
Augmenting Neural Networks with First-order Logic

Tao Li

University of Utah

tli@cs.utah.edu

Vivek Srikumar

University of Utah

svivek@cs.utah.edu

Abstract

Today, the dominant paradigm for training

neural networks involves minimizing task loss

on a large dataset. Using world knowledge to

inform a model, and yet retain the ability to

perform end-to-end training remains an open

question. In this paper, we present a novel

framework for introducing declarative knowl-

edge to neural network architectures in order

to guide training and prediction. Our frame-

work systematically compiles logical state-

ments into computation graphs that augment

a neural network without extra learnable pa-

rameters or manual redesign. We evaluate

our modeling strategy on three tasks: ma-

chine comprehension, natural language infer-

ence, and text chunking. Our experiments

show that knowledge-augmented networks can

strongly improve over baselines, especially in

low-data regimes.

1 Introduction

Neural models demonstrate remarkable predic-

tive performance across a broad spectrum of NLP

tasks: e.g., natural language inference (Parikh

et al., 2016), machine comprehension (Seo et al.,

2017), machine translation (Bahdanau et al.,

2015), and summarization (Rush et al., 2015).

These successes can be attributed to their ability to

learn robust representations from data. However,

such end-to-end training demands a large num-

ber of training examples; for example, training a

typical network for machine translation may re-

quire millions of sentence pairs (e.g. Luong et al.,

2015). The difficulties and expense of curating

large amounts of annotated data are well under-

stood and, consequently, massive datasets may not

be available for new tasks, domains or languages.

In this paper, we argue that we can combat

the data hungriness of neural networks by tak-

ing advantage of domain knowledge expressed as

Gaius Julius Caesar (July 100 BC – 15 March 44

BC), Roman general, statesman, Consul and

notable author of Latin prose, played a critical

role in the events that led to the demise of the

Roman Republic and the rise of the Roman

Empire through his various military campaigns.

Paragraph:

Question: Which Roman general is known for writing prose?

Figure 1: An example of reading comprehension that

illustrates alignments/attention. In this paper, we con-

sider the problem of incorporating external knowledge

about such alignments into training neural networks.

first-order logic. As an example, consider the

task of reading comprehension, where the goal

is to answer a question based on a paragraph of

text (Fig. 1). Attention-driven models such as

BiDAF (Seo et al., 2017) learn to align words in

the question with words in the text as an interme-

diate step towards identifying the answer. While

alignments (e.g. author to writing) can be learned

from data, we argue that models can reduce their

data dependence if they were guided by easily

stated rules such as: Prefer aligning phrases that

are marked as similar according to an external re-

source, e.g., ConceptNet (Liu and Singh, 2004). If

such declaratively stated rules can be incorporated

into training neural networks, then they can pro-

vide the inductive bias that can reduce data depen-

dence for training.

That general neural networks can represent such

Boolean functions is known and has been studied

both from the theoretical and empirical perspec-

tives (e.g. Maass et al., 1994; Anthony, 2003; Pan

and Srikumar, 2016). Recently, Hu et al. (2016)

exploit this property to train a neural network to

mimic a teacher network that uses structured rules.

In this paper, we seek to directly incorporate such

structured knowledge into a neural network archi-

tecture without substantial changes to the training

methods. We focus on three questions:

1. Can we integrate declarative rules with end-

to-end neural network training?

2. Can such rules help ease the need for data?

3. How does incorporating domain expertise

compare against large training resources

powered by pre-trained representations?

The first question poses the key technical chal-

lenge we address in this paper. On one hand, we

wish to guide training and prediction with neural

networks using logic, which is non-differentiable.

On the other hand, we seek to retain the advan-

tages of gradient-based learning without having

to redesign the training scheme. To this end, we

propose a framework that allows us to system-

atically augment an existing network architecture

using constraints about its nodes by deterministi-

cally converting rules into differentiable computa-

tion graphs. To allow for the possibility of such

rules being incorrect, our framework is designed

to admit soft constraints from the ground up. Our

framework is compatible with off-the-shelf neural

networks without extensive redesign or any addi-

tional trainable parameters.

To address the second and the third questions,

we empirically evaluate our framework on three

tasks: machine comprehension, natural language

inference, and text chunking. In each case, we

use a general off-the-shelf model for the task,

and study the impact of simple logical constraints

on observed neurons (e.g., attention) for different

data sizes. We show that our framework can suc-

cessfully improve an existing neural design, es-

pecially when the number of training examples is

limited.

In summary, our contributions are:

1. We introduce a new framework for incorpo-

rating first-order logic rules into neural net-

work design in order to guide both training

and prediction.

2. We evaluate our approach on three different

NLP tasks: machine comprehension, textual

entailment, and text chunking. We show that

augmented models lead to large performance

gains in the low training data regimes.1

1The code used for our experiments is archived here:
https://github.com/utahnlp/layer_augmentation

2 Problem Setup

In this section, we will introduce the notation and

assumptions that form the basis of our formalism

for constraining neural networks.

