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Synchronization of
Spatiotemporal Irregular
Wave Propagation Via
Boundary Coupling
Wave dynamics reflect a broad spectrum of natural phenomena and are often character-
ized by wave equation such as in the development of meta-devices used to steer wave
propagation. Modeling synchronization of wave dynamics is critical in various applica-
tions such as in communications and neuroscience. In this paper, we study the synchroni-
zation problem for oscillations governed by wave equation with nonlinear (van der Pol
type) boundary conditions through a single boundary coupling. The dynamics of the mas-
ter system is self-excited and presents sensitive and rapid oscillations. With the only sig-
nal received at one end of the boundary, by constructing a mathematical model, we show
the existence of a slave system that can be synchronized with the master system via the
study of wave reflections on the boundary to recover the actual wave dynamics. The cou-
pling gain, which represents the strength of the connection between the master system
and the slave system, has been identified. The obtained result can be also viewed as an
observer construction when the measurable output is only on the boundary. Numerical
simulations are provided to demonstrate the effectiveness of the theoretical outcomes.
[DOI: 10.1115/1.4044923]
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1 Introduction

Synchronization is a rich phenomenon and a multidisciplinary
discipline with broad range applications such as in physics, tele-
communication, and neuroscience (see, e.g., Refs. [1–4] and
references therein). There are many results for synchronizing non-
spatiotemporal systems in the literature (e.g., see Ref. [5] and
references therein), however, synchronizing spatiotemporal sys-
tems remains to be challenging and few results are available in the
current literature. This is mainly due to the complexity of the spa-
tiotemporal system (such as partial differential equations (PDEs))
as well as the restriction of available signals for the construction
of a desirable slave system. In particular, for the chaotic systems
which usually associate with high frequency (HF) oscillations,
even two identical systems starting from slightly different initial
conditions would evolve in time in an unsynchronized manner
(e.g., see Ref. [6]) due to the weak stability [7]. In general, it is
quite challenging to synchronize a spatiotemporal system when its
state is only accessible in a finite number of locations such as
measurement output from the boundary, which results in the so-
called weak coupling (see Refs. [8–10] and references therein).

In this paper, we consider the synchronization problem of
vibrations governed by the wave equation associated with nonlin-
ear boundary condition in the form of

wtt � wxx ¼ 0; x 2 ð0; 1Þ; t > 0;

wxð0; tÞ ¼ �gwtð0; tÞ; g 6¼ 1; t > 0;

wxð1; tÞ ¼ awtð1; tÞ � bw3
t ð1; tÞ; 0 < a < 1; b � 0; t > 0;

wðx; 0Þ ¼ w0ðxÞ; wtðx; 0Þ ¼ w1ðxÞ; 0 � x � 1

8>>>><
>>>>:

(1.1)

where a, b, and g are given real constants. When g¼ 1, the system
(1.1) is not well-posed. This is mainly because in such a case, the
initial conditions will coincide with one of the characteristic direc-
tions that leads to being indistinguishable with each other. More
specifically, the general solution can be expressed as wðx; tÞ
¼ Fðx� tÞ þ Gðxþ tÞ, that is, x6t are characteristics of the sys-
tem. If we plug it into the boundary condition at x¼ 0, one can
see that

F0ð�tÞ þ G0ðtÞ ¼ �gð�F0ð�tÞ þ G0ðtÞÞ

Then, g¼ 1 would lead to that F0ð�tÞ can be arbitrary while
G0ðtÞ � 0. Hence, in such a case, the solution either does not exist
or cannot be uniquely determined. This is true even for weak solu-
tions, and detailed discussions can be found in Ref. [11]. Thus,
throughout this paper, we assume g 6¼ 1. The wave equation itself
is linear and represents the infinite-dimensional harmonic oscilla-
tor. The right-handed side boundary condition (at x¼ 1) is nonlin-
ear when b 6¼ 0, which is usually called a van der Pol type
boundary condition (see, e.g., Refs. [11–17]). The left-handed
side boundary condition (at x¼ 0) is linear, where g > 0 indicates
that energy is being injected into the system at x¼ 0. If we denote
the total energy as

E tð Þ ¼ 1

2

ð1

0

jrw x; tð Þj2dx ¼ 1

2

ð1

0

w2
x x; tð Þ þ w2

t x; tð Þ
h i

dx

and assume that Eq. (1.1) admits a classical solution (i.e., w has
second continuous derivatives with respect to t and x, satisfying
the system (1.1)), then by applying the boundary conditions, we
have

d

dt
E tð Þ ¼ gw2

t 0; tð Þ þ w2
t 1; tð Þ a� bw2

t 1; tð Þ
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Thus, if g > 0, the system (1.1) has a self-excited mechanism that
supplies energy to the system itself, which induces persistent (and
irregular) vibrations [12,14]. Due to the energy expression, as
long as b > 0(which is a more interesting case since the problem
is nonlinear), it is not difficult to show that wð�; tÞ is bounded in
H1ð0; 1Þ norm [18,19].

The existence and uniqueness of the classical solution of
Eq. (1.1) can be found in Refs. [12] and [13]. Furthermore, the
system (1.1) has a classical solution w if the initial data satisfy

w0 2 C2
0ð½0; 1�Þ; w1 2 C1

0ð½0; 1�Þ (1.2)

where

Ck
0ð½0; 1�Þ ¼ ff 2 Ckð½0; 1�Þ j f ðiÞð0Þ

¼ f ðiÞð1Þ ¼ 0; 0 � i � k g ; i ¼ 0; 1; k ¼ 1; 2 (1.3)

f ð0Þ :¼ f ; f ðiÞ stands for the ith derivative for i 6¼ 0, and
jjf jjC0 ¼ max½0;1�jf ðxÞj. The weak solution as well as its numerical
approximation is discussed in Ref. [11]. When b¼ 0, discussions
on the stabilization and the reconstruction of initial state of
Eq. (1.1) with similar boundary conditions can be found in
Refs. [20–22].

The PDE system (1.1) represents a broad spectrum of mathe-
matical models in real applications and has received considerable
attention since it exhibits many interesting and complicated
dynamical phenomena, such as limit cycles and chaotic behavior
of (wt, wx) when the parameters a, b, and g assume certain values
[12,14]. Different from dynamics of a system of ordinary differen-
tial equations (ODEs), this is a simple and useful infinite-
dimensional model for the study of spatiotemporal behaviors as
time develops. For instance, the propagation of acoustic waves in
a long pipe satisfies the linear wave equation

@2w x; tð Þ
@t2

� @
2w x; tð Þ
@x2

¼ 0

Its general solution is the d’Alembert solution

wðx; tÞ ¼ Fðx� tÞ þ Gðxþ tÞ

where F and G are arbitrary functions. This solution describes a
superposition of two traveling waves with arbitrary profiles, one
propagating with unit speed to the left and the other with unit
speed to the right. The boundary conditions appeared in Eq. (1.1)
can create irregular acoustical vibrations [12,14,15]. This type of
vibrations, for example, can be generated by noise signals radiated
from underwater vehicles, and there are intensive research for the
properties of acoustical vibrations in the current literature (see,
e.g., Refs. [23–25] and references therein). Hence, the study of
synchronization of this type of vibration is not only important but
also may lead to a better understanding of the dynamics of acous-
tic systems.

