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Abstract—Although electricity transmission systems are typi-
cally very robust, the impacts that arise when they are disrupted
motivate methods for analyzing outage risk. For example, N -k
interdiction models were developed to characterize disruptions by
identifying the sets of k power system components whose failure
results in “worst case” outages. While such models have advanced
considerably, they generally neglect how failures outside the
power system can cause large-scale outages. Specifically, failures
in natural gas pipeline networks that provide fuel for gas-fired
generators can affect the function of the power grid. In this study,
we extend N -k interdiction modeling to gas pipeline networks.
We use recently developed convex relaxations for natural gas
flow equations to yield tractable formulations for identifying sets
of k components whose failure can cause curtailment of natural
gas delivery. We then present a novel cutting-plane algorithm to
solve these problems. Finally, we use test instances to analyze the
performance of the approach in conjunction with simulations of
outage effects on electrical power grids.

Index Terms—N -k, interdiction analysis, natural-gas networks,
convex relaxations, mixed-integer second-order cone programs

I. INTRODUCTION

In power system operations and planning, N -k contingency
analysis is used to assess system reliability and resilience. In
these analyses, k components are turned “off” in a computa-
tional model of the electrical grid and system-wide effects
of this removal are modeled through a computer simula-
tion. These simulations use optimal power flow (OPF)-like
optimization models, such as maximal load delivery [1], to
estimate outages caused by a contingency.

Contingency analysis is often combined with N -k inter-
diction modeling to identify sets of k components whose
simultaneous failure leads to the worst outcome (typically

This work was supported by the U.S. Department of Energy’s Advanced
Grid Modeling (AGM) projects Joint Power System and Natural Gas Pipeline
Optimal Expansion and Dynamical Modeling, Estimation, and Optimal Con-
trol of Electrical Grid-Natural Gas Transmission Systems. The research work
conducted at Los Alamos National Laboratory is done under the auspices
of the National Nuclear Security Administration of the U.S. Department of
Energy under Contract No. 89233218CNA000001. We gratefully thank the
AGM program manager Alireza Ghassemian for his support of this research.

outages) during a contingency analysis. While solving an
interdiction problem itself is challenging, the state-of-the-art
has improved considerably over the last several decades and
(at least heuristic) solutions are regularly reported on problems
with large N and k (see [2]–[8] and references therein).

One of the weaknesses of N -k analysis, in particular for
large k, is that it is often implausible for the identified k

components to fail simultaneously, i.e., they are geographically
separated by a large distances. This has led to the development
of new models and methods for identifying sets of k com-
ponents whose concurrent failure is more likely [7], or that
constrain the possibilities of the interdiction plan [9]. In this
article, in order to further address this limitation in traditional
power system interdiction modeling, we develop an approach
for identifying failures in a power system that are caused by
exogenous failures, which, in this case, arise in natural gas
pipeline networks that deliver fuel to gas-fired generators.

Our investigation is motivated by the increased reliance of
many power systems on natural gas-fired generation, which
is used to meet increasing production requirements, replace
retiring coal and nuclear plants, and provide controllable
resources to compensate for the variability from renewable
sources like wind and solar [10]. Gas-fired generators now
supply a significant fraction of base electric power production
in many countries, which creates a fundamental reliance of
power grids on gas pipelines for just-in-time fuel delivery.
As a result, it has become increasingly likely that unplanned
component outages or other contingencies in a natural gas
pipeline could cause correlated (large k) electricity generator
outages [11], [12]. We develop an approach to support the
identification of sets of N -k scenarios in gas pipeline networks
that induce large failures in a dependent power system. We
also demonstrate the method on models of the Belgian and
New England natural gas pipeline networks, as well as the
gaslib-582 test instance.

A. Background

In comparison with the power systems literature, there are
relatively few studies that apply contingency analysis and
interdiction modeling to natural gas pipeline systems. In one
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study, the authors suggest gas pipeline networks as natural
candidates for interdiction modeling [13], but do not discuss
the complexities associated with modeling natural gas systems
in interdiction problems. As a result, many subsequent papers
have relied on enumeration methods, used simplified models
that neglect the physics of natural gas flows, or are restricted to
small problems. For example, one study focused on developing
a vulnerability assessment approach in which all combinations
of failures up to size k are enumerated, and then performs a
max-flow calculation (that does not account for natural gas
flow physics) on a 33-node system [14].