Neural networks are directed acyclic compu-

tation graphs G = (V,E), consisting of nodes

(i.e. neurons) V and weighted directed edges E

that represent information flow. Although not all

neurons have explicitly grounded meanings, some

nodes indeed can be endowed with semantics tied

to the task. Node semantics may be assigned dur-

ing model design (e.g. attention), or incidentally

discovered in post hoc analysis (e.g., Le et al.,

2012; Radford et al., 2017, and others). In either

case, our goal is to augment a neural network with

such named neurons using declarative rules.

The use of logic to represent domain knowl-

edge has a rich history in AI (e.g. Russell and

Norvig, 2016). In this work, to capture such

knowledge, we will primarily focus on conditional

statements of the form L → R, where the ex-

pression L is the antecedent (or the left-hand side)

that can be conjunctions or disjunctions of liter-

als, and R is the consequent (or the right-hand

side) that consists of a single literal. Note that

such rules include Horn clauses and their general-

izations, which are well studied in the knowledge

representation and logic programming communi-

ties (e.g. Chandra and Harel, 1985).

Integrating rules with neural networks presents

three difficulties. First, we need a mapping be-

tween the predicates in the rules and nodes in the

computation graph. Second, logic is not differen-

tiable; we need an encoding of logic that admits

training using gradient based methods. Finally,

computation graphs are acyclic, but user-defined

rules may introduce cyclic dependencies between

the nodes. Let us look at these issues in order.

As mentioned before, we will assume named

neurons are given. And by associating predi-

cates with such nodes that are endowed with sym-

bolic meaning, we can introduce domain knowl-

edge about a problem in terms of these predicates.

In the rest of the paper, we will use lower cased

letters (e.g., ai, bj) to denote nodes in a computa-

tion graph, and upper cased letters (e.g., Ai, Bj)

for predicates associated with them.

To deal with the non-differentiablity of logic,

we will treat the post-activation value of a named

neuron as the degree to which the associated pred-

icate is true. In §3, we will look at methods

a
1

a
2

a
3

b
1

b
2

Many layers

Figure 2: An example computation graph. The state-

ment A1 ∧B1 → A2 ∧B2 is cyclic with respect to the

graph. On the other hand, the statement A1 ∧ A2 →
B1 ∧B2 is acyclic.

for compiling conditional statements into differ-

entiable statements that augment a given network.

Cyclicity of Constraints Since we will aug-

ment computation graphs with compiled condi-

tional forms, we should be careful to avoid creat-

ing cycles. To formalize this, let us define cyclicity

of conditional statements with respect to a neural

network.

Given two nodes a and b in a computation

graph, we say that the node a is upstream of node

b if there is a directed path from a to b in the graph.

Definition 1 (Cyclic and Acyclic Implications).

Let G be a computation graph. An implicative

statement L → R is cyclic with respect to G if,

for any literal Ri ∈ R, the node ri associated with

it is upstream of the node lj associated with some

literal Lj ∈ L. An implicative statement is acyclic

if it is not cyclic.

Fig. 2 and its caption gives examples of cyclic

and acyclic implications. A cyclic statement

sometimes can be converted to an equivalent

acyclic statement by constructing its contraposi-

tive. For example, the constraint B1 → A1 is

equivalent to ¬A1 → ¬B1. While the former is

cyclic, the later is acyclic. Generally, we can as-

sume that we have acyclic implications.2

3 A Framework for Augmenting Neural

Networks with Constraints

To create constraint-aware neural networks, we

will extend the computation graph of an exist-

ing network with additional edges defined by con-

straints. In §3.1, we will focus on the case where

the antecedent is conjunctive/disjunctive and the

consequent is a single literal. In §3.2, we will

cover more general antecedents.

2As we will see in §3.3, the contrapositive does not always
help because we may end up with a complex right hand side
that we can not yet compile into the computation graph.

3.1 Constraints Beget Distance Functions

Given a computation graph, suppose we have a

acyclic conditional statement: Z → Y , where Z

is a conjunction or a disjunction of literals and Y

is a single literal. We define the neuron associated

with Y to be y = g (Wx), where g denotes an

activation function, W are network parameters, x

is the immediate input to y. Further, let the vector

z represent the neurons associated with the pred-

icates in Z. While the nodes z need to be named

neurons, the immediate input x need not necessar-

ily have symbolic meaning.

Constrained Neural Layers Our goal is to aug-

ment the computation of y so that whenever Z is

true, the pre-activated value of y increases if the

literal Y is not negated (and decreases if it is). To

do so, we define a constrained neural layer as

y = g (Wx+ ρd (z)) . (1)

Here, we will refer to the function d as the dis-

tance function that captures, in a differentiable

way, whether the antecedent of the implication

holds. The importance of the entire constraint is

decided by a real-valued hyper-parameter ρ ≥ 0.

The definition of the constrained neural layer

says that, by compiling an implicative statement

into a distance function, we can regulate the pre-

activation scores of the downstream neurons based

on the states of upstream ones.

Designing the distance function The key con-

sideration in the compilation step is the choice of

an appropriate distance function for logical state-

ments. The ideal distance function we seek is the

indicator for the statement Z:

dideal(z) =

{

1, if Z holds,

0, otherwise.