More specifically, for instance, in the development of meta-
devices that are common to be used to steer wave propagation, the
traditional models in 1D virtual space in the absence of body
forces can be written as

r x; tð Þ ¼ c
@w

@x
x; tð Þ

@r
@x

x; tð Þ ¼ q
@2w

@t2
x; tð Þ

where x is the virtual space coordinate, t denotes time, w is the
displacement along the coordinate axis, q is the longitudinal
stress, c is the stiffness, and r is the mass density. When c and q
are constants, it models the wave traveling along homogeneous
media. A key issue for the effectiveness of long-distance commu-
nication is the frequency. HF for the range of radiofrequency

electromagnetic waves (radio waves) between 3 and 30 MHz, is
suitable to be used for long-distance communication and is used
by international shortwave broadcasting stations, aviation commu-
nication, government time stations, weather stations, amateur
radio, and citizens band services, among other uses (see, e.g., Ref.
[26]). The boundary condition setting of Eq. (1.1) can produce
sustainable high frequencies within a range value of parameters a
and b (see the discussion below). Here, the “sustainable” means
that there is no external energy required to do so. Therefore, syn-
chronization in such cases is practically useful in order to recover
the true signals (for the receivers) for the purpose of a physical
realization in practices.

For most systems associated with spatiotemporal time-
dependent variables, in practice only certain selected points in the
interior or the boundary of the spatial domain are accessible for
sensing, and thus, the linking of two systems (between the master
and the slave) usually is quite restrictive. Thus, this leads to a sig-
nificant challenge in the construction of a suitable slave system
from the theoretical point of view to achieve a desirable synchro-
nization for both systems.

In this paper, we consider the case in which the only available
signal is given by

yðtÞ ¼ wð0; tÞ
wtð0; tÞ

� �
; t � 0 (1.4)

that is, only the signal on the boundary x¼ 0 can be used as an
input for a slave system, which is often seen in applications. Our
goal is to seek a slave (or responding) system via input signal
(1.4) to synchronize

(1) the gradient (wx, wt) of Eq. (1.1) and
(2) the gradient and the state ðw;wx;wtÞ of Eq. (1.1).

According to Ref. [14], assuming b > 0 and 0 < a < 1, if one
defines

g0 ¼
3
ffiffiffi
3
p
� 1þ að Þ

3
ffiffiffi
3
p
þ 1þ að Þ

(1.5)

and either g0 � g < 1 or 1 < g � g�1
0 , the gradient of Eq. (1.1)

presents chaotic spatiotemporal behaviors that reflect the com-
plexity of the system dynamics, including high frequency oscilla-
tion as the time develops. Here, the characterization of chaos is to
use the total variation VIðf Þ of a function f on an interval I, which
is defined to be the supremum of all sums

Xm

k¼1

jf ðxkÞ � f ðxk�1Þj

with respect to all partitions fxkg on I. Chen et al. [27,28] show
that both VIðwtð�; tÞÞ and VIðwxð�; tÞÞ on a given interval I (spatial
variable in I) grow exponentially with respect to t, thus they
appear to be chaotic in the sense of Li-Yorke’s definition.

By making use of the Riemann invariant approach, the chaotic
dynamics of (wt, wx) can be generated by an iterated map with
respect to time t (for more discussion, see Ref. [11], e.g., let
a ¼ 0:5, b¼ 1, and g ¼ 0:58). To synchronize such sensitive high
frequency (spatial dependence) dynamics via boundary signal
(1.4) usually is challenging and required subtle analysis of wave
traveling.

In Sec. 3, we will construct a slave system that synchronizes
(wx, wt) and ðw;wx;wtÞ of Eq. (1.1), respectively, after a short
transition period, regardless of the choice of the initial condition
of Eq. (1.1).

We mention here that the approach of this paper can also be
viewed as observer construction for Eq. (1.1) in terms of the out-
put measurement (1.4). It is significantly broader than our recent
work for the observer design [19]. In Ref. [19], we are not able to
construct a dynamical system such that its state ŵ converges to
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the state w (1.1) with (1.4). In this paper, a dynamical (slave) sys-
tem is constructed (by a delay input) and its state converges to the
state of the master system (1.1) globally and exponentially. The
introduced delay output reflects a fundamental characteristic from
the viewpoint of wave reflections on the boundary: in order to
synchronize the wave dynamics of Eq. (1.1), one not only needs
to know the outgoing wave at the boundary x¼ 0 but also the
incoming wave at x¼ 0 that is characterized by the delay.
Recently, the delay introduced in wave system is also used to
stabilize the wave equation when the boundary condition is linear,
see Ref. [29], whose approach is not applicable to our case due to
the nonlinear boundary condition (b 6¼ 0) in our model.

The paper will be organized as follows. In Sec. 2, we will pres-
ent the main result of our developed synchronizer that uses the
boundary observation of Eq. (1.1) at x¼ 0 as an input signal. The-
oretical justification will be provided in Sec. 3. The main
approach is to convert the system (1.1) to a first-order hyperbolic
system by making use of the Riemann invariant transformation
and to study the wave reflection on the boundary. The coupling
gain that determines the exponential transition rate is obtained. In
Sec. 4, numerical examples are provided to demonstrate the effec-
tiveness of the proposed approach. In Sec. 5, we present a general
approach to synchronize the state ðwx;wt;wÞ of Eq. (1.1) via set-
ting delay as a parameter. Further numerical simulations are also
provided. The paper ends with concluding remarks in Sec. 6.

