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ABSTRACT Little is known about the public health risks associated with natural
creek sediments that are affected by runoff and fecal pollution from agricultural and
livestock practices. For instance, the persistence of foodborne pathogens such as
Shiga toxin-producing Escherichia coli (STEC) originating from these practices re-
mains poorly quantified. Towards closing these knowledge gaps, the water-sediment
interface of two creeks in the Salinas River Valley of California was sampled over
a 9-month period using metagenomics and traditional culture-based tests for STEC.
Our results revealed that these sediment communities are extremely diverse and
have functional and taxonomic diversity comparable to that observed in soils. With
our sequencing effort (�4 Gbp per library), we were unable to detect any patho-
genic E. coli in the metagenomes of 11 samples that had tested positive using
culture-based methods, apparently due to relatively low abundance. Furthermore,
there were no significant differences in the abundance of human- or cow-specific
gut microbiome sequences in the downstream impacted sites compared to that in
upstream more pristine (control) sites, indicating natural dilution of anthropogenic
inputs. Notably, the high number of metagenomic reads carrying antibiotic resis-
tance genes (ARGs) found in all samples was significantly higher than ARG reads in
other available freshwater and soil metagenomes, suggesting that these communi-
ties may be natural reservoirs of ARGs. The work presented here should serve as a
guide for sampling volumes, amount of sequencing to apply, and what bioinformat-
ics analyses to perform when using metagenomics for public health risk studies of
environmental samples such as sediments.

IMPORTANCE Current agricultural and livestock practices contribute to fecal con-
tamination in the environment and the spread of food- and waterborne disease and
antibiotic resistance genes (ARGs). Traditionally, the level of pollution and risk to
public health are assessed by culture-based tests for the intestinal bacterium Esche-
richia coli. However, the accuracy of these traditional methods (e.g., low accuracy in
quantification, and false-positive signal when PCR based) and their suitability for
sediments remain unclear. We collected sediments for a time series metagenomics
study from one of the most highly productive agricultural regions in the United
States in order to assess how agricultural runoff affects the native microbial commu-
nities and if the presence of Shiga toxin-producing Escherichia coli (STEC) in sedi-
ment samples can be detected directly by sequencing. Our study provided impor-
tant information on the potential for using metagenomics as a tool for assessment
of public health risk in natural environments.
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Nearly half of the major produce-associated Escherichia coli O157:H7 outbreaks in
the United States between 1995 and 2006 have been traced to spinach or lettuce

grown in the Salinas Valley of California (1). Fecal contamination of produce can be
caused by exposure to contaminated irrigation or flood water, deposition of feces by
wildlife or livestock, or field application of manure as fertilizer (2, 3). From a public
health perspective, more information is needed on the risk of exposure to animal fecal
contamination, as recent studies suggest that exposure to water impacted by cow feces
may present public health risks that are similar or equal to those from human fecal
contamination. For example, cattle are a reservoir of the major foodborne pathogen
Shiga toxin-producing E. coli (STEC) (4, 5). Environmental contamination by animal feces
from farms is an emerging public health issue not only as a source of pathogens but
also as a source of antibiotic resistance genes (ARGs) (6). Antibiotics are regularly
administered to livestock at prophylactic concentrations to prevent infection, and food
animal production is responsible for a significant proportion of total antibiotic use (7).
Such practices are known to contribute to the prevalence of ARGs in the environment
(8–10), which can spread rapidly to other microbes via horizontal gene transfer,
including to human pathogens of clinical importance (11, 12). Surprisingly, there is very
little regulation of antibiotic use in the U.S. livestock industry, even though these
operations can be major contributors to fecal pollution and the spread of ARGs in the
environment (13, 14).

Our previous culture- and PCR-based surveys of the Salinas watershed, and partic-
ularly, Gabilan and Towne Creeks (here called GABOSR and TOWOSR, respectively),
indicated persistent presence of STEC in water and sediments (15, 16) and a potentially
significant public health risk. Continued prevalence of STEC in both GABOSR and
TOWOSR sites is hypothesized to be linked to the presence of cattle upstream. For
instance, in several cases, STEC strains isolated from cattle fecal samples were identical
to those found in water and sediment based on multilocus variable-number tandem-
repeat analysis (MLVA) typing. Indeed, the prevalence of STEC was strongly correlated
with runoff due to rainfall (1, 16). However, hydrologic modeling and surveys indicated
that pathogen levels in streams were due not only to overland flow but also to
contributions from sediment (17, 18). These observations were further supported by
several examples of identical MLVA types isolated from both water and sediment at the
same location or downstream during periods of drought (1, 15). Furthermore, the levels
of pathogen in the water column and sediment are difficult to measure and are
generally underestimated when using culture-based tests due to the predominance
of biofilms and viable-but-not-culturable (VBNC) bacteria (19). Determining accurate
pathogen levels is also problematic when using culture-independent quantitative PCR
(qPCR) tests, because these tests may detect small fragments of highly degraded DNA
long after the living microbe and pathogens have been inactivated (20). Furthermore,
PCR methods do not give the complete picture of total functional and/or taxonomic
shifts occurring in the sampled microbial communities. Therefore, metagenomic char-
acterization of the creek sediments should provide independent quantitative insights
into the effect of agricultural practices on the surrounding environment.

River and creek sediments are among the most diverse communities sequenced to
date and are largely undersampled (21, 22). Moreover, the sediments studied to date
are exclusively from highly and/or historically polluted environments with various
industrial or sewage inputs; thus, each sediment is characterized by its unique prop-
erties in terms of flow dynamics, chemical environment, climatic conditions, and
anthropogenic inputs (22–28). Accordingly, previous studies on the effect of anthro-
pogenic inputs on sediments in lotic (free-flowing) aquatic systems have yielded mixed
results on how surrounding land use practices impact sediment communities or were
not directly relevant. Furthermore, in order to properly quantify the effect of anthro-
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pogenic antibiotic inputs, appropriate controls (e.g., pristine sampling sites) are needed
to determine baseline levels of ARGs and other genes (13, 29).

In this study, we examined the effect of agricultural runoff on microbial communi-
ties from creek sediments in the Salinas watershed and whether community structure
correlated with precipitation or culture-based detection of STEC. We sampled upstream
sites with reduced human and cattle presence as a baseline for comparison with the
abundance of anthropogenic signals (i.e., human and cow gut microbiome and ARGs)
observed in the downstream sites that receive inputs from cattle ranches and produce
farms. By combining culture-based STEC data with metagenome-based ARGs and
animal host microbiome signals, we assessed the effect of cattle ranching runoff on the
creek sediments at multiple independent levels, providing for more robust conclusions
and interpretations. Furthermore, we compared the data from these sites to other
publicly available sediment, soil, and river water metagenomes from both highly
pristine and polluted environments in order to validate our results and assess anthro-
pogenic pollution levels relative to those from other similar habitats.

