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We report the parallel synthesis of gramicidin S derivatives featuring backbone N-amino substituents. Analogues
were prepared by incorporation of N-amino dipeptide subunits on solid support. Nine backbone-aminated
macrocycles were evaluated for growth inhibitory activity against ESKAPE pathogens and hemolytic activity
against human red blood cells. Diamination of the Orn residues in the β-strand region of gramicidin S was found
to enhance broad-spectrum antimicrobial activity without a corresponding increase in hemolytic activity.

Gramicidin S (GS) is a naturally-occurring non-ribosomal peptide
first isolated in the early 1940s from Aneurinibacillus migulanus (for-
merly Bacillus brevis).1 GS displays activity against both Gram-positive
and Gram-negative bacteria but its poor selectivity over mammalian
cells has prevented its systemic use.2 GS has long been known to in-
crease membrane permeability in bacteria.3 The emergence of re-
sistance to GS is generally low due to its membranolytic function in
addition to its other mechanisms of antimicrobial action.3–4 As one of
the most widely studied antimicrobial peptides, a number of SAR stu-
dies have been carried out on GS resulting in several unnatural analogs
with improved therapeutic indices.5

GS is a C2-symmetrical cyclic decapeptide that adopts an anti-
parallel β -sheet-like structure (Fig. 1).6 Four interstrand hydrogen
bonds (between Val and Leu residues) and two type II’ β -turns (com-
prised of D-Phe-Pro) confer substantial conformational stability.7 In-
terestingly, cyclization is necessary for bacterial growth inhibition as
linear variants are generally inactive.2a Various GS backbone mod-
ifications have been investigated, including the introduction of dipep-
tide turn mimics,8 sugar9 and tetrahydrofuran10 amino acid turn mi-
mics, replacement of turn11 and strand12 amide bonds with E alkene
isosteres, and N-methylation of backbone amides.13 For example, Kawai
and coworkers synthesized a tetra-N-methylated gramicidin derivative
and found that the solvent-exposed amide protons were not required for
antimicrobial activity, despite substantial perturbation of the native GS
conformation.13a,13c N-Methylation of the hydrogen-bonded Val re-
sidues results in significantly decreased antimicrobial activity,13b while
mono- and di-(N-Me)Leu analogues show enhanced activity and se-
lectivity toward bacterial membranes13d,14

Given previous studies on backbone modification of GS, we viewed
it as a useful template to explore alternative amide substitution stra-
tegies. Since N-methylation can severely impact the preferred con-
formation of parent peptides, we sought to explore the effects of N-
amination on the biological activity of GS. We previously demonstrated
that amide N-amination of β -strand residues can stabilize β -sheet like
conformations due to the cooperative effects shown in Fig. 2 15 N-
Amination of solvent-exposed amides in GS may thus yield analogues
with unique structural and membranolytic properties. Here, we de-
scribe the first solid-phase synthesis of N-aminated analogues of GS
using a dipeptide fragment incorporation approach. In addition, we
assess the activity and selectivity of these derivatives against ESKAPE
pathogens – a panel of pathogens that represent leading causes of no-
socomial infections and bacterial resistance worldwide. Our studies
reveal new N-amino peptide (NAP) macrocycles with improved anti-
microbial and hemolytic properties relative to GS.

A series of backbone-substituted GS analogues featuring 1–4 amide
N-amino groups were targeted for synthesis. Although we previously
demonstrated that Boc-protected α-hydrazino acid monomers can be
utilized in the solid-phase synthesis of NAPs, the deactivated Nα within
these building blocks requires on-resin acid chloride condensation for
elongation.16 These conditions often generate insoluble salts that are
difficult to separate from the resin, and require multiple rounds of
condensation to achieve full conversion. Alternatively, the use of
backbone-aminated dipeptide building blocks allows for standard
Fmoc-based SPPS and is amenable to automated synthesis. Preparation
of the required building blocks for this study is shown in Scheme 1.
Compounds 1 and 2 were accessible in 3 steps from the commercially
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available benzyl esters via electrophilic amination with 2-(t-butyl)-3,3-
(diethyl)-oxaziridine-2,3,3-tricarboxylate (TBDOT), reaction with pre-
formed Fmoc-protected amino acid chlorides,17 and hydrogenolysis.

Since our strategy relies on condensation with a dipeptide fragment,
we considered the possibility of C-terminal epimerization upon acti-
vation. To test this, we modeled the anticipated solid-phase acylation
conditions in solution using isobutylamine as a test nucleophile. As
shown in Fig. 3, HCTU-mediated amidation of (S,R)-1 gave (S,R)-3
with > 98:2 d.r. as judged by HPLC. This was confirmed by co-in-
jection of the crude reaction mixture with purified standards of (S,R)-3
and (S,S)-3, which were well resolved on a normal-phase chiral
column. These results confirm that 1 does not undergo appreciable
epimerization during condensation. This result may be explained by a

reduced propensity to form the racemization-prone dihydroox-
azolonium intermediate. As shown in Scheme 2, active esters of peptide
fragments may readily undergo cyclization and aromatization to ox-
azolones prior to condensation.18 This pathway is particularly proble-
matic in the case of N-alkylated peptide fragments. In contrast, the N-
NHBoc group acts as an electron withdrawing substituent that disfavors
intramolecular cyclization. This feature serves to expand the versatility
of N-amino dipeptide building blocks for use in SPPS.

Synthesis of the target macrocycles was accomplished using a
classical ‘tea-bag’ approach, wherein resin-filled pouches were sepa-
rated as needed to introduce diversity elements and recombined for
sequence elongation. As shown in Scheme 3, our strategy relied on the
introduction of backbone N-amino groups via condensation with Fmoc-
protected N-amino dipeptide building blocks. The substituted peptides
were cleaved from the resin with HFIP/DCM to afford Boc-protected
linear peptides. Head-to-tail macrocyclization was carried out on the
crude material using HATU/DIEA at 10 mM substrate concentration in
DMF. The crude macrocyclic peptides were subjected to global Boc
deprotection with TFA and purified by RP-HPLC to afford the desired
GS analogues.