2 Main Result for Modeling: Synchronizer

By studying the wave reflections on the boundary, we construct
the following synchronized slave system (Eq. (1.1)):

ŵtt � ŵxx ¼ 0; x 2 ð0; 1Þ; t > 0;

ŵxð0; tÞ ¼ LðtÞ; t > 0;

ŵxð1; tÞ ¼ RðtÞ; t > 0;

ŵðx; 0Þ ¼ ŵ0ðxÞ; ŵtðx; 0Þ ¼ ŵ1ðxÞ; 0 < x < 1

8>>>><
>>>>:

(2.1)

where

LðtÞ ¼ ðk � gÞŵtð0; tÞ þ ðk � gþ 1Þcŵð0; tÞ
� kwtð0; tÞ � ðk � gþ 1Þcwð0; tÞ; t > 0 (2.2)

and

RðtÞ ¼

aŵtð1; tÞ � b½ŵtð1; tÞ þ cðŵð0; 0Þ � wð0; 0ÞÞ�3

þðaþ 1Þcðŵð0; 0Þ � wð0; 0ÞÞ; t < 1;

aŵtð1; tÞ � b½ŵtð1; tÞ þ cðŵð0; t� 1Þ � wð0; t� 1ÞÞ�3

þðaþ 1Þcðŵð0; t� 1Þ � wð0; t� 1ÞÞ; t � 1

8>>>><
>>>>:

(2.3)

and ŵ0 2 C2ð½0; 1�Þ and ŵ1 2 C1ð½0; 1�Þ. Both constants k and c
are parameters. It is easy to see that when k ¼ c ¼ 0, system (2.1)
is identical to Eq. (1.1). Let w0 2 C2ð½0; 1�Þ and w1 2 C1ð½0; 1�Þ be
the initial states of Eq. (1.1). If we have

(1) the initial data e0 ¼ w0 � ŵ0 2 C2
0ð½0; 1�Þ and e1 ¼ w1

�ŵ1 2 C1
0ð½0; 1�Þ, and

(2) the parameter k is chosen so that

���� k � g� 1

k � gþ 1
� 1þ a
1� a

���� � 1

then, when c¼ 0, we have that ðŵx; ŵtÞ of Eq. (2.1) synchronizes
(wx, wt) of Eq. (1.1), and when c > 0, we have that ðŵ; ŵx; ŵtÞ of
Eq. (2.1) synchronizes ðw;wx;wtÞ of Eq. (1.1), after a short transi-
tion period of time, respectively. Notice that the synchronizer
(2.1) only receives output signal at x¼ 0 from the master system
(1.1).

Remark 2.1. Here, we use delay¼ 1 as the normalized wave
speed in our system is 1. In Sec. 5, we further discuss the case in
which more delay is introduced. �

3 Theoretical Approach

In this section, we will provide a detailed justification of our
proposed approach. Let us denote the error of states between
Eqs. (1.1) and (2.1) to be

e :¼ w� ŵ (3.1)

Then, the error dynamics satisfies the following wave equation:

exxðx; tÞ � ettðx; tÞ ¼ 0; 0 < x < 1; t > 0;

exð0; tÞ ¼ ðk � gÞetð0; tÞ þ ðk � gþ 1Þceð0; tÞ; t > 0;

exð1; tÞ ¼
hðtÞðetð1; tÞ þ ceð0; 0ÞÞ þ ceð0; 0Þ; t < 1;
hðtÞðetð1; tÞ þ ceð0; t� 1ÞÞ þ ceð0; t� 1Þ; t � 1;

�

eð�; 0Þ ¼ e0ð�Þ 2 C2
0ð½0; 1�Þ; etð�; 0Þ ¼ e1ð�Þ 2 C1

0ð½0; 1�Þ

8>>>>>>>>><
>>>>>>>>>:

(3.2)

where e0 ¼ w0 � ŵ0; e1 ¼ w1 � ŵ1, and hðtÞ :¼ a� bfðtÞ with

fðtÞ : ¼

w2
t ð1; tÞ þ wtð1; tÞðŵtð1; tÞ � ceð0; 0ÞÞ
þðŵtð1; tÞ � ceð0; 0ÞÞ2; t � 1

w2
t ð1; tÞ þ wtð1; tÞðŵtð1; tÞ � ceð0; t� 1ÞÞ
þðŵtð1; tÞ � ceð0; t� 1ÞÞ2; t > 1

8>>>><
>>>>:

(3.3)

It is not difficult to see that fðtÞ � 0 and �1 < hðtÞ � a.
THEOREM 3.1. Assume a 2 ð0; 1Þ; b > 0; k � g 6¼ �1, and

c � 0. For any initial data e0 2 C2
0ð½0; 1�Þ and e1 2 C1

0ð½0; 1�Þ, we
have

(1) When c¼ 0, the error dynamics (et, ex) is asymptotically
stable in C0-norm, i.e.,

lim
t!þ1

ðjjexð�; tÞjjC0 þ jjetð�; tÞjjC0Þ ¼ 0 (3.4)

(2) When c > 0, the error dynamics ðe; et; exÞ is asymptotically
stable in C0-norm, i.e.,

lim
t!þ1

ðjjeð�; tÞjjC0 þ jjexð�; tÞjjC0 þ jjetð�; tÞjjC0Þ ¼ 0 (3.5)

if and only if ���� k � g� 1

k � gþ 1
� 1þ a
1� a

���� � 1 (3.6)

Proof. For the simplicity of later discussion, we denote n ¼ k � g.
We define two variables (U, V) on ½0; 1� � ½0;1Þ to be

U x; tð Þ ¼
ex x; tð Þ þ et x; tð Þ

2
(3.7)

and

V x; tð Þ ¼
ex x; tð Þ � et x; tð Þ

2
� ce 0; 0ð Þ; t < x;

ex x; tð Þ � et x; tð Þ
2

� ce 0; t� xð Þ; t � x

8>><
>>: (3.8)

Note that U and V are invariant along the characteristics
xþ t ¼constant and x� t ¼constant of Eq. (3.2), respectively,
and they are called Riemann invariants. The boundary condition
of Eq. (3.2) provides the relationship at the left-end x¼ 0 and at
the right-end x¼ 1, respectively, as
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V 0; tð Þ ¼ n� 1

nþ 1
U 0; tð Þ; U 1; tð Þ ¼ h tð Þ þ 1

h tð Þ � 1
V 1; tð Þ (3.9)

Since 8t � 0; hðtÞ � a < 1, one can see that U(1, t) is well-
defined. For the convenience of following discussion, we denote

Fn tð Þ :¼ Fðh t� 2n� 1ð Þð Þ ¼ h t� 2n� 1ð Þð Þ þ 1

h t� 2n� 1ð Þð Þ � 1
;

n ¼ 0; 1; 2;…; and t � 2n� 1 (3.10)

By noticing that F is a decreasing function of h, a direct estima-
tion yields

jFn tð Þj �
���� aþ 1

a� 1

���� (3.11)

When n 6¼ �1, for t ¼ 2nþ s; n ¼ 0; 1; 2;…; 0 � s � 2, by the
method of characteristics and the induction, the solution (U, V)
can be expressed explicitly as follows:

U x; tð Þ ¼

F1 xþ tð Þ � � �Fn xþ tð Þ n� 1

nþ 1

	 
n

U0 xþ sð Þð Þ; 0 � s � 1� x;