RESULTS
Description of sampling sites. Six sites from three creeks in the Salinas River Valley

in California were included in this study. Two of the sites (collectively referred to as the
“downstream” samples/sites) are impacted by cattle ranching but vary in the level of
agricultural activities in the directly surrounding area. Cattle have direct access to
creeks at both locations, and no effort is made to exclude them. At GABOSR, the cattle
have access 2.38 km upstream from the sampling location, and cattle access for
TOWOSR is 0.68 km upstream. The creeks are isolated at the sampling locations but
converge further downstream before emptying into the Salinas River. Gabilan
(GABOSR) is directly downstream of organic strawberry produce fields that use both
green and poultry manure fertilizer and has cattle ranching upstream of the strawberry
farm. The second site, Towne Creek (TOWOSR), is roughly 2 km north of GABOSR but
does not have any abutting agricultural fields directly upstream and only receives input
from cattle ranches. Ten samples from each of the two downstream sites, GABOSR and
TOWOSR, collected over a 9-month period from September 2013 through June 2014
were selected for metagenome sequencing based on precipitation levels and detection
of pathogenic E. coli via enrichment culture (Table 1). An additional seven samples from
four upstream sites (collectively referred to as the “upstream” samples/sites) were
included to serve as upstream controls for metagenomic comparison (Table 1 and Fig.
1). The samples from these locations included three samples collected �10 km up-
stream from Gabilan (GABOSR control) in March 2016 (GC1 to -3), two samples
collected �3 km upstream from Towne Creek (TOWOSR control) in April 2017 (TC1 and
TC2), and finally, one sample from each of two sites on the west side of the Salinas River
(West Salinas), �60 km and 110 km southeast from the downstream sites collected in
May 2017 (WS1 and WS2, respectively). The latter two samples are not upstream of
GABOSR or TOWOSR but were included because they are more pristine sites with no
known history of cattle impact, as opposed to the GC and TC samples, which may have
had minimal inputs from previous cattle grazing.

Description of metagenomes and sequence coverage of microbial community.
A total of 27 metagenomic samples, ranging in size from 8.7 to 20.1 million reads (2.5
to 5 Gbp) after trimming, were recovered from the six locations (see Table S2 in the
supplemental material). For all samples, less than 28% of the total community (average,
18.6%) was covered by our sequencing efforts as determined by Nonpareil analysis (see
Fig. S1). Consequently, the assembly of the metagenomes was limiting (e.g., the N50

values were poor, as shown in Table S2), consistent with our previous analyses of soil
and sediment communities (30) and those of a few other metagenomic studies of river
sediments. Thus, an unassembled short-read-based strategy was used for all subse-
quent analyses (paired-end nonoverlapping reads with an average length of 132 to
145 bp per data set), unless noted otherwise. A total of 7.2 � 108 protein sequences
were predicted from the short reads, with an average of 2.7 � 107 sequences per
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sample. The number of protein sequences that could be annotated to the Swiss-Prot
database in each sample ranged between 10% and 16% (average, 14.5%) of the total
sequences.

OTU characterization and alpha diversity assessment. A total of 466,421 reads
containing fragments of the 16S or 18S rRNA gene were detected in all 27 metag-
enomes with an average of 601 (� 55) reads per million reads. All data sets were
dominated by bacteria, with only 0.6% and 3.0% of the total rRNA reads, on average,
having archaeal or eukaryotic origin, respectively. Closed-reference operational taxo-
nomic unit (OTU) picking at 97% nucleotide identity threshold resulted in a total of
25,764 OTUs from 349,886 reads for all 27 samples and an average of 4,465 OTUs per
sample. Since the coverage was similar for all data sets, the numbers of OTUs shared
between all samples were compared without any further normalization. Only 138 OTUs
(0.5%) were shared among all 27 samples, while 9,500 (36.9%) of the OTUs were present
in only one sample. The OTU rarefaction plot showed that diversity was not saturated
(see Fig. S2A), which agreed with the low number of shared OTUs and the Nonpareil
estimates on the shotgun data reported above (Fig. S1).

TABLE 1 Culture-based detection of STEC and precipitation data reported in inches

Sample IDa

Date collected
(mo/day/yr) STECb

No. of copies
stx2/�g DNAc

Precipitation (in)d

Day 1 5-day sum

GABOSR
G130904 9/4/13 � 8.1 0 0
G140116 1/16/14 � 8 0 0.01
G140128 1/28/14 � 0 0 0
G140210 2/10/14 � 4.4 0.01 1.1
G140224 2/24/14 � 1.8 0 0
G140301 3/1/14 � 1.5 0.33 2.01
G140319 3/19/14 � 0 0 0.01
G140402 4/2/14 � 1.4 0.03 1.04
G140415 4/15/14 � 0 0 0
G140611 6/11/14 � 2.4 0 0

TOWOSR
T130904 9/4/13 � 14.2 0 0
T130918 9/18/13 � 15.3 0 0
T131023 10/23/13 � 0 0 0
T131230 12/30/13 � 3.9 0 0
T140116 1/16/14 � 0 0 0.01
T140128 1/28/14 � 0 0 0
T140210 2/10/14 � 1.7 0.01 1.1
T140224 2/24/14 � 1.5 0 0
T140319 3/19/14 � 0 0 0.01
T140611 6/11/14 � 0 0 0

Upstream GABOSR control
GC1 3/9/16 � 0 0 2.84
GC2 3/9/16 � 0 0 2.84
GC3 3/9/16 � 0 0 2.84

Upstream TOWOSR control
TC1 4/19/17 � 0 0 0.45
TC2 4/19/17 � 0 0 0.45

West Salinas
WS1 5/4/17 � 0 0 0
WS2 5/4/17 � 0 0 0

aID, identifier; GABOSR, Gabilan at Old Stage Road; TOWOSR, Towne Creek at Old Stage Road.
bSamples in which STEC was detected by PCR of enrichment cultures are listed as either positive (�) or
negative (�).

cCopy number of the Shiga toxin gene (stx2) was determined via ddPCR.
dPrecipitation levels (in inches) for the day of sample collection (day 1) and the sum of precipitation levels
for five days prior to the sampling day (5-day sum) were obtained from the California Irrigation
Management Information System database (http://ipm.ucanr.edu/WEATHER/) for North Salinas weather sta-
tion (the closest monitoring station to the downstream sites).
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Alpha diversity observed in the California samples was compared to alpha diversities
in three publicly available river sediment metagenomes from Montana that had similar
land use inputs (i.e., agricultural or small towns) and were the most appropriate data
for comparison among lotic sediment metagenomes currently available (21). Species
richness and diversity in Montana samples were significantly lower than in California
samples (P � 2.3 � 10�4 and 0.006, respectively) (Fig. S2). Within California sites,
diversity and evenness were similar; however, average species richness in GABOSR
was significantly lower than in TOWOSR and the upstream samples (P � 0.034 and
4.1 � 10�4, respectively).