Fig. 1. Structure of gramicidin S.

Fig. 2. Conformational effects of peptide backbone substitutions.

Scheme 1. Synthesis of N-amino dipeptide building blocks.

Fig. 3. Assessment of epimerization during dipeptide fragment condensation.
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Table 1 depicts the nine GS analogues synthesized for this study,
along with their isolated yields following cleavage from the resin,
macrocyclization, Boc-deprotection, and purification by RP-HPLC. This
series includes all possible combinations of mono-, di-, and tri-aminated
variants substituted at the non-H-bonded backbone amides. All mac-
rocycles were characterized by analytical HPLC, HRMS and, NMR.

We tested all analogues for their ability to inhibit the growth of
ESKAPE pathogens using a microbroth dilution assay. A minimum in-
hibitory concentration (MIC) was obtained for each macrocycle and
compared against the parent compound. As shown in Table 2, several
backbone-aminated analogues exhibited similar or enhanced activity
against both Gram-positive and Gram-negative bacterial strains relative
to GS. In general, N-amination resulted in increased activity against S.
aureus and P. aeruginosia, and decreased activity against K. pneumoniae.
The effect of backbone substitution was highly dependent on the
modified residue. Analogues 4 and 7, which are mono- and di-aminated
at the β -strand region Orn residues, showed improved activity relative

to GS. Compound 7 exhibited the lowest overall MIC values among the
backbone-aminated variants. In contrast, D-aPhe analogues 5 and 9
were notably less effective at inhibiting bacterial growth. Macrocycles
harboring both Orn and D-Phe N-amino groups confirmed this trend,
with broad spectrum inhibitory activity that roughly correlated with
the ratio of Orn/D-Phe amination (see 6, 8, 10, and 11). Tetra-aminated
macrocycle 12 retained much of the activity of the more potent di-aOrn
analogue 7.

We next determined the ability of GS analogues to lyse human red
blood cells (hRBCs). Hemolysis assays carried out a 50 μM concentra-
tion revealed that GS leads to 22% toxicity toward hRBCs (Fig. 4).
Despite its highly substituted backbone, analogue 12 exhibited slightly
higher hemolytic activity relative to GS. The most potent inhibitor of
ESKAPE pathogen growth, compound 7, displayed reduced hemolytic
activity (~16%). Although efficacy against bacterial growth did not
strictly correlate with hRBC toxicity, the least hemolytic analogue 9
similarly displayed diminished antimicrobial activity.15

RP-HPLC retention times of GS derivatives can provide a qualitative
measure of amphipathicity, especially when comparing stereo- or re-
gioisomeric analogues.19 Within their respective groups, mono-, di-,
and tri-aminated GS analogues would be expected to have the same
intrinsic hydrophobicities. However, disruption of the amphipathic
nature of GS typically results in lower RP-HPLC retention times. By this
measure, amphipathicity was found to correlate directly with amination
of the Orn residues and inversely with D-Phe amination (see Supporting
Information). This is presumably due to a disruption of type II’ β -turn
geometry upon substitution at D-Phe residues. Circular dichroism (CD)
spectroscopy further supported the disruptive effect of multiple D-aPhe
substitutions on native structure. As shown in Fig. 5, compound 9
featuring two D-aPhe residues deviates significantly from the CD sig-
nature of GS, particularly in the β -turn region of the spectrum
(200–210 nm). The di-aOrn analogue 7 showed only minor changes
relative to the parent structure with native-like minima in both the β

Table 1
GS analogues synthesized by SPPS.
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Table 2
Antibacterial activity of 4–12 against ESKAPE patho-
gens.a.

aEnhancement or reduction in growth inhibition relative
to GS is highlighted (green and red, respectively).

Fig. 4. Hemolytic activity of 4–12 toward hRBCs at 50 μM.

Fig. 5. CD spectra of selected N-aminated GS analogues.
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-sheet and turn regions. The structure of tetra-aminated analogue 12
was qualitatively most like that of 9, again demonstrating the disruptive
effect of amination at both D-Phe residues.

Structural and biological data from this analogue set reveals that N-
amination of Orn within GS is beneficial for antimicrobial activity while
also reducing toxicity toward hRBCs. This is despite an overall en-
hancement in amphipathicity that is typically also associated with in-
creased hemolysis. It is tempting to speculate that the N-amino group in
the β -strand region of the macrocycle is better able to shield polar
surface area through the previously observed intraresidue H-bond. The
transient nature of this interaction could also serve to decouple anti-
microbial activity from hRBC toxicity, although the extent of and rea-
sons for this divergence would require additional studies.

In summary, we have probed the effect of backbone N-amination on
the biological activity of gramicidin S analogues. As part of this study,
we demonstrated the synthesis of NAP macrocycles via incorporation of
substituted dipeptide building blocks on solid-support. These N-ami-
nated building blocks are resistant to racemization and allow for effi-
cient assembly of mono- and poly-N-aminated linear peptides. Among
the nine GS analogues evaluated, a macrocycle featuring N-amination
at both Orn residues (7) exhibited enhanced amphipathicity and anti-
microbial activity against ESKAPE pathogens, and reduced hemolytic
activity relative to GS. This represents the first evaluation of NAPs as
antimicrobial agents and provides novel GS analogues with improved
therapeutic indices. Backbone aminated macrocyclic peptides such as 7
may thus serve as useful lead structures in design of optimized dis-
ruptors of bacterial cell membranes.
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