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Abstract

Recent neural network-driven semantic role la-
beling (SRL) systems have shown impressive
improvements in F1 scores. These improve-
ments are due to expressive input representa-
tions, which, at least at the surface, are or-
thogonal to knowledge-rich constrained decod-
ing mechanisms that helped linear SRL mod-
els. Introducing the benefits of structure to
inform neural models presents a methodolog-
ical challenge. In this paper, we present a
structured tuning framework to improve mod-
els using softened constraints only at training
time. Our framework leverages the expressive-
ness of neural networks and provides supervi-
sion with structured loss components. We start
with a strong baseline (RoBERTa) to validate
the impact of our approach, and show that our
framework outperforms the baseline by learn-
ing to comply with declarative constraints. Ad-
ditionally, our experiments with smaller train-
ing sizes show that we can achieve consistent
improvements under low-resource scenarios.

1 Introduction

Semantic Role Labeling (SRL, Palmer et al.,
2010) is the task of labeling semantic argu-
ments of predicates in sentences to identify
who does what to whom. Such representa-
tions can come in handy in tasks involving
text understanding, such as coreference resolu-
tion (Ponzetto and Strube, 2006) and reading com-
prehension (e.g., Berant et al., 2014; Zhang et al.,
2020). This paper focuses on the question of how
knowledge can influence modern semantic role la-
beling models.

Linguistic knowledge can help SRL models
in several ways. For example, syntax can
drive feature design (e.g., Punyakanok et al., 2005;
Toutanova et al., 2005; Kshirsagar et al., 2015;
Johansson and Nugues, 2008, and others), and
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can also be embedded into neural network archi-
tectures (Strubell et al., 2018).

In addition to such influences on input represen-
tations, knowledge about the nature of semantic
roles can inform structured decoding algorithms
used to construct the outputs. The SRL litera-
ture is witness to a rich array of techniques for
structured inference, including integer linear pro-
grams (e.g., Punyakanok et al., 2005, 2008), be-
spoke inference algorithms (e.g., Tackstrom et al.,
2015), A* decoding (e.g., He et al., 2017a), greedy
heuristics (e.g., Ouchietal.,, 2018), or simple
Viterbi decoding to ensure that token tags are BIO-
consistent.

By virtue of being constrained by the defini-
tion of the task, global inference promises semanti-
cally meaningful outputs, and could provide valu-
able signal when models are being trained. How-
ever, beyond Viterbi decoding, it may impose pro-
hibitive computational costs, thus ruling out us-
ing inference during training. Indeed, optimal in-
ference may be intractable, and inference-driven
training may require ignoring certain constraints
that render inference difficult.

While global inference was a mainstay of SRL
models until recently, today’s end-to-end trained
neural architectures have shown remarkable suc-
cesses without needing decoding. These successes
can be attributed to the expressive input and in-
ternal representations learned by neural networks.
The only structured component used with such
models, if at all, involves sequential dependencies
between labels that admit efficient decoding.

In this paper, we ask: Can we train neural net-
work models for semantic roles in the presence
of general output constraints, without paying the
high computational cost of inference? We propose
a structured tuning approach that exposes a neural
SRL model to differentiable constraints during the
finetuning step. To do so, we first write the out-



put space constraints as logic rules. Next, we re-
lax such statements into differentiable forms that
serve as regularizers to inform the model at train-
ing time. Finally, during inference, our structure-
tuned models are free to make their own judg-
ments about labels without any inference algo-
rithms beyond a simple linear sequence decoder.

We evaluate our structured tuning on the

CoNLL-05 (Carreras and Marquez, 2005) and
CoNLL-12 English SRL (Pradhan etal., 2013)
shared task datasets, and show that by learning
to comply with declarative constraints, trained
models can make more consistent and more ac-
curate predictions. We instantiate our framework
on top of a strong baseline system based on the
RoBERTa (Liu et al., 2019) encoder, which by it-
self performs on par with previous best SRL mod-
els that are not ensembled. We evaluate the im-
pact of three different types of constraints. Our
experiments on the CoNLL-05 data show that our
constrained models outperform the baseline sys-
tem by 0.2 F1 on the WSJ section and 1.2 F1
on the Brown test set. Even with the larger and
cleaner CoNLL-12 data, our constrained models
show improvements without introducing any addi-
tional trainable parameters. Finally, we also evalu-
ate the effectiveness of our approach on low train-
ing data scenarios, and show that constraints can
be more impactful when we do not have large train-
ing sets.