Taxonomic composition and functional diversity of water-sediment microbial
communities. OTUs were analyzed further to characterize the taxonomic profile of the
communities sampled. Proteobacteria and Bacteroidetes were the most abundant phyla
across most samples. However, some of the upstream samples had a higher abundance
of Actinobacteria (see Fig. S3A). Class-level taxonomic distributions were consistent over
time for GABOSR samples and revealed the high abundance of Betaproteobacteria
(�19% to 24% of total sequences). TOWOSR samples varied more over time; five

FIG 1 Location of sampling sites in the Salinas Valley, CA, and sampling scheme for time series
metagenomics. Sampling site for Gabilan (GABOSR in red) and Towne Creek (TOWOSR in yellow). The
upstream controls for Gabilan (GC) and Towne Creek (TC) are also indicated by the same colors. The red
line shows the flow of the creek from GC to GABOSR, the yellow line shows the flow from TC to TOWOSR,
and the blue line shows the confluence of the two creeks before flowing into the Salinas River. Orange
pins mark the West Salinas sites (WS1 and WS2) included as less agriculturally impacted controls. Orange
lines show the flow of these creeks from the sampling point to the Salinas River, except for WS2, whose
confluence point with the Salinas River is 70 kilometers upstream from where WS1 creek intersects and
is not shown in the map. The North Salinas weather station (NS; green star) is approximately 11 km
southeast of GABOSR and was the closest weather monitoring station to all samples shown in the subset
map. Global position system (GPS) coordinates for all sampling locations are provided in Table S1 in the
supplemental material. (Inset) Location of the Salinas Valley in the state of California (map courtesy of the
U.S. Geological Survey). (Map data are from Google, SIO, NOAA, U.S. Navy, NGA, GEBCO, CSUMB, SFML,
CA OPC, Landsat/Copernicus, MBARI.)
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samples (T130918, T131230, T140128, T140210, and T140611) had a higher abundance
of Deltaproteobacteria and Bacteroidia, and one sample (T140116) had a higher abun-
dance of Cyanobacteria. The upstream samples also showed a similar community
composition to and had higher relative abundance of Alphaproteobacteria (11% to 17%)
than the downstream samples (Fig. S3B). These results were consistent with the TrEMBL
taxonomic classification of protein-coding metagenomic reads, which were dominated
by Bacteria (�95.2% per sample) (see Fig. S4).

Microbial community structure and dynamics in Salinas River valley creeks.
Location was the strongest factor affecting clustering patterns observed in principal-
component analysis (PCA) ordinations of all distance matrices analyzed (see Fig. S5).
ADONIS analysis in the R package vegan (using location as a categorical variable)
yielded a P value of 	0.001 and R2 values of 0.44, 0.67, 0.41, and 0.56 for MASH,
functional gene, OTU Bray-Curtis (16S-BC), and OTU weighted UniFrac (16S-WUF),
respectively. This result was confirmed by correlation analysis of the nonmetric multi-
dimensional scaling (NMDS) ordinations to all metadata variables using the envfit
function in vegan. After using Bonferroni’s correction for multiple comparisons, location
had the strongest correlation to all ordinations (MASH: P � 0.001, R2 � 0.879; functional
gene: P � 0.001, R2 � 0.845; 16S-BC: P � 0.001, R2 � 0.0.787; 16S-WUF: P � 0.001,
R2 � 0.726) and was the only significant variable for MASH (Fig. 2) and 16S rRNA
gene-based measures of beta-diversity (see Fig. S6B and C) among those parameters
evaluated. The functional gene ordination was also correlated, albeit weakly, to total
5-day precipitation (P � 0.028, R2 � 0.359) (Fig. S6A). To control for spatial variance, a
more rigorous distance-based redundancy analysis (db-RDA [31]) was used on con-
strained NMDS ordinations, which allows the influence of a matrix of conditioning
variables (i.e., location) to be “removed” prior to analysis. No significant associations
(P � 0.05) were found in the functional gene and OTU Bray-Curtis ordinations; however,
the MASH and OTU weighted UniFrac distances were significantly associated with

-0.10 -0.05 0.00 0.05

-0
.0

5
0.

00
0.

05
0.

10

NMDS1

N
M

D
S2

2D-stress = 7.978%

ddPCR

Precip

5-day Precip

AirTemp

SolRad

SoilTemp

Humidity

GABOSR

GC

TC

TOWOSR

FIG 2 Effect of environmental parameters on microbial community structure. The graph shows nonmet-
ric multidimensional scaling (NMDS) of the sequenced communities based on whole-community MASH
distances. Each dot represents a metagenome sample, and metagenomes from the same location are
connected by lines. Location (i.e., the polygons or lines) was the only variable that significantly correlated
with the ordination. Arrowed vectors indicate correlations with other variables; however, none of these
reached statistical significance (using the envfit function in the R package vegan). SoilTemp, AirTemp,
SolRad, Precip, 5-day Precip, and ddPCR represent soil temperature, air temperature, solar radiation,
day-of precipitation, 5-day precipitation, and digital droplet PCR counts for STEC, respectively.
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sampling time (analysis of variance [ANOVA]: F � 1.274, P � 0.031; F � 2.174, P � 0.04,
respectively).

Detection of E. coli by culture but not metagenomes. The abundance of reads
annotated as E. coli in the metagenomes based on BLASTN (nucleotide level) search
against an STEC reference genome was low for all samples (�0.002% of total reads).
Samples with the highest relative abundance of metagenomic reads matching to E. coli
were negative for all culture-based tests (Table 2), which indicated spurious in silico
results (e.g., reads from non-E. coli genomes matching to conserved genes such as the
rRNA operon). In addition, when using imGLAD (32), a tool developed by our team to
deal with spurious matches, to predict the probability that E. coli was present in the
metagenome, all samples yielded a P value of 1 (i.e., 0 probability of presence), which
suggested that any E. coli populations (including STEC) were below the imGLAD
estimated limit of detection for the metagenomic data sets in hand (i.e., 3% coverage
of the E. coli genome at a minimum of 0.12� sequencing depth). The absolute
abundance of the STEC based on droplet digital PCR (ddPCR) was also low (on the order
of �1 in 108 cells, assuming average molecular weight of a base pair of DNA is 660
g/mol, 5 Mb genome size, and 1 copy stx/genome) or absent in all samples, which

TABLE 2 Culture-based versus in silico E. coli detection

Location Sample ID

Detection method

Culture baseda In silicob

EcO157 STEC
No. reads
matching

% relative
abundance

GABOSR G130904 � � 1,652 0.0062
G140116 � � 576 0.0019
G140128 � � 406 0.0020
G140210 � � 936 0.0032
G140224 � � 644 0.0024
G140301 � � 886 0.0026
G140319 � � 866 0.0028
G140402 � � 1,112 0.0030
G140415 � � 711 0.0022
G140611 � � 1,050 0.0029

TOWOSR T130904 � � 516 0.0022
T130918 � � 255 0.0011
T131023 � � 606 0.0023
T131230 � � 379 0.0013
T140116 � � 505 0.0019
T140128 � � 367 0.0016
T140210 � � 607 0.0035
T140224 � � 780 0.0026
T140319 � � 459 0.0016
T140611 � � 1,495 0.0037

