FRONT PROPAGATION FOR INTEGRO-DIFFERENTIAL KPP REACTION-DIFFUSION EQUATIONS
IN PERIODIC MEDIA

PANAGIOTIS E. SOUGANIDIS#'# AND ANDREI TARFULEA®"?

ABSTRACT. We study front propagation phenomena for a large class of KPP-type integro-differential reaction-diffusion
equations of order a € (0, 2) in oscillatory environments, which model various forms of population growth with periodic
dependence. We show that, under an exponential rescaling, the solution develops an isotropic advancing front and converges
locally uniformly to zero beyond the front and to the periodic stationary state behind the front. The results are the most
general available in this general setting.

1. INTRODUCTION

We study the long time/large space asymptotic behavior and front propagation for a class of models governed by
integro-differential reaction-diffusion equations of the form

ug 4+ L%[u] = f(z,u) in R x (0,00) and u(-,0) = ug on R% (1.1)
The reaction nonlinearity f(z,u) is C2 in u and satisfies a periodic KPP-type condition, that is, for each u € R,
x — f(x,u) is 1-periodic, (1.2)
and there exists a constant M > 0, which is independent of x, such that, for all x € R4,
s — f(z,s)/s is decreasing in s, f(x,0) =0, and f(z,-) <0in [M,c0); (1.3)

here 1-periodic means that the function is periodic in the unit cube. The diffusion L* belongs to the nonlocal class of
singular integral operators given by

Lu](z) == /Rd (u(z) —u(z+y))K(z,y)dy, (1.4)
where the “mutation kernel” K satisfies
K is positive, 1-periodic and C? in z, and symmetric in v, (1.5)
and there exists Crc > 0 such that, for K = K, | D, K|, or [D2K| and all z,y € R,
Cx' < K(z,y)ly|™* < Ck. (1.6)

Such operators generalize the fractional Laplacian (—A)®/2. Due to the singularity of the kernel K, the integration in
(1.4) should be interpreted in the principal value sense.

Lastly, we assume that ug € C (Rd) and, for some ¢; > Oand all x € R,
C1

1.7
Note that this includes compactly supported initial data. We discuss further the nature and consequences of assump-
tions (1.2), (1.3), (1.5), (1.6), and (1.7) in Section 2; see in particular Lemma 2.1 and Proposition 2.2.
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The simplest example for a reaction-diffusion equation is the Fisher-KPP equation (with logistic nonlinearity)
w — Au=u—1u? in R? x [0, 00). (1.8)

This model, and numerous generalizations, have been studied extensively, going back to the original work of Fisher
[18] and Kolmogorov, Petrovskii, and Piskunov [28]. We refer to Aronson and Weinberger [1] and [2], Bramson [11],
Freidlin [20], Evans and Souganidis [16], and Majda and Souganidis [31] for the derivations as well as up to date
methods to study the long time/large-space asymptotic behavior.

Equations such as (1.1) arise from mesoscopic processes involving Lévy flights seen in models of population dy-
namics and evolutionary ecology. For example, Jourdain, Méléard, and Woyczynski [27] show a rigorous derivation
when modeling Darwinian evolution of phenotypic variation, treating the population as a stochastic point process; see
also Fournier and Méléard [19] and Gurney and Nisbet [22]. When the probability distribution of mutations has a
heavy tail and belongs to the domain of attraction of a stable law, the corresponding diffusion admits jumps and can
include spatial inhomogeneity (see for instance Baeumer, Kovacs, and Meerschaert [3] and Hillen and Othmer [25])
That is, the strength of the nonlocal diffusion realistically depends on the genetic or spatial landscape, which motivates
the treatment of models with inhomogeneous reactions and diffusions.

It turns out (see [20], [16], and [31]) that the asymptotic behavior of the solution to (1.8) is recognized by an al-
gebraic scaling (x,t) — (z/€,t/€”). This is consistent with the fact that the expected advancing level sets (the fronts)
move with algebraic (in time) velocity. That is, for every h in the range of u and all ¢ sufficiently large, the set
{z : wu(x,t) = h}is comparable in a quantified way to the set {|z| ~ ¢t7} for some c¢; see [20], [16], and [31] for the
results for linear (v = 1) growth, and the recent works of Berestycki, Mouhot, and Raoul [7], Bouin, Henderson, and
Ryzhik [10], and Henderson, Perthame, Souganidis [24] for the superlinear (v > 1) case. See also Hamel and Roques
[23] for a treatment of the asymptotic behavior of (1.8) with fat-tailed initial data.

Many physical models, like, for example, neutron emission in nuclear physics, fast migrations in biology, and convec-
tive heating in forest fires, use processes that run faster than what would be expected for Brownian motion, either due
to a fundamental sparseness of the medium or a long-range dispersion effect in the measured physical quantity; see for
instance del-Castillo-Negrete [15] and Mancinelli, Vergni, and Vulpiani [32], and references therein. As a result the
nonlocal equations potentially give rise to fronts moving with exponential (in time) velocities. This behavior, that was
widely known in the applied literature, was first shown rigorously by Cabré and Roquejoffre [13], who considered the
front-propagation and asymptotic dynamics of the nonlocal homogeneous problem

ug + Au = f(u) in RY x [0, 00),

with A the infinitesimal generator of a Feller semigroup and f of KPP-type as in (1.3), but independent of x.

In Cabré, Coulon, and Roquejoffre [12], the authors study a simpler version of (1.1) with fractional Laplacian
LY = (=A)*/2 for a € (0,1) and f(z,u) = pu(z)u — u? with p periodic, and give an estimate on the exponen-
tial (in time) propagation for the low-value level sets of w, that is, for all A sufficiently small and a fixed A > 0 which
both depend on g,

{u(z,t) = h} =~ {|m|d+a = cpexp(At)}. (1.9)

For more general KPP-type nonlinearities, Roquejoffre and Tarfulea [34] further refine these estimates and show the
level sets symmetrize and the solutions become asymptotically flat over time. The results of [34] are not expected to
hold in the periodic setting, as solutions in general converge to a steady state which is a nonconstant positive periodic
function (and so no flattening can occur). However, it is worth remarking that the propagation of the front implied by
(1.9) is radially symmetric even though the reaction nonlinearity is periodic. This is in contrast to the case of local
diffusion, where it is known that propagation is anisotropic depending on u. The lack of such a dependence is due to
the strong nonlocal effects of the diffusion, since (1.6) implies K has thick but essentially radial tails.

In this paper, we study the behavior of all level sets for general nonlocal anisotropic L® with no restriction on the
order, that is, for the full range (0,2). Moreover, the mutation kernel K need not be either translation invariant or
homogeneous in y. Also, unlike [12] our methods do not hinge on the construction of explicit sub-and super-solutions
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(in the classical sense). Our approach is based on the theory of viscosity solutions and, in particular, a novel iterated
improvement scheme that has not appeared before in the literature (see Propositions 3.3 and 3.4). This avoids the
much more complicated argument in extending the results of [12] (which the authors acknowledge) to equations like
(1.1), and offers an alternative methodology for other models where producing classical sub- and super-solutions is
unfeasible.

While completing this paper, we became aware of a recent work of Bouin, Garnier, Henderson, and Patout [9] that
considers a homogenization result for the class of equations

up=Jxu—u+u(l—u)in R x (0,00),

for kernels J that are nonsingular, homogeneous in z, translation-invariant, and monotone. There has been previous
work for nonlocal equations with integrable kernels (i.e., when J is a Borel measure); see for instance Garnier [21]
and Yagisita [35]. Although the assumptions of [9, 21, 35] on .J allow for kernels with more general decay at infinity
albeit one dimensional and without singularity, our results are focused on space-dependent kernels with potential sin-
gularity at the origin and in any dimension. If J can have a singularity, it generalizes the fractional Laplacian as well
as many other integro-differential operators, and creates a different situation than what is explored in [9, 21, 35]. This
introduces significant technical difficulties, which we overcome here.

After completing this paper, we also became aware of ongoing work by Leculier [30] that shows a special case of
our main result, under the same assumptions as in [12], using techniques similar to [12].

1.1. Rescaling and main results. The long-time/large-space behavior of the solution to (1.1) is characterized by the
limiting properties and behavior as € — 0 of

u(z,t) = u(@|"/ t/e), (1.10)

which solves
cu + [ (ul@lal!/ t/€)  u(alel"* = y.t/)) K(@lol /%, )dy = @lal!/%,u) in BT x [0,00),

with initial datum
u(x,0) = up(&x['/),

where, for x # 0, T := z/|x| is the unit vector in the direction of z.

Given the upper bound of (1.7), we see that u(-,0) converges to a “patch” function supported on the unit ball,
that is,

up(0) if|z] < 1,
lim uf(z,0) = ¢ wo(z) if |z| =1,
0 0 if [z > 1.
The rescaling (1.10) is motivated by the scaling strategy of Méléard and Mirrahimi [33], who studied the behavior of
the solution to

u + (—A)*?u = uR <u,/ u(:c,t)da:) in R x (0, 00),
R

where R(u, I) is either the local KPP-interaction 1 —u or a purely nonlocal reaction R(I) (for example, the mean-field
logistic interaction R(I) = ro — I). The methods of [33] exploit the one-dimensional nature of the problem and the
homogeneous in x nature of the nonlocal diffusion and the nonlinearity, in the form of a very particular change of
variables, and cannot handle the more complicated estimates necessary for (1.1).

The scaling (1.10) is also motivated by the exponential speed of the invasion front seen for the fractional Fisher-KPP
equation (see (1.9)), and also by the general work of Garnier [21] on the approximate front location for reaction-
diffusion equations with (radially symmetric) integro-differential diffusion operators.

A key step in our analysis is the classical exponential transformation

u® = exp(v/e),
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which leads to

6 e (@9, 0/ ., F@ElY )
i+ [ <1 exp(ve(z, 1)€) )Kdy‘ w (10

above and henceforth for convenience of notation
0 (2,y) = @2V — y)[Ele/ — I and K = K (2], y). (1.12)

Before proceeding, we state one final assumption on the parameters of the problem. We assume that the bottom of the
spectrum for the linearized stationary operator is negative, that is,

there exists a positive, 1-periodic e satisfying L%[e9](z) — 9, f(x,0)e9®) = X\1e9®) with A\; < 0.  (1.13)

For L defined as in (1.4), a positive (and unique) first eigenfunction e9 always exists. For completeness, we include
a sketch of the proof of this in the Appendix (Proposition B.1).