In summary, our contributions are:

1. We present a structured tuning framework for
SRL which uses soft constraints to improve
models without introducing additional train-
able parameters. '

2. Our framework outperforms strong baseline
systems, and shows especially large improve-
ments in low data regimes.

2 Model & Constraints

In this section, we will introduce our structured
tuning framework for semantic role labeling. In
§2.1, we will briefly cover the baseline system.
To that, we will add three constraints, all treated
as combinatorial constraints requiring inference al-
gorithms in past work: Unique Core Roles in
§2.3, Exclusively Overlapping Roles in §2.4, and
Frame Core Roles in §2.5. For each constraint,
we will discuss how to use its softened version dur-

'Our code to replay our experiments is archived at
https://github.com/utahnlp/structured_tuning_srl.

ing training.

We should point out that the specific constraints
chosen serve as a proof-of-concept for the general
methodology of tuning with declarative knowl-
edge. For simplicity, for all our experiments, we
use the ground truth predicates and their senses.

2.1 Baseline

We use RoBERTa (Liu et al., 2019) base version to
develop our baseline SRL system. The large num-
ber of parameters not only allows it to make fast
and accurate predictions, but also offers the capac-
ity to learn from the rich output structure, includ-
ing the constraints from the subsequent sections.

Our base system is a standard BIO tagger,
briefly outlined below. Given a sentence s, the
goal is to assign a label of the form B-X, I-X or
O for each word 7 being an argument with label X
for a predicate at word u. These unary decisions
are scored as follows:

e = map(RoBERTa(s)) (1)

Vu, @i = fo(ew), fa(€s) )
Gui = foa([Vu, ai]) 3)
Yui = 9(Pusi) )

Here, map converts the wordpiece embeddings e
to whole word embeddings by summation, f, and
fa are linear transformations of the predicate and
argument embeddings respectively, f,, is a two-
layer ReLLU with concatenated inputs, and finally
g is a linear layer followed by softmax activation
that predicts a probability distribution over labels
for each word ¢ when u is a predicate. In addition,
we also have a standard first-order sequence model
over label sequences for each predicate in the form
of a CRF layer that is Viterbi decoded. We use the
standard cross-entropy loss to train the model.

2.2 Designing Constraints

Before looking at the specifics of individual con-
straints, let us first look at a broad overview of our
methodology. We will see concrete examples in
the subsequent sections.

Output space constraints serve as prior domain
knowledge for the SRL task. We will design our
constraints as invariants at the training stage. To
do so, we will first define constraints as statements
in logic. Then we will systematically relax these
Boolean statements into differentiable forms us-
ing concepts borrowed from the study of triangu-
lar norms (t-norms, Klement et al., 2013). Finally,



we will treat these relaxations as regularizers in ad-
dition to the standard cross-entropy loss.

All the constraints we consider are conditional
statements of the form:

Vz,L(x) — R(x) )

where the left- and the right-hand sides—
L(z), R(z) respectively—can be either disjunc-
tive or conjunctive expressions. The literals that
constitute these expressions are associated with
classification neurons, i.e., the predicted output
probabilities are soft versions of these literals.

What we want is that model predictions satisfy
our constraints. To teach a model to do so, we
transform conditional statements into regularizers,
such that during training, the model receives a
penalty if the rule is not satisfied for an example.?

To soften logic, we use the conversions shown
in Table 1 that combine the product and Gdodel
t-norms. We use this combination because it of-
fers cleaner derivatives make learning easier. A
similar combination of t-norms was also used in
prior work (Minervini and Riedel, 2018). Finally,
we will transform the derived losses into log space
to be consistent with cross-entropy loss. Li et al.
(2019) outlines this relationship between the cross-
entropy loss and constraint-derived regularizers in
more detail.

Logic N; ai V.ai  —a a—b
Godel min(a;) max(a;)) 1—a -
Product  Ila; - 1 —a min (1, g)

Table 1: Converting logical operations to differentiable
forms. For literals inside of L(s) and R(s), we use the
Godel t-norm. For the top-level conditional statement,
we use the product t-norm. Operations not used this
paper are marked as ‘.