Upstream GABOSR GC1 � � 411 0.0016
GC2 � � 419 0.0017
GC3 � � 423 0.0015

Upstream TOWOSR TC1 � � 478 0.0016
TC2 � � 626 0.0017

West Salinas WS1 � � 958 0.0032
WS2 � � 601 0.0022

aCulture-based methods to detect E. coli in resuspended sediment/water samples included an enrichment
culturing step followed by Shiga toxin (stx) PCR procedures to detect specific virulence genes and
genotypes as described in Materials and Methods. Detection of E. coli O157 (EcO157) was determined using
enzyme-linked immunosorbent assay (ELISA) serotyping and a sample was positive for STEC if PCR and/or
ELISA data yielded a positive result.

bIn silico methods included a blastn search of metagenomic reads against an STEC reference genome with a
95% identity and 97% read coverage cutoff for a read match, which was then normalized by dividing by
the total number of reads per metagenome. The two samples with highest relative abundance of reads
matching the STEC reference genome are in boldface font.
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supports our bioinformatic-derived conclusions that E. coli was probably too low in
abundance to be detected by our metagenomic sequencing effort (Table 2).

Differentially abundant functions and taxa between locations. Of the 1,105
SEED subsystems (pathways) and 1,806 taxonomic groups identified, 911 and 408 were
significantly differentially abundant (DA) with adjusted P values (Padj) of 	0.05 for
subsystems and taxa, respectively. Using pairwise comparisons between GABOSR,
TOWOSR, and the 7 upstream samples, 184 SEED subsystems had a Log2 fold change
(L2FC) of �1, while 273 taxa had an L2FC of �2, which were grouped into 36 and 35
broader functional and taxonomic categories, respectively (as described in Data Sets S1
and S2 in the supplemental material). The magnitudes of the L2FC differences were
somewhat low overall, with average L2FCs of 1.82 and 3.71 for DA functional genes and
taxa, respectively. Still, this analysis revealed several notable trends that were consistent
between the functional SEED and taxonomy results (Fig. 3 and S7). More specifically,
iron acquisition genes appeared more abundant in the upstream samples, particularly
in the samples collected upstream of TOWOSR (TC1 and TC2). Plant-associated and
photosynthesis genes were more abundant in the more pristine samples (WS1 and
WS2). Consistently, members of the Alphaproteobacteria (e.g., Rhizobiales) (see Data Set
S2) were more abundant upstream. Additional taxa that were more abundant in the
upstream sites included those that are typically associated with soil and aquatic

FIG 3 Functional profiles of creek sediment microbial communities. The heat map shows SEED subsystems that were differentially abundant between locations
(TOWOSR, GABOSR, and the upstream controls) with Padj of 	0.05. Color scale indicates the abundance relative to the average of all samples (increasing from
blue to red). Letters T or G and date in the column names represent the sample site (TOWOSR or GABOSR) and collection date, respectively. TC, GC, and WS
represent the upstream TOWOSR control, GABOSR control, and West Salinas, respectively.
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habitats (e.g., Gemmatimonadetes and Armatimonadetes), which indicated that these
sites may indeed receive less anthropogenic inputs.

Sample T140116 was enriched for both cyanobacteria based on OTU analysis (Fig.
S7) and photosynthesis genes (Fig. 3). TOWOSR appeared to be significantly more
abundant in genes for anaerobic processes such as anoxygenic photosynthesis and
methanogenesis, along with genes related to archaeal DNA, RNA, and protein metab-
olism (all organisms known to carry out methanogenesis are Archaea). Consistently, the
two TOWOSR samples (T140128 and T140210) which were most abundant in archaeal
and methanogenesis genes were also the most abundant in Archaea and metha-
notrophs from the order Methylococcales relative to the other sites. Other genes
associated with anaerobic metabolisms, such as anoxygenic photosynthesis and sulfur
metabolism genes (see Fig. 5), were congruent with taxonomic results that showed
anoxygenic photosynthetic phyla Chlorobi (green sulfur bacteria) and Chloroflexi (green
nonsulfur) and the family Chromatiaceae as well as known sulfur-metabolizing and
anaerobic groups (e.g., Thiobacillus and Clostridia) to be more prevalent in the TOWOSR
samples (Fig. S7). Additionally, the TOWOSR samples, in general, were more abundant
in the Firmicutes and Bacteroidetes, which include gut-associated in addition to envi-
ronmental members. Sample T140210 from TOWOSR was particularly enriched in
specific enteric taxa, i.e., Endomicrobia and Fibrobacteres, which are rumen bacteria
associated with cellulose degradation.

Collectively, these results indicated that our annotation and grouping methods were
robust, e.g., archaeal taxa identified as more abundant in TOWOSR samples were
consistent with an increased frequency of archaeal functional genes such as metha-
nogenesis in these samples. These results also suggested that TOWOSR samples might
be more anaerobic, which could potentially indicate an effect of runoff and eutrophi-
cation as a result of human activity at this location. It could also be that this is the result
of natural factors that we did not test here, and so we tried to look at specific DNA
signals for anthropogenic pollution such as human and cow gut microbiome signal (see
below). Also, Actinobacteria (i.e., common soil microbes and antibiotic producers) were
all significantly more abundant in the upstream sites, which provides further evidence
in support of this system being a natural source of ARGs (see below).

Quantifying anthropogenic and agricultural inputs. (i) ARGs are more abun-
dant in California samples than in other similar environments. The abundance of
ARGs in each data set was determined by blastp search against the Comprehensive
Antibiotic Resistance Database (CARD [33]). The most abundant ARGs detected are
shown in Fig. S8 and Table S3 in the supplemental material. A comparison of selected
metagenomic data sets that included metagenomes from agricultural sediments from
Montana (MT) and soils from Illinois (Urbana [Urb] and Havana [Hav]), more pristine/
remote samples from the Kalamas River (Kal) and Alaskan permafrost (AK), and a highly
polluted sample from the Ganges River (Agra) was performed in order to benchmark
the level of anthropogenic signal observed in the Salinas Valley against that in other
environments. The abundance of ARGs in the California samples was significantly greater
than in the other environmental metagenomes included here (Kruskal-Wallis �2 �19.44,
P � 0.0002) (Fig. 4A).