However, since the function dideal is not differen-

tiable, we need smooth surrogates.

In the rest of this paper, we will define and use

distance functions that are inspired by probabilis-

tic soft logic (c.f. Klement et al., 2013) and its use

of the Łukasiewicz T-norm and T-conorm to define

a soft version of conjunctions and disjunctions.3

Table 1 summarizes distance functions corre-

sponding to conjunctions and disjunctions. In all

3The definitions of the distance functions here as surro-
gates for the non-differentiable dideal is reminiscent of the
use of hinge loss as a surrogate for the zero-one loss. In both
cases, other surrogates are possible.

Antecedent Distance d(z)
∧

i

Zi max(0,
∑

i zi − |Z|+ 1)
∨

i

Zi min(1,
∑

i zi)

¬
∨

i

Zi max(0, 1−
∑

i zi)

¬
∧

i

Zi min(1, N −
∑

i zi)

Table 1: Distance functions designed using the

Łukasiewicz T-norm. Here, |Z| is the number of an-

tecedent literals. zi’s are upstream neurons associated

with literals Zi’s.

cases, recall that the zi’s are the states of neurons

and are assumed to be in the range [0, 1]. Ex-

amining the table, we see that with a conjunctive

antecedent (first row), the distance becomes zero

if even one of the conjuncts is false. For a dis-

junctive antecedent (second row), the distance be-

comes zero only when all the disjuncts are false;

otherwise, it increases as the disjuncts become

more likely to be true.

Negating Predicates Both the antecedent (the

Z’s) and the consequent (Y) could contain negated

predicates. We will consider these separately.

For any negated antecedent predicate, we mod-

ify the distance function by substituting the corre-

sponding zi with 1 − zi in Table 1. The last two

rows of the table list out two special cases, where

the entire antecedents are negated, and can be de-

rived from the first two rows.

To negate consequent Y , we need to reduce the

pre-activation score of neuron y. To achieve this,

we can simply negate the entire distance function.

Scaling factor ρ In Eq. 1, the distance function

serves to promote or inhibit the value of down-

stream neuron. The extent is controlled by the

scaling factor ρ. For instance, with ρ = +∞, the

pre-activation score of the downstream neuron is

dominated by the distance function. In this case,

we have a hard constraint. In contrast, with a small

ρ, the output state depends on both the Wx and

the distance function. In this case, the soft con-

straint serves more as a suggestion. Ultimately, the

network parameters might overrule the constraint.

We will see an example in §4 where noisy con-

straint prefers small ρ.

3.2 General Boolean Antecedents

So far, we exclusively focused on conditional

statements with either conjunctive or disjunctive

antecedents. In this section, we will consider gen-

eral antecedents.

As an illustrative example, suppose we have an

antecedent (¬A ∨ B) ∧ (C ∨ D). By introduc-

ing auxiliary variables, we can convert it into the

conjunctive form P ∧ Q, where (¬A ∨ B) ↔ P

and (C∨D)↔ Q. To perform such operation, we

need to: (1) introduce auxiliary neurons associated

with the auxiliary predicates P and Q, and, (2) de-

fine these neurons to be exclusively determined by

the biconditional constraint.

To be consistent in terminology, when consid-

ering biconditional statement (¬A ∨B)↔ P , we

will call the auxiliary literal P the consequent, and

the original literals A and B the antecedents.

Because the implication is bidirectional in bi-

conditional statement, it violates our acyclicity re-

quirement in §3.1. However, since the auxiliary

neuron state does not depend on any other nodes,

we can still create an acyclic sub-graph by defin-

ing the new node to be the distance function itself.

Constrained Auxiliary Layers With a bicondi-

tional statement Z ↔ Y , where Y is an auxiliary

literal, we define a constrained auxiliary layer as

y = d (z) (2)

where d is the distance function for the statement,

z are upstream neurons associated with Z, y is the

downstream neuron associated with Y . Note that,

compared to Eq. 1, we do not need activation func-

tion since the distance, which is in [0, 1], can be

interpreted as producing normalized scores.

Note that this construction only applies to aux-

iliary predicates in biconditional statements. The

advantage of this layer definition is that we can

use the same distance functions as before (i.e., Ta-

ble 1). Furthermore, the same design consider-

ations in §3.1 still apply here, including how to

negate the left and right hand sides.

Constructing augmented networks To com-

plete the modeling framework, we summarize the

workflow needed to construct an augmented neu-

ral network given a conditional statement and a

computation graph: (1) Convert the antecedent

into a conjunctive or a disjunctive normal form

if necessary. (2) Convert the conjunctive/disjunc-

tive antecedent into distance functions using Ta-

ble 1 (with appropriate corrections for negations).

(3) Use the distance functions to construct con-

strained layers and/or auxiliary layers to augment

the computation graph by replacing the original

layer with constrained one. (4) Finally, use the

augmented network for end-to-end training and in-

ference. We will see complete examples in §4.

3.3 Discussion

Not only does our design not add any more train-

able parameters to the existing network, it also ad-

mits efficient implementation with modern neural

network libraries.