F1 xþ tð Þ � � �Fnþ1 xþ tð Þ n� 1

nþ 1

	 
n

V0 2� x� sð Þð Þ; 1� x < s � 2� x;

F1 xþ tð Þ � � �Fnþ1 xþ tð Þ n� 1

nþ 1

	 
nþ1

U0 xþ s� 2ð Þð Þ; 2� x < s � 2

8>>>>>>><
>>>>>>>:

(3.12)

and

V x; tð Þ ¼

F1 t� xð Þ � � �Fn t� xð Þ n� 1

nþ 1

	 
n

V0 x� sð Þð Þ; 0 � s � x;

F1 t� xð Þ � � �Fn t� xð Þ n� 1

nþ 1

	 
nþ1

U0 s� xð Þð Þ; x < s � 1þ x;

F1 t� xð Þ � � �Fnþ1 t� xð Þ n� 1

nþ 1

	 
nþ1

V0 x� sþ 2ð Þð Þ; 1þ x < s � 2

8>>>>>>>><
>>>>>>>>:

(3.13)

where (U0, V 0) is the initial data. Denote M ¼ maxx2½0;1�
fjU0ðxÞj; jV0ðxÞjg. Then, Eqs. (3.12) and (3.13) imply that for t
¼ 2nþ s we have����U x; tð Þ

���� �
���� n� 1ð Þ

nþ 1ð Þ
aþ 1ð Þ
a� 1ð Þ

����
n

�
���� aþ 1

a� 1

����M;����V x; tð Þ
���� �

���� n� 1ð Þ
nþ 1ð Þ

aþ 1ð Þ
a� 1ð Þ

����
n

�
���� n� 1

nþ 1

����M
Thus, when ���� n� 1ð Þ

nþ 1ð Þ
aþ 1ð Þ
a� 1ð Þ

���� < 1

we then have

lim
t!1
ðjjUð�; tÞjjC0 þ jjVð�; tÞjjC0Þ ¼ 0

Next, we assume that ���� n� 1ð Þ
nþ 1ð Þ

aþ 1ð Þ
a� 1ð Þ

���� ¼ 1

Let us denote

gðtÞ ¼ jUð1; tÞj

In the following, we will show that limt!1 gðtÞ ¼ 0.
Without loss of generality, we may assume maxx2½0;1�fjU0ðxÞj;

jV0ðxÞjg � ja� 1=aþ 1j for simplicity by scaling both U0 and V0.
We proceed it by contradiction. Suppose limt!1 gðtÞ 6¼ 0, then

there exists e0 > 0 such that for any given T> 0, 9t0 > T so that
we have gðt0Þ � e0. Let t0 > 0 satisfy gðt0Þ ¼ jUð1; t0Þj � e0.

Let e be small enough with e0 > e > 0 and denote

d ¼ 2be2

32 1� að Þ2 þ 1� að Þbe2
; N ¼ lne

ln 1� d

���� n� 1

nþ 1

����
 !2

664
3
775þ 1:

Let us choose T ¼ 2N þ s0 with 0 � s0 < 2. Choose a t0 ¼ 2n0

þs with 0 � s < 2 such that t0 > T þ 2 and gðt0Þ ¼ jUð1; t0Þj
� e0. Thus, t0 > T þ 2 implies n0 > N.

Now, we consider the set

S ¼ fjFmðt0 þ 1Þj;where 1 � m � n0 þ 1g:

If all elements in S satisfy the following:

jFm t0 þ 1ð Þj �
���� aþ 1

a� 1

����� d

then, according to Eq. (3.12) and the choice of N, we would have

g t0ð Þ¼ jU 1;t0ð Þj�
����aþ1

a�1

�����d

 !����n�1

nþ1

����
 !n0

� 1�d

����n�1

nþ1

����
 !n0

< 1�d

����n�1

nþ1

����
 !N

� e< e0 (3.14)

which leads to a contradiction.
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Therefore, there must exist a smallest m with 1 � m � n0 þ 1,
such that

jFm t0 þ 1ð Þj 2
���� aþ 1

a� 1

����� d;

���� aþ 1

a� 1

����
 #

First, we denote D ¼ jaþ 1=a� 1j � jFmðt0 þ 1Þj. When e is
small enough (so is d), one has hðt0 � 2mþ 2Þ � 0. Thus, we
have the expression

jFm t0 þ 1ð Þj ¼ 1þ h t0 � 2mþ 2ð Þ
1� h t0 � 2mþ 2ð Þ

Hence, we arrive at

D ¼
���� aþ 1

a� 1

����� jFm t0 þ 1ð Þj ¼ aþ 1

1� a
� aþ 1� bf t0 � 2mþ 2ð Þ

1� aþ bf t0 � 2mþ 2ð Þ

where f is defined by Eq. (3.3). For simplicity and clarity, we
write fðt0 � 2mþ 2Þ briefly as f0

D ¼ aþ 1

1� a
� aþ 1� bf0

1� aþ bf0

¼ 2bf0

1� að Þ 1� aþ bf0ð Þ
< d

which implies, by the choice of d, that

f0 <
e2

32

Following from the fact ða2 þ b2=2Þ � a2 þ abþ b2 and the defi-
nition of f0, we have

jwt 1; t0 � 2mþ 2ð Þj < e
4
;

jŵt 1; t0 � 2mþ 2ð Þ � ce 0; t0 � 2mþ 1ð Þj < e
4

By the boundary conditions of Eqs. (1.1) and (2.1), we obtain

jwx 1; t0 � 2mþ 2ð Þj < a
e
4
þ b

e
4

	 
3

<
e
4
;

jŵx 1; t� 2mþ 2ð Þ þ ce 0; t0 � 2mþ 1ð Þj < a
e
4
þ b

e
4

	 
3

<
e
4

when e is small enough. Let u and û be the Riemann invariants of
Eqs. (1.1) and (2.1), respectively, that is,

u ¼ wx þ wt

2
; û ¼ ŵx þ ŵt

2

Then, it yields

ju 1; t0�2mþ2ð Þj¼
����wx 1;t0�2mþ2ð Þþwt 1; t0�2mþ2ð Þ

2

����< e
2

and

jû 1;t0�2mþ2ð Þj¼
����ŵx 1;t0�2mþ2ð Þþ ŵt 1; t0�2mþ2ð Þ

2

����< e
2
;

respectively. Thus, this leads to the Riemann invariant U of
Eq. (3.2) satisfying

jUð1;t0�2mþ2Þj� juð1;t0�2mþ2Þjþjûð1;t0�2mþ2Þj< e

(3.15)

which thus implies that

jU 1; t0ð Þj ¼
���� n� 1

nþ 1

	 
m�1

Pm�1
i¼1 Fi 1þ t0ð ÞU 1; t0 � 2mþ 2ð Þ

����
� jU x0; t0 � 2mþ 2ð Þj < e

(3.16)

and gives gðt0Þ ¼ jUð1; t0Þj < e, and this leads to a contradiction.
Therefore, we have

lim
t!1
jUð1; tÞj ¼ 0 (3.17)

and obtain

lim
t!1

sup
x2½0;1�

jUðx; tÞj ¼ lim
t!1

sup
x2½0;1�

jUð1; tþ x� 1Þj ¼ 0 (3.18)