(ii) Abundance of genes associated with antibiotics used in cattle. To better
assess the impact (if any) of ARGs related to cattle ranching, we built ROCker models,
an approach for finding metagenomic reads containing a target gene of interest that
is more accurate than simple homology searches (34), targeting tetracycline resistance
(tetM) and production (oxyT) genes, since tetracyclines are among the most common
antibiotics used in livestock (35). We also built a model targeting genes encoding the
ketosynthase alpha subunit (KS�), which are involved in the synthesis of many antibi-
otics, including tetracyclines (36). The antibiotic production genes were quantified in
order to the test the hypothesis that if (the high abundance of) ARGs naturally occur (as
opposed to being human induced) then their abundance should correlate with that of
the antibiotic production genes. To exclude the effect of potentially confounding
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variables, only the California samples were used for linear regression analysis of the
abundances of antibiotic production and resistance genes, and gene abundance was
expressed as genome equivalents (GE), or the fraction of total genomes containing the
target gene of interest assuming the gene is single copy, as is usually the case for
bacterial genes. In cases where the genes are in multiple copies, the GE will likely be �1
and would indicate genes per cell and not the fraction of genomes per total genomes.
However, we did not observe cases of GE values �1, which indicated that our
assumption was generally robust. ROCker analysis showed an abnormally high abun-
dance of tetM in sample TC1 (Fig. 5, left), which was thus considered an outlier and
excluded from the linear regression analysis. The high abundance in TC1 was presum-
ably attributed to the fact that tetM has the widest host range of all tetracycline
resistance (tet) genes due to its association with highly mobile conjugative transposons
that behave similarly to plasmids and have several antirestriction systems (37, 38). oxyT

FIG 4 Abundances of ARG, human gut (HG), and cow gut sequences in the Salinas Valley metagenomes compared to those in other environmental
metagenomes. The box-and-whisker plots show the interquartile ranges for the abundances, with open dots indicating samples that exceeded 1.5� the
interquartile range. The “upstream” metagenomes represent the seven more pristine control samples, i.e., three samples collected upstream from GABOSR, two
collected upstream from TOWOSR, and two sites on the west side of the Salinas River that were farthest upstream from the rest of the sites (for more details,
see main text and Fig. 1). The other environmental metagenomes (other env) included 3 river sediments, 2 agricultural soils, 1 permafrost soil, and 2 river water
samples from the Kalamas and Ganges Rivers.

FIG 5 Abundances of selected antibiotic resistance and production genes in the Salinas Valley metagenomes. (Left) Abundance (expressed
as genome equivalents) of tetM, oxyT, and KS� genes for the 27 sites included in this study. (Right) Linear regression of tetM versus oxyT
or KS� gene abundances. TC1 was an outlier for tetM abundance and was removed from this analysis.
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abundance did not significantly correlate to tetM abundance (r2 � 0.031); however, KS�

showed a moderate correlation to tetM (r2 � 0.280) (Fig. 5, right).
(iii) Abundance of cow and human gut microbiomes. The abundance of cow or

human gut reads in the California Creek and reference metagenomes from other
environments was determined by BLASTN search against a custom cow gut database
and the Integrated Gene Catalog (IGC) of human gut microbiome genes (39), respec-
tively. The IGC is referred to as the Human Gut Database (HG) here for clarity. The signal
from the Ganges River (Agra) sample greatly exceeded that from all other samples in
both the absolute number (Table 3) and relative abundance expressed as genome
equivalents (GE), i.e., the fraction of total genomes containing human gut genes
assuming a single copy of each gene per genome (33.5 GE; 8 to 100� more abundant
than all other samples) (Fig. 4B). There was a significant difference between the HG
abundance averages observed in California metagenomes and the 8 metagenomes
from 5 other habitats evaluated here (Kruskal-Wallis P � 0.015). However, after cor-
recting for multiple comparisons, none of the groups were significantly different
(Wilcoxon rank sum P � 0.1). Within California samples, there was no significant
difference overall between abundances observed in the downstream samples and the
average abundances of the upstream control samples (Kruskal-Wallis P � 0.169).

The abundance of different cow gut genes had a similar trend to the human gut
data (Table 3). However, two samples from TOWOSR (T140210 and T140611) showed an
elevated signal for cow sequences (Fig. 4C). Despite these two samples from TOWOSR
with a higher level of cow gut signal, the average gene abundances were similar for
California samples overall, and no significant difference was detected between the
means compared to those from the other environmental metagenomes and the seven
upstream control samples (Kruskal-Wallis P � 0.090) (Fig. 4C).

DISCUSSION

Analyses of planktonic microbial communities in rivers over time and land use have
shown that these communities vary by average genome size, location, amount of
sunlight, and nutrient concentrations (40) as well as by sampling time, more so than
space (41). However, the results presented here suggested that community composi-
tion of Salinas Valley creek sediments is structured primarily by spatial separation, and
the local weather parameters tested here did not have a significant effect (Fig. 2). More
detailed in situ metadata than those obtained here, such as nutrient concentrations
(e.g., organic carbon and biological oxygen demand), are needed in order to discern the
processes that are driving community diversity and structure within each Salinas Valley
site. For example, anaerobic taxa and processes related to methane and sulfur metab-
olism and anoxygenic photosynthesis were significantly more abundant in TOWOSR
(Fig. 3 and supplemental material), which could indicate higher influence from agri-
cultural runoff, lower permeability of the corresponding sediments by oxygen, or some

TABLE 3 Number of unique reference genes detected from CARD and human and cow
gut databases

Samples with unique genes
detected

No. of
samples

No. of genes from:

CARDa

Human gut
database

Cow gut
database

All samples 35 1,776 167,481 15,497
TOWOSR 10 693 1,192 1,704
GABOSR 10 983 1,356 124
Upstream controls 7 760 1,135 136
MT sediments 3 441 1,522 116
Agricultural soils 2 722 9,877 270
AK permafrost 1 642 245 50
Kalamas River 1 475 3,952 554
Ganges River (Agra) 1 827 137,409 5,900
Total reference genes in database 2,820 9,879,896 459,176
aCARD, Comprehensive Antibiotic Resistance Database.
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other environmental factor that was not reflected by the local weather parameters
measured here. It should be mentioned, however, that we did not observe any
significant differences in the type of sediment sampled (e.g., percentage of fine sand)
between the different sampling sites. Hence, the lower oxygen permeability appears to
be a less plausible explanation for the functional differences observed than higher
eutrophication (or another reason).

We compared abundances of metagenomic reads annotated as ARG and human or
cow gut microbiome in order to assess levels of anthropogenic impacts on Salinas
Valley creek sediment communities. No significant difference was detected between
the downstream samples and the upstream controls for any of the three anthropogenic
indicators (Fig. 4), which suggested that the land use practices surrounding the creeks
do not have a major or lasting impact on the natural community and the inputs are
likely diluted or attenuate faster than the intervals sampled here. To gain further
quantitative insights, we then benchmarked abundances observed in the creek sedi-
ments from this study against those in metagenomes from other environments. These
included agricultural sediments and soils, permafrost, and river water from both
pristine and polluted habitats. GABOSR, TOWOSR, and the upstream samples all had
significantly higher ARG abundances than the average of the other environments
tested here (Fig. 4A). This high background level of reads annotated as ARGs suggested
that the Salinas Valley creek sediments are a natural reservoir for these genes. Further-
more, genes encoding resistance to synthetic antibiotics such as florfenicol (fexA and
floR) and ciprofloxacin (qnrS), one of the most widely used antibiotics in humans
worldwide, were absent or detected in very low abundance (less than 10 reads
matching) in our data sets. Spurious matches to conserved gene regions can occur
when analyzing short reads like the ones here, but the signal was not large enough to
warrant further investigation using precise and targeted methods (e.g., ROCker). Over-
all, the absence of genes encoding resistance to more recently introduced synthetic
antibiotics provides further evidence that the ARG signal observed in the Salinas Valley
is likely autochthonous in origin. Future studies could involve deeper sequencing
(higher community coverage) in order to recover long contigs and thus determine the
genomic background of the ARGs and if they are associated with mobile elements or
plasmids for improved public health risk assessment. Still, our results highlight the
importance of having a baseline or “pristine” sample to discern anthropogenic from
naturally occurring ARGs and have important implications for monitoring the spread of
ARGs in the environment. For instance, without the upstream control samples, this
study could have (speciously) concluded that GABOSR and TOWOSR are elevated in
ARGs as a result of cattle ranching. However, the similar abundances found in the
upstream samples indicated that the signal detected downstream could be inherent to
this environment and that a more targeted analysis of specific ARGs was required to
determine if the effect of cattle could be detected.