When posing multiple constraints on the same

downstream neuron, there could be combinatorial

conflicts. In this case, our framework relies on the

base network to handle the consistency issue. In

practice, we found that summing the constrained

pre-activation scores for a neuron is a good heuris-

tic (as we will see in §4.3).

For a conjunctive consequent, we can decom-

pose it into multiple individual constraints. That

is equivalent to constraining downstream nodes

independently. Handling more complex conse-

quents is a direction of future research.

4 Experiments

In this section, we will answer the research ques-

tions raised in §1 by focusing on the effectiveness

of our augmentation framework. Specifically, we

will explore three types of constraints by augment-

ing: 1) intermediate decisions (i.e. attentions);

2) output decisions constrained by intermediate

states; 3) output decisions constrained using label

dependencies.

To this end, we instantiate our framework on

three tasks: machine comprehension, natural lan-

guage inference, and text chunking. Across all ex-

periments, our goal is to study the modeling flex-

ibility of our framework and its ability to improve

performance, especially with decreasing amounts

of training data.

To study low data regimes, our augmented net-

works are trained using varying amounts of train-

ing data to see how performances vary from base-

lines. For detailed model setup, please refer to the

appendices.

4.1 Machine Comprehension

Attention is a widely used intermediate state in

several recent neural models. To explore the

augmentation over such neurons, we focus on

attention-based machine comprehension models

on SQuAD (v1.1) dataset (Rajpurkar et al., 2016).

We seek to use word relatedness from external

resources (i.e., ConceptNet) to guide alignments,

and thus to improve model performance.

Model We base our framework on two mod-

els: BiDAF (Seo et al., 2017) and its ELMo-

augmented variant (Peters et al., 2018). Here, we

provide an abstraction of the two models which

our framework will operate on:

p,q = encoder(p), encoder(q) (3)
←−a ,−→a = σ(layers(p,q)) (4)

y, z = σ(layers(p,q,←−a ,−→a)) (5)

where p and q are the paragraph and query re-

spectively, σ refers to the softmax activation, ←−a
and −→a are the bidirectional attentions from q to p

and vice versa, y and z are the probabilities of an-

swer boundaries. All other aspects are abstracted

as encoder and layers.

Augmentation By construction of the attention

neurons, we expect that related words should be

aligned. In a knowledge-driven approach, we can

use ConceptNet to guide the attention values in the

model in Eq. 4.

We consider two rules to illustrate the flexibility

of our framework. Both statements are in first-

order logic that are dynamically grounded to the

computation graph for a particular paragraph and

query. First, we define the following predicates:

Ki,j word pi is related to word qj in Concept-

Net via edges {Synonym, DistinctFrom,

IsA, Related}.
←−
A i,j unconstrained model decision that word

qj best matches to word pi.
←−
A ′

i,j constrained model decision for the

above alignment.

Using these predicates, we will study the

impact of the following two rules, defined

over a set C of content words in p and q:

R1: ∀i, j ∈ C, Ki,j →
←−
A ′

i,j .

R2: ∀i, j ∈ C, Ki,j ∧
←−
A i,j →

←−
A ′

i,j .

The rule R1 says that two words should be

aligned if they are related. Interestingly, compiling

this statement using the distance functions in Ta-

ble 1 is essentially the same as adding word relat-

edness as a static feature. The rule R2 is more con-

servative as it also depends on the unconstrained

%Train BiDAF +R1 +R2 +ELMo +ELMo,R1

10% 57.5 61.5 60.7 71.8 73.0

20% 65.7 67.2 66.6 76.9 77.7

40% 70.6 72.6 71.9 80.3 80.9

100% 75.7 77.4 77.0 83.9 84.1

Table 2: Impact of constraints on BiDAF. Each score

represents the average span F1 on our test set (i.e. offi-

cial dev set) among 3 random runs. Constrained mod-

els and ELMo models are built on top of BiDAF. We

set ρ = 2 for both R1 and R2 across all percentages.

model decision. In both cases, since Ki,j does not

map to a node in the network, we have to create

a new node ki,j whose value is determined using

ConceptNet, as illustrated in Fig. 3.

Many

Many

layers

layers

a
1,1

a
m,n

........p
1

p
m

q
1

q
n

....y
1

y
mz

1
z
m

s
1,1

s
m,n

a
1,1

a
m,n

s
1,1

s
m,n

s’
1,1

s’
m,n

(a) (b)

....

....

....

softmax

a’
1,1

a’
m,n....

softmax

softmax

distance

k
1,1

k
m,n

....

Figure 3: (a) The computation graph of BiDAF where

attention directions are obmitted. (b) The augmented

graph on attention layer using R2. Bold circles are

extra neurons introduced. Constrained attentions and

scores are a′ and s′ respectively. In the augmented

model, graph (b) replaces the shaded part in (a).

Can our framework use rules over named neu-

rons to improve model performance? The an-

swer is yes. We experiment with rules R1 and

R2 on incrementally larger training data. Perfor-

mances are reported in Table 2 with comparison

with baselines. We see that our framework can

indeed use logic to inform model learning and

prediction without any extra trainable parameters

needed. The improvement is particularly strong

with small training sets. With more data, neural

models are less reliant on external information. As

a result, the improvement with larger datasets is

smaller.