The effect that interdicting a gas pipeline network has on a
power system that relies heavily on natural gas for generation
is another area that has received limited attention. The most
relevant study on the behavior of a power system after a natural
gas pipeline failure is reference [15]. In this study, the authors
develop a model that enumerates all single failures (N -1) in
a gas pipeline and then use the results to identify generator
outages and security constraint violations in the power system.
They do not model the response of the power system, nor
does the paper seek to identity the “worst” k-outage for a gas
network. References [16]–[18] are the most closely related
works to this paper. These studies focus on developing tri-
level models for the design or hardening of electric power
and natural gas delivery systems such that the lost demand
after a worst case k-outage scenario is minimized. To preserve
tractability, linear approximations of gas flows are used and
empirical results are limited to systems with no more than 40
nodes in the gas pipeline network.

B. Contributions

In this study, we focus on the details of natural gas physical
flow modeling in interdiction and, for the first time, relaxations
of the gas flow are used, which in contrast to approximations
are able to provide guarantees on solution quality as well as
to scale to a case study with 582 nodes (in a bi-level model).

In summary, the contributions of this article are:
• A comprehensive N -k interdiction model for natural gas

systems based on recently developed convex relaxations
for gas pipeline networks.

• A tractable computational method for solving natural gas
N -k interdiction problems.

• A detailed case study that examines how an N -k inter-
diction on a gas pipeline network impacts an associated
electric power system by estimating the potential loss of
generation on gas-fired generators on that system.

Throughout the rest of the paper, we use steady-state
equations to model the physics of gas flows. This choice has
two primary motivations: (i) to the best of our knowledge
there is no work in the literature that considers the N -k
interdiction problem in gas networks that takes into account
any physics of gas flows, (ii) the steady-state is a good starting
point to understand the theoretical and computational limits of

the problem before modeling the full transient equations. The
rest of the paper is organized as follows. Section II states
the N -k interdiction problem for a gas pipeline network and
introduces notation. Section III discusses steady-state model-
ing and Section IV presents the formal problem definition.
Section V describes the convex relaxation we use and Section
VI describes our methodology. Section VII describes the case
study, and we conclude with Section VIII.

II. PROBLEM STATEMENT AND NOTATION

The goal of the N -k interdiction problem for natural gas
pipeline networks is to identify k components in the gas
network that, when damaged, have the greatest impact on the
transportation capacity of the system. For these systems, we
measure impact by computing the minimum amount of gas
that the system is unable to provide to delivery points, relative
to the baseline (unaffected) flow allocation. A subset of these
delivery points correspond to power plants that use the natural
gas to generate electricity.

Formally, the N -k problem is stated as follows: given a
natural gas pipeline network with nodes N , pipelines, P , and
compressors C, an N -k interdiction problem identifies k com-
ponents in P ∪C whose loss maximizes the minimum amount
of un-served gas loads at delivery points. Gas is injected
into or withdrawn from the system from a subset of nodes
(receipt and delivery points, R and D, respectively) in the
network. The max-min structure makes the N -k interdiction
problem a bi-level optimization problem. These problems are
often modeled as Stackelberg games with an attacker and
a defender [19], where the attacker’s and defender’s actions
are sequential and the attacker has a perfect model of how
the defender will respond to an attack. Such problems are
NP-Hard [7] because of the inherent combinatorial nature
of the problem. Furthermore, the number of possible N -k
contingencies, even for small values of k, makes complete
enumeration intractable. This makes such models difficult to
scale to large systems, which is a prerequisite to apply the
desired interdiction modeling in practice.