Following from the reflection at the left end x¼ 0, we have

lim
t!1
jVð0; tÞj ¼ 0 (3.19)

and hence

lim
t!1

sup
x2½0;1�

jVðx; tÞj ¼ lim
t!1

sup
x2½0;1�

jVð0; t� xÞj ¼ 0 (3.20)

When c¼ 0, for t> 1 and x 2 ½0; 1�, the following expressions

exðx; tÞ ¼ Uðx; tÞ þ Vðx; tÞ;
etðx; tÞ ¼ Uðx; tÞ � Vðx; tÞ

imply

lim
t!þ1

ðjjexð�; tÞjjC0 þ jjetð�; tÞjjC0Þ ¼ 0

If we choose k such that

r :¼
���� k � g� 1

k � gþ 1
� 1þ a
1� a

���� < 1

then, by the expressions (3.12) and (3.13), one can see the conver-
gence is exponentially decaying with the rate lnð1=

ffiffi
r
p
Þ.

If c > 0, e(0, t) can be obtained as

eð0; tÞ ¼ e�ct

ðt

0

ecsðUð0; sÞ � Vð0; sÞÞds; 8t � 0 (3.21)

Since limt!þ1 jUð0; tÞ � Vð0; tÞj ¼ 0, we have

lim
t!þ1

jeð0; tÞj ¼ 0 (3.22)

It follows from Eqs. (3.22) and expressions (3.7) and (3.8) that

lim
t!þ1

ðjjexð�; tÞjjC0 þ jjetð�; tÞjjC0Þ ¼ 0

Moreover, the solution e of error system (3.2) can be written as

8t � 0; 8x 2 ½0; 1�; eðx; tÞ ¼
ðx

0

exðs; tÞdsþ eð0; tÞ

Thus, we have obtained

lim
t!þ1

jjeð�; tÞjjC0 ¼ 0

If equality (3.4) or (3.5) holds, according to Eqs. (3.12) and
(3.13), we arrive at

Journal of Computational and Nonlinear Dynamics DECEMBER 2019, Vol. 14 / 121007-5

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/com

putationalnonlinear/article-pdf/14/12/121007/6430967/cnd_014_12_121007.pdf by Southern Illinois U
niversity, m

xiao@
siu.edu on 19 O

ctober 2019



���� n� 1

nþ 1
� 1þ a
1� a

���� � 1

Therefore, the proof is complete. �
Remark 3.1. Here, we make some remarks:

(1) Theorem 3.1 also shows that the slave system (2.1) admits
a classical solution provided that the initial condition of Eq.
(1.1) satisfies ðw0;w1Þ; ðŵ0; ŵ1Þ 2 C2

0ð½0; 1�Þ � C1
0ð½0; 1�Þ.

(2) In spite of the gradient (wt, wx) presenting chaotic dynam-
ics, we show not only the convergence of error dynamics
but also the gradient (et, ex) is convergent in terms of
C1

0ð½0; 1�Þ norm.
(3) It is easy to see the following equivalence:

���� k � g� 1

k � gþ 1
� 1þ a
1� a

���� � 1() k 2 gþ a; gþ 1

a

� �

(4) To synchronize (wx, wt), we can set c¼ 0, thus the slave
system only needs the input signal wtð0; tÞ for t � 0.
Moreover, if k 2 ðgþ a; gþ ð1=aÞÞ, the transition time is
exponentially fast with the transition rate

r ¼
���� k � g� 1

k � gþ 1
� 1þ a
1� a

���� < 1

(5) To synchronize ðw;wx;wtÞ, we require c > 0 as well as
delay input wð0; t� 1Þ. This is because in order to syn-
chronize the state w, one not only needs to know the
reflected (outgoing) wave w(0, t) but also the incoming
wave wð0; t� 1Þ for t � 1.

(6) Theoretically, we can choose k such that k � g ¼ 1, thus
r¼ 0. This implies that the error dynamics becomes zero in
a finite time; hence, the slave system synchronizes with the
master system in a finite time. In numerical implementa-
tions, however, due to rounding errors, we may not exactly
have r � 0; therefore, considering r< 1 and r 	 0 in such a
case is more realistic due to the sensitivity of both master
and slave systems.

Next, we provide the details of the parameter setting.
Corollary 3.1. Let a 2 ð0; 1Þ; b > 0 and g 6¼ 1. If the parame-

ters k and c are chosen to satisfy

c > 0; 0 <

���� k � g� 1

k � gþ 1
� 1þ a
1� a

���� < 1 (3.23)

then, for any initial functions e0 2 C2
0ð½0; 1�Þ and e1 2 C1

0ð½0; 1�Þ,
the solution of error dynamics (3.2) is exponentially stable. More
specifically, there exist constants M> 0 and q > 0 such that

8t � 0; jjeð�; tÞjjC0 þ jjexð�; tÞjjC0 þ jjetð�; tÞjjC0 � Me�qt (3.24)

�

Proof. For simplicity and clarity in the following analysis, we
denote

r ¼
���� k � g� 1

k � gþ 1
� 1þ a
1� a

���� (3.25)

For any e0 2 C2
0ð½0; 1�Þ and e1 2 C1

0ð½0; 1�Þ, we then have

U0 ¼
e00 þ e1

2
2 C1

0 0; 1½ �ð Þ; V0 ¼
e00 � e1

2
� ce0 0ð Þ 2 C1

0 0; 1½ �ð Þ

Let M0 > 0 such that

8x 2 0; 1½ �; jU0 xð Þj �
���� a� 1

aþ 1

����M0; jV0 xð Þj � M0 (3.26)

By choosing a constant q 2 ð0; kÞ, where k ¼ minfc; lnð1=
ffiffi
r
p
Þg.