Tetracycline resistance genes have been shown to increase and correlate with
anthropogenic inputs along a river estuary system (42), suggesting that they can be
useful indicators of anthropogenic pollution. However, tetracycline resistance genes are
also found in other pristine or natural environments (29, 43–45) and therefore can also
be considered part of the autochthonous gene pool in some habitats. Here, we tested
the hypothesis that if tetracycline resistance genes are naturally occurring, the produc-
tion enzymes for tetracycline should also follow similar abundance patterns, as antibi-
otic resistance and biosynthesis genes are often on the same operon to ensure
antibiotic-producing species are resistant to the product they synthesize (46). Thus, we
expected to see a correlation between abundances of the tetracycline resistance gene
tetM and its associated production genes (oxyT and KS�) if this system is not under
heavy selection pressure of human-introduced antibiotics. The abundance of tetM in
the Salinas Valley creek sediments was not correlated to that of oxyT and only
moderately correlated to KS� (Fig. 5). oxyT had very low abundance (fewer than 8 reads
matching per sample), which suggested that the lack of correlation to tetM could be
due to database limitations. That is, only a few reference oxyT genes are publicly
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available (13 sequences), and these likely do not capture the total diversity of this gene
found in the environment. KS�, on the other hand, represents a broad class of synthesis
genes for many different antibiotics, with many more sequences in the reference
databases; thus, a better estimate of antibiotic production potential was obtained
based on these genes. Overall, these findings further supported that this ecosystem is
a natural reservoir for ARGs, and the presence of tetracycline resistance is not likely to
be solely caused by inputs from the cattle ranches. However, future investigations
could involve additional antibiotic production gene references for more robust con-
clusions.

Compared to the other pristine or rural environmental metagenomes such as for
agricultural sediments and soils, permafrost, and river water, the abundances of reads
annotated as human gut in the California sediments were not significantly different
overall. However, the Ganges River (Agra) sample, collected from one of the most
densely populated and highly polluted areas surrounding the river (Agra, Uttar Pradesh,
India), was 1 to 2 orders of magnitude more abundant for human gut (open circle in Fig.
4B) than the rest of the samples used in our study. Thus, a high human gut signal was
expected for the Ganges River, consistent with previous results (47), and served as a
reference to assess relative levels of human fecal contamination. The rest of the
samples included in our comparisons were from rural/agricultural or more remote
areas, with lower population density, and consistently had lower signals of human fecal
contamination than the Agra sample. Therefore, the low abundances of human gut
sequences observed in Salinas Valley were consistent with the lower levels of human
activity/density input than in more human- and animal-populated sites, such as the
Ganges River used for comparison here, and indicated that our annotation and filtering
methods were robust. Collectively, these results showed that metagenomics of river/
creek sediments provide a reliable means for assessing the magnitude of the human
presence/activity, consistent with recent studies of other riverine ecosystems (41, 47).

Contrary to the results for human gut, the abundances of cow gut signal in the
California samples were not consistent with our expectations. The TOWOSR and
GABOSR sites are directly downstream of large cattle ranch operations, and identical
pathogen recovery from water and upstream cattle indicated the cattle ranches were
the source of fecal contamination (1). As such, we expected to see a higher level of cow
signal in the downstream metagenome samples, yet the abundance was not signifi-
cantly different from the other environments or the upstream controls (Fig. 4B and C).
Notably, two of the samples from TOWOSR (T140210 and T140611) showed elevated
signal for cow that was similar to the abundance observed in the highly polluted
Ganges River reference metagenome (Fig. 4C). These samples (especially T140210) had
a higher abundance of the rumen enteric and cellulose degrading taxa (Endomicrobia
and Fibrobacteres) (Fig. S7), which supports the conclusion that these samples con-
tained runoff from cattle; however, the signal might be patchy or muted in the
sediment and require more frequent sampling and/or larger sampling volumes than
those used here to detect these signals.

Additionally, we were unable to detect any E. coli populations in any of the
metagenomes, including samples that were positive for STEC via enrichment culture,
indicating that it is not an abundant member of the sediment community (Table 2). This
was consistent with imGLAD estimates that the sequencing effort applied to our
metagenomes imposed a limit of detection for E. coli, and ddPCR results that showed
abundance of STEC was low or absent in all samples. Overall, these results suggested
that using shotgun metagenomics may not be sensitive (or economical) enough as a
monitoring tool to detect a relatively low abundance microorganism in lotic sediments
at the level of sequencing effort applied here, which was insufficient partly because of
the extremely high community diversity (Fig. S1). More than the 2.5 to 5 Gbp/sample
sequencing effort applied in this study would have been required to detect �10 E. coli
cells in a sample according to our estimates, which is not economical based on current
standards and costs. More specifically, obtaining the imGLAD minimum threshold of
0.12� coverage for an STEC genome (5 Mbp) in our metagenome libraries (average, 4
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Gbp) would require 0.6 Mbp of STEC reads, or 0.015% of the total metagenome, which
translates to a relatively large number of cells in situ. For example, assuming 108 total
cells/g of sediment, it would require �104 STEC cells/g of sediment to robustly detect
in the metagenomes (or 100 times more sequencing for detecting �10 cells/g). Thus,
the limit of detection of metagenomics, as applied here, was not low enough and
should be combined with methods that offer lower detection limits and more precise
counts (such as ddPCR).

