; — v also
approaches to zero exponentially as ¢+ — +oo. Since v; — vV is
invariant along the characteristics ¢ —x =constant, one only
needs to ensure (v; — v1)(0,7) exponentially converges to zeros
as t — +oo. Notice that (v; —v,)(0,¢) = e(0, — ¢) when ¢ > ¢,
we need to consider the dynamics of the delayed differential
equation

121007-8 / Vol. 14, DECEMBER 2019

f@, >4 5.11)

where C is a constant and f(7):= (U — V)(0,¢). The case £ =0
has been discussed in Sec. 3. We next assume that £ > 0 and
define

H(z)=z+7pe % zeC (5.12)

H(z) =0 is the so-called characteristic equation of Eq. (5.11), see
Ref. [30] for more details.
LemMA 5.1. Consider (5.12). Assume 0 < £y < 1, then

Ao = max{Re(z), H(z) = 0} (5.13)

is well-defined and
/10 <0

Proof . The constant /g is well-defined, followed from Lemma 4.1
in Ref. [30]. Let z = x + iy with x,y € IR, then

x4 ye % cos(fy) = 0,

H(z)=0=
y —pe~"sin(fy) = 0

If sin(¢y) = 0, then y=0 and x + y¢~* = 0, which implies x < 0.
When sin(¢y) # 0, both y and sin(¢y) carry the same sign, thus the
following equation

' 14
lye™™ = ’ 1,

sin(y)

0<ty<l1

implies x < 0. Therefore, the proof is completed. |

Next, we will provide an explicit estimation of the upper bound
of o. We denote g(x) = x4+ e¢™*,x > 0. Then, g is strictly increas-
ing on [0,00) and Range (g) =[1,00). We define a positive
constant

-1 -1
_ e (=In(@y), 0<fy<e,
o = {o, el < by (5.14)

Notice that if g((—In(¢y)) > —In(¢y), then we have
0 < 6o < —In(€y)).

LemMmA 5.2. Given £ and y that satisfy 0 < ¢y < 1 and let d, be
defined by Eq. (5.14). Then, we have

In(¢y) + 0
/login( V)+ 0<0
1
where ) = max{Re(z),z +ye~* = 0,z € C}. Furthermore, for
fixed y > 0, the following holds:

lim ln(éy) + do _
1—0* l

Proof. Notice that if we denote z = x + iy, then

z+ ,Yeflfz —0= X+ ’yeim Cos(éy) = 03
y —ye “sin(fy) =0

When ¢ satisfies e~! < ¢y < 1, we have y # 0 since otherwise x
would satisfy x + ye~* = 0 which does not admit a solution for
any x € R. This implies sin(¢y) # 0, and thus,

—ix by
lye ™ = 1
e sin(Cy) ”

which yields x < In(¢y)/¢. Hence, we have 4y < In(¢y) /4.
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When 0 < £y < e~ !, one can verify directly that the real num-
ber z = (In(£y) + 39/¢) is the unique solution of z + ye=* = 0.
Hence, we have obtained

In(€y) + do |

7 for O0</ly<e

)»0 =

Furthermore, by the definition of J¢, we have
Sy + e % = —In(¢y)

and lim,_,;+ 09 = +o0. Therefore, we have

In(#4 o —% »
io—in( /)[+ Oz_y%:—yeg " ——y as £— 0"
and the proof is completed. |

LemMmaA 5.3. Consider the delayed differential equation (5.11),
and let x(-) be the solution. Suppose f(t) approaches to zero expo-
nentially as t — 400 and 0 < ¢y < 1, then there exist constants
M > 0and 1 > 0 such that

Vi>0, |x(1)] < Me# (5.15)
i.e., the solution of Eq. (5.11) approaches to zero exponentially as
t — +o0.

Proof . Choose 4; > 0 with —2; € (19,0), where g is given by
Eq. (5.13). It follows from Theorems 6.1 and 6.2 in Ref. [30] that
o0 ot

Vi > €, x(1) = CX() CVJ X(t+5— O)ds+ J X(t =5+ 0)f(s)ds

0 14
(5.16)
where X (-) satisfies
X(O) 4+ 9X(t—0) =0, >4,
1, t=1¢,
X(r) ={
0, </
and
V>0, |X(1)] < Mye M (5.17)

for some constant M; = M;(/;) > 0. Choose M; > 0,7, >0
such that

Vi>0, [f()] < Mye ™ (5.18)

Without loss of generality, assume that A; # 4. It follows from
Egs. (5.16)—(5.18) that

Vi> 4, |x(t)| < Me™*

where A =min{4;, 4} and M = M (4, 22,M;,M;) > 0. Thus,
the proof is completed. |

TueOREM 5.1. Let o € (0, 1), f > 0 and n # 1. If the parameters
{, k, and y are chosen to satisfy

k—n—1 1+a
k—n+1 1—-u

0<ty<I1,0< <1 (5.19)

then, for any initial states ey € C3([0,1]) and e, € Cy([0,1]), the
solution of error dynamics (5.7) is exponentially stable. More spe-
cifically, for any A € (0, Ay), where