For t ¼ 2nþ s with n 2N and s 2 ½0; 2Þ, from Eqs. (3.12) and
(3.13), we have

jjU �; tð ÞjjC0 � M0rn � M0

r
exp � ln

1ffiffi
r
p

	 

t

	 

� M0

r
exp �qtð Þ;

jjV �; tð ÞjjC0 � M0rn � M0

r
exp � ln

1ffiffi
r
p

	 

t

	 

� M0

r
exp �qtð Þ

(3.27)

From the expression (3.21), we arrive at the following estimation:����e 0; tð Þ
���� � 2M0

r
exp �qtð Þ (3.28)

When c > 0, for t> 1 and x 2 ½0; 1�, the following expressions

exðx; tÞ ¼ Uðx; tÞ þ Vðx; tÞ þ ceð0; t� xÞ;

etðx; tÞ ¼ Uðx; tÞ � Vðx; tÞ � ceð0; t� xÞ;

eðx; tÞ ¼
ðx

0

exðs; tÞdsþ eð0; tÞ

as well as both obtained estimations (3.27) and (3.28) yield the
following inequality:

jjeð�; tÞjjC0 þ jjexð�; tÞjjC0 þ jjetð�; tÞjjC0 � Me�qt

where M � ðM0=rÞð10þ 4cÞ. Therefore, the proof is completed.
�

Remark 3.2. According to the proof of Corollary 3.1, the condi-
tion can be described, equivalently, as

r :¼
���� k � g� 1

k � gþ 1
� 1þ a
1� a

���� < 1; 8q 2 0;min c; ln
1ffiffi
r
p

� �	 


Thus, one can always control the convergent rate q by choosing
appropriate c and k. �

4 Numerical Simulations

In this section, we will provide some numerical simulations to
validate the theoretical results of this paper.

For the main system (1.1), we first consider the case a ¼ 0:5,
b¼ 1 with the following initial data:

8x 2 ½0; 1�; w0ðxÞ ¼ 0; w1ðxÞ ¼ 8 sin2ð2pxÞ (4.1)

According to Ref. [14], the gradient (wx, wt) of Eq. (1.1)
undergoes chaotic vibrations when g 2 ½g0; g

�1
0 �nf1g, where

g0 	 0:552, discussed in Sec. 1. Without loss of generality, we
use ŵ0 ¼ 0 and ŵ1 ¼ 0 as the initial data of the slave system
(2.1). In the simulation of Fig. 1, we set c¼ 0. One can see that
the gradient ðŵx; ŵtÞ of the slave system (2.1) synchronizes the
gradient (wx, wt) of Eq. (1.1) in about 4 s even with the very sensi-
tive output yðtÞ ¼ wtð0; tÞ. It is interesting to observe that in this
case the displacement state ŵ of Eq. (2.1) does not synchronize
the state w of Eq. (1.1). They are different from a constant. This is
due to the fact that the state w of Eq. (1.1) is unobservable by
using a single output yðtÞ ¼ wtð0; tÞ (see recent work [18]). Recall
here that
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jjexð�; tÞjjC0 ¼ max
x2½0;1�

jexðx; tÞj;

jjetð�; tÞjjC0 ¼ max
x2½0;1�

jetðx; tÞj;

jjeð�; tÞjjC0 ¼ max
x2½0;1�

jeðx; tÞj

Next, we let c ¼ 1:5, which implies that the delay output takes
into effect. Figure 2 shows that all states ðŵ; ŵx; ŵtÞ of Eq. (2.1)
synchronize the states ðw;wx;wtÞ of Eq. (1.1) in about 4 s. In the
simulated results, one can see that a sharp stepwise decrease in ex

and et can be observed but not in the total error term e. This is
because (ex, et) at the beginning is quite chaotic before the syn-
chronizing control takes into effect. Also, the total error term is
always smaller than the other two since e is the integration of (ex,
et). Thus, e’s behavior appears to be better than (ex, et) due to the
smoothing effect by integration.

Next, we conduct a different simulation. Let a ¼ 0:4
and b ¼ 0:1. Small b implies that the master system has less
damping and more self-excited energy is being injected to the sys-
tem, thus the chaotic behavior will become more severe. For this
case, we have g0 	 0:5755 and choose g ¼ 0:58. The initial data
are set to be

8x 2 0; 1½ �;w0 xð Þ ¼ 1

10
2px� sin 2pxð Þð Þ; w1 xð Þ ¼ x2 1� xð Þ2

(4.2)

to avoid the similar dynamics as the previous one. The initial
states of system (2.1) stay the same, i.e., ŵ0 ¼ ŵ1 ¼ 0. The simu-
lations for c¼ 0 and c¼ 2 are given in Figs. 3 and 4, respectively.
The results show that the previous arguments remain valid.

5 To Synchronize the States (wx;wt;w) by Using Delay

as a Parameter

In this section, we further generalize our approach by using
delay as a parameter. Throughout this section, let ‘ � 0 be the
delay parameter (Eq. (1.1)). The synchronized slave system is still
in a form of

ŵtt � ŵxx ¼ 0; x 2 ð0; 1Þ; t > 0;
ŵxð0; tÞ ¼ LðtÞ; t > 0;
ŵxð1; tÞ ¼ RðtÞ; t > 0;
ŵðx; 0Þ ¼ ŵ0ðxÞ; ŵtðx; 0Þ ¼ ŵ1ðxÞ; 0 < x < 1;

8>><
>>: (5.1)

where L(t) and R(t) will be given later. Let us denote the error of
states between Eqs. (1.1) and (5.1) to be

Fig. 2 The profiles of jjex (�; t)jjC0 ; jjet (�; t)jjC0 , and jje(�; t)jjC0 for
c ¼ 1:5 and t ‰ ½0; 8�

Fig. 3 The profiles of jjex (�; t)jjC0 ; jjet (�; t)jjC0 , and jje(�; t)jjC0 for
c 5 0 and t ‰ ½0; 8�

Fig. 4 The profiles of jjex (�; t)jjC0 ; jjet (�; t)jjC0 , and jje(�; t)jjC0 for
c 5 2 and t ‰ ½0; 8�

Fig. 1 The profiles of jjex (�; t)jjC0 , jjet (�; t)jjC0 , and jje(�; t)jjC0 for
c 5 0 and t ‰ ½0; 8�
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e :¼ w� ŵ (5.2)

In order to synchronize the states ðwx;wt;wÞ of Eq. (1.1), the chal-
lenge results from that the slave system only has the signal
wtð0; tÞ and w(0, t) from the master system. Our proposed
approach, method of characteristics, is still applicable when we
use delay as a parameter. It will involve a transport equation,
which has the same characteristics with the Riemann invariant u
or v of Eq. (1.1), as shown below. Let us denote

v1ðx; tÞ ¼
wð0; t� x� ‘Þ; t � xþ ‘;
wð0; 0Þ; 0 � t < xþ ‘

�
(5.3)

v̂1ðx; tÞ ¼
ŵð0; t� x� ‘Þ; t � xþ ‘;
ŵð0; 0Þ; 0 � t < xþ ‘

�
(5.4)

which are solutions of the transport equation vx þ vt ¼ 0 and are
constant along the characteristic direction n ¼ ð1; 1Þ.