The following notation is used for indexing sets, decision
variables, and parameters in the optimization formulation:
Sets:
N , C, P - sets of nodes, compressors, and pipes
R, D - sets of receipt and delivery points
R(i), D(i) - sets of receipt and delivery points at node i
X - N -k contingency scenario set
C(s), P(s) - sets of damaged compressors and pipes in
scenario x ∈ X
E(i) - subset of pipes and compressors connected to node i
and oriented from i

Er(i) - subset of pipes and compressors connected to node i
and oriented to i
Decision variables:
πi - square of pressure at node i (Pa2)
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fe - mass flow rate across e ∈ C ∪ P (kg s−1)
si - total gas produced at receipt points in R(i) (kg s−1)
λi - unserved gas-factor for each node i ∈ N
γe - auxiliary variable for each pipe e ∈ P
ye - binary flow direction variable for each e ∈ C ∪ P
xe - binary interdiction variable for each e ∈ C ∪ P
x - vector of interdiction variables xe
Parameters:
di - total gas delivered at delivery points in D(i) (kg s−1)
we - resistance of the pipe e ∈ P
a - speed of sound in the gas (m s−1)
βe - friction factor of the pipe e ∈ P
`e, De - length, diameter of the pipe e ∈ P (m,m)
(πi, πi) - min and max limits for πi (Pa2)
(αe, αe) - min and max compression limits for e ∈ C
fe - max flow rate for e ∈ C ∪ P (kg s−1)

III. STEADY STATE GAS FLOW EQUATIONS

Before presenting the formulation, we review the physics
that govern steady flow of natural gas through pipelines. The
physics of flow across a pipeline, e = (i, j), are described
by a set of partial differential equations (PDEs) that have
dimensions in both time and space [20]. In steady-state, the
PDEs reduce to equations of the form

πi − πj = wefe|fe|, (1)

where the phenomenological expression on the right hand side
quantifies the dissipation of kinetic energy caused by turbulent
flow through the pipe. The parameter we is called a resistance
factor, and is given by

we =
4βelea

2

π2D5
e

. (2)

For a detailed derivation of the parameters in this equation,
interested readers are referred to [21]. To compensate for the
dissipation of energy along the direction of flow, a gas pipeline
utilizes compressors to boost flow and pressure throughout the
system. We model these components as short pipes with zero
resistance values, which create a jump in pressure while pre-
serving flow in the direction of the compressor’s orientation.
When the gas flows through the compressor in the opposite
direction of its orientation, the compressor is assumed to not
offer any pressure boost.

IV. PROBLEM FORMULATION

Given the notations in Sec. II, the N -k interdiction problem
is formulated as follows:

max
x∈X

η(x), (3)

where X = {x :
∑

e∈C∪P xe = k} and η(x) is the total
amount of gas unserved at all delivery points in scenario x.
The elements of X correspond to N -k contingency scenarios
and are implicitly defined by the variables in x that take value

1. The core sub-problem for the N -k problem is the Minimal
Gas Shedding (MGS) problem that defines the value of η(x)

as

η(x) = min
∑
i∈N

λidi, (4a)

πi − πj = we|fe|fe ∀(i, j) = e ∈ P : xe = 0, (4b)

πi − πj = 0, if fe 6 0, ∀(i, j) = e ∈ C : xe = 0, (4c)

α2
eπi 6 πj 6 α

2
eπi, if fe > 0, ∀(i, j) = e ∈ C : xe = 0

(4d)∑
e∈E(i)

fe −
∑

e∈Er(i)

fe = si − (1− λi)di ∀i ∈ N , (4e)

πi 6 πi 6 πi ∀i ∈ N , (4f)

− fe 6 fe 6 fe ∀e ∈ C ∪ P . (4g)

The formulation for MGS, as stated in Eq. (4), is a non-
linear disjunctive formulation. Eq. (4b) denotes the steady-
state gas flow physics for each pipe that has not been damaged
by the N -k scenario, and Eq. (4e) enforces a mass flow
balance condition at each node in the system. The Eqs. (4c)
and (4d) deactivate pressure boosting and enforce boosting
limits of a compressor with flow directed against and along the
orientation of the compressor, respectively. Finally, Eqs. (4f)
and (4g) enforce pressure and flow rate limits on each node
and pipe in the network, respectively. The above formulation is
a bi-level optimization problem where the outer maximization
problem is given by Eq. (3) and inner minimization problem
is given by Eq. (4). In the next section, we present a Mixed-
Integer Non-Linear Programming (MINLP) reformulation and
a Mixed-Integer Second-Order Cone Programming (MISOCP)
relaxation of the MGS using binary flow direction variables
ye for each compressor and pipe in the network.