2.3 Unique Core Roles (U)

Our first constraint captures the idea that, in a
frame, there can be at most one core participant
of a given type. Operationally, this means that for
every predicate in an input sentence s, there can
be no more than one occurrence of each core argu-
ment (i.e, Acore = {A0,A1,A2,A3,A4,A5}). In

?Constraint-derived regularizers are dependent on exam-
ples, but not necessarily labeled ones. For simplicity, in this
paper, we work with sentences from the labeled corpus. How-
ever, the methodology described here can be extended to use
unlabeled examples as well.

first-order logic, we have:

YV u,i € 5,X € Acores

By(u,i) = /\ —Bx(u,j)  (6)
JESjF

which says, for a predicate u, if a model tags the
i-th word as the beginning of the core argument
span, then it should not predict that any other token
is the beginning of the same label.

In the above rule, the literal By is associated
with the predicted probability for the label B—~x3.
This association is the cornerstone for deriving
constraint-driven regularizers. Using the conver-
sion in Table 1 and taking the natural log of the
resulting expression, we can convert the implica-
tion in (6) as [(u, 7, X):

max <10g By (u,i) — min log (1 — By (u,j))) .
J€s,j#i

Adding up the terms for all tokens and labels, we
get the final regularizer Ly (s):

>

(u,2)E8,XEAcore

LU(S) = l(u,z,X) (7

Our constraint is universally applied to all words
and predicates (i.e., 7, u respectively) in the given
sentence s. Whenever there is a pair of predicted
labels for tokens ¢, j that violate the rule (6), our
loss will yield a positive penalty.

Error Measurement p,, To measure the viola-
tion rate of this constraint, we will report the per-
centages of propositions that have duplicate core
arguments. We will refer to this error rate as p,,.

2.4 Exclusively Overlapping Roles (O)

We adopt this constraint from Punyakanok et al.
(2008) and related work. In any sentence, an argu-
ment for one predicate can either be contained in
or entirely outside another argument for any other
predicate. We illustrate the intuition of this con-
straint in Table 2, assuming core argument spans
are unique and tags are BIO-consistent.

Based on Table 2, we design a constraint that
says: if an argument has boundary [, j], then no
other argument span can cross the boundary at j.

> We will use Bx(u, i) to represent both the literal that
the token 7 is labeled with B~X for predicate v and also the
probability for this event. We follow a similar convention for
the I-X labels.



Token index 2 . j j +1
[i-7] has label X By ... Iy — Iy
Not allowed — _ By I,
Not allowed -By A =1y _ Iy I

Table 2: Formalizing the exclusively overlapping role
constraint in terms of the B and [ literals. For every
possible span [i-7] in a sentence, whenever it has a label
X for some predicate (first row), token labels as in the
subsequent rows are not allowed for any other predicate
for any other argument Y. Note that this constraint does
not affect the cells marked with a —.

This constraint applies to all argument labels in the
task, denoted by the set A.

YV u,i,j € ssuchthat j > i,and VX € A,

P(ui,j,x) =~ N\ QUijY) ®)
vEs,YEA
(w,X)#(v,Y)

where

P(u,i,j,X) = Bx(u,i) A Ix(u, j) A —Ix(u,j + 1)
Q(v,4,7,Y) = Q1(v,1,7,Y) A Qa(v, 1,5, m)
Q1(v,4,,Y) = By(v,5) V ~Iv(v,j + 1)
Q2(v,4,7,Y) =

By(v,i) V Iy(v,i) V =Iy(v,5) V ~Iy(v,j + 1)

Here, the term P(u,1, j,X) denotes the indicator
for the argument span [i, j] having the label X for
a predicate u and corresponds to the first row of
Table 2. The terms Q1 (v, 14, j,Y) and Q2(v,,7,Y)
each correspond to prohibitions of the type de-
scribed in the second and third rows respectively.
As before, the literals By, etc are relaxed as
model probabilities to define the loss. By combin-
ing the Godel and product t-norms, we translate
Rule (8) into:
Lo(s)= Y Uu,i,jx). )
(u,3,5)€s
j>i,XeA
where,

l(u,1,j,X) = max (07 log P(u,1, j, X)
log Q(v,4,J,Y))

—  min
vEs,YEA
(u,X)#(v,Y)
P(u,i,j,X) =
min (Byx (u, 1), Ix (u,7) , 1 — Ix (u, 5 + 1))
Q(v,4,7,Y) = min (Q1(v,4, ,Y), Q2(v,4, 5, Y))
Q1(v,4,7,Y) =1 —min (By(v,j), Iv(v,j + 1))
Q2(v,1,7,Y) =
max (By(v,1), Iv(v,4),1 — Iv(v,5),1 — Iv(v,j + 1))