The requirement on A; ensures that the asymptotic behavior of w is nontrivial. In the case where L is the fractional
Laplacian (—A)a/ 2, Berestycki, Roquejoffre, and Rossi [8] show that the bottom of the spectrum of the operator
(—=A)*2 — 9, f(x,0) is the indicator to a drastic shift in the asymptotic behavior for (1.1). If A\; > 0, the model
exhibits extinction, that is, u(-,¢) — 0 as ¢ — oo. On the other hand, if A\; < 0, the model exhibits invasion, that
is, u converges, as t — oo uniformly on compact sets, to a unique positive steady solution. The sign of \; therefore
measures the relative strengths of the depletion and growing zones {z : 0, f(x,0) <0} and {z : 9, f(z,0) > 0}
with respect to the ambient diffusion. Since we wish to study the nontrivial asymptotic behavior of the solutions to
(1.1), we must work with models that exhibit invasion; hence the need for assumption (1.13). Our conclusions extend
those of [8] to a much larger class of models.

Our first result concerns the behavior, as e — 0, of v°. Note that, in view of the spatially oscillatory behavior of
(1.11), the v homogenizes in the limit.

Theorem 1.1. Assume (1.2), (1.3), (1.5), (1.6), (1.7), and (1.13). Then, as ¢ — 0 and locally uniformly, the v°’s
converge to the unique solution v of the variational inequality

max(vs — [Ai],v) =0 in R? x (0,00) and v(z,0) = min(0, —(d + a)log(|z|)), (1.14)

given by
v(x,t) = min(0, |A\1|t — (d + «) log(|x])). (1.15)

Knowing the asymptotic behavior of the v*’s, we obtain some concrete information about the u’s.

For this, we recall that (1.1) admits a positive periodic steady state solution u* : RY — R solving
LYwut) = f(z,u") in R

Although the existence of u™ is classical, for completeness, we sketch a proof summary in Appendix B.

Our second result is:
Theorem 1.2. Assume (1.2), (1.3), (1.5), (1.6), (1.7), and (1.13). Then, as ¢ — 0 and locally uniformly,

u(x,t) =0 in {(x,t): |z|TFe > 6\>x1|t}7
(1.16)

N 7t 7 .
#‘;1)/5) — 1 in {(z,t): |z|¢T < elMlty,

Let Q be the unit cube in R%. It follows from (1.16) that, as € — 0 and for |z|*+® < el
— 1
u(z,t) = U = / u™ (y)dy.
QI Jo

We remark that, since u™ is in general non-constant, we cannot expect that u¢ converges strongly in the inner region.
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The proof of Theorem 1.1 is based on viscosity solution techniques originated in [16], [17], Barles, Evans, and
Souganidis [4] and [31]. The main steps are (i) obtaining a priori L°°-bounds on the v’s, (i7) using the half-relaxed
upper and lower limits in conjunction with the perturbed test function methods to obtain the equation satisfied by the
limit (see [16] and Evans and Souganidis [17]), and (7i7) deriving the claimed limit properties for the u’s. With this
approach, it is at no point necessary to invent special sub- and super-solutions.

It turns out that steps (7) and (i7) above are connected with each other. Indeed, the obvious bounds implied by (1.7)
(see Proposition 2.2 and Lemma 2.3) are not enough to yield the limiting equation. We go around this difficulty by an
iterative (inductive) argument along which we improve at each step the upper and lower bounds (see Propositions 3.3
and 3.4), eventually obtaining the claimed result. This is a new argument in the theory of front propagation.

1.2. Organization of the paper. The rest of the paper proceeds as follows. In Section 2 we prove a preliminary
bound on the solution. In Section 3, we state in Proposition 3.3 and Proposition 3.4 the inductive arguments and give
the proof of Theorem 1.1. Proposition 3.3 and Proposition 3.4 are shown, respectively, in Section 4 and Section 5.
In Section 6 we give the proof of Theorem 1.2. We also include an Appendix that contains some useful preliminary
calculations and context. In Appendix A we recall the definitions of viscosity sub- and super-solutions. In Appendix
B we show the existence of a positive periodic first eigenfunction e? to the linearized operator L — 0,, f, as well as a
positive steady state u™ when the corresponding eigenvalue is negative. In Appendix C we prove Lemma 2.1. Finally,
in Appendix D we prove a technical lemma used in Section 2.

1.3. Notation and Terminology. We write Q and B, () respectively for the unit cube and the open ball of radius r
and center z in R%. Given A, B € R, A < B means that there exists some constant ¢ > 0, which is independent of the
various parameters, such that A < ¢B. Throughout the paper, ||/|| denotes the sup-norm of a given bounded function
I. We denote by E° the complement of £ C R?. A function which is periodic on the unite cube Q is referred to as
1-periodic. Throughout the paper sub-and super-solutions are understood in the viscosity sense.

2. PRELIMINARY BOUNDS

Observe that, in view of (1.2) and (1.3) (in particular that f is C?), we may write

f(:n,u) :u(x)u—E(ac,u), (2.1)
where p(x) := 0, f(x,0) and E(z,u) is an error term such that, for some M > 0,
0 < E(z,u) =: 0 f(z,0)u — f(z,u) < Mu?. (2.2)

The algebraic decay of the tail of K, seen in the upper and lower bounds of (1.6) for |y| large, will be very important.
Indeed, this is the mechanism which produces exponential (in time) propagation of fronts.

We remark, however, that the proofs of our main results do not rely on K having a singularity as |y| — 0. As a
matter of fact the symmetric singularity at y = 0 allowed by (1.6) is a technical obstacle which we overcome with
careful estimates. Actually all the arguments in the proofs of Theorem 1.1 and Theorem 1.2 remain valid if, instead
of (1.6), we assume

Ok o Ok

1+ [y|dte =7 = Jy|dte’
The singular lower bound of (1.6) is only needed to prove the existence of a positive principal eigenfunction to the
linearized operator, where we need to compare (L*[u], u) with a Sobolev norm; see (1.13) below and Lemma B.2.

The symmetry assumption on K allows us to write, after a change of variables,

1

Lu)(x) = 5 /(2u(az) —u(x+y) —ulzr —y))K(x,y)dy. (2.3)

The following Lemma, which is proved in Appendix C, allows us to assume a nominally stronger condition on the
initial data ug in the form of an algebraically decaying lower bound.
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Lemma 2.1. Assume (1.2), (1.3), (1.5), (1.6), and (1.7). Then there exist two positive constants cy and c1 depending
on ug and the parameters of the problem such that

Co c1
— < << ——n——. 2.4
11 [z]dFe = u(z,1) < 1+ |z|dte (2.4)

Henceforth, we shall assume that the initial data ug satisfies, for some ¢; > ¢y > 0 and all z € R?,

€0

< a
1+ |z|dte —

< — 2.5
S T [a#Fa 3)

uo(z)
We will prove Theorems 1.1 and 1.2 with (2.5) in place of (1.7). Since they only show locally uniform convergence
of the solution away from ¢ = 0, in light of Lemma 2.1, we see that the case with more general initial data (1.7) easily
follows.

An immediate consequence of (1.2), (1.3), (1.5), (1.6), (2.5), and (1.13) are the bounds given in the next proposi-
tion.

Proposition 2.2. Let u be the solution to (1.1) and assume (1.2), (1.3), (1.5), (1.6), (2.5), and (1.13). Then there exist
positive constants By > |\1|, co < Co, and Ag such that, for all (x,t),
Co

coe (z,1) < 2.6)
1+ e Palt|gfdra = W00 = T —Bot[dia '

We remark that the resulting bounds can be improved through more precise analysis (or by specializing to particular
nonlinearities such as z(x)u — u?), but this is not the purpose of the Proposition. Our main results follow from differ-
ent techniques, but require an initial rough bound to start the iteration in Section 3.

The estimate follows from the fact that, for some positive constants ¢, ¢’ and ¢’ and all x and u,
—cu—cu® < fz,u) < du—"u (2.7)

Then Proposition 2.2 is shown by establishing that the lower and upper bounds of (2.6) are respectively sub- and
super-solutions to (1.1).

To prove Proposition 2.2 and throughout the paper we will require the following technical lemma which is proved
in Appendix D.

Lemma 2.3. Assume (1.2), (1.3), (1.5), and (1.6), and let h(x,t) = W. Then there exists a constant D > 0
depending only on d and K such that, for all (x,t),

De—a)\t/(d-l-oz)

LM < ————7—.
L7 < e

(2.8)

Proof of Proposition 2.2: 1t follows from (2.5) that (2.6) holds at ¢ = 0 for an appropriate choice of ¢y and Cj.

Let W(z,t) = Co/(1 + e Bot|z|t®) and w(z,t) = coe A0t /(1 + e~ 1Mlt|z|9+®), Since (1.1) satisfies a com-
parison principle, we show that W and w are in fact super- and sub-solutions to (1.1) for an appropriate choice of
constants.

Let ¢, ¢, and ¢” be as in (2.7). We remark that ¢ > |\;|. For By > D + ¢ > |\| and Cy > max(1, By/c")
large enough that ug < W(+,0), Lemma 2.3 yields

Wit Lo > BoCoe” Plal Tt DCyemotot/e)
t = (1 4 e~ Bot|g|d+a)? 1 + e Bot|g|d+a

= (By— DemeBo )Y 7 %WQ > f(a, W),
0

which implies the upper bound of (2.6).
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The lower bound follows, after choosing Ay > |A1| + D — cand ¢y < |A;1|/c sufficiently small so that w(-,0) < wuo,
from the estimate

+La[ ] < ‘)\1‘008_(|A1|+A0)t’x‘d+a AOCOC—Aot N DCO€—A0t6—a\)\1|t/(d+Q)
wi W = (1+€—\>\1|t‘x’d+a)2 1+e—|>\1|t|x’d+a 1+6_‘>‘1|t‘x’d+a

= <\)\1| — Ao+ De_aW't/(dJra)) w — i\l‘erth < f(z,w).
0

3. IMPROVEMENT ITERATION AND PROOF OF THEOREM 1.1
We first recall the definition of generalized upper and lower locally uniform limits.

Definition 3.1. For a bounded family of functions {v°}, with each v* : R? x [0, 00) — R smooth, the half-relaxed
upper limit is given by

v*(x,t) == limsup v(y,s).
e=0, (y,5) = (1)

Similarly, the half-relaxed lower limit is given by
V2, T) 1= lim inf ve(y, $).
( ) €—0, (y,5)—(z,t) (y )

The half-relaxed upper and lower limits are, respectively, upper- and lower-semicontinuous. As an immediate conse-
quence of the definition, it follows that, on any compact set K C R% x R,

sup(v® —v*) — 0 and i?(f(vE — v,) — 0 uniformly in €. (3.1)
K

We first translate the rough bounds of Proposition 2.2 to the half-relaxed limits.
Lemma 3.2. For Ag and By as in (2.6), we have that
min (0, [A1|t — (d 4+ a)log(|z|)) — Aot < vi(z,t) < v*(x,t) < min (0, Bot — (d + «) log(|x])), (3.2)
Proof. By (2.6) we have that
elog(co) — Aot — elog(1 + e~ Palt/e|g|(d+a)/ey < ¢ (2 1) < elog(Co) — elog(1 + e~ Bot/€|g|(dre)/ey  (3.3)

If |z|4+ < eBot, (3.3) yields v*(x,t) < 0. However, if ||+ > B0l letting € — 0 in (3.3) shows that v*(z,t) <
Byt — (d + «a)log(|x|). A similar analysis extends the lower bounds of (3.3) to v,, yielding (3.2). O

Moreover, letting ¢ — 0, we obtain
V4 (z,0) = v*(x,0) = min(0, —(d + «) log(|z|)). (3.4)

We remark that, in general, the half-relaxed upper and lower limits of solutions satisfy initial and boundary value
conditions in a relaxed sense; see Barles and Perthame [6], Ishii [26], and [4]. However, the inequalities in (3.3) hold
uniformly, so that we can extract (3.4).