Journal of Computational and Nonlinear Dynamics

;vl = mm{ —ln\/F, — —hl(fy)é + bO}

there exists a constant M > 0 such that

¥t 20, [le(, 1)l + llex( Dlleo + [le: (-, 1)l < M (5.20)

Proof. According to the discussion in the above theorem, we first

have that ||e.(-, 7)o, ||e:(-, )]0, and |e.(0,7)| approach to zero

exponentially as  — +o0. Similar arguments used in the proof of

Corollary 3.1 lead to the conclusion. |
Remark 5.1. Here, we make two remarks:

(i) When ¢ = 0, Theorem 5.1 is equivalent to Corollary 3.1
(delay= 1) according to Lemma 5.2. In other words, Corol-
lary 3.1 is a special case of Theorem 5.1.

(ii) When ¢ > 0, due to dy/¢ — 0 as £ — oo, the absolute value
of A becomes smaller as ¢ increases, i.e., the convergent
rate of error dynamics will become slow, which is reasona-
ble since the longer delay we use, the more responding
time is required for the slave system to synchronize with
the master system.

To confirm that, we provide the following numerical simula-
tions. Let o = 0.4and # = 0.1. For this case, we have 1.0.5755
and we set 7 = 0.58 so that the gradient (w,, w,) presents chaotic
dynamics. Let parameters y = 0.5,k = 2 and the initial condition
be

wo(x) = 11—0(2m —sin(2nx)),  wi(x) = 23(1 —x)° xe [0,1]

The initial state of the slave system is set to be wo = w; = 0. The
simulations for delay / = 1 and ¢ = 2 are given in Figs. 5 and 6,
respectively. Clearly, the error dynamics for delay ¢ = 2 appears
to be slower than the case for / = 1. |

6 Conclusions

In this paper, we model the synchronization of wave equation
associated with nonlinear boundary. Wave equation is a standard
model for the study of various vibrations in reality in which
boundary conditions govern the type of vibrations. The nonlinear

1.6 T T T T T

a=0.4, 3=0.1;
7=0.58;

| =

4=0.5;
delay-time L=1. 4

lle,(-Hll o

lle,(-Hllgo

0.8

0.6

0.4

lle(- )l o
02 &

Fig. 5 The profiles of ||ex(-, )|, ||e:(-. t)||0, and ||e(-, )| for
delay ¢ = 1and t<[0,12]
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14 F 0=0.4, 3=0.1; E

lle, (- Bl o

delay-time L=2.

lle, (- )l o

0.8
0.6
0.4

lle(- )il o
02 c

0 5 10 15 20 25 30

Fig. 6 The profiles of ||ex(-, t)||x, ||e:(-. t)||0, and [|e(-, T)|| for
delay £ =2 and t <0, 30]

boundary condition adopted in this paper, originated from the
well-known Van der Pol oscillator, leads to the chaotic dynamics
of the state gradient and causes the irregular, rapid vibration of
the state, which induces the rapid changes (high frequencies) of
wave propagation that has been received considerable attention in
recent years. To the best of our knowledge, there are no existing
results for the discussion of possible underlying deterministic
structure at this point for this system. This does open a new impor-
tant question and requires a substantial study for which we will
work on it the near future.

Wave equation represents a broad spectrum of mathematical
models in real applications and the boundary setting (or control)
can significantly affect the wave propagation dynamics. This is
particularly important in the development of meta-devices often
used to steer wave propagation. The slave system (or called the
receiver) is required to be synchronized with the master system in
order to recover the true signals locally in a short period of time.

With the only signal being available at the one end of the
boundary, we are able to construct a responding system that syn-
chronizes the original system. The transition period can be con-
trolled by selecting appropriate parameters. Even though the
original system is very sensitive to its initial condition, the
synchronized dynamics responds quite well.

It is worthy of mentioning here that to the best of our knowl-
edge, incorporating the delay output into the responding system
seems to be necessary in order to achieve the synchronization of
this type of vibrations. As the output signal is only available at the
one end of the boundary, one needs to know both outgoing and
incoming waves in order to capture the dynamics of the original
system. The estimation of error dynamics shown in this paper is
new and is not available in the current literature. With the intro-
duction of the delay input, we successfully synchronize all critical
state variables: the state as well as the gradient of the state.

The key idea of this paper is to construct two Riemann invari-
ants for the error system that are solvable and allow us to study
the wave dynamics via boundary wave reflections. The approach
by Riemann invariant essentially is equivalent to method of char-
acteristics, an effective method in the study of hyperbolic PDEs.
The limitation for this type of approach results from the fact that
if the Riemann invariant cannot be solved explicitly (different
from the case in this paper), the corresponding wave dynamics is
hardly analyzed due to the difficulty in determining the wave
reflection on the boundary analytically, in particular, when the
system is sensitive to small perturbations. Numerical approach
may offer a potential solution provided that a stable algorithm for
solving the corresponding Riemann invariant could be developed
(for the sensitive case), the synchronization in the discrete level

121007-10 / Vol. 14, DECEMBER 2019

under our framework may become approachable. A further exten-
sive study is required and will be reported elsewhere.
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