Again, our constraint applies to all predicted prob-
abilities. However, doing so requires scanning
over 6 axes defined by (u,v,1,J,X,Y), which is
computationally expensive. To get around this, we
observe that, since we have a conditional state-
ment, the higher the probability of P(u,1, j,X),
the more likely it yields non-zero penalty. These
cases are precisely the ones we hope the constraint
helps. Thus, for faster training and ease of imple-
mentation, we modify Equation 8 by squeezing the
(4, 7) dimensions using top-k to redefine Lo above
as:

T (u,x) = argtop-k(; ;ye P (u,4, j,X)

Lo()= >, D,

u€s,XeA (1,5)€T (v,X)

(10)

(u,i,5,X). (11)

where 7 denotes the set of the top-k span bound-
aries for predicate u and argument label X. This
change results in a constraint defined by u, v, X, Y
and the k elements of 7.

Error Measurement p, We will refer to the er-
ror of the overlap constraint as p,, which describes
the total number of non-exclusively overlapped
pairs of arguments. In practice, we found that
models rarely make such observed mistakes. In §3,
we will see that using this constraint during train-
ing helps models generalize better with other con-
straints. In §4, we will analyze the impact of the
parameter k in the optimization described above.

2.5 Frame Core Roles ()

The task of semantic role labeling is defined using
the PropBank frame definitions. That is, for any
predicate lemma of a given sense, PropBank de-
fines which core arguments it can take and what
they mean. The definitions allow for natural con-
straints that can teach models to avoid predicting
core arguments outside of the predefined set.

Vu € s,k € S(u),

Sense(u, k) = N\~ (Bx(u,i) A Lx(u, 1))
1€s

XER(u,k)

where S(u) denotes the set of senses for a predi-

cate u, and R(u, k) denotes the set of acceptable

core arguments when the predicate u has sense k.
As noted in §2.2, literals in the above statement

can to be associated with classification neurons.

Thus the Sense(u, k) corresponds to either model

prediction or ground truth. Since our focus is to



validate the approach of using relaxed constraints
for SRL, we will use the latter.

This constraint can be also converted into reg-
ularizer following previous examples, giving us a
loss term Lp(s).

Error Measurement p; We will use py to de-
note the violation rate. It represents the percentage
of propositions that have predicted core arguments
outside the role sets of PropBank frames.

Loss Our final loss is defined as:

LE(S) + )\ULU(S) + AoLo(S) + )\FLF(S)
(12)

Here, L (s) is the standard cross entropy loss over
the BIO labels, and the \’s are hyperparameters.

3 Experiments & Results

In this section, we study the question: In what sce-
narios can we inform an end-to-end trained neural
model with declarative knowledge? To this end,
we experiment with the CoNLL-05 and CoNLL-
12 datasets, using standard splits and the offi-
cial evaluation script for measuring performance.
To empirically verify our framework in various
data regimes, we consider scenarios ranging from
where only limited training data is available, to
ones where large amounts of clean data are avail-
able.

3.1 Experiment Setup

Our baseline (described in §2.1) is based on
RoBERTa. We used the pre-trained base ver-
sion released by Wolfetal. (2019). Before
the final linear layer, we added a dropout
layer (Srivastava et al., 2014) with probability 0.5.
To capture the sequential dependencies between la-
bels, we added a standard CRF layer. At testing
time, Viterbi decoding with hard transition con-
straints was employed across all settings. In all
experiments, we used the gold predicate and gold
frame senses.

Model training proceeded in two stages:

1. We wuse the finetuned the pre-trained
RoBERTa model on SRL with only cross-
entropy loss for 30 epochs with learning rate
3x107°.

2. Then we continued finetuning with the com-
bined loss in Equation 12 for another 5
epochs with a lowered learning rate of 1 X
1075.

During both stages, learning rates were warmed up
linearly for the first 10% updates.

For fair comparison, we finetuned our baseline
twice (as with the constrained models); we found
that it consistently outperformed the singly fine-
tuned baseline in terms of both error rates and role
F1. We grid-searched the \’s by incrementally
adding regularizers. The combination of A\’s with
good balance between F1 and error p’s on the dev
set were selected for testing. We refer readers to
the appendix for the values of \’s.

For models trained on the CoNLL-05 data, we
report performance on the dev set, and the WSJ
and Brown test sets. For CoNLL-12 models, we
report performance on the dev and the test splits.