We note for future use that, for any fixed M > 0, there exists a Cy; > 0 such that, for all (y, s) € R? x [0, 00),
cy/ C
M < exp (min(0, Ms — (d + a)log |y|)) < M

1+e—Ms‘y|d+a — 1_|_€—Ms|y‘d+oc'

Having established (3.2) as a base case, we now describe the following inductive procedure.

(3.5)

Let {Ar},~o and {By},~, be two monotone decreasing sequences in (0, 00) with Ay and By given by the expo-
nents seen in (2.6), B
Ak — 0 and Bk — |)\1|,

and, for each &k > 0,

A1
4(d + «)

Bk (07
<1l4+-—, Bk-i-l > |>\1|> A _Ak’-i-l <

dA > 0. 3.6
Brn 4 and Apyq > (3.6)
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We will show that, if A; and By, are such that
min (0, | A1)t — (d + ) log(|z|)) — Axt < vie(z,t) < v*(z,t) < min (0, Bxt — (d + «) log(|z])), 3.7)

then the same holds for Ay and By 1.

This is the conclusion of the following two propositions that establish appropriate variational inequalities for the
half-relaxed upper and lower limits of v°.

Proposition 3.3. Assume (3.6), (3.7), and let Vi,(x,t) := min(0, Bxt — (d + «) log(|z|)). Then
min(v; — By41,0" — V1) <0 in R? x (0, 00). (3.8)

Proposition 3.4. Assume (3.6), (3.7), and let Wi,(x,t) := min(0, |A1|t — (d + «)log(|z|)) — Axt. Then
max (Vs s — |A1| + Aps1, v — Wiy1) > 0 in R? x (0, 00). (3.9)

The proof of Theorem 1.1 is then completed with an argument by induction and the following technical lemma, which
is an immediate consequence of the definition of viscosity solution.

Lemma 3.5. Let U C R? be open and F, G : U x [0,00) — R be respectively upper- and lower-semicontinuous.
Assume that, for a fixed C > 0 and all (x,t) € U x [0,00), F(z,t) < Ctand G(z,t) > —Ct, and,
min(F;, F) <0 and max(Gy, G) > 0 in the viscosity sense.

Then
F<0and G>0 on U x [0,00).

The proof of Theorem 1.1. Tt follows from Propositions 3.3 and 3.4 and Lemma 3.5 that, for all (z,t) € R? x [0, c0),
min (0, [A\1]t — (d + ) log(|z])) — Agr1t < vi(z,t) < v*(x,t) < min (0, Bt — (d + «) log(|z|)) .
Since A, — 0 and By, — |1/, we conclude that for all (z,t) € R? x [0, 00)
vi(x,t) = v*(x,t) = min(0, |\1|t — (d + «) log(|x])).
This in fact shows that v¢ has a locally uniform limit v, which is given by (1.15), and clearly satisfies (1.14). U

4. PROOF OF PROPOSITION 3.3

Since the proof is long and technical, we begin with a general outline. First, observe that (3.3) implies v* < 0
independently of Proposition 3.3, that is, (3.8) trivially holds when |z| < 1. As such, we only consider points (z, t)
with |z| > 1 and ¢ > 0. Let 1 be a smooth test function that touches v* from above at a point (2, ty) € Bj x (0, c0)
and, arguing by contradiction, we assume that

'U*(.'L'(], to) > Vk+1(ZL‘0, t()) = Inin(O, Bk+1t0 — (d + a) log(|x0|)), (4.1)

and

¢t($0, to) > Bk—i—l- “4.2)
In subsection 4.1, we introduce two important formulas involving L®. In subsection 4.2, we modify v/ into a new func-
tion )¢ that converges uniformly as € — 0 to % in a neighborhood of (z¢, ty), and we show that, for all € sufficiently
small, each v° is a super-solution to (1.11) in a neighborhood of (x¢, ty) which is independent of ¢; see Lemma 4.2
and Lemma 4.3. In subsection 4.3, we essentially use v as a test function to show that v must remain a fixed distance
away from 1€ in the neighborhood of (z, to); see Lemma 4.4. Therefore (o, to) is strictly larger than v*(xo, to),
which contradicts the assumption.

Although the above gives an accurate summary of the scheme of the proof, for the actual argument we need to make a
few technical modifications, which, however, do not change the overall strategy of the proof. Firstly, it is necessary to
change v outside of a neighborhood of (x¢, ty). Secondly, we will not be able to test 1) against v¢ directly, since we
cannot assume that v¢ < v*. Instead, we must modify v outside of a large but fixed compact set K, and then appeal
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to the locally uniform subconvergence of v¢ to v*; see (3.1). Since (1.11) is nonlocal, this will create some error terms
that must be bounded.

In proving that ¢ is a super-solution, we will need a bound on the ratio between ¢ at an “arbitrary” point and
¥ near (xzg, to). This is used to estimate the size of the nonlocal diffusion term, and employs (4.5) and (4.3). Then
(4.1) acts as an impromptu (local) lower bound for 1 at (z¢, tp). The lower bound will then hold for ¢¢ on a suffi-
ciently small neighborhood, depending on v but not on e. Combined with the global upper bounds of (3.7), the effect
of the nonlocal diffusion is seen to decay to zero as € — 0, provided (3.6) holds for By 1 and Bx.

4.1. Some formulas for L. In view of (1.13), if €Y is the first eigenfunction for the linearized operator L* — p,
then L¥[e9]/e9 = —|\1| 4+ u; here we stress that ¢ = g(x) (unscalled by €) is well-defined as the logarithm of
the first eigenfunction since the latter is strictly positive. The estimates for the nonlocal diffusion will require two
slightly different approaches depending on the value of «.. To that end, we first provide a crucial decomposition in the
following lemma; recall that 7 is defined in (1.12).

Lemma 4.1. Given ag : R? x [0,00) — R, let a(z,t) := ag(z,t) + eg(Z|z|'/¢). If o € (0,1), then

L%e®]  L%[ed explaoli(z,y). t)/e
e[a ] _ Jg ]+/G5(fcay) <1_ p(fxggzt)iﬂfai}))/ei/ |

) Kdy, (4.3)

where
Ge(w,y) = exp (g(@l2]"/* — y) - g(@l2]"/)) (44)

is bounded above and below by positive constants uniformly in e.

If a € [1,2), then, for any R > 0,

La[ea] Lae[;g] + % lyl<R (He(aoaxuy) +He(a07x7_y)) Kdy
= 4.5)
el exp(ao(n°(z,y),t)/€)
+ Jyzr Ge(@9) (1 ~ = explao(z 1)/ ) Kdy,
where
L . exp(ao(nf(m,y),t)/e)
Hc(ag,z,y) := G(z,y) <1 exp(ag(z, £)/) . (4.6)

Proof. When «a € (0, 1), formula (4.3) follows from the identity
Le] _ exp(a(n(z,y),t)/€)
= (- ) e
«a Soel/e €
:qu/<mwmm y»_mmmmmwm>ﬁw

s explg(Z|e[17%) expla(z, 1) /<)

When « € [1,2), we need a stronger cancellation at y = 0 to handle the potential singularity of K. By (2.3), we have,
for any R > 0,

Lole?] _exp(a(n(z,y),t)/€) + exp(a(n(z, —y),t)/€)
e /|y|<R <1 2exp(a(z,t)/e)

N /|y|ZR <1 B exp(a(nﬁ(m,y)yt)/e)) Kdy.

exp(a(z,t)/€)

)Kdy

The formula (4.5) then follows. ]
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4.2. Constructing the super-solution from the test function. We assume that (3.6) and (3.7) hold for v* and the
relevant constants. Let 1) be a smooth function such that v* — 1) assumes a global maximum value of 0 at (xo, to) and

Y (2o, t0) = v" (w0, t0) > min(0, Biy1to — (d + a)log(|zo|)) 4.7
and, for some o > 0,
wt(xo,tg) — Bk+1 =o>0.
Let 9 = min(o, |zo| — 1)/3 and consider the cylinder
D, (zo,t0) := Bry(x0) X (to —10,t0 +170) C {(,t) = |z| > 1, t > 0}.
We modify ¢ outside a fixed neighborhood of (z0, o). Without loss of generality, in light of (3.7), we may assume
that
Y(z,t) < min(0, Byt — (d + ) log(|z|)). (4.8)
Let § > 0 be such that
By.d
d+ «
Notice that, if  and rq satisfy (4.9), then so do any &’ < § and r6 < rg. We can therefore reduce the values of 4 and
ro without violating the above assumptions.

+ 6 < Bry1, €970 < (|zo| — 10)*/?, and 6 < g. 4.9)

Taking 0 and rg smaller, depending on %) and ¢ but not on ¢, we construct a smooth function ¢ such that, for some
C > 0 depending on rg, ¥, Bi+1, and By but not on e,

(i) 6= on Dy, s(wo,to),
(15) 0 =1 +max(0,(t — to + 2rg)) on Dy, (xo,to)C,
(7i1) 0 <1+ max(0,5(t — to + 2rp)) everywhere , @.10)
(tv) 0 > min(0, By41t — (d + «) log(|x|)) — dr9 on Dy, (o, to),
(v) 6y — Bgy1 > 20/3 on Dy, (xo,t0),
[ (vi) || D] and || D?¢|| < C.

In light of (4.1) and the regularity of v, such a 6 always exists; note that to satisfy (4.10)(iv) and (v) it may be neces-
sary to reduce the size of ¢ from its initial value, but this only depends on %) and not on e.

We now modify 6 to obtain a super-solution to the e-problem.

Lemma 4.2. For (z9,ty), 70, 0, and 0 as above, and for all € sufficiently small, the function
() := 0(x, t) + eg(Z|x)V) + 6(to — ro — t)

is a super-solution (in the viscosity sense) to (1.1) in Dy, (x, to).