How does it compare to pretrained encoders?

Pretrained encoders (e.g. ELMo and BERT (De-

vlin et al., 2018)) improve neural models with im-

proved representations, while our framework aug-

ments the graph using first-order logic. It is im-

portant to study the interplay of these two orthog-

onal directions. We can see in Table 2, our aug-

mented model consistently outperforms baseline

even with the presence of ELMo embeddings.

Does the conservative constraint R2 help? We

explored two options to incorporate word related-

ness; one is a straightforward constraint (i.e. R1),

another is its conservative variant (i.e. R2). It is

a design choice as to which to use. Clearly in Ta-

ble 2, constraint R1 consistently outperforms its

conservative alternative R2, even though R2 is bet-

ter than baseline. In the next task, we will see an

example where a conservative constraint performs

better with large training data.

4.2 Natural Language Inference

Unlike in the machine comprehension task, here

we explore logic rules that bridge attention neu-

rons and output neurons. We use the SNLI

dataset (Bowman et al., 2015), and base our frame-

work on a variant of the decomposable atten-

tion (DAtt, Parikh et al., 2016) model where we

replace its projection encoder with bidirectional

LSTM (namely L-DAtt).

Model Again, we abstract the pipeline of L-

DAtt model, only focusing on layers which our

framework works on. Given a premise p and a hy-

pothesis h, we summarize the model as:

p,h = encoder(p), encoder(h) (6)
←−a ,−→a = σ(layers(p,h)) (7)

y = σ(layers(p,h,←−a ,−→a)) (8)

Here, σ is the softmax activation, ←−a and −→a are

bidirectional attentions, y are probabilities for la-

bels Entailment, Contradiction, and Neutral.

Augmentation We will borrow the predicate no-

tation defined in the machine comprehension task

(§4.1), and ground them on premise and hypoth-

esis words, e.g. Ki,j now denotes the relatedness

between premise word pi and hypothesis word hj .

In addition, we define the predicate Yl to indicate

that the label is l. As in §4.1, we define two rules

governing attention:

N1: ∀i, j ∈ C, Ki,j → A′
i,j .

N2: ∀i, j ∈ C, Ki,j ∧Ai,j → A′
i,j .

where C is the set of content words. Note that the

two constraints apply to both attention directions.

Intuitively, if a hypothesis content word is not

aligned, then the prediction should not be Entail-

ment. To use this knowledge, we define the fol-

lowing rule:

N3: Z1 ∨ Z2 → ¬YEntail, where

∃j ∈ C, ¬
(

∃i ∈ C,
←−
A ′

i,j

)

↔ Z1,

∃j ∈ C, ¬
(

∃i ∈ C,
−→
A ′

i,j

)

↔ Z2.

where Z1 and Z2 are auxiliary predicates tied

to the YEntail predicate. The details of N3 are

illustrated in Fig. 4.

a
1,1

a
i,j

a
m,n....

........p
1

p
m

h
1

h
n

(a) (b)

s
e

s
c

s
n

y
e

y
c

y
n

a’
1,1

a’
i,j

a’
m,n....

....

....

softmax

Many

s’
e

s
c

s
n

z
1

y
e

y
c

y
n

z
2

s
e

softmax

Many layers

distance

distance

Many layers

layers

Figure 4: (a) The computation graph of the L-DAtt

model (attention directions obmitted). (b) The aug-

mented graph on the Entail label using N3. Bold cir-

cles are extra neurons introduced. Unconstrained pre-

activation scores are s while s′
e

is the constrained score

on Entail. Intermediate neurons are z1 and z2. con-

strained attentions a′ are constructed using N1 or N2.

In our augmented model, the graph (b) replaces the

shaded part in (a).

How does our framework perform with large

training data? The SNLI dataset is a large

dataset with over half-million examples. We train

our models using incrementally larger percentages

of data and report the average performance in Ta-

ble 3. Similar to §4.1, we observe strong improve-

ments from augmented models trained on small

percentages (≤10%) of data. The straightforward

constraint N1 performs strongly with ≤2% data

while its conservative alternative N2 works better

with a larger set. However, with full dataset, our

augmented models perform only on par with base-

line even with lowered scaling factor ρ. These ob-

servations suggest that if a large dataset is avail-

able, it may be better to believe the data, but with

smaller datasets, constraints can provide useful in-

ductive bias for the models.

Are noisy constraints helpful? It is not always

easy to state a constraint that all examples sat-

isfy. Comparing N2 and N3, we see that N3 per-

%Train L-DAtt +N1 +N2 +N3 +N2,3

1% 61.2 64.9 63.9 62.5 64.3

2% 66.5 70.5 69.8 67.9 70.2

5% 73.4 76.2 76.6 74.0 76.4

10% 78.9 80.1 80.4 79.3 80.3

100% 87.1 86.9 87.1 87.0 86.9

Table 3: Impact of constraints on L-DAtt network.

Each score represents the average accuracy on SNLI

test set among 3 random runs. For both N1 and N2, we

set ρ = (8, 8, 8, 8, 4) for the five different percentages.