3.2 Scenario 1: Low Training Data

Creating SRL datasets requires expert annota-
tion, which is expensive. = While there are
some efforts on semi-automatic annotation tar-
geting low-resource languages (e.g., Akbik et al.,
2016), achieving high neural network performance
with small or unlabeled datasets remains a chal-
lenge (e.g., Fiirstenau and Lapata, 2009, 2012;
Titov and Klementiev, 2012; Gormley et al., 2014;
Abend et al., 2009).

In this paper, we study the scenario where we
have small amounts of fully labeled training data.
We sample 3% of the training data and an equiva-
lent amount of development examples. The same
training/dev subsets are used across all models.

Table 3 reports the performances of using 3%
training data from CoNLL-05 and CoNLL-12 (top
and bottom respectively). We compare our strong
baseline model with structure-tuned models using
all three constraints. Note that for all these evalu-
ations, while we use subsamples of the dev set for
model selection, the evaluations are reported using
the full dev and test sets.

We see that training with constraints greatly im-
proves precision with low training data, while re-
call reduces. This trade-off is accompanied by a re-
duction in the violation rates p, and ps. As noted
in §2.4, models rarely predict label sequences
that violate the exclusively overlapping roles con-
straint. As a result, the error rate p, (the number
of violations) only slightly fluctuates.

3.3 Scenario 2: Large Training Data

Table 4 reports the performance of models trained
with our framework using the full training set of



CoNLL-05 (3%, 1.1k)
Dev P R Fl |[0FI| py po pf

ROBERTa*> 67.79 72.69 70.15 1456 23 6.19
+UEO 7040 7191 7115| 1.0 [ 856 20 5.82
WSJ P R Fl |[0FI| pu po pf
ROBERTa®> 70.48 74.96 72.65 1335 37 NA
+UFEO  72.60 74.13 7336| 0.7 | 746 49 NA
Brown P R Fl |[OFL| py po pf
ROBERT2? 62.16 66.93 64.45 1294 6 NA
+UFEO 6431 65.64 6497(05|547 6 NA
CoNLL-12 (3%, 2.7k)
Dev P R Fl |[0FI| py po pf

ROBERTa> 74.39 76.88 75.62 743 294 3.23
+U,FO 75.99 76.80 76.39| 0.8 | 437 245 3.01

Test P R Fl |0FI| py po pf

RoBERTa? 74.79 77.17 75.96 6.92 156 2.67
+U,FO 76.31 76.88 76.59| 0.6 | 4.12 171 2.41

Table 3: Results on low training data (3% of CoNLL-
05 and CoNLL-12). RoBERTa?: Baseline finetuned
twice. U: Unique core roles. F: Frame core roles. O:
Exclusively overlapping roles. §F1: improvement over
baseline. py is marked NA for the CoNLL-05 test re-
sults because ground truth sense is unavailable on the
CoNLL-05 shared task page.

CoNLL-05 (100%, 36k)

Dev P R Fl |0FL| py py
RoBERTa? 86.74 87.24 86.99 1.97 3.23
+U,F,0 87.24 87.26 87.25| 0.3 | 1.35 2.99
Oracle 040 2.34
WSI P R Fl [0FL|py pf
RoBERTa?> 87.75 87.94 87.85 1.71 NA
+U,F0 88.05 88.00 88.03 | 0.2 | 0.85 NA
Oracle 0.30 NA
Brown P R Fl [OFl| p, py
RoBERTa? 79.38 78.92 78.64 336 NA
+U,F,0 80.04 79.56 79.80 | 1.2 | 1.24 NA
Oracle 0.30 NA

Table 4: Results on the full CoNLL-05 data. Oracle:
Errors of oracle. p, is in [0,6] across all settings.

the CoNLL-05 dataset which consists of 35k sen-
tences with 91k propositions. Again, we compare
RoBERTa (twice finetuned) with our structure-
tuned models. We see that the constrained models
consistently outperform baselines on the dev, WSJ,
and Brown sets. With all three constraints, the con-
strained model reaches 88 F1 on the WSI. It also

generalizes well on new domain by outperforming
the baseline by 1.2 points on the Brown test set.

As in the low training data experiments, we ob-
serve improved precision due to the constraints.
This suggests that even with large training data, di-
rect label supervision might not be enough for neu-
ral models to pick up the rich output space struc-
ture. Our framework helps neural networks, even
as strong as ROBERTa, to make more correct pre-
dictions from differentiable constraints.