Proof. Let ¢ be a smooth test function such that )¢ —  assumes a minimum value of 0 at (Z,t) € D, (o, to); recall
that |Z| > 1. Since ¢ = ¥ at (Z, 1), for all y € R?, we have

exp(p(n°(z,y), 8)/€) _ exp(*(n°(3,y),0)/¢)  exp(p(n(T,y),1)/€) — exp(¥e(n°(Z,y),D)/¢)

exp(p(7,1)/e) exp(Ye(z,t)/€) exp(p(7,1)/e) ’
and, hence,
exp(¢(n°(2,y).t)/€) exp (Y (n°(Z, y),t)/e€)
1— 1— . 4.11
op(e(@ D/ ' exp(v(0)/e) R
Moreover, it follows from (4.10)(v) and (4.9) that
eu(2,t) > Yi(2,t) = 0,(2,1) — 6 > By +0/3. (4.12)

Using (4.9), (4.11), and (4.12), for any R > 0, we find that, at (Z, f),

_ eXP(@(Tf (fvy)@/ﬁ) _ eXP(W (776 (f:y)@/ﬁ)
Pt + fBR(J_I) <1 exp(p(Z,t)/€) ) Kdy + fBR(ii)C (1 exp(Y<(z,t) /¢) ) Kdy

> Bk’-i—l + % + f (1 _ eXP(W(f(@Z/)@/@) Kdy

(4.13)

exp(y(z,t)/€)
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At this time we recall once more (1.12), and here K = K(%\i]l/e, y). Next we employ (4.3) and (4.5) with ¢¢ in
place of a to get, for any r = r(e) > 0,

Lo[e%] -y . exp(0(1°(Z, ), 1) /)
i O Y+ T (z, 1-— — K 4.14
o = @)t Tt | Gely) (0@, 0/ )W G
where
_ exp(0(nc(Z,y),t) /€ .
I . fly\<r Ge(Z,y) (1 - %%)/2)/)) Ky if a<1, (4.15)
o % |y|<r(He(9@,y) + He(0, 7, —y))Kdy if a>1. ‘

Note that the quantity 6(ty — 79 — t) disappears in (4.14) and (4.15) due to the homogeneity of e~%" L%[¢¥"]. Take
7(€) = €|Z|'/¢ and recall (4.6). It follows from (4.10)(iv) that

0(z,7) > min(0, By f — (d + a) log(|z])) — dro.

For the rest of the proof, let

B exp(0(n°(z,y),t)/€)
"Y) = = 0. o)

Since (4.10)(i4i) and (4.8) hold for all (z,t) and > t — 7o, we note that (3.5) implies that, for all y € R,

exp(min(0, Byt/e — (d + a)log(|Z|Z|Y/¢ — y|) + 6( — to + 270) /€)
exp(min(0, B11t/€ — (d + o) log(|z[)/€) — dro/e)
1 +e_Bk+1E/€‘i'|(d+a)/€
~ 14 e—ka/e’/x—\‘jll/e _ y’d—i—a

h(y) <
4.16)
5(1?—25()4-37‘0)/6'

and proceed to estimate the last term of (4.14).

Recalling (4.9), and the facts that Gi¢ is bounded uniformly in € and ¢ < tg + ¢ and |Z| > |xg| — o, we observe that,
if eBrr1t > |z|4te then h(y) < 2¢*70/¢ and therefore

Ge(z,y)(1 — h(y)) Kdy > —r—@ero/e > g7/,
ly|>r

Otherwise, if ePr+17 < |Z|?+e, we use the change of variables y = |Z|'/¢z to get

ny 5(f—t0+37“0)/6 d
Ge(Z,y)(1 — h(y))Kdy > —e Brrit/e|z (d+a)/e/ ettt Y
(33 y)( (y)) Yy < —€ |SU| y|>r 14+ ekat/e|j’i.|l/e _ y|d+a |y|d+a
= _eBk+1t/6’w‘d/e/

eé(t_—to-i-?)’r‘o)/e dz

e&(ffto +3T‘0)/Edw

ly|>r

> _ —d—a —Bk+1£/6 - d/€ _

=€ € 1z 1+ e—Bkt/e‘@’(dm)/e‘w‘dJm
Byd t t—to+3r

> —ede "= _ B Ly LU

~ € eXP<<d+a k+1>6+ c

For the above inequalities, the first step used (1.6), the second employed Holder’s inequality, and in the third we made
the implicit substitution

W — (eka/e‘j|(d+a)/6)71/(d+a),&7'

Notice that (4.9) and the fact that 3ry < tg imply the exponent is negative. Therefore, in both cases, the last term of
(4.14) becomes nonnegative as € — 0.

To complete the proof, we need to show that lim._,o |Z.o| = 0. Since this is a rather involved calculation, we
show this in Lemma 4.3 below.
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It follows that, if By11 > |A1], then for all e sufficiently small (and independent of ) (4.13) becomes
(x t

onlE.D) + / <1 _ exp(p(n(z,y).1)/¢)
Br(z) exp(p(Z,t)/e)

which yields that 1 is a super-solution. O

) Ky + / (1 = hiy)) Kdy > u(@l77) + 2,
Br(z)¢ 3

Lemma 4.3. The term L. , appearing in (4.14) and defined in (4.15) converges to zero as € — 0.

Proof. Since (4.15) gives two formulas depending on the value of «, the proof is likewise split into two cases.
Case 1, o € [1,2): We must estimate the function h and its derivatives near y = 0. To that end, observe the facts that

0:Ge(@,y)| = |Ge(@,9)Di9(Z[2[V = y)| < |Ge(@, )| Dyl
and, if |y| < r < |z|'/¢/2, then
Sl < [Rlaf/ —y) < DJafe
Next we need to compute a number of derivatives that enter in the argument below. Recall that, for 1 < 5 < d,

05 (2, ) = (@l — yj)l@la] Ve —y| "

Then
Om(z,y) = =012 TV =yl + 0@, y) (1 — ) (Til 7]V — i) [B|7] V¢ — y| 72,
with
|05 (2, )| < 4z e,

and

05 (z,y) = 655 (1 — e (z, )| T2V — y| 72 + (1 — €0 (z, y) (T2 — yi)|T|2] /< — y| 2

~ FoAml/e — 0 N(7, |7 1/€
— b1~ @ I — 1 — 2@ (1 - o T ERIT 2 )
’ J el e gl
with
0515 (2, )| < 24|22/,

It follows that

Ohly) = ~h(y) DOGI (7, ). T) - 0 (7, )

. (T %\A‘fl/e_ A
~ h(y) (—1W +(1-1) D@(nﬁ(aam,a-n%@,y)”‘y’) ,

€Tz — gyt \e |Z[z[1/e —y|?
and, for |y| < r,

\@‘Qkh(y)’ ~

—12 —
< (Sup h(z)> |/ ('3”2‘ + m) .
|z|<r € €

Combining all the above and using (4.10)(vi), we get
Ge(z,£y) =1+ O(Jyl),

P h(E) (1
< TR (D00 I + 1%l =0 P + | Do)

and
e (1B 1B e
h(y) = 14 Dh(0) -y + | sup A(2) | O (2] (5 + = | [yl ).
|z|<r
Note that

Dh(0) = —%De(aﬁ,mzyl*/f + (i — 1) (DO(z, 1) - )T|z| Ve
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It follows from (4.16) that, for all y € R,

1+ e—Bk+1E/e|a—c|(d+oa)/e
14+ e—ka/e‘%|i.’l/e _ y‘d+o¢
(1 4 min(e~Brnt/e|g|(dtal/e gdtag(Be=Bria)i/ey)dli=tot3ro)/e (4.17)

§(t—to+3ro)/e

h(y)] <

IN

where the last inequality used that, for any (z, ¢) with |Z| > 1 and for all e sufficiently small,
1 + e_Bk+1{/6|i|(d+a)/E

——— 1 —Bpiat/e)z|(dta)/e
1+6—Bkt/e|j’j|l/e_y|d+a te ‘$| )

and
14+ e*Bk+1E/€‘j|(d+a)/5 |§g‘*(d+a)/€ + e~ Brrit/e

_ < dto o (By—Bri1)t/e
1+€kat/e|j|i.|1/e _y|d+a - ‘f’—(d—l—a)/e+2—(d+a)e—Bkt/e <1+2 €

Since the estimates above hold simultaneously, we can bound the ratio by their minimum. Using (4.5) we obtain

1 _ _ 1 _
L= | (0504 B 050Ky = 5 [ (G0)(1 b)) + Gula,—)(1 ) Ky

= [ PHO) u(Gle ) Gty [ (.i?ﬁh(”) (o2 (5 + 1) ) sy

_ 2 _1—2/e ’9_5‘2 \x! 2
" O | IDR(O)|[y|” + ‘Sl|1<ph(z) |Z| 2 ly|” | Kdy

so that
— 2 —
Teal S (ml—l/e + <s?p h(z)) a2 (5 + ")) “18)
z|I<r

Observe that, since |Z| > 1 and r = ¢|Z|'/¢, |z| "2~ = 0 forall a > 1.

It then follows from (4.18) and (4.17) that, for all € sufficiently small and « € [1, 2),

|Ieoc| <O() (t to+3ro)/e€ IIllI’l( Bk+1t|$’d (Bk—Bg41)t ‘ | a)l/e

while using (3.6) and (4.9) we find uniformly for (Z,t) € D,,(zo,t9) and € > 0,

IIllIl( Bk+1t‘x|d (Bx— Bk+1)f’a—:‘fa) < 6765 < 675(ffto+3ro)’

that is, since

By o By, — Bit1 +5d+a
d o do '’

we have either
17| < oBr1t/d,—6t/d
or

|§:’ > e(kaBk+1)f/ae5t7/a’

and, hence, lim |Z, o| = 0.
e—=0

Case 2, o € (0,1): This follows almost immediately from the bounds computed above. Indeed, in light of (4.3),
we have

|Ie,a‘ = G6(557y)(1 - h(y))Kdy

~|1—1/€
< (Sup h(z)> - O(ly)Kdy < (Sup h@)) Iz~ : rl= (4.19)
y|<r

| ly|<r |z|<r |z|<r

and, hence,
Zeal S ed(t—toF3ro) /e min(e_BkHﬂﬂd7 e(Bk—BkJrl)ﬂj‘—a)l/e‘

Arguing as before and using (4.17), we again conclude that lim,_, |Z o| = 0. U
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We note that the decay of Z, , and some of the estimates on h are dictated by the decay of |Z| ~1/¢ and e/¢, which is
not uniform for arbitrary (Z,t). However, (zo, to) was fixed with |zo| > 1 and tp > 0, and 79 < min(|xo| — 1,%0)/3.
Therefore, the decay of Z , to zero (and any bound on h) is in fact uniform for any (z, t) e Dy (o, t0).

4.3. The proof of Proposition 3.3. We now wish to compare 1) to v and deduce a contradiction to (4.7). However,
since it does not follow in general that v¢ < ¢¢ in R? x (0, 00), we cannot use v in place of ¢ in definition (A.2).
The inductive hypothesis (3.7) only holds for v* and v,.. These are locally uniform one-sided limits, so the best we
can obtain for v¢ is (3.1) (one-sided limits that are uniform on compact sets).