We construct the boundary conditions L(t) and R(t) of the slave
system, respectively, as follows:

LðtÞ ¼ �gŵtð0; tÞ � ketð0; tÞ � cðk� gþ 1Þðv1 � v̂1Þð0; tÞ; t � 0

(5.5)

RðtÞ ¼a½ŵtð1; tÞ � cðv1 � v̂1Þð1; tÞ� � b½ŵtð1; tÞ � cðv1� v̂1Þð1; tÞ�3

�cðv1� v̂1Þð1; tÞ; t� 0

(5.6)

Then, the error dynamics satisfies the following wave equation:

exxðx; tÞ � ettðx; tÞ ¼ 0; 0 < x < 1; t> 0;

exð0; tÞ ¼ ðk� gÞetð0; tÞ þ cðk� gþ 1Þðv1� v̂1Þð0; tÞ; t> 0;

exð1; tÞ ¼ hðtÞ½etð1; tÞ þ ðv1� v̂1Þð1; tÞ� þ cðv1 � v̂1Þð1; tÞ; t> 0;

eð�;0Þ ¼ e0ð�Þ; etð�;0Þ ¼ e1ð�Þ

8>>>><
>>>>:

(5.7)

where e0 ¼ w0 � ŵ0; e1 ¼ w1 � ŵ1, and hðtÞ ¼ a� bfðtÞ with

fðtÞ ¼ w2
t ð1; tÞ þ wtð1; tÞ½ŵtð1; tÞ � cðv1 � v̂1Þð1; tÞ�
þ½ŵtð1; tÞ � ðv1 � v̂1Þð1; tÞ�2; t > 0 (5.8)

One can verify that fðtÞ � 0 and �1 < hðtÞ � a.
Similar to the discussion given in Sec. 3, the following two

Riemann invariants

U ¼ ex þ et

2
; V ¼ ex � et

2
� c v1 � v̂1ð Þ (5.9)

approach to zero exponentially as t! þ1 if

���� k � g� 1

k � gþ 1
� 1þ a
1� a

���� < 1 (5.10)

i.e.,

k 2 gþ a; gþ 1

a

	 


The next step is to choose appropriate c such that v1 � v̂1 also
approaches to zero exponentially as t! þ1. Since v1 � v̂1 is
invariant along the characteristics t� x ¼constant, one only
needs to ensure ðv1 � v̂1Þð0; tÞ exponentially converges to zeros
as t! þ1. Notice that ðv1 � v̂1Þð0; tÞ ¼ eð0; t� ‘Þ when t � ‘,
we need to consider the dynamics of the delayed differential
equation

_xðtÞ þ cxðt� ‘Þ ¼ f ðtÞ; t > ‘;
xðtÞ ¼ C; 0 � t � ‘

�
(5.11)

where C is a constant and f ðtÞ :¼ ðU � VÞð0; tÞ. The case ‘ ¼ 0
has been discussed in Sec. 3. We next assume that ‘ > 0 and
define

HðzÞ ¼ zþ ce�‘z; z 2 C (5.12)

H(z)¼ 0 is the so-called characteristic equation of Eq. (5.11), see
Ref. [30] for more details.

LEMMA 5.1. Consider (5.12). Assume 0 < ‘c � 1, then

k0 ¼ maxfReðzÞ; HðzÞ ¼ 0g (5.13)

is well-defined and
k0 < 0

Proof . The constant k0 is well-defined, followed from Lemma 4.1
in Ref. [30]. Let z ¼ xþ iy with x; y 2 R, then

HðzÞ ¼ 0)
xþ ce�‘x cosð‘yÞ ¼ 0;

y� ce�‘x sinð‘yÞ ¼ 0

(

If sinð‘yÞ ¼ 0, then y¼ 0 and xþ ce�‘x ¼ 0, which implies x< 0.
When sinð‘yÞ 6¼ 0, both y and sinð‘yÞ carry the same sign, thus the
following equation

‘ce�‘x ¼ ‘y

sin ‘yð Þ > 1; 0 < ‘c � 1

implies x< 0. Therefore, the proof is completed. �
Next, we will provide an explicit estimation of the upper bound

of k0. We denote gðxÞ ¼ xþ e�x; x � 0. Then, g is strictly increas-
ing on ½0;1Þ and Range ðgÞ ¼ ½1;1Þ. We define a positive
constant

d0 ¼ g�1ð�lnð‘cÞÞ; 0 < ‘c � e�1;
0; e�1 < ‘c

�
(5.14)

Notice that if gðð�lnð‘cÞÞ > �lnð‘cÞ, then we have
0 � d0 < �lnð‘cÞÞ.

LEMMA 5.2. Given ‘ and c that satisfy 0 < ‘c < 1 and let d0 be
defined by Eq. (5.14). Then, we have

k0 �
ln ‘cð Þ þ d0

‘
< 0

where k0 ¼ maxfReðzÞ; zþ ce�‘z ¼ 0; z 2 Cg. Furthermore, for
fixed c > 0, the following holds:

lim
‘!0þ

ln ‘cð Þ þ d0

‘
¼ �c

Proof. Notice that if we denote z ¼ xþ iy, then

zþ ce�‘z ¼ 0)
xþ ce�‘x cosð‘yÞ ¼ 0;

y� ce�‘x sinð‘yÞ ¼ 0

(

When ‘ satisfies e�1 < ‘c < 1, we have y 6¼ 0 since otherwise x
would satisfy xþ ce�‘x ¼ 0 which does not admit a solution for
any x 2 R. This implies sinð‘yÞ 6¼ 0, and thus,

‘ce�‘x ¼ ‘y

sin ‘yð Þ > 1

which yields x � lnð‘cÞ=‘. Hence, we have k0 � lnð‘cÞ=‘.
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When 0 < ‘c � e�1, one can verify directly that the real num-
ber z ¼ ðlnð‘cÞ þ d0=‘Þ is the unique solution of zþ ce�‘z ¼ 0.
Hence, we have obtained

k0 ¼
ln ‘cð Þ þ d0

‘
; for 0 < ‘c < e�1

Furthermore, by the definition of d0, we have

d0 þ e�d0 ¼ �lnð‘cÞ

and lim‘!0þ d0 ¼ þ1. Therefore, we have

k0 ¼
ln ‘cð Þ þ d0

‘
¼ �c

e�d0

‘c
¼ �cee�d0 ! �c as ‘! 0þ

and the proof is completed. �
LEMMA 5.3. Consider the delayed differential equation (5.11),

and let xð�Þ be the solution. Suppose f(t) approaches to zero expo-
nentially as t! þ1 and 0 < ‘c � 1, then there exist constants
M > 0 and k > 0 such that

8t � 0; jxðtÞj � Me�kt (5.15)

i.e., the solution of Eq. (5.11) approaches to zero exponentially as
t! þ1.