Surprisingly, the development ground truth has
a 2.34% error rate on the frame role constraint, and
0.40% on the unique role constraint. Similar per-
centages of unique role errors also appear in WSJ
and Brown test sets. For p,, the oracle has no vio-
lations on the CoNLL-05 dataset.

The exclusively overlapping constraint (i.e. p,)
is omitted as we found models rarely make such
prediction errors. After adding constraints, the er-
ror rate of our model approached the lower bound.
Note that our framework focuses on the learning
stage without any specialized decoding algorithms
in the prediction phase except the Viterbi algo-
rithm to guarantee that there will be no BIO vio-
lations.

What about even larger and cleaner data?
The ideal scenario, of course, is when we have the
luxury of massive and clean data to power neural
network training. In Table 5, we present results
on CoNLL-12 which is about 3 times as large as
CoNLL-05. It consists of 90k sentences and 253k
propositions. The dataset is also less noisy with
respect to the constraints. For instance, the ora-
cle development set has no violations for both the
unique core and the exclusively overlapping con-
straints.

We see that, while adding constraints reduced
error rates of p, and py, the improvements on la-
bel consistency do not affect F1 much. As a re-
sult, our best constrained model performes on a
par with the baseline on the dev set, and is slightly
better than the baseline (by 0.1) on the test set.
Thus we believe when we have the luxury of data,
learning with constraints would become optional.
This observation is in line with recent results in
Li and Srikumar (2019) and Li et al. (2019).

But is it due to the large data or the strong base-
line? To investigate whether the seemingly satu-
rated performance is from data or from the model,
we also evaluate our framework on the original



BERT (Devlin et al., 2019) which is relatively less
powerful. We follow the same model setup for ex-
periments and report the performances in Table 5
and Table 9. We see that compared to RoBERTa,
BERT obtains similar F1 gains on the test set, sug-
gesting performance ceiling is due to the train size.

CoNLL-12 (100%, 90k)

Dev P R Fl |0FL| py py
RoBERTa” 86.62 86.91 86.76 086 1.18
+UFO  86.60 86.89 86.74| 0 |0.59 1.04
Oracle 0 038
Test P R Fl [0FL| py pf
RoBERTa”> 86.28 86.67 86.47 091 0.97
+UFO 8640 86.83 86.61| 0.1 |0.50 0.93
Oracle 0 042
Dev P R Fl [OFl| p, py
BERT®  85.62 8622 85.92 141 112
+UFO 8597 86.38 86.18| 03 |0.78 1.07
Test P R Fl [0FL| py pf
BERT® 8552 86.24 85.88 132 0.94
+UFO 8582 8636 86.09 | 0.2 |0.79 0.90

Table 5: Results on CoNLL-12. BERT?: The origi-
nal BERT finetuned twice. p, is around 50 across all
settings. With the luxury of large and clean data, con-
strained learning becomes less effective.

4 Ablations & Analysis

In §3, we saw that constraints not just improve
model performance, but also make outputs more
structurally consistent. In this section, we will
show the results of an ablation study that adds one
constraint at a time. Then, we will examine the
sources of improved F-score by looking at individ-
ual labels, and also the effect of the top-k relax-
ation for the constraint O. Furthermore, we will
examine the robustness of our method against ran-
domness involved during training. We will end
this section with a discussion about the ability
of constrained neural models to handle structured
outputs.

Constraint Ablations We present the ablation
analysis on our constraints in Table 6. We see that
as models become more constrained, precision im-
proves. Furthermore, one class of constraints do
not necessarily reduce the violation rate for the
others. Combining all three constraints offers a
balance between precision, recall, and constraint
violation.

One interesting observation that adding the O
constraints improve F-scores even though the p,
values were already close to zero. As noted in §2.4,
our constraints apply to the predicted scores of all
labels for a given argument, while the actual de-
coded label sequence is just the highest scoring se-
quence using the Viterbi algorithm. Seen this way,
our regularizers increase the decision margins on
affected labels. As a result, the model predicts
scores that help Viterbi decoding, and, also gen-
eralizes better to new domains i.e., the Brown set.

CoNLL-05 (100%, 36k)

Dev P R FI | pu  pf
RoBERTa®> 86.74 87.24 86.99 | 1.97 3.23
+U 87.21 8732 8727|129 3.23
+UF 87.19 87.54 87.37 | 1.20 3.11
+UFO 87.24 8726 8725|135 299
WSJ P R FI | py pf
RoBERTa> 87.75 87.94 87.85|1.71 NA
+U 87.88 88.01 87.95|1.18 NA
+UF 88.05 88.09 88.07 [ 0.89 NA
+U,EO 88.05 88.00 88.03 | 0.85 NA
Brown P R FI | pu pf
ROBERTa?> 7938 7892 78.64 | 336 NA
+U 7936 79.15 79.25 | 174 NA
+UF 79.60 79.24 79.42 | 1.00 NA
+UEO 80.04 79.56 79.80 | 1.24 NA

Table 6: Ablation tests on CoNLL-05.