Consider the compact set K = Bg,.(0) x [0,tp + 79 + 1] with

(Bo +49)(to + o)
d+ «

Then, recalling (4.8), for all e sufficiently small and all (z,t) € K,
ve < v 4 drg <Y+ drg < min(0, Bxt — (d + «) log(|z|)) + oro.

Ry ::3exp< ) (lxo| +70) + 1.

Lemma 4.4. Given v¢, let v¢ be a smooth function such that
o° = v in Bpj_1(0) x [0,tg 4+ 7o), 7 <1 in K¢ and 7° < v¢ in R? x [0, 00). (4.20)
Then, for all t < ty + 1o, all |x| > 1, and all € sufficiently small, we have that
5 < 0 = 0+ eg(@a] /%) — 8(t — to + o).

This implies that v*(xo, o) < ¥(w0,t0) — 670, since & = 9 and v° = v* inside of D, /5(o, o)), a contradiction to
(4.7). This shows that (4.2) cannot hold, thus proving (3.8) and Proposition 3.3.

Proof. Forall (z,t) € Dy (xo,tp)¢, (4.10)(i7) implies

V¢ =0+ eg(Z]x|V) + 6(to — ro — t) > Y + drg > 0°.
It follows that, if there ever comes a first time ¢ < ¢y + 79 where :?el‘ﬁ%% ((-,t) — v°(-,t)) = 0, it must happen at a
point Z € By, (x¢). Then o€ is an admissible test function (on By, (zg) X [to — 70, t]) and must satisfy

(= _ exp(0°(n(2,y). 1) /€) N 21z/e + 2
@+ [ . (1 ORI Ky + [ (=) Ky = e+ 5 @

Recall from (2.1) that f(x,u) = p(z)u — E(z,u). Along with (1.11), we have that

V(T . eXp(Ue(Tf(ﬂ?,y),E)/E) _ /.ZL'_\.@ 1/ey e—vé(i‘,ﬂ/e
o)+ [ (1= 2D Ky — p(alal 1) — pe O

or

el exp(v°(°(7,y),t)/€) AL o (z,0) /e
v (Z,1) +/ <1 T ez, D) ¢) > Kdy + Je = p(z|z[/) — Ee , 4.22)

where £ := F (§|:Z‘]1/E, 6”6(537{)/5) and
_ [ exp@ (%, y), t)/€) — exp(v(n°(Z, y), 1) /€)
g | exp(v°(7, 1))

Observe that, for all e sufficiently small depending on zg and ¢y,

{y: In“(z,9)l > R = 1} = {y: [#|z|"/ —y| > (Rx — )"} C 5,

Kdy.

where
(Bg+45)F

Sei={y: |yl > (R = )Y = |2} {y: [y| > 20z e @},
Since v¢ and v¢ are equal on S¢, we would like to subtract the two equations above. This creates some error terms in
the nonlocal piece, but R is sufficiently large that the errors vanish as ¢ — 0. Subtracting (4.22) from (4.21) yields

/ eXp(@E(ne(@y)at_)/f) - eXp(¢6(77€(fay)7£)/€) Kdy— J. > g + Ee—ve(i,ﬂ/e > 0. (4.23)
Br(z) -3

exp(v(7,1)/e€)
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The first integral term, however, is nonpositive. Moreover, by (3.3)

exp(¢(Z,1)/€) (min(0, By1t — (d + ) log(|z[))/€)
Then (3.5) and the choice of Ry yields

45rq 14+ e—Bk+1f/6|;z’(d+a)/6 dy o _ a(Bg+498)t
wJexe / —Bot/e|7|p|1/€ d+a Kdy 5 / 1/ |d4a S2 a’x‘ afee” "ltee
s, e~ Bot/e|z|z[l/e —y| s. [yl

_ -1
B —Bot/e| 3| 7|1/e _ ,, |dta
€(me 7 <1+6 |z|Z| Y| ) 5
_jeg/s exp(v (n°(,9), 1)/€) p 4 g/s - K dy.

The middle inequality used the fact that |Z|z|'/¢ — y|?+e > |z|(d+a)/ec(Bot4d)(to+ro)/c on S, which becomes arbi-
trarily large as e — 0.

It follows that the left side of (4.23) becomes nonpositive as ¢ — 0, yet the right side is at least /3. This is a
contradiction, implying that 1¢(z,t) > v¢(x,t) for all z € R? and t < tq + ro. O

5. PROOF OF PROPOSITION 3.4

We follow a strategy similar to the proof of Proposition 3.3. We use the same formulas derived in subsection 4.1. In
subsection 5.1, we assume that (3.9) fails for some (z,to) and use this to build a sub-solution from the associated
test function; see Lemma 5.1. In subsection 5.2, we then compare this sub-solution to v¢ to derive a contradiction; see
Lemma 5.2. There are, however, some key differences, which we explain next.

Recall that, when |z| < 1, v*(x,t) < O for all ¢ > 0 followed immediately from (3.2). The rest of the proof of
Proposition 3.3 assumed that |z| > 1, which was crucial for bounding the nonlocal diffusion; see (4.18) and (4.19).

A similar bound will be used in the proof of Proposition 3.4 and will also assume that |z| > 1. However, (3.2)
by itself does not yield an adequate lower bound on v, for |x| < 1, so this case must be treated in a different way.

We first prove (3.9) on B] x (0,00) without assuming an improved lower bound on v, in By x (0,00). From
@is, we extract a lower bound for u, the solution to (1.1) in unscaled coordinates, which then lets us prove (3.9) in
Bj x (0, 00) via a nonlocal maximum principle; see Lemma 5.3.

5.1. Constructing the sub-solution from the test function. Assume that v is a smooth test function that touches v,
from below at a point (xg, tg) with |zo| > 1 and ¢y > 0. Arguing by contradiction, we assume that

Y(20,t0) = vi(20,t0) < —Apt1to +min(0, [M|to — (d + a) log(|zo|)) = Wi+1(20, o), (.1
and, for some o > 0,
Yi(xo,t0) — |A1| + Apr1 = —o0. (5.2)
We need to modify this test function outside of a neighborhood of (z, t(), but the analysis overall is simpler than for
Proposition 3.3.
Let ro = min(tg, |zo| — 1)/3. and define D,,(x0,%o) as before. Without loss of generality, in light of (3.7), we
may assume that
min(0, [A1|t — (d + a)log(|z|)) — Ags1t > Y (z,t) > min(0, |A1|t — (d + a)log(|z|)) — Axt. (5.3)
Let 6 > 0 be such that

A1 . (0 Apgi(to — o)
A, — A 0<———— and § -] 5.4
k k+1 +0 < 4(d + Oé) an < min 31 3T0 ) ( )

notice that, if § and r satisfy (5.4), then so do any ¢’ < § and r{, < r. We can therefore reduce the values of § and
ro without violating (5.4).
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Taking r¢ smaller, depending on ) but not €, we construct a smooth function 6 satisfying, for some C' > 0 inde-
pendent of e,

(7) 0 =1 on D, (o, 10),

(17) 0 =1 —max(drg,d(t — to + 2ro)) on Dy, (z0,10)",
(tit) 0 > 1 — max(drg,d(t — to + 2ro)) everywhere ,

(iv) 0 <min(0,|AJt — (d+ ) log(|z])) — Agsrt +6rg < 0 on Dy (0, to), (5-5)
(v) 0 —|M|+ Akt1 < —20/3 on Dy, (xo,to),

(vi) ||DA]|, [|D*0]] < C.

\

The existence of such a € follows from (3.7) and the fact that ¢ is strictly below v, away from (zo, ¢¢); note that it may
be necessary to choose 7o and § smaller. We also remark that (5.5)(¢7) and (5.3) yield that the upper bound (5.5)(iv)
holds for all (z,t) € RY x [0, to + ro).

Lemma 5.1. For (zo,to), 7o, 0, and 0 as above, and all € sufficiently small, the function
U (@,1) = 0, 1) + egl@la]M) — 8t — o — 1)
is a sub-solution (in the viscosity sense) to (1.1) in D, (zo, to).

Proof. Let o be a smooth test function such that 1)¢ — ¢ assumes a maximum value of 0 at (Z,¢) € D, (o, o) with
|Z| > 1. Since

L exple((@,y).0)/e) | exp(d(n(z,y),1)/¢)

o@D/~ epr 0/ 60
in view of (5.5)(v) we have
SOt(.f’,'E) Swg(jai) :Qt(ivi)+5< |)‘1‘ _Ak-‘rl _0/3' (57)
Using (5.6) and (5.7) we find that, for any R > 0, at the point (Z, t)
exp(p(n°(7, y)i)/é)) ( exp(Y°(n°(7, y)ﬂ/ﬁ))
1- Kd 1- Kd
ot /B . ( exp((7,1)/e) v /BRW exp(V<(7, 1) e) Y
o exp(Y°(n°(7, y),t)/€)
shty +/ <1 T exp((z, b)/e) ) Ry
o exp(Y“(n°(Z,y),1)/€)
<l Aea -5+ [ (1 T exp($4(m D)e) )Kdy
= Ay = 4 uGIEM + T G.(, (1 - eXp(e("e(x’y)’a/G» Kdy, 5.8
k+1 3 + u(x\:n| )+ s + ‘y|27‘ (:E y) exp(@(a_:,t_)/e) Y ( )

where r = r(e) = e]i“l/e and
= exp(0(n°(z,y),t)/e .
(He(0,2,y) + He(0, 7, —y))Kdy,  if a>1.

€,00 +— 1
2 Jyl<r

Again, due to the homogeneity of e =% L%[e%"], the time-dependent quantity &(tq — 7o — t) disappears.