V. MISOCP RELAXATION FOR THE MGS

A. MINLP reformulation

To develop the relaxation for the MGS, we first reformulate
the constraints in Eqs. (4b) – (4d) with binary flow direction
variables ye for each e ∈ C ∪ P [22]. Given a pipe or a
compressor e = (i, j) ∈ C ∪ P , ye takes a value 1 if the
mass flow is fe > 0 and 0, otherwise. We remark that if
fe 6 0, then gas is flowing from the node j to node i. Given
these notations, Eq. (4b), for any e = (i, j) ∈ P : xe = 0

equivalently reformulated as

γe = wef
2
e (5a)

γe > πj − πi + 2ye(πi − πj) (5b)

γe > πi − πj + 2(ye − 1)(πi − πj) (5c)

γe 6 πj − πi + 2ye(πi − πj) (5d)

γe 6 πi − πj + 2(ye − 1)(πi − πj) (5e)

− fe(1− ye) 6 fe 6 feye (5f)

where, γe is an auxiliary variable for pipe e. Eqs. (5b)
– (5e) are the McCormick envelopes [23] for the equation
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γe = (2ye − 1)(πi − πj). These envelopes result in an
exact reformulation because it is the product of a variable
that takes a value of one or negative one, (2ye − 1), with
a continuous variable, (πi − πj). Eq. (5f) bounds the mass
flow on the pipe using the flow direction variable ye. The
only nonlinear constraint in the reformulation is Eq. (5a).
As for the compressor constraints in Eqs. (4c) and (4d), a
linear reformulation of the constraints for every compressor
e = (i, j) ∈ C : xe = 0 is given by:

ye(πi − πj) 6 πi − πj 6 ye(πi − πj) (6a)

α2
eπi + (1− ye)(πj −α2

eπi) 6 πj (6b)

πj 6 α
2
eπi + (1− ye)(πj −α2

eπi) (6c)

− fe(1− ye) 6 fe 6 feye (6d)

where, Eqs. (6a) and (6b) – (6c) are disjunctive reformulations
of Eqs. (4c) and (4d), respectively. Similar to pipes, Eq.
(6d) bounds the mass flow on the compressor using the flow
direction variable ye. Using Eqs. in (5) and (6), the MINLP
for the inner problem is then given by

η(x) = min
∑
i∈N

λidi subject to: Eqs. (5), (6), (4e) – (4g).

The MINLP reformulation of the MGS is still a difficult
problem to solve to global optimality, even for small instances
[22] and hence, the remainder of this section is focused on
developing a MISOCP relaxation of the MINLP. The MISOCP
is based on the formulation introduced in [22] and off-the-
shelf commercial and open-source MISOCP solvers effectively
solve the inner problem to optimality for a fixed x.

Once an MISOCP relaxation is developed, off-the-shelf
commercial and open-source MISOCP solvers can be put to
effective use to solve the inner problem for a fixed x to
optimality.

B. MISOCP relaxation

The only nonlinear constraint in the MINLP reformulation
is Eq. (5a). To obtain the MISOCP relaxation, we relax this
constraint to

γe > wef
2
e (7)

which is a Second-Order Conic (SOC) constraint. Hence, the
MISOCP relaxation of the inner-problem (MGS) is given by

η(x) = min
∑
i∈N

λidi subject to: (8)

Eqs. (5b) – (5f), (7), (6), (4e) – (4g).

In the next section, we use the above MISOCP relaxation to
develop an iterative algorithm to compute an optimal solution
to the bi-level N -k interdiction problem for a natural gas
pipeline network with the MISOCP relaxation of the MGS.

VI. SOLUTION METHODOLOGY

In this section, we present a generic cutting-plane algorithm
that works directly with the bi-level structure of the N -k
problem. A number of techniques have been proposed to
convert such a bi-level max-min problem into a single mixed-
integer program (see [24], [25]). Given the recent success of al-
gorithms that directly exploit the bi-level structure in problems
concerning electric transmission systems [7], [9], we adopt
them here. The algorithm is generic and is applicable to the
MINLP and the MISOCP relaxations as long as they are solved
to global optimality. In this article, we restrict our attention to
using the algorithm on the MISOCP relaxation of the MGS
problem, because it can be solved to global optimality with off-
the-shelf commercial or open-source solvers. The algorithm
generates cutting planes using solutions of the inner problem,
and adds them sequentially to the outer problem.