Sources of Improvement Table 7 shows label-
wise F1 scores for each argument. Under low train-
ing data conditions, our constrained models gained
improvements primarily from the frequent labels,
e.g., A0-A2. On CoNLL-05 dataset, we found
the location modifier (AM-LOC) posed challenges
to our constrained models which significantly per-
formed worse than the baseline. Another chal-
lenge is the negation modifier (AM—NEG), where
our models underperformed on both datasets, par-
ticularly with small training data. When using
the CoNLL-12 training set, our models performed
on par with the baseline even on frequent labels,
confirming that the performance of soft-structured
learning is nearly saturated on the larger, cleaner
dataset.

Impact of Top-~ Beam Size As noted in §2.4,
we used the top-k strategy to implement the con-
straint O. As a result, there is a certain chance for
predicted label sequences to have non-exclusive



CoNLL-05 3% CoNLL-05 100% CoNLL-12 3% CoNLL-12 100%

RoBERTa> +U,FO | RoBERTa” +U,FO | RoBERTa® +UF,0 | RoBERTa> +UF0
A0 81.28 82.11 93.43 93.52 84.99 85.73 92.78 92.81
Al 72.12 73.59 89.23 89.80 78.36 79.67 89.88 89.75
A2 46.50 47.52 79.53 79.73 68.24 69.20 84.93 84.90
A3 39.58 42.11 81.45 81.86 33.26 34.47 72.96 73.24
Al 51.61 51.56 74.60 75.59 56.29 58.38 80.80 80.33
AM-ADV | 44.07 47.56 66.67 66.91 55.26 54.93 66.37 66.92
AM-DIR 16.39 18.92 55.26 55.56 36.51 35.81 64.92 64.95
AM-DIS 71.07 70.84 80.20 80.50 76.35 76.40 82.86 82.71
AM-LOC 53.08 51.60 69.02 66.50 59.74 59.94 72.74 73.21
AM-MNR | 44.30 44.18 68.63 69.87 56.14 55.67 70.89 71.13
AM-MOD 91.88 91.60 98.27 98.60 95.50 95.76 97.88 98.04
AM-NEG 91.18 88.35 94.06 93.60 93.29 93.05 95.93 95.83
AM-TMP 74.05 74.13 88.24 88.08 79.00 78.78 87.58 87.56
Overall | 70.48 7155 | 8733 87.61 | 76.66 7745 | 87.60 87.58

Table 7: Label-wise F1 scores for the CONLL-05 and CoNLL-12 development sets.

overlap without our regularizer penalizing them.
What we want instead is a good balance between
coverage and runtime cost. To this end, we an-
alyze the CoNLL-12 development set using the
baseline trained on 3% of CoNLL-12 data. Specif-
ically, we count the examples which have such
overlap but the regularization loss is < 0.001. In
Table 8, we see that & = 4 yields good coverage.

k 1

2 4 6
#Ex. 10 8 3 2

Table 8: Impact of k for the top-k strategy, showing
the number of missed examples for different k. We set
k = 4 across all experiments.

Robustness to random initialization We ob-
served that model performance with structured
tuning is generally robust to random initialization.
As an illustration, we show the performance of
models trained on the full CoNLL-12 dataset with
different random initializations in Table 9.

Can Constrained Networks Handle Structured
Prediction? Larger, cleaner data may presum-
ably be better for training constrained neural mod-
els. But it is not that simple. We will approach
the above question by looking at how good the
transformer models are at dealing with two classes
of constraints, namely: 1) structural constraints
that rely only on available decisions (constraint U),
2) constraints involving external knowledge (con-
straint F').