Compared to the proof of Proposition 3.3, the situation here is much simpler. For instance, the direction of the
inequality in (A.1) means we only need to bound the last term in (5.8) from above. Since the integrand is bounded
above uniformly by K ||G.||, we conclude from (1.6) that

_ _exp(y(n(z,y),1)/€) dy _ -a
aa) (1= T ) Ks [ e

As for the short range, the formula for Z, ., above is identical to the one given after (4.14) of the previous section. As
such, an identical analysis of Z. ,, as done in the proof of Proposition 3.3 using Taylor’s theorem yields that (4.18) and
(4.19) still hold, respectively when a € [1,2) and « € (0, 1).

ly|>r
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To prove that lin(l) |Ze | = 0, the only remaining issue is to bound the size of SUp|;|<p h(z), where
€E—

_ exp(0(n°(2,9), 1)/€)
") = @@ 0

Using (5.3), (5.5)(#i7), (5.5)(iv), and (3.6) we have, for all |y| < r,
exp(—Agp1t/e + min(0, | A1 [f/e — (d+ o) log(|Z[z|"/ — y])) (3(F—to+3r0) /e Lg(F[1/%)

exp(—Agt/e + min(0, |\ |t/e — (d + a)log|Z|/€))
(Ap—Apy1+0)t/e < (e(Ak_Ak+1+5)t_min(1’ e—\A1|f|j|d+a)) 1/¢ ) (5.9)

hly) <
1+ ef|)\1|f/e’j‘(d+a)/e

< =
~14 ef|)\1\t/e|§|i.|1/e _ y|d+a
Since r = €|Z|'/¢ and |Z| > 1, it then follows from (4.18), (4.19), and (5.9) that, for o« € (0, 2) and all € sufficiently

|Ie,a| S O(e) + ’ﬂ_a/e + He,

small,
with
H, = e(Ak_Ak+1+5)f/€|j|—l/E min(l,e_‘)‘l‘f‘:f|d+a)l/€.
If |Z| 4t > elMlt/2 ) then
by i .
MY g
€

- 1/e
< (Ak—Ak+1+6)t —1—1 < _ —
He < (e |z > <exp||Ar — Ags1+96 2+ o)

A\ 1/e
WY By _

and otherwise
_ _ 1
He < (G(Ak*Ak+1+5)tef\)\1|t|j|d+a) /€ < exp ((Ak — Ak—i—l 4+ - 5

where 0 < co2 < ¢1 < 1 and both constants are independent of e.

Hence lin% H. = 0, and, therefore, for all ¢ sufficiently small and independently of ¢, (5.8) becomes
e—
exp (z,y),t)/€ ~ _ o
(o (@, y). )/ )> Kdy +/ (1= hy)) Kdy < u(@z|') = 5 — A,
Br(2)°
0

o+ [ (- e

that is, 1€ is a sub-solution.
5.2. The proof of Proposition 3.4. Next we derive a contradiction by comparing ¢ with v¢. Let K := Bpr, (0) x

(Ao + |M1| + 46)(to + 7“0)> (|zo| + 7o) + 1.

[0, to+ 1o+ 1] with
Ry =3
K P < d+ o

It follows from (3.1) and (5.3) that, for all € sufficiently small and all (z,t) € K,
V¢ > v, —019/2 > ) — drg/2 > min(0, A1 |t — (d + a)log(|z])) — Akt — dro/2.

(5.10)

Lemma 5.2. Given v¢, let v¢ be a smooth function such that
7€ = v in Bp,_1(0) x [0,tg 4+ 0], T > 1 in K¢ and 7 > v¢ in R x [0, 00).

Then, for all t < ty + 1o, all |x| > 1, and all € sufficiently small, we have that
V¢ = 0 + eg(T|z| V) + 6ro/2 < T°.

Since § = 1 on this set by (5.5)(i),
¢<$07 t(]) < U*(.%'(), t()) - 5T0/27
contradicting (5.1). This shows that (5.2) cannot hold, thus proving the variational inequality (3.9) for all (x,t) €

B x (0,00).
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Proof. In light of (5.5)(71), we see that, for all (x,t) € D,,(z0,t0)¢ and € sufficiently small that eg < dr/2,
) =0+ eg(Tlz|") = 5(to — ro — t) < 1p — dr/2 < V(. 1).

If t < to + ro is the first time such that mag(zﬁe(-, t) —v°(-,t)) = 0,let T € By,(x0) be a point in space where this
zeR

maximum is achieved.

Then v¢ becomes an admissible test function and must satisfy

(= _exp(°(n(Z, ), t)/€) N =pl/ey _ 7 _
‘ ,f>+/BR(x) (1 (@ )de/BRW(l W) Kdy < p(Fz) = 2 - Ay,

exp(v4(Z,t)/e) 3
On the other hand,
e/ exp(v°(n°(Z,y),t)/€ ~ 1/ s (mD) /e
i+ (1‘ G f)/ew )> Kdy + J. = (@) — Be"" @/,
where

Je = / exp((n(F,y), D)/ €) = exp( (' (@,9). D/€) gy

exp(°(Z, 1) /€)

Subtracting the last two equations yields, in light of (2.2),

/ eXP(TJE(WG(@y)@/G) _eXp(¢E(n€(£’7y)at_)/€)K
Br() exp(v¢(7,)/€)

dy — J. < M @D/e _ % — Apsr. (5.11)

Note that the first term in the left hand side of (5.11) is nonnegative, while, as before,

(Ag+|A1|+48)E

{y: n°(&,y)| > Rxk —1} C Sc:={y: |y| > 2|z|"/e @ra) } and v° =& on SC.

It follows from (5.3) that

j</ exp(v°(n°
[ .

(% 5)/6 ) Ky
exp(v¢(

(

(

s Y)s
z,t)/e

</ exp((min(0, |A |t—(d+a)log(‘x|x|1/e y|)) — Apsat/e) 646ro/edy
= s exp((min(0, |\1]t — (d 4+ «)log(|Z])) — Axt)/e€) |y[dTe

—|\1lt/€e| 1 (d+ o £
S izl dy | s el SRR,
& 5. e PATTe[Rla] Ve — glta [yita > [ fyira >

Hence, as € — 0, J. becomes nonpositive. Then, for all e sufficiently small,

% < MV @D/e = Rt @D/e, (5.12)

The left hand side of (5.12) is fixed and strictly positive. However, in view of (5.5)(iv) and the definition of ¢,
V(@) < —Apgat + 0o — 8(to — 1o — ©) + g (T|2|M°),

so that
61/16(:2,1?)/6 S e—AkJ’,l(tO—TO)/ﬁegé'ro/E' (513)
In light of (5.4), the right hand side of (5.13) becomes arbitrarily small as ¢ — 0, a contradiction to (5.12). It follows

that there is no such (z,t) in Dy, (o, o), and we conclude that, for all (z,%) € D, /2(x0,t0) and all € sufficiently
small, Y(x,t) < v°(x,1t). O
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5.3. Lower bound in the short range. We now establish the improved lower bound in B; x (0, 00). Note that, since
we have already proved Proposition 3.3 independently of the rest of this section, it follows that

v* < min(0, [\i|t — (d + @) log(|z])) forall (z,t) € R? x [0, 00). (5.14)

Indeed, since the proof of Proposition 3.3 never used Proposition 3.4 or the lower bound of (3.7) for any k, the induc-
tive argument of Section 3 shows that (5.14) holds independently.

Also, since the previous argument showed that (3.9) holds in Ei x (0,00), we use Lemma 3.5 (with U = Ei) to
conclude that
min(0, |A1|t — (d + a)log(|z|)) — Ags1t < v, forall (z,t) € Bf x (0,00). (5.15)

Assuming the next lemma, we have now concluded the proof of Proposition 3.4.
Lemma 5.3. Assume (5.14) and (5.15). Then, for all (z,t) € By x (0,00), we have v, > — A 1t.
Proof. Fix T > 0, let R = e2M[T/(d+) apd
Srr={(z,t): 1<|z|<R, T/2<t<T}.
Then, for any v > 0, all (x,t) € Sg.r, and all € sufficiently small, it follows from (3.1) that
v¢ > min(0, |\ ]t — (d+ ) log(|z])) — Akt — v, (5.16)

which implies
ClefAkJrlt/eefz//e

la.11/€ € _ ve(zt) /e
w(@lz|e t)e) = u(z, t) = e @0/ > 1 + e Palt/e|g|(@+a)/e’

Keeping in mind that the solution u is bounded above by a fixed constant for all time, it follows that there exists
Cy > 0 such that, uniformly in z,

f(z,u) > —Cou. (5.18)
Assume that v¢ achieves its minimum on the set B1(0) x [T'/2,T] at (0, t) and that, for some o > 0, v¢(xg, ) =
— Aj41to — 0. Then u achieves its minimum value on B (0) x [T'/(2¢), T'/€] at the point (yo, so) = (Zo|zo|"/¢, to/€),
and in view of (1.1) and (5.18),

us = f(yo,u) — L%[u] > —Cou +/| o 1(u(yo + 2,50) — u(yo, 50)) K (yo, z)dz.
Yyo+z|>

Note that the inner range B1(—yyo) of integration can be safely omitted from the inequality because, by assumption,
u(w, so) — u(yo, sg) > 0 for |w| < 1.

Using (5.16), (5.17), and the size of R, we get that

—A so—o/e —A so—V/e€ —A so—o/e dz
ur(yo, s0) 2, —Coe H19070/¢ 4 gmArsov/ep o= Akpiso=ol / PR
|y0+z|d+aze|>‘1|50 ’Z‘

Lo— / ( 1 _e<w>/e> _dz
1<lyotzfdtacelilso \ 1+ e~Palsojyg 4 z|d+a |4+

Choosing v < ¢/2 and e sufficiently small depending on ¢ and C1, we have
ev=olle < =0/ < /4.
Moreover, since |yo| < 1, we have |yp + z| < |z| + 1, and, therefore,
{2 < [z|™ < eio/a} C {1 < Jyo + 2T < et} and {|yo + 24T > elilo} C {[zHt > Pl 3,

Lastly, because so > T'/(2¢), we know that el*1/%0 — o0 as € — 0. Then, for all € sufficiently small, there exists a
fixed C] > 0 such that

where

dz
1.2 > (.
e X /2<|Zd+a<ehso (1+e—|)\1|so|2’d+a)‘z|d+a ~ V1
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Therefore, for all € sufficiently small,
(Yo, o) > e~ Ar+150=9/(26) <_CO€—J/(26) e 026—0/(25)e—a|)\1|50) :

that is, the time derivative of w is positive at its minimum value on B1(0) x [T'//(2¢), T/€|. This can only happen if
so = T'/(2¢). Since o > 0 was arbitrary, we conclude that, if v has a minimum on B1(0) x [T'/2, T'] that lies below
— Aj41t, then this minimum must occur at time 7'/2.

It follows that the same must hold true for v,, which is lower semicontinuous, so it always has a minimum on compact
sets. Also recall that T' > 0 was arbitrary. If there is any time ¢o such that

min v, (z,t9) < —Ag41to,
lz|<1

then we apply the previous conclusion for the set B1(0) x [tg/2, to] and obtain that
|H\H<Ii Vi (2, 10/2) < —Ag1to < —Aps1to/2.
a|<

Repeating this argument, we find that for all m > 0

min vy (x, 62" ™) < —Agy1to.
|| <1

This is in clear contradiction to (3.7). Therefore, v, > —Ag 1t forall |z| < landt > 0.

6. PROOF OF THEOREM 1.2
The proof of Theorem 1.2. The first claim of (1.16) follows immediately from the Hopf-Cole transformation and

(1.15). That is, if |z|%T® > elM, then v¢ converges locally uniformly to |A\;[t — (d 4+ a)log(|z|) < 0, and so
uf = /¢ converges locally uniformly to zero as ¢ — 0.