Rivers are highly dynamic ecosystems and therefore subject to higher random
variation and sampling artifacts that likely affect the dilution of the exogenous (human)
input. Furthermore, our samples represent relatively small volumes of sediment (�10
g), and the resulting metagenomic data sets did not saturate the sequence diversity in
the DNA extracted from these samples (Fig. S1), which might introduce further exper-
imental noise and stochasticity. Despite these technical limitations, our data consis-
tently showed little evidence that agricultural or cattle ranching activities have a
significant effect on the creek sediment microbial communities. The underlying reason
for these results remains speculative but could include sediment absorption or dilution
by the creek waters and should be the subject of future research in order to better
understand the impact of these activities on the environment. Additionally, the func-
tional and taxonomic diversity observed between our samples could not be attributed
to the environmental and weather variables measured, especially for the TOWOSR
samples that showed extensive sample heterogeneity (diversity). These results sug-
gested that shorter intervals between sampling as well as more detailed in situ
geochemical data will be needed to elucidate the fine scale processes driving the
community composition within each location. Although the continued presence of
STEC in Salinas watershed sediments is a public health risk, we did not find evidence
that runoff from human activities has a substantial effect on the sediment microbial
community compared to that at more pristine sites. An imperative objective for public
health is to assess how and where current agricultural practices impact the environ-
ment in order to determine best practices. Our study also provided important infor-
mation on using metagenomics as a tool for public health risk studies of river water and
sediment habitats, including what sampling volumes and frequencies to use, what
amount of sequencing to apply, and what bioinformatics analyses to perform on the
resulting data for future public health risk studies of river water and sediment habitats.
Finally, the ROCker models developed here for tetracycline resistance and production
genes should be useful for robustly examining the prevalence of these genes in other
samples and habitats.

MATERIALS AND METHODS
Sample collection and enrichment method for STEC. Sediment samples were collected from

watersheds at public-access locations (see Table S1 in the supplemental material). Weather information
was downloaded from the California Irrigation Management Information System database (http://ipm
.ucanr.edu/WEATHER/) for the day of and 5 days prior to the sampling day from the closest monitoring
station to the downstream sites (Table 1). Approximately 250 ml of sediment was collected by dragging
an open sterile bottle attached to a 7.62-m telescoping pole along the bottom of the stream in the
upstream direction and in such a way that the majority of the sample was undisturbed sediment.
Nevertheless, some mixing with the water column occurred. Sediment at GABOSR contained more sand
than TOWOSR or any of the control locations. Nevertheless, even at GABOSR, the collection was
selectively silt (with fine sand occupying less than 10% by volume). As such, an effort was made to collect
comparable samples at different locations. Additionally, only the top 1 to 2 cm of sediment was collected.
All samples were transported on ice and processed within 24 h. Sediment was resuspended in the lab just
prior to sampling to ensure a uniform subsample. DNA from 10 g of the resuspended sediment/water
mix was purified for sediment DNA using a MoBio PowerSoil DNA extraction kit according to the
manufacturer’s protocol. A separate 100 ml of the sample was used for enrichment and isolation of STEC
as previously described (15).

PCR-based quantification method for STEC. Droplet digital PCR (ddPCR; Bio-Rad) was performed
on sediment DNA according to the method described by Cooley et al. (19). Each 20-�l reaction mixture
contained 10 �l Bio-Rad Supermix for Probes, 2 �l primer (0.3 �M final concentration) and probe
(0.2 �M), up to 1 �g DNA, 1.2 �l MgCl2 (1.5 mM), and 0.2 �l HindIII (0.2 U/�l). Primer and probe
sequences were as previously published for STEC (19). Droplets were created with Droplet Generation Oil
for Probes in the QX-200 droplet generator (Bio-Rad) and amplified for 5 min at 95°C, 45 cycles at 95°C
for 30 s and 60°C for 90 s, and then 5 min at 72°C, and 5 min at 98°C. Droplets were processed with the
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QX-200 droplet reader and template levels were predicted by QuantaSoft software version 1.7.4
(Bio-Rad).

DNA sequencing and bioinformatics sequence analysis. (i) Metagenomic sequencing and
community coverage estimates. Shotgun metagenomic sequencing libraries were prepared using the
Illumina Nextera XT library prep kit and a HiSEQ 2500 instrument as described previously (48). Short reads
were passed through quality filtering and trimming as described previously (49). In short, sequences were
trimmed with a PHRED score cutoff of 20 and minimum length of 50 bp. Only paired reads with both
sisters longer than 50 bp after trimming were used for further analysis. Average community coverage and
diversity were estimated using Nonpareil 3.0 (30) with kmer kernel and default parameters. Sequences
were assembled with IDBA (50) using kmer values ranging from 20 to 80.

(ii) Taxonomic analysis of rRNA gene sequences. Metagenomic reads containing short subunit
(SSU) rRNA genes were extracted with Parallel-Meta v.2.4.1 using default parameters (51). Closed
reference OTU picking at 97% nucleotide identity with taxonomic assignment against the Greengenes
database (52) was performed using MacQiime v.1.9.1 (53) with the reverse strand matching parameter
enabled and the uclust clustering algorithm (54). Alpha diversity was calculated as the true diversity of
order one (equivalent to the exponential of the Shannon index) and corrected for unobserved species
using the Chao-Shen correction (55) as implemented in the R package entropy (56). Richness was
estimated using the Chao1 index (57), and evenness was calculated from the estimated values of
diversity divided by richness. Significant differences in taxonomic diversity, evenness, and richness were
assessed using two-sided t tests. Multiple rarefactions were performed on OTU tables as implemented in
MacQiime v.1.9.1 (rarifying up to the minimum number of counts per sample: option -e 5,596).

(iii) Determination of the total community bacterial fraction. To determine whether bacterial
gene abundances needed to be corrected for relative bacterial fraction in the total metagenome libraries,
the relative abundance of Bacteria, Archaea, and Eukarya was estimated in each data set by searching a
subset (�1 � 105 reads per sample) of randomly selected protein-coding reads against the TrEMBL
database (58) (downloaded May 2018) using DIAMOND blastx v.0.9.22.123 (59) with the “–more sensitive”
option and E value cutoff of 1 � 10�5. The TrEMBL identifiers (IDs) for best hit matches were summarized
at the domain level using custom scripts and the metadata files available at ftp://ftp.uniprot.org/pub/
databases/uniprot/current_release/knowledgebase/taxonomic_divisions/. No significant difference in
the relative abundance of Bacteria was found between the different samples; thus, no correction for
bacterial fraction was applied to gene abundance calculations.

(iv) Functional and ARG annotation of metagenomic sequences. Protein prediction was per-
formed using FragGeneScan adopting the Illumina 0.5% error model (60). Resulting amino acid se-
quences were searched against the Swiss-Prot database (downloaded June 2017) (58) and Comprehen-
sive Antibiotic Resistance Database (CARD; downloaded May 2017) (26) using blastp (61) for functional
annotation. Best matches to the Swiss-Prot database with �80% query coverage, �40% identity, and
�35-amino-acid alignment length were kept for further analyses. A more stringent cutoff was used for
best matches to the CARD (�40% identity over �90% of the read length) to minimize false-positive
matches.