For the former, we expected neural models to
perform very well since the constraint U repre-

CoNLL-12 (100%, 90k)

Test F1 Seedl Seed2 Seed3 | avg 0F1
BERT? 85.88 8591 86.13

+U,F,O 86.09 86.07 86.19 0.1
Test F1 Seedl  Seed2 Seed3 | avg JFI
RoBERTa® 8647 86.33  86.45

+U,FO 86.61 86.48 86.57 0.1

Table 9: F1 scores models trained on the CoNLL-12
data with different random seeds. The randomness af-
fects the initialization of the classification layers and
the batch ordering during training.

sents a simple local pattern. From Tables 4 and 5,
we see that the constrained models indeed reduced
violations p, substantially. However, when the
training data is limited, i.e., comparing CoNLL-
05 3% and 100%, the constrained models, while
reducing the number of errors, still make many in-
valid predictions. We conjecture this is because
networks learn with constraints mostly by memo-
rization. Thus the ability to generalize learned pat-
terns on unseen examples relies on training size.

The constraint F' requires external knowledge
from the PropBank frames. We see that even with
large training data, constrained models were only
able to reduce error rate py by a small margin. In
our development experiments, having larger Ap
tends to strongly sacrifice argument F1, yet still
does not to improve development error rate sub-
stantially. Without additional training signal in the
form of such background knowledge, constrained
inference becomes a necessity, even with strong
neural network models.



5 Discussion & Conclusion

Semantic Role Labeling & Constraints The
SRL task is inherently knowledge rich; the out-
puts are defined in terms of an external ontology of
frames. The work presented here can be general-
ized to several different flavors of the task, and in-
deed, constraints could be used to model the inter-
play between them. For example, we could revisit
the analysis of Yi et al. (2007), who showed that
the PropBank A2 label takes on multiple mean-
ings, but by mapping them to VerbNet, they can
be disambiguated. Such mappings naturally define
constraints that link semantic ontologies.

Constraints have long been a cornerstone in
the SRL models. Several early linear mod-
els for SRL (e.g. Punyakanok et al., 2004, 2008;
Surdeanu et al., 2007) modeled inference for
PropBank SRL using integer linear program-
ming. Riedel and Meza-Ruiz (2008) used Markov
Logic Networks to learn and predict semantic
roles with declarative constraints. The work
of (Tackstrom et al., 2015) showed that certain
SRL constraints admit efficient decoding, lead-
ing to a neural model that used this frame-
work (FitzGerald et al., 2015). Learning with
constraints has also been widely adopted in
semi-supervised SRL (e.g., Fiirstenau and Lapata,
2012).

With the increasing influence of neural net-
works in NLP, however, the role of declarative
constraints seem to have decreased in favor of
fully end-to-end training (e.g., He et al., 2017b;
Strubell et al., 2018, and others). In this paper, we
show that even in the world of neural networks
with contextual embeddings, there is still room for
systematically introducing knowledge in the form
of constraints, without sacrificing the benefits of
end-to-end learning.

Structured Losses Changetal. (2012) and
Ganchev et al. (2010) developed models for struc-
tured learning with declarative constraints. Our
work is in the same spirit of training models that
attempts to maintain output consistency.

There are some recent works on the de-
sign of models and loss functions by relaxing
Boolean formulas. Kimmig et al. (2012) used the
Lukasiewicz t-norm for probabilistic soft logic.
Li and Srikumar (2019) augment the neural net-
work architecture itself using such soft logic.
Xu et al. (2018) present a general framework for

loss design that does not rely on soft logic. Intro-
ducing extra regularization terms to a downstream
task have been shown to be beneficial in terms
of both output structure consistency and predic-
tion accuracy (e.g., Minervini and Riedel, 2018;
Hsu et al., 2018; Mehtaet al., 2018; Duetal.,
2019; Li et al., 2019).

Final words In this work, we have presented a
framework that seeks to predict structurally consis-
tent outputs without extensive model redesign, or
any expensive decoding at prediction time. Our ex-
periments on the semantic role labeling task show
that such an approach can be especially helpful in
scenarios where we do not have the luxury of mas-
sive annotated datasets.
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A Appendices

A.1 Hyperparameters

We show the hyperparameters of A‘s in Table 10.
We conducted grid search on the combinations of
A‘s for each setting and the best one on develop-
ment set is selected for reporting.

Model Au Ao Ar
RoBERTa CoNLL-05 (3%)

+U,EO 2 05 05
RoBERTa CoNLL-2012 (3%)

+U,EO 1 2 1
RoBERTa CoNLL-05 (100%)

+U 1

+UF 1 05
+U,EO 1 0.5 0.1
RoBERTa CoNLL-2012 (100%)

+UFO 1 1 0.1

BERT CoNLL-2012 (100%)
+U,EO 0.5 1 0.1

Table 10: Values of hyperparameter A‘s.