Let u be the solution to (1.1) and assume the conclusions of Theorem 1.1. Since both « and u™ are positive, we
write

w=u/u,
and note that, throughout this section, w will always be in unscaled coordinates. Then, by (1.1),

g+ / (u (@)w(z, £) — ut (2 + y)w(e + v, ) K (@, y)dy = f(z,utw),

and
uTw, 4+ /(w(x, t) —w(z+y,t)u’ (z+y)K(z,y)dy = f(z,u w) — f(z,u")w,
that is,
ut(x x,utw x,ut
wy + /(w(x,t) —w(z + y,t))WK(w,y)dy =w <f(u’+w ) _ f(u’+ )> . (6.1)
e Wty fleutw)  fut)
K(x,y):WK(x,y) and N(z,w) = u?+w — u’+ ,

and note that K also satisfies (1.5), (1.6) with different constants.

It follows from (1.3) that N (x, w) is decreasing in w, negative when w > 1, and positive when 0 < w < 1. Since w
decays at infinity like w, it follows that, for a given ¢ > 0, w(-, t) achieves its maximum value at some 7 € R,

Then, at (z,t), (6.1) implies that

utw ut

wt§w<f(f,u+w) f(fﬂﬁ))’

and, for any o > 0, if
lim sup w(z,t) > 1+ o0,

1000 (3 1) R x[tg,00)
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then there exist ¢,,t, > 0 depending only on f, Cj and the global upper bound for w, such that, for all (z,t) €
R x [ty,00),

w(z,t) < Co+ (1 +0)co(te — 1),

that is, Cp + (1 + 0)cy (t, — t) is a barrier from above for (6.1). This is an obvious contradiction to (2.6). Since o > 0
was arbitrary, we conclude that

lim sup w(z,t) < 1. (6.2)

t—o0 zeRd

To complete the proof of (1.16), we essentially need the analog of (6.2) for the infimum of w. However, w decays to
zero at infinity and lacks a global minimum. Instead, for £ > 1 and M > 1, we consider the function

h(.CE, t) =M + 67|)‘1‘t’x|5(d+a)'

Writing W = wh, it follows from (2.6) that W (-, t) must, for every ¢ > 0, achieve a global minimum at some point
7 € R?. Moreover, since ¢ > 1, for all ¢ sufficiently large depending on &, |a?|5(d+°‘) < elMlt 1t follows from (6.1)
that

maz—uﬂe“Wuﬂﬂﬂw+h<wNumo+/hmx+%o—w@¢»Kuwm@

| A1]e Al |E(d+a)
M + €7|>\1\t|$‘£(d+a)

=W (N(:E,w) - ) + /(W(w +uy,t) — Wz, t))K(z,y)dy + I, (6.3)

with
FZ/M@ﬁ—h®+%ﬂW®+%ﬂK@wﬂy
Ze”““/ﬂnﬂﬂm|w+mﬂ“mﬁwx+y¢ﬂ«%ymy

For T' > 0 and for By given by (2.6), let

o (3T(Bo— )
= p<a@nw+a9’

and choose ¢ sufficiently close to 1 that the exponent above is positive.

Fix v > 0. Then, for all € sufficiently small, Theorem 1.1 implies that
v¢ <min(0, [\t — (d+ a)log(|z|)) + v in {(x,t) : |z| < R, T <t <2T},
that is, for some C; > 0 independent of z, ¢, or ¢,

Cley/s

lae11/€
u(Z|z| t)e) < 1§ e Palt/e|g|@ra)/e’

Recall that u™ is bounded uniformly from above and below. Hence, for a different constant C} > 0,

Chevle

T {(z,t) : |z| < RY¢, T/e <t < 2T/e}. (6.4)

w(z, t) <

Looking at the minimum (z, £) of w on R? x [T'/e,2T/¢], (6.3) yields
Wi > (N(@w) — M I/M)W + (65)

I.
We now show that, for an appropriate choice of parameters, lim ié1f I > 0. To do this, we split the domain of
e—

integration in the formula for I into three parts, that is,

j2j1+j2+f3, (6.6)
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where, for p := ee"\”t,

I_l :_‘/ (h(j7{>_h('i+y7£))w(j+y7f)‘[_{(i‘7y)dy ’
ls <p

y = (h(z,t) = (T +y,)w(T + y, 1) K (T, y)dy.

/ylf(d+a)>p, |Z-+y| <R/

I = / (h(3,8) — h(T + 3, D) (@ + 9, DK (7, y)dy.
|z+y|>R1/¢

We proceed to estimate /. This requires two slightly different treatments depending on the value of «.

When « € [1,2), a change of variables yields

/| _ (@D @+ Dt +. DR o)y

~ 5 @0 = .0~ o = D)+ DR
+ % / (h(z,1) = Mz =y, ) (w(Z + y, 1) — w(z -y, 1)) K (z, y)dy. (6.7)
ly|<p

Recall that w and Dw are bounded uniformly, and observe that, if |QU]E (dta) ~ e|’\1|t, then

2|Aq [t

[Aq ]t _
IDh(z,t)| < e 8@t and |D2h(z,t)| < e &arar, 6.8)

It follows from (6.7), (6.8), and Taylor’s Theorem that

I =— |/ (h(z,t) — h(Z +y,1)w(T +y,1) K(Z,y)dy

2 —/ ( sup  (|D?h(z,1)| + IDh(z,BIDw(z,ﬂ)> YK (z, y)dy
€t <p

|2]€(d+a) <elAilE

AT [\ |E \ 2o
> _efig(dia) ‘y|2—d—ady > _675(dl+a) (66\)\1|t) £(d+a) . (6.9)
- Jylet@+e) <p -

Since t € [T'/e,2T /€] and « € [1,2), it follows that the lower bound converges to zero as € — 0.

When a € (0, 1), the argument follows immediately from the calculations above. Indeed, using the first bound
of (6.8) yields

vV

. _ 7 IE N T
L —/| ( sup \Dh(z,f)|> ly| K (z,y)dy = —e~ Tho (ee"\llt> stk (6.10)
yl<p

|z|d+°‘§eul|f

As before, the lower bound converges to zero for any a € (0,1), hence, in light of (6.9) and (6.10), we find
liminf I; > 0.

e—0
Next, assume that |y[§(@+®) > eelM1lE 1t follows from (1.6) that

) 1
— < T
K(z,y) S el/€elMlt/€ 4 |y|dta’
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while (6.4) yields
- [ (h(@.0) — h(z + 9, D)w(@ + v, DK (7, y)dy
{lyl>p, |Z+y|<RY/<}

> ey/5_|>‘l‘£’j; + y’g(d_"a) dy
- /|oc+y|<R1/€ 14 emMlf]z 4 yldte el/Celhlt/S 4 jy|dta

o e (el —opl [ e ST+ y[Ete) e/t dy

- 1+ e—‘)‘lﬁ‘j + y‘d‘H" el/€e(1=E)IMlt/€ + €—|)\1‘£’y|d+a

— exp v (€~ Dnli— al |t |ie_|’\1‘t/(dj'o‘) + z[8(@He) dzz 6.11)
€ ! d+ « 1+ |i’e*|)‘1|t/(d+0‘) 4+ z|d+a el/€e(1=8)IAlt/€ 1 |Z|d+a' )

Recall that || < elM1#/(d+a), The integral term above is finite so long as £(d + ) — (d + ) < «, in which case it
is also bounded by e MEelE=DIMlt/e uniformly in Zz. If v is sufficiently small depending on 7" but not on &, and € is
sufficiently small depending on v, we have

v — Oz‘)\l‘f 1 _
= — DM - 1—= {

whence lim inf I > 0.
e—0

For the remaining term, we use (2.6) to conclude that

@:/' (h(3,8) — bz + 3, D)w(@ + 9, DK (7, y)dy
|z+y|>R1/¢

S / €—|/\1\t_’j + g|E(d+e) dy
~ vy rue L e Btz 4 yldte ]+ [yldte
- —1)(d
> _e(Bo—|>\1)f/ |.’,1:' + y|(£ )(d+a) > _e(BO_l)\l|)£R(_a+(£_1)(d+a))/e (6 12)
= dta  ~ : :
>Rz 14yl

In light of the choice of R, the combined exponent above is negative and the lower bound converges to zero as € — 0.
It then follows from (6.6), (6.9), (6.10), (6.11), and (6.12) that

liminf I > 0. (6.13)

e—0

Note that in order to estimate I3 we needed R to be substantially larger than el [t/(d+a), depending on By.

To conclude the proof, fix 6 > 0 and choose M large enough such that N(z,1 — §) > 3|A1|/M. If W(x,t) <
M (1 —9), thenw(z,t) < 1 — 4. Since N(z,w) is decreasing in w, it follows that
N(z,w) > 3| \1|/M whenever W < M(1 —9). (6.14)
For all T' > 0, all € sufficiently small, and all ¢ € [T'/€, 2T /€], we know that W (-, ¢) achieves its minimum at some
z € RY. It follows from (6.5), (6.13), and (6.14) that
max(W(z,t) — M(1—0), W(z,t) — W(z,t)|\|/M) >0,

which implies that

lim inf W(z,t) > M(1—0).

t=00 |g|&(d+a) <el A lt

For any ¢ > 1and M > 0, h(Z|z|'/¢,t/€) converges locally uniformly to M if |z|$(4+®) < el Therefore,
lim inf w(z,t) >1—0.

t—o0 |m|§(d+a)<e\)\1\t

Since § > 0 was arbitrary and £ can be taken arbitrarily close to 1, the second claim of (1.16) follows, and the proof
is complete.

We remark that the previous arguments also establish the uniqueness of u™ from the uniqueness of solutions to (1.1).
If wt is another positive periodic steady state, the above argument would not be changed, and we would conclude
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that u*(z,t) /ut (Z|z|"/¢) and u*(z,t)/a* (Z]z|'/¢) both converge locally uniformly to 1 for [z|¢T® < el which
cannot happen if u™ # u*. O

APPENDIX A. VISCOSITY SOLUTIONS

Here we recall the classical definition, as it applies in the context of this paper, for a viscosity solution to a variational
inequality.

Definition A.1. Let V., ) be the collection of functions 1) : R? x [0,00) — R that are smooth in a neighborhood
of (xo, to) and Lipschitz continuous everywhere else.

A function F : R® x [0,00) — R is said to satisfy the variational inequality

min(F;, F) <0
at the point (g, to) in the viscosity sense if;, for all test functions 1) € W (20,t0) Such that F' — 1) achieves a global
maximum value of zero at (o, to), that is, 1 touches F' from above at (xo, 1), then

either F(x9,t0) <0 or ¥(xo,t0) <O0.

Similarly, F' is said to satisfy the variational inequality

max(Fy, F') >0
at the point (xg,to) in the viscosity sense if, for all test functions 1) € W (20,t0) SUch that F' — 1) achieves a global
minimum value of zero at (g, to), that is, 1) touches F' from below at (¢, to), then

either F(xo,t0) > 0 or ¢(zo,t0) > 0.