The algorithm constructs a sequence of piecewise linear
functions that bounds from above the total curtailment of
scheduled gas delivery given by solutions to the inner problem
or its MISOCP relaxation. For any N -k scenario, x̂, η(x̂)

denotes the minimum unserved gas for that scenario as given
by (4) or its MISOCP relaxation in Eq. (8). Then, the algorithm
computes coefficients δe(x̂) for each e ∈ C ∪ P such that

η(x) 6 η(x̂) +
∑

e∈C∪P
δe(x̂) · xe ∀x ∈ X . (9)

The linear cut in (9) is general and there are many choices
for the cut coefficients δe(x̂). The key challenge is to choose
tight values for each coefficient that do not remove the optimal
N -k scenario. For the N -k problem in gas pipeline networks,
the coefficients δe(x̂) are computed using a combination of
the inner problem solution for the N -k scenario x̂ and the
physics that governs the steady state flow of gas through the
network. Using the inequality in (9), the bi-level problem is
equivalently written as

(F) max η(x) subject to: (10a)

η(x) 6 η(x̂) +
∑

e∈C∪P
δe(x̂) · xe ∀x̂ ∈ X , (10b)

and the algorithm generates a subset of the cuts listed in
Eq. (10b). The pseudo-code for the cutting-plane algorithm is
shown in Algorithm 1, where the procedure for computing
the cut coefficients (line 9-8) is detailed in a forthcoming
paragraph.

We now present a technique for computing the coefficients
δe(x̂) in Eq. (10b) given an N -k scenario x̂ and the solution of
the MISOCP relaxation of the inner problem (MGS). We first
present the mathematical expression of the coefficients and
then provide an intuitive justification. The MISOCP relaxation
of the inner problem, for a given N -k scenario x̂ (let ŝ denote
the corresponding scenario) gives the value of the mass flow
rate, fe(x̂), for every e ∈ C \ C(s) and e ∈ P \ P(s). For
the sake of clarity, the dependence of mass flow rates on
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Algorithm 1 Cutting-plane algorithm: pseudo-code

Input: optimality tolerance, ε > 0

Output: x∗ ∈ X , an ε-optimal solution
1: initial problem: F without constraint (10b)
2: η∗ ← −∞ . lower bound on the optimal obj. value
3: η̄ ← +∞ . upper bound on the optimal obj. value
4: x̂← any initial N -k scenario
5: solve MISOCP relaxation of MGS using x̂ and let η(x̂)

be the objective value
6: if η(x̂) > η∗ then η∗ ← η(x̂) and x∗ ← x̂

7: compute δe(x̂) for every e ∈ C ∪ P satisfying (9)
8: add η(x) 6 η(x̂) +

∑
e∈C∪P δe(x̂) · xe to F and resolve

9: update x̂, and set η̄ using solution from Step 8
10: if η̄ − η∗ 6 εη∗ then (x∗, η∗) is the ε-optimal solution,

stop
11: return to step: 5

scenario x̂ is shown explicitly. The pipes and compressors
that constitute the scenario ŝ or equivalently, x̂, are damaged
and hence do not have any gas flowing through them. Given
these flow rates, the coefficients are computed by:

δe(x̂) =

{
|fe(x̂)| if, e /∈ ŝ
0 otherwise.

(11)

Intuitively, setting the coefficients according to Eq. (11) imply
that when a pipe or compressor (say e) is removed from a
gas network, at most |fe| will go unserved. This statement is
quantitatively true, except in the case of the Braess paradox in
natural gas networks [26]. The Braess paradox occurs when
adding one or more edges to a transport network can reduce
overall throughput under certain conditions. Because a Braess-
like condition would be a sub-optimal direction for minimizing
the objective function, the paradox does not arise, and thus the
coefficient values specified in (11) lead to a valid constraint
at each iteration. The algorithm 1 ultimately converges to
an ε-optimal solution to the MISOCP relaxation of the N -
k problem.