(v) Detection of cow and human gut microbiome-associated sequences. Searches for cow
gut-associated sequences were performed using our own collection of cow fecal metagenomes from six
individual cows collected in Georgia, USA. DNA extracted from cow fecal material underwent the same
library preparation, DNA sequencing, and quality trimming and processing as described above. Predicted
genes (as nucleotides) from all six individual cows were pooled and dereplicated at 95% identity using
the CD-HIT algorithm (options: -n 10, -d 0 [62]) resulting in 459,176 nonredundant cow gut metagenome
“database” sequences. Human gut-associated sequences were assessed based on comparisons of short
reads against the Integrated Gene Catalog (IGC) of human gut microbiome genes (39), here referred to
as Human Gut Database (HG) for clarity. The abundance of cow and human gut signals in the short-read
metagenomes was determined based on the number of reads from each data set matching these
reference sequences using blastn v2.2.29 with a filtering cutoff of �95% identity and �90% query length
coverage. Due to undersampling of the total community diversity at our sequencing depth, these more
comprehensive whole-gut-microbiome databases were preferred over a specific suite of biomarkers for
anthropogenic pollution, which are less likely to be detected in the metagenomes by chance than in the
whole cow or human gut microbiome.

(vi) Abundance of specific antibiotic resistance and production genes using ROCker. Dynamic
filtering cutoff models targeting a tetracycline resistance gene (tetM) and two antibiotic production
genes (oxyT and KS�) were designed with ROCker v1.3.1, as previously described (34). Reference
sequences for model building were manually selected from public databases, and models were built for
150-bp reads and default parameters. The reference sequences and ROCker models are available at
http://enve-omics.ce.gatech.edu/rocker/models. Short reads were searched against the reference se-
quences used to build the model with blastx. The ROCker models were used to filter matches, which were
subsequently divided by the median reference gene length in order to calculate sequencing coverage
and were then normalized for genome equivalents as described below. Correlation between abundances
of antibiotic production and resistance genes was determined using linear regression.

(vii) Quantification of genome equivalents. Average genome size and genome sequencing depth
(i.e., the average sequencing depth of single-copy genes) were determined for each sample using
MicrobeCensus v1.0.6 with default parameters (63). The sequencing depth of reference genes with a
given annotation was estimated for each data set (in reads/base pairs) and then divided by the
corresponding average genome sequencing depth and summed to give the total GEs per sample.
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(viii) MASH and multivariate analysis. MASH v1.0.2 (64) was used to assess overall whole-
community similarity among metagenomes in a reference database-independent approach (option -s
100000). Functional gene and 16S rRNA gene-based OTU count matrices were median normalized using
the R package DESeq2 (v.1.16.1 [65]). Pairwise Bray-Curtis and weighted UniFrac (16S only) dissimilarity
indexes of the normalized counts were used for principal-component analysis (PCA) and nonmetric
multidimensional scaling (NMDS) analysis in order to assess whole-community gene functional and
taxonomic (16S rRNA gene OTUs) similarity. The significance of metadata parameters on the NMDS
ordinations was determined using the ecodist and envfit functions of the R package vegan v2.4.4 (indices
included location, sampling time, ddPCR counts for STEC, same day precipitation, 5-day precipitation,
solar radiation, air temperature, soil temperature, and humidity). The two west Salinas samples (WS1 and
WS2) were excluded from this analysis in order to minimize confounding variation of temporal and
spatial differences. To control for spatial variance, a more rigorous distance-based redundancy analysis
(db-RDA) (31) was used to investigate the correlation to metadata using the capscale function in the R
package vegan (including same indices as described above, but with condition [location] constraint on
ordinations).

(ix) In silico detection of E. coli in sample metagenomes. The presence of any E. coli in the
metagenomes was determined using a blastn search of short reads against an STEC reference genome
(GenBank accession no. NC_002695) that had been filtered to remove nondiagnostic (i.e., highly
conserved among phyla) regions with MyTaxa (66). Only matches with nucleotide identity �95% and
alignment length �97% were used to calculate relative abundance of E. coli in the metagenomes. This
level of sequence diversity (nucleotide identity �95%) encompasses well the diversity within the E.
coli-Shigella sp. group; thus, any E. coli populations present in the metagenomes at high enough
abundance would be detected at this filtering cutoff. The best hit output from blastn was also analyzed
with imGLAD (32), a tool that can estimate the probability of presence and limit of detection of a
reference/target genome in a metagenome.

(x) Determination of differentially abundant taxa and gene functions. Functional annotations of
the recovered protein sequences were summarized into several hierarchical ranks, including metabolic
pathways and individual protein families based on the SEED classification system (67). The 16S rRNA gene
OTUs were placed into taxonomic groups based on the lowest rank of taxonomic classification (genus,
family, etc.) shared by 90% or more of the sequences within the OTU using MacQiime v.1.9.1 (53). DA
functional annotation terms (subsystems) or OTUs were identified in samples grouped by location (e.g.,
pairwise comparison of all 10 TOWOSR versus all 10 GABOSR and versus all 7 upstream “pristine control”
sites) using the negative binomial test and false-discovery rate (Padj 	 0.05) as implemented in DESeq2
v1.16.1 (65). Subsystems with a Log2 fold change (L2FC) of �1 or taxa with L2FC of �2 were manually
grouped into broader categories based on known functional or taxonomic similarities, respectively (Fig.
3 and S7), which were then normalized by library size (per million read library). A larger L2FC cutoff was
used for taxa to account for the larger data set size and allow for inspection of the taxa contributing most
to differential abundance between the locations. The taxonomic assignment of these DA taxa was
confirmed against the SILVA database (downloaded October 2018 [68]). Each subsystem or taxonomic
category was then divided by its average sequencing depth across all samples to provide unbiased
counts for presentation purposes.

(xi) Comparison of putative anthropogenic signals observed in California sediments to meta-
genomes from other environments. Publicly available metagenomes from other studies were used to
compare abundances of reads annotated as ARG, HG, and cow gut with the results obtained for the
California sediment data sets reported here. These metagenomes included three Montana River sedi-
ments (MT) (21), two temperate agricultural soils from Illinois (Hav and Urb) (69), an Alaskan tundra soil
(AK) (70), one sample from the Ganges River near Agra, Uttar Pradesh (47), and one from the Kalamas
River in Greece (Kal) (41). Short-read metagenomes for MT samples were downloaded from MG-RAST (71)
(MG-RAST IDs 4481974.3, 4481983.3, and 4481956.3). The remaining data sets were obtained from the
NCBI short read archive (SRA) database (Hav, ERR1939174; Urb, ERR1939274; AK, ERR1035437; Agra,
SRR6337690; Kal, SRR3098772). Reads from these metagenomes were comparable to the ones from this
study (100- to 150-bp paired-end Illumina sequencing) and underwent the same trimming, annotation
(against the CARD, HG, and cow gut databases only), and gene count normalization protocol as described
above. The Kruskal-Wallis test in R was performed to determine significantly different mean abundances
between groups. Alpha diversity and taxonomic comparisons were performed (for MT data sets only)
based on metagenomic reads containing fragments of the 16S rRNA gene, which were identified as
described above.

Data availability. Short reads for both the cow gut and CA sediment metagenomes have been
deposited in the SRA database (submission IDs PRJNA545149 and PRJNA545542, respectively).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
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