For the noisy constraint N3, ρ = (2, 2, 1, 1, 1).

formed even worse than baseline, which suggests

it contains noise. In fact, we found a significant

amount of counter examples to N3 during prelim-

inary analysis. Yet, even a noisy rule can improve

model performance with ≤10% data. The same

observation holds for N1, which suggests con-

servative constraints could be a way to deal with

noise. Finally, by comparing N2 and N2,3, we find

that the good constraint N2 can not just augment

the network, but also amplify the noise in N3 when

they are combined. This results in degrading per-

formance in the N2,3 column starting from 5% of

the data, much earlier than using N3 alone.

4.3 Text Chunking

Attention layers are a modeling choice that do

not always exist in all networks. To illustrate

that our framework is not necessarily grounded

to attention, we turn to an application where we

use knowledge about the output space to con-

strain predictions. We focus on the sequence la-

beling task of text chunking using the CoNLL2000

dataset (Tjong Kim Sang and Buchholz, 2000).

In such sequence tagging tasks, global inference

is widely used, e.g., BiLSTM-CRF (Huang et al.,

2015). Our framework, on the other hand, aims to

promote local decisions. To explore the interplay

of global model and local decision augmentation,

we will combine CRF with our framework.

Model Our baseline is a BiLSTM tagger:

x = BiLSTM(x) (9)

y = σ(linear(x)) (10)

where x is the input sentence, σ is softmax, y are

the output probabilities of BIO tags.

Augmentation We define the following predi-

cates for input and output neurons:

%Train BiLSTM +CRF +C1:5 +CRF,C1:5

5% 87.2 86.6 88.9 88.6

10% 89.1 88.8 90.7 90.6

20% 90.9 90.8 92.1 92.1

40% 92.5 92.5 93.4 93.5

100% 94.1 94.4 94.8 95.0

Table 4: Impact of constraints on BiLSTM tagger.

Each score represents the average accuracy on test set

of 3 random runs. The columns of +CRF, +C1:5, and

+CRF,C1:5 are on top of the BiLSTM baseline. For

C1:4, ρ = 4 for all percentages. For C5, ρ = 16.

Yt,l The unconstrained decision that tth

word has label l.

Y ′
t,l The constrained decision that tth

word has label l.

Nt The tth word is a noun.

Then we can write rules for pairwise label de-

pendency. For instance, if word t has B/I- tag for a

certain label, word t+1 can not have an I- tag with

a different label.
C1: ∀t, Yt,B-VP → ¬Y

′
t+1,I-NP

C2: ∀t, Yt,I-NP → ¬Y
′
t+1,I-VP

C3: ∀t, Yt,I-VP → ¬Y
′
t+1,I-NP

C4: ∀t, Yt,B-PP → ¬Y
′
t+1,I-VP

Our second set of rules are also intu-

itive: A noun should not have non-NP label.

C5: ∀t,Nt →
∧

l∈{B-VP,I-VP,B-PP,I-PP} ¬Y
′
t,l

While all above rules can be applied as hard

constraints in the output space, our framework

provides a differentiable way to inform the model

during training and prediction.

How does local augmentation compare with

global inference? We report performances in

Table 4. While a first-order Markov model (e.g.,

the BiLSTM-CRF) can learn pairwise constraints

such as C1:4, we see that our framework can

better inform the model. Interestingly, the CRF

model performed even worse than the baseline

with ≤40% data. This suggests that global in-

ference relies on more training examples to learn

its scoring function. In contrast, our constrained

models performed strongly even with small train-

ing sets. And by combining these two orthogonal

methods, our locally augmented CRF performed

the best with full data.

5 Related Work and Discussion

Artificial Neural Networks and Logic Our

work is related to neural-symbolic learning (e.g.

Besold et al., 2017) which seeks to integrate neu-

ral networks with symbolic knowledge. For exam-

ple, Cingillioglu and Russo (2019) proposed neu-

ral models that multi-hop logical reasoning.

KBANN (Towell et al., 1990) constructs artifi-

cial neural networks using connections expressed

in propositional logic. Along these lines, França

et al. (2014, CILP++) build neural networks from

a rule set for relation extraction. Our distinction

is that we use first-order logic to augment a given

architecture instead of designing a new one. Also,

our framework is related to Kimmig et al. (2012,

PSL) which uses a smooth extension of standard

Boolean logic.

Hu et al. (2016) introduced an imitation learn-

ing framework where a specialized teacher-student

network is used to distill rules into network param-

eters. This work could be seen as an instance of

knowledge distillation (Hinton et al., 2015). In-

stead of such extensive changes to the learning

procedure, our framework retains the original net-

work design and augments existing interpretable

layers.

Regularization with Logic Several recent lines

of research seek to guide training neural networks

by integrating logical rules in the form of ad-

ditional terms in the loss functions (e.g., Rock-

täschel et al., 2015) that essentially promote con-

straints among output labels (e.g., Du et al., 2019;

Mehta et al., 2018), promote agreement (Hsu et al.,

2018) or reduce inconsistencies across predic-

tions (Minervini and Riedel, 2018).