VII. CASE STUDIES

In this section, we present case studies on three networks:
(i) the Belgian gas network [27] with a total of 42 pipes
and compressors that can be interdicted, (ii) the New-England
(NE) natural gas network [28] with 192 pipes and compressors
that can be interdicted, and (iii) the gaslib-582 test network
[29] with a total of 629 pipes and compressors that can be
interdicted. The Belgian and the NE case studies are simplified
network models of actual gas pipeline systems in Belgium
and the New England region, respectively. The k values for
each run of the N -k algorithm is varied from 1 to a value
where 100% of the gas load in the system is left unserved by
the resulting ε-optimal, N -k contingency. For the gaslib-582
test case, due to the excessive computation time, we restrict

the runs to a k value where > 95% of the gas load is left
unserved. The value of ε, the optimality tolerance in Algorithm
1, is set to 0.01% for every run of the algorithm and all the
formulations and algorithms were implemented in the Julia
programming language using optimization layer JuMP v0.18.6
[30] and GasModels v0.3.51. Finally Gurobi v8.0 was used to
solve the MISOCP relaxation of the MGS (the inner problem)
for the cutting-plane generation algorithm on a machine with
an Intel(R) Core(TM) i7-8700 CPU 3.20GHz.

Furthermore, in order to examine the effects N -k gas
contingencies have on power systems, we use models which
connect the Belgian and the NE gas networks to the IEEE 14-
bus and 36-bus test systems, respectively [28]. In particular,
gas-fired generators are attached to nodes in the natural gas
networks. These generators withdraw gas from the natural gas
pipeline network, and unserved gas load implies that gas-
fired power plants receive insufficient gas and operate with
reduced capacity. The loss in gas-fired generation capacity is
computed using heat rate curves that convert mass flow (kg/s)
into available MW capacity. In particular, the burn-rate, i.e.,
the gas withdrawal di from the gas pipeline network at node
i ∈ N , is converted into power production profiles pg for a
generator g ∈ G in the power network using a quadratic heat
rate curve

pg(di) = β0 + β1di + β2d
2
i . (12)

In Eq. (12), the units of pg is MW, and that of β0, β1, and β2
are MW, MW kg−1, and MW s2 kg−2

A. Performance of the Cutting-Plane Algorithm

First, we present computational results that corroborate the
effectiveness of the cutting-plane algorithm in computing ε-
optimal (ε = 0.01%) N -k attacks for the three test systems.
Tables I – III show the computation time, the percentage of
scheduled gas delivery that was curtailed, and the number
of iterations taken by the cutting-plane algorithm to compute
the ε-optimal N -k attack for the Belgian, NE, and gaslib-
582 cases, respectively for different values of k. Fig. 1 shows
the components in the Belgian network that, when interdicted,
produce the worst case scenarios for values of k ranging from
1 through 4. Note that the worst k-outage scenarios are a
collection of nested sets. It is observed from the tables that
for small values of k, k = 2, the Belgian, NE, and gaslib-582
cases result in 50%, 40%, and 72%, respectively, of curtailed
gas load with respect to the total baseline load levels without
outages. This shows the value of developing an algorithm to
compute a worst case N -k attack even for small values of k.
Though the runs for k > 5 might not seem realistic, i.e., more
than 4 components in the gas network failing simultaneously is
highly unlikely, these results are shown in order to illustrate
the computational limits of our algorithm and can be used
as a surrogate to show the fact that our algorithm would

1https://github.com/lanl-ansi/GasModels.jl
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Fig. 1. Belgian Network with interdicted components in worst case scenarios
for k = 1, 2, 3, 4

TABLE I
BELGIAN GAS NETWORK RESULTS

k Iterations Unserved gas (%) Time (s)

1 4 29.4 0.163
2 4 50.4 0.109
3 4 75.1 0.104
4 7 88.9 0.147
5 6 95.1 0.125
6 8 98.0 0.247
7 9 99.3 0.267
8 13 100.0 0.348

scale to large instances with small values of k. Furthermore,
from the iterations column in all the three tables it is clear
that the cutting-plane algorithm is effective in computing the
ε-optimal solution using only a few iterations. We remark
that the computation time of the cutting-plane algorithm is
in general proportional to the number of iterations of the
algorithm and not related to the value of k. This trend is seen in
the results for the NE test case in Table II, though computation
time does not always increase with k as the problem is highly
nonlinear and solution time depends on initialization. Finally,
from Table III, it is clear that despite the low number of
iterations of the algorithm even in the larger gaslib-582 case,
the computation time per iteration increases because of larger
MISOCP problem size for the inner computation in the larger
test case.