Proof . Choose k1 > 0 with �k1 2 ðk0; 0Þ, where k0 is given by
Eq. (5.13). It follows from Theorems 6.1 and 6.2 in Ref. [30] that

8t� ‘; xðtÞ ¼ CXðtÞ �Cc
ð‘

0

Xðtþ s� ‘Þdsþ
ðt

‘

Xðt� sþ ‘Þf ðsÞds

(5.16)

where Xð�Þ satisfies

_XðtÞ þ cXðt� ‘Þ ¼ 0; t > ‘;

XðtÞ ¼ f
1; t ¼ ‘;

0; t < ‘

8>>><
>>>:

and

8t � ‘; jXðtÞj � M1e�k1t (5.17)

for some constant M1 ¼ M1ðk1Þ > 0. Choose M2 > 0; k2 > 0
such that

8t � 0; jf ðtÞj � M2e�k2t (5.18)

Without loss of generality, assume that k1 6¼ k2. It follows from
Eqs. (5.16)–(5.18) that

8t � ‘; jxðtÞj � Me�kt

where k ¼ minfk1; k2g and M ¼ Mðk1; k2;M1;M2Þ > 0. Thus,
the proof is completed. �

THEOREM 5.1. Let a 2 ð0; 1Þ; b > 0 and g 6¼ 1. If the parameters
‘, k, and c are chosen to satisfy

0 < ‘c � 1; 0 <

���� k � g� 1

k � gþ 1
� 1þ a
1� a

���� < 1 (5.19)

then, for any initial states e0 2 C2
0ð½0; 1�Þ and e1 2 C1

0ð½0; 1�Þ, the
solution of error dynamics (5.7) is exponentially stable. More spe-
cifically, for any k 2 ð0; k1Þ, where

k1 ¼ min �ln
ffiffi
r
p
;� ln ‘cð Þ þ d0

‘

� �

there exists a constant M> 0 such that

8t � 0; jjeð�; tÞjjC0 þ jjexð�; tÞjjC0 þ jjetð�; tÞjjC0 � Me�kt (5.20)

Proof. According to the discussion in the above theorem, we first
have that jjexð�; tÞjjC0 ; jjetð�; tÞjjC0 , and jexð0; tÞj approach to zero
exponentially as t! þ1. Similar arguments used in the proof of
Corollary 3.1 lead to the conclusion. �

Remark 5.1. Here, we make two remarks:

(i) When ‘ ¼ 0, Theorem 5.1 is equivalent to Corollary 3.1
(delay¼ 1) according to Lemma 5.2. In other words, Corol-
lary 3.1 is a special case of Theorem 5.1.

(ii) When ‘ > 0, due to d0=‘! 0 as ‘!1, the absolute value
of k becomes smaller as ‘ increases, i.e., the convergent
rate of error dynamics will become slow, which is reasona-
ble since the longer delay we use, the more responding
time is required for the slave system to synchronize with
the master system.

To confirm that, we provide the following numerical simula-
tions. Let a ¼ 0:4 and b ¼ 0:1. For this case, we have g	0:5755
and we set g ¼ 0:58 so that the gradient (wx, wt) presents chaotic
dynamics. Let parameters c ¼ 0:5; k ¼ 2 and the initial condition
be

w0 xð Þ ¼ 1

10
2px� sin 2pxð Þð Þ; w1 xð Þ ¼ x2 1� xð Þ2; x 2 0; 1½ �

The initial state of the slave system is set to be ŵ0 ¼ ŵ1 ¼ 0. The
simulations for delay ‘ ¼ 1 and ‘ ¼ 2 are given in Figs. 5 and 6,
respectively. Clearly, the error dynamics for delay ‘ ¼ 2 appears
to be slower than the case for ‘ ¼ 1. �

6 Conclusions

In this paper, we model the synchronization of wave equation
associated with nonlinear boundary. Wave equation is a standard
model for the study of various vibrations in reality in which
boundary conditions govern the type of vibrations. The nonlinear

Fig. 5 The profiles of jjex (�; t)jjC0 ; jjet (�; t)jjC0 , and jje(�; t)jjC0 for
delay ‘ ¼ 1 and t ‰ ½0; 12�
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boundary condition adopted in this paper, originated from the
well-known Van der Pol oscillator, leads to the chaotic dynamics
of the state gradient and causes the irregular, rapid vibration of
the state, which induces the rapid changes (high frequencies) of
wave propagation that has been received considerable attention in
recent years. To the best of our knowledge, there are no existing
results for the discussion of possible underlying deterministic
structure at this point for this system. This does open a new impor-
tant question and requires a substantial study for which we will
work on it the near future.

Wave equation represents a broad spectrum of mathematical
models in real applications and the boundary setting (or control)
can significantly affect the wave propagation dynamics. This is
particularly important in the development of meta-devices often
used to steer wave propagation. The slave system (or called the
receiver) is required to be synchronized with the master system in
order to recover the true signals locally in a short period of time.

With the only signal being available at the one end of the
boundary, we are able to construct a responding system that syn-
chronizes the original system. The transition period can be con-
trolled by selecting appropriate parameters. Even though the
original system is very sensitive to its initial condition, the
synchronized dynamics responds quite well.

It is worthy of mentioning here that to the best of our knowl-
edge, incorporating the delay output into the responding system
seems to be necessary in order to achieve the synchronization of
this type of vibrations. As the output signal is only available at the
one end of the boundary, one needs to know both outgoing and
incoming waves in order to capture the dynamics of the original
system. The estimation of error dynamics shown in this paper is
new and is not available in the current literature. With the intro-
duction of the delay input, we successfully synchronize all critical
state variables: the state as well as the gradient of the state.

The key idea of this paper is to construct two Riemann invari-
ants for the error system that are solvable and allow us to study
the wave dynamics via boundary wave reflections. The approach
by Riemann invariant essentially is equivalent to method of char-
acteristics, an effective method in the study of hyperbolic PDEs.
The limitation for this type of approach results from the fact that
if the Riemann invariant cannot be solved explicitly (different
from the case in this paper), the corresponding wave dynamics is
hardly analyzed due to the difficulty in determining the wave
reflection on the boundary analytically, in particular, when the
system is sensitive to small perturbations. Numerical approach
may offer a potential solution provided that a stable algorithm for
solving the corresponding Riemann invariant could be developed
(for the sensitive case), the synchronization in the discrete level

under our framework may become approachable. A further exten-
sive study is required and will be reported elsewhere.
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