We also recall the definitions for viscosity sub- and super-solutions used in Sections 4 and 5; see Barles and Imbert

[5].

Definition A.2. An upper semicontinuous function wq is a sub-solution to (1.11) if, given a smooth test function
such that wy — @ assumes a maximum value of 0 at (o, o), there exists a family of open balls Bs, (xq) with 6,, — 0
such that, for all n,

exp(p (7 (0, ), 0)/©
“Ot(””o’to”/mnw (1_ exp( (0, t0) /€] )Kdy
_ exp(wo(n°(z0, ), to)/€) f (@o|o["*, exp(wo(wo, to) /€))
*/Bm%) <1 exp (o (20, f0)/) )Kd exp(uolento)/) D

A lower semicontinuous function w is a super-solution to (1.11) if, given a smooth test function  such that w; — ¢
assumes a minimum value of 0 at (x1,t1), there exists a family of open balls as above such that

exp(p(n(z1,9).t1)/e€)
plon )+ /Bgn(m) <1 T exp(elan h)/e) > fdy
_ exp(wi(n®(z1,9),t1)/€) f@ilz ]V, exp(wi (21, 11) f€))
* /B(;n(acl) (1 > Kdy & '

exp(wi (z1,t1)/€) exp(wi (z1,t1)/€)

(A.2)

APPENDIX B. PRINCIPAL EIGENVALUE FOR THE LINEARIZED OPERATOR AND POSITIVE STEADY STATES

We show that the operator L“ — p has a positive periodic first eigenfunction. A similar claim is made in [8] for the
case where L® = (—A)O‘/ 2 but the authors mainly show a Rayleigh-type formula for the principal eigenfunction. For
completeness, we provide here a proof outline for the following claim:

Proposition B.1. For y a smooth periodic function and L* as in (1.4) with a kernel K satisfying (1.5) and (1.6), the
operator L — i has a unique positive periodic eigenfunction with eigenvalue \1, that is

L%9 — ped = \ie9. (B.1)

The eigenvalue \1 is simple in the algebraic and geometric sense, and is the bottom of the spectrum for L* — p.
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To handle the issue of periodicity, we construct this eigenfunction on the torus T¢ = [0, 1]¢. If u is a smooth 1-periodic
function on R%, then it is equivalent to a smooth function defined on T4, Moreover,

Lolul(z) = | Klzy)(u(@) —u(z+y))dy = /Td K (z,y)(u(z) - u(z + y))dy, (B.2)

where

K(x,y) = Z K(z,y+k);

kez
note that, in view of (1.6), the sum above converges for all € T¢ and y € T\ {0}.
It also follows from (1.5) and (1.6) that, for a constant C' > 0, K=K, |Dml~(|, or |D32£I~(|, and all = and v,
K is bounded from below, symmetric in y and C ! < I%(:c, Y|yl < C. (B.3)
Proposition B.1 then follows from the following lemma:

Lemma B.2. Let ;1 a smooth function on T¢ and L* as in (B.2) satisfying (B.3). Then the operator L® — 11 has a
unique positive eigenfunction €9 satisfying

L%9 — ped = \ie9. (B.4)
The eigenvalue \1 is simple in the algebraic and geometric sense, and is the bottom of the spectrum for L* — p.

Proof. We appeal to the Krein-Rutman Theorem [29]. For X a Banach space and K : X — X a positive operator,
if the spectral radius r(K) is strictly positive, then r(K) is an eigenvalue of K with a positive eigenfunction. We
construct K as an inverse to L® after a suitable shift to gain coercivity.

We first show that L satisfies a Garding-type inequality. For u € C°°(T?), we write
(L*[u],u) = L1 + Lo, (B.5)

where
Ly := //I?(:U,y)(u(m) —u(z 4 9))?dyds and Lo := //I?(:v,y)(u(m) —u(z +y))ulz + y)dydz.
It follows from (B.3) that
x) —u(z +y))*
a2 20 [ [P iy 2l s B.6)

here || - || ;s (14) and || - Il zrs (rey denote, respectively, the homogeneous and inhomogeneous Sobolev norm, that s,

1/2
ol oy = ( /T d |A5u<y>|2dy) S Y S
We need to show that the remainder Ly is bounded by u in L?(T?). Changing variables and using (B.3) we find
Ly= / [ R+ v(uta + ) - u(@)ula)dydo
—5 | [ @y - B+ v.p)(ula) - ule + p)uta)dyds
// (2K (z,y) — K(z +y,9) — K(x — y,y))u(z) dydx
~ [ [P ID2K ol (o) dyda

Since |y|2~ %~ is integrable on T¢ for all o € (0, 2), we get that, for some fixed positive constants ¢, C, and D,

Dlull o2 = {L[u],u) = EullFass — Cllull7a- (B.7)
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Then, for a constant p sufficiently large, the operator £ := L® — u + pg is positive and satisfies the hypotheses of
the Lax-Milgram theorem in H®/? (T?). Hence it is bijective and, by Sobolev embedding, has a compact everywhere
defined inverse

K:=L"'= (L% — p+ po)~' - HY2(T?) — Dom(L?).

By the Krein-Rutman Theorem, there exists a positive eigenfunction e9 of K with eigenvalue r(K'). Therefore,

Lo[e9] — e — (@ - uo) 9.

This is precisely (B.4) with \; = r(K)~! — po. Evidently, A1 is the bottom eigenvalue for the spectrum of L® — .
]

When the principal eigenvalue is negative, we also find nontrivial steady states for (1.1). We sketch a proof of this fact
in the context of the periodic and nonlocal model (1.1).

Proposition B.3. Let K be given by (B.2) and f be as in (1.3) and assume that A1 < 0. Then there exists a positive
smooth function vt : T — R satisfying
L™ = f(z,u™). (B.8)

Proof. Let M be the constant given in (1.3). Then u := M is a supersolution to (B.8). Since A; < 0, there exists a
sufficiently small 6 > 0 so that

poed + Aoe? < f(z,de9).

Then u := §eY is a positive subsolution.

Let No = max,cpa_,er(—0uf(2,u)) and note that No > 0. We then take up = u and obtain the sequence {uy };cy
by iteratively solving

La[uk+1] + Nougs1 = f(:c, uk) + Noug. (B.9)

It follows from the maximum principle that ©; > ug. Arguing by induction and using the maximum principle we get
that up, < w and ugyq > uy for all k.

There must then exist a pointwise limit ut on T? which is bounded from below by wg, and, hence, is positive,
smooth and satisfies L*[u™] = f(z,u™). 0
APPENDIX C. PROOF OF LEMMA 2.1

The upper bound of (2.4) follows from the upper bound of (2.6) at time ¢t = 1. Although Proposition 2.2 assumed
(2.5), the upper bound was obtained by proving that

Co
W((IZ,t) = 1 +e—Bot’x|d+o¢

is a super-solution for (1.1) (for suitable Cyy and By). Since W (z,0) can still dominate ug(x) with assumption (1.7),
the upper bound is immediate.

The lower bound of (2.4), however, cannot be obtained by a rough sub-solution. Instead we will use Duhamel’s
principle with the following estimate on the heat kernel for the homogeneous problem.

Lemma C.1. The heat kernel p® : R x R? x [0, 00) — R which satisfies
P (z, z,t) + L [p(-, z,t)](x) =0,
pa($7 Z, 0) = 62’7

satisfies, for a fixed C > 0 and all t > 0,

C' min (t*d/a,t\x — z\*d*a) < p*(z, 2, t). (C.1)
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The proof can be found in Chen and Kumagai [14]; a consequence of their Theorem 1.1.

Using constant functions as sub- and super-solutions, we see from (1.3) that 0 < u(z,t) < M. By (2.1) and (2.2), we
know that there exists a cg > 0 such that any w which solves

wy + LYw] = —cow (C2)

with initial data w(z,0) := wp : R? — [0, M] is a sub-solution to (1.1).

But the solution to (C.2) is given explicitly by

w(z,t) = e_cot/ p(x, z, t)wo(z)dz.
Rd

If ug satisfies (2.5), then it is possible to choose wy = dx (B, (x¢)) (nontrivial and nonnegative) such that wg < ug on
R?. Therefore,

w(z,1) > 056_60/

|z—zo|<r

min <1, |l’ — Z|_d_a) dz Z H‘Cﬁ

for some ¢; > 0 depending on C, cg, 6, xg, and 7. This concludes the proof of the lower bound.

APPENDIX D. PROOF OF LEMMA 2.3

We prove here a robust bound on the size of the diffusion L* applied to a particular function, used in the construction
of the relaxed upper and lower bounds of Proposition 2.2. Recall that h(z,t) = (1 + e~ |z|¢+)~L,

The main observation is that the derivatives of h decay algebraically in |x|. That is,
Dih(x,t) = —(d + a)e May|x|To 2>

and

xixj

|z

It follows from Taylor’s Theorem that, for some constants independent of A, x and ¢,

—2xt/(d+a)
|h(z,t) — h(z +y,t) + Dh(z,t) - y| < sup ¢ s |y|2. (D.1)
l21<lyl (1 4 e~ M|z + z|dte) dra”

1 6/\t 1/(d+a) X idta 1/(d+a)

8i2jh(m, t) = —(d + a)e Mp2|g|dto—2 <(5¢j +(d+a—2) —2(d+ a)e_)‘twixj\x|d+o‘_2h) .

Let

and observe that
L[h] = Li[h] + La[h],
where
Lqi[h] := K(z,y)(h(z,t) — h(x + y,t))dy and Lslh| := / K(z,y)(h(z,t) — h(x + y,t))dy.
ly|[<R lyl>R
Recall (1.6) and observe that it follows from (D.1) that

| La[h]] = K(z,y)(h(z,t) = h(z +y,1))dy

ly|<R

< / IV2R(, )] ey [912~ 4y
ly|<R

_dta+2
,S R2—a€—2)\t/(d+a) <1 + e—)\t max(O, ‘l" _ R)d+a> d+a

As long as e~ |z|7® > 1, we have that R < |z|/2. Therefore,

—aAt/(d-‘roa)(l + —)\t| |d+a)—1—a/(d+o¢) if —)\t| |d+a >1
e e M|x , e Mx
|L1[R)| < {e_w J(dta) (D.2)

otherwise.
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For Ly[h], we have

e—a)\t/(d—l-a)

< oL
|y|>R K(‘T7 y)h(‘%.? t)dy ~ h(f]}', t)R ~ (1 + e—)\t‘x|d+a)1+a/(d+a) )

and
e—a)\t/ (d+a)

dy
K h Ndul < R,d,a < Rfdfoz —Atd/(d+a) < -
VoR (z,y)h(x +y,t)dy| S /1+e—)\t|x—|—y|d+o‘ ~ € ~ 1 e M g|dte

The bounds above, combined with (D.2) establish (2.8), completing the proof.
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