B. Gas-fired Generation Capacity Loss in the Power Grid

This section presents results that illustrate the impact that
N -k gas pipeline contingencies have on electricity transmis-
sion networks. We use loss of generation capacity on all
the gas-fired generation plants as a measure to quantify this
impact. This study is performed only on the Belgian and the
NE test cases which were connected to the IEEE 14-bus and
36-bus test systems, respectively. The Belgian-IEEE 14 system
is commonly used in the literature for gas-electric system case

TABLE II
NEW ENGLAND GAS NETWORK RESULTS

k Iterations Unserved gas (%) Time (s)

1 2 24.3 3.619
2 4 39.1 5.742
3 12 47.3 15.633
4 19 56.1 27.088
5 15 64.3 23.107
6 17 71.3 23.373
7 16 77.7 21.722
8 12 83.6 14.312
9 9 89.9 10.242
10 7 94.3 9.986
11 7 97.7 8.393
12 9 99.6 9.117
13 14 99.7 15.115
14 24 99.8 34.880
15 28 99.9 73.066
16 32 100.0 716.366

TABLE III
GASLIB-582 RESULTS

k Iterations Unserved gas (%) Time (s)

1 4 43.3 162.917
2 4 72.0 350.705
3 7 84.6 315.970
4 11 91.6 411.532
5 16 95.9 287.466

studies, and the NE-36 bus system is another larger test case.
Tables IV and V show lost generation capacity (absolute value
(MW) and as a percentage of total power produced by gas-
fired generation in the baseline scenario) when the worst case
N -k occurs on the gas side. Capacity loss is computed by
converting unserved gas to power consumption (MW) using
quadratic heat rate curves for gas-fired power plants (Eq. (12)).

VIII. CONCLUSION AND FUTURE WORK

This article presents the first systematic algorithm to com-
pute worst-case N -k contingencies on natural gas pipeline
networks by modeling relaxations of steady-state gas flow
physics. The computational effectiveness of the algorithm, its
scalability, and the potential use of such a tool to estimate
the impact of a worst-case N -k contingency on the bulk-
electric system were shown through extensive computational

TABLE IV
GENERATION CAPACITY LOSS FOR THE BELGIAN-IEEE 14 NETWORK.
DURING NORMAL OPERATION THE POWER PRODUCED FROM ALL THE

GAS-FIRED POWER PLANTS IS 39.67 MW

k Loss of capacity (MW) Loss of capacity (%)

1 13.52 34.09
2 23.22 58.52
3 31.25 78.78
4 37.15 93.63
5 39.34 99.16
6 39.34 99.16
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TABLE V
GENERATION CAPACITY LOSS FOR THE NEW ENGLAND-IEEE 36

NETWORK. DURING NORMAL OPERATION THE POWER PRODUCED FROM
ALL THE GAS-FIRED POWER PLANTS IS 513.21 MW

k Loss of capacity (MW) Loss of capacity (%)

1 129.63 25.26
2 138.39 26.97
3 252.03 49.11
4 319.03 62.16
5 372.38 72.56
6 379.37 73.92
7 405.72 79.06
8 427.22 83.24
9 462.14 90.05

10 485.21 94.54
11 501.92 97.80
12 511.57 99.68

experiments on case studies involving several widely available
test networks. Future work will focus on (i) performing a joint
N -k interdiction analysis where a total of k components can
be interdicted in either the power grid or gas pipeline system,
where the modeling involves power flow and steady-state gas
flow physics, respectively; and (ii) extension to a transient gas
flow model to identify N -k contingencies that occur over time.
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