Furthermore, Xu et al. (2018) proposed a gen-

eral design of loss functions using symbolic

knowledge about the outputs. Fischer et al. (2019)

describe a method for for deriving losses that

are friendly to gradient-based learning algorithms.

Wang and Poon (2018) proposed a framework

for integrating indirect supervision expressed via

probabilistic logic into neural networks.

Learning with Structures Traditional struc-

tured prediction models (e.g. Smith, 2011) natu-

rally admit constraints of the kind described in this

paper. Indeed, our approach for using logic as a

template-language is similar to Markov Logic Net-

works (Richardson and Domingos, 2006), where

logical forms are compiled into Markov networks.

Our formulation augments model scores with con-

straint penalties is reminiscent of the Constrained

Conditional Model of Chang et al. (2012).

Recently, we have seen some work that allows

backpropagating through structures (e.g. Huang

et al., 2015; Kim et al., 2017; Yogatama et al.,

2017; Niculae et al., 2018; Peng et al., 2018, and

the references within). Our framework differs

from them in that structured inference is not man-

dantory here. We believe that there is room to

study the interplay of these two approaches.

6 Conclusions

In this paper, we presented a framework for in-

troducing constraints in the form of logical state-

ments to neural networks. We demonstrated the

process of converting first-order logic into dif-

ferentiable components of networks without extra

learnable parameters and extensive redesign. Our

experiments were designed to explore the flexibil-

ity of our framework with different constraints in

diverse tasks. As our experiments showed, our

framework allows neural models to benefit from

external knowledge during learning and predic-

tion, especially when training data is limited.

7 Acknowledgements

We thank members of the NLP group at the Uni-

versity of Utah for their valuable insights and

suggestions; and reviewers for pointers to re-

lated works, corrections, and helpful comments.

We also acknowledge the support of NSF SaTC-

1801446, and gifts from Google and NVIDIA.

References

Martin Anthony. 2003. Boolean functions and artificial
neural networks. Boolean Functions.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. International Con-
ference on Learning Representations.

Tarek R Besold, Artur d’Avila Garcez, Sebastian
Bader, Howard Bowman, Pedro Domingos, Pas-
cal Hitzler, Kai-Uwe Kühnberger, Luis C Lamb,
Daniel Lowd, Priscila Machado Vieira Lima, et al.
2017. Neural-symbolic learning and reason-
ing: A survey and interpretation. arXiv preprint
arXiv:1711.03902.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Ashok K Chandra and David Harel. 1985. Horn clause
queries and generalizations. The Journal of Logic
Programming, 2.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2012.
Structured learning with constrained conditional
models. Machine learning, 88.

Nuri Cingillioglu and Alessandra Russo. 2019. Deep-
logic: End-to-end logical reasoning. AAAI 2019
Spring Symposium on Combining Machine Learning
with Knowledge Engineering.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Xinya Du, Bhavana Dalvi, Niket Tandon, Antoine
Bosselut, Wen tau Yih, Peter Clark, and Claire
Cardie. 2019. Be consistent! improving procedural
text comprehension using label consistency. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies.

Marc Fischer, Mislav Balunovic, Dana Drachsler-
Cohen, Timon Gehr, Ce Zhang, and Martin Vechev.
2019. Dl2: Training and querying neural networks
with logic. In International Conference on Machine
Learning.

Manoel VM França, Gerson Zaverucha, and Artur
S d’Avila Garcez. 2014. Fast relational learning us-
ing bottom clause propositionalization with artificial
neural networks. Machine learning, 94.

Kuzman Ganchev, Jennifer Gillenwater, Ben Taskar,
et al. 2010. Posterior regularization for structured
latent variable models. Journal of Machine Learn-
ing Research, 11.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. In
Neural Information Processing Systems.

Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui
Min, Jing Tang, and Min Sun. 2018. A unified
model for extractive and abstractive summarization
using inconsistency loss. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers).

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing deep neu-
ral networks with logic rules. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers).

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M Rush. 2017. Structured attention networks.
In International Conference on Learning Represen-
tations.

Angelika Kimmig, Stephen Bach, Matthias Broecheler,
Bert Huang, and Lise Getoor. 2012. A short intro-
duction to probabilistic soft logic. In Proceedings of
the NIPS Workshop on Probabilistic Programming:
Foundations and Applications.

Erich Peter Klement, Radko Mesiar, and Endre Pap.
2013. Triangular norms. Springer Science & Busi-
ness Media.

Quoc V Le, Marc’Aurelio Ranzato, Rajat Monga,
Matthieu Devin, Kai Chen, Greg S Corrado, Jeff
Dean, and Andrew Y Ng. 2012. Building high-level
features using large scale unsupervised learning. In
International Conference on Machine Learning.

Hugo Liu and Push Singh. 2004. ConceptNet – A Prac-
tical Commonsense Reasoning Tool-Kit. BT tech-
nology journal, 22.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing.

Wolfgang Maass, Georg Schnitger, and Eduardo D
Sontag. 1994. A comparison of the computational
power of sigmoid and boolean threshold circuits. In
Theoretical Advances in Neural Computation and
Learning, pages 127–151. Springer.

Sanket Vaibhav Mehta, Jay Yoon Lee, and Jaime Car-
bonell. 2018. Towards semi-supervised learning for
deep semantic role labeling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing.

Pasquale Minervini and Sebastian Riedel. 2018. Ad-
versarially regularising neural nli models to inte-
grate logical background knowledge. In Proceed-
ings of the 22nd Conference on Computational Nat-
ural Language Learning.

Vlad Niculae, André FT Martins, Mathieu Blondel, and
Claire Cardie. 2018. SparseMAP: Differentiable
sparse structured inference. In International Con-
ference on Machine Learning.

Xingyuan Pan and Vivek Srikumar. 2016. Expressive-
ness of rectifier networks. In International Confer-
ence on Machine Learning.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS 2017 Autodiff Workshop.

Hao Peng, Sam Thomson, and Noah A Smith. 2018.
Backpropagating through Structured Argmax using
a SPIGOT. Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine learning, 62.

Tim Rocktäschel, Sameer Singh, and Sebastian Riedel.
2015. Injecting logical background knowledge into
embeddings for relation extraction. In Proceedings
of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing.

Stuart J Russell and Peter Norvig. 2016. Artificial In-
telligence: A Modern Approach. Pearson Education
Limited.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional atten-
tion flow for machine comprehension. International
Conference on Learning Representations.

Noah A Smith. 2011. Linguistic structure prediction.
Synthesis lectures on human language technologies,
4.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15.

Erik F Tjong Kim Sang and Sabine Buchholz.
2000. Introduction to the CoNLL-2000 shared task:
Chunking. In Proceedings of the 2nd Workshop on
Learning Language in Logic and the 4th Conference
on Computational Natural Language Learning.

Geoffrey G Towell, Jude W Shavlik, and Michiel O No-
ordewier. 1990. Refinement of approximate domain
theories by knowledge-based neural networks. In
Proceedings of the Eighth National Conference on
Artificial Intelligence.

Hai Wang and Hoifung Poon. 2018. Deep probabilis-
tic logic: A unifying framework for indirect supervi-
sion. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and
Guy Van den Broeck. 2018. A semantic loss func-
tion for deep learning with symbolic knowledge. In
International Conference on Machine Learning.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2017. Learning to
compose words into sentences with reinforcement
learning. In International Conference on Machine
Learning.

A Appendices

Here, we explain our experiment setup for the

three tasks: machine comprehension, natural lan-

guage inference, and text chunking. For each

task, we describe the model setup, hyperparame-

ters, and data splits.

For all three tasks, we used Adam (Paszke

et al., 2017) for training and use 300 dimensional

GloVe (Pennington et al., 2014) vectors (trained

on 840B tokens) as word embeddings.

A.1 Machine Comprehension

The SQuAD (v1.1) dataset consists of 87, 599
training instances and 10, 570 development exam-

ples. Firstly, for a specific percentage of train-

ing data, we sample from the original training set.

Then we split the sampled set into 9/1 folds for

training and development. The original develop-

ment set is reserved for testing only. This is be-

cause that the official test set is hidden, and the

number of models we need to evaluate is imprac-

tical for accessing official test set.

In our implementation of the BiDAF model, we

use a learning rate 0.001 to train the model for 20

epochs. Dropout (Srivastava et al., 2014) rate is

0.2. The hidden size of each direction of BiLSTM

encoder is 100. For ELMo models, we train for

25 epochs with learning rate 0.0002. The rest hy-

perparameters are the same as in (Peters et al.,

2018). Note that we did neither pre-tune nor post-

tune ELMo embeddings. The best model on the

development split is selected for evaluation. No

exponential moving average method is used. The

scaling factor ρ’s are manually grid-searched in

{1, 2, 4, 8, 16} without extensively tuning.

A.2 Natural Language Inference

We use Stanford Natural Language Inference

(SNLI) dataset which has 549, 367 training, 9, 842
development, and 9, 824 test examples. For each

of the percentages of training data, we sample the

same proportion from the orginal development set

for validation. To have reliable model selection,

we limit the minimal number of sampled develop-

ment examples to be 1000. The original test set is

only for reporting.

In our implimentation of the BiLSTM variant

of the Decomposable Attention (DAtt) model, we

adopt learning rate 0.0001 for 100 epochs of train-

ing. The dropout rate is 0.2. The best model on

the development split is selected for evaluation.

The scaling factor ρ’s are manually grid-searched

in {0.5, 1, 2, 4, 8, 16} without extensively tuning.

A.3 Text Chunking

The CoNLL2000 dataset consists of 8, 936 exam-

ples for training and 2, 012 for testing. From the

original training set, both of our training and de-

velopment examples are sampled and split (by 9/1

folds). Performances are then reported on the orig-

inal full test set.

In our implementation, we set hidden size to

100 for each direction of BiLSTM encoder. Be-

fore the final linear layer, we add a dropout layer

with probability 0.5 for regularization. Each

model was trained for 100 epochs with learn-

ing rate 0.0001. The best model on the de-

velopment split is selected for evaluation. The

scaling factor ρ’s are manually grid-searched in

{1, 2, 4, 8, 16, 32, 64} without extensively tuning.

