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Fig. 12.  Solution of stochastic MISOCP GIS-based FR for the large system.
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Fig. 13.  Total simulation time for different numbers of clustered scenarios.

optimal objective function value is $13.156M, and the optimal
FR plan is shown in Fig. 12.

The simulation time depends on the number of clustered
scenarios. The simulation time with respect to different numbers
of clustered scenarios is shown in Fig. 13. For a number of
clustered scenarios larger than 50, the solver did not provide
a feasible solution after 100,000 seconds of computing time.
However, as it can be observed in Fig. 11, a number of clustered
scenarios (K value) that provides sufficient accuracy is 14. The
total simulation time for 14 clustered scenarios is 56.5 minutes.
Therefore, the proposed GIS-based FR has reasonable runtime
for real-size systems.

VII. CONCLUSION

This paper proposes a novel MISOCP model for feeder rout-
ing using GIS data. Economic objectives, technical constraints,
and geographical restrictions of FR are considered in the pro-
posed model. Additionally, a model for the cost of distribution
feeder resiliency using available GIS data is presented. The
uncertainty of rooftop solar generations and demand forecasting
errors are considered. A stochastic programming-based solution
algorithm is developed to solve this problem. We have shown,

2009

and illustrated by numerical results, that incorporating GIS data
leads to a better (less expensive) FR solution. While the cost of
the FR without GIS nodes in the case study is $0.4275M, it is
$0.4114M for the GIS-based model. We numerically show that
linearizing economic characteristics of individual conductors
leads to a reasonable simulation time even for real-size sys-
tems (i.e., around 10 min for the case study). Furthermore, the
presence of geographical obstacles leads to extra routing cost (by
1.06% in the case study) while it reduces the required simulation
time by 68% (in the case study). In addition, considering the
cost of resiliency, the proposed algorithm chooses to install
feeders that are closer to the RMC node to take into account
the resiliency target. Finally, numerical studies on a large test
system illustrate that the proposed GIS-based FR has reasonable
runtime for real-size systems.
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Fig. 9. Realistic test system: (a) GIS map, (b) Case 1, (c) Case 2 (solid lines)/
Case 3 (dashed lines).

10 $/kWh, respectively. As illustrated in Fig. 9(c), the optimal
planning configuration is different from that in case 2. To en-
hance the network resiliency, feeders marked with dashed lines
are installed instead of feeders marked with crosses. The optimal
objective function value is $2.049M, from which $1.524M is
the investment cost and $0.525M is the cost of resiliency. The
proposed algorithm chooses to install feeders that are closer to
the RMC node to take into account the resiliency target. This
changes the system configuration and increases the investment
cost. Figure 10 shows the expected voltages and the voltage
ranges for the ten final scenarios.
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Fig. 11. Total within-cluster sum of squared distances for different numbers
of clusters of K-means—++-.

C. Large Test System

A large test system is constructed and used to investigate the
scalability of the proposed solution algorithm. Thirty demand
points are randomly located on a GIS map including 64 x 64 =
4096 GIS nodes. Considering the typical electric pole distance
in rural areas of 300 feet (distance between two adjacent GIS
nodes), this test system covers an area of 13.23 square miles.
Hence, the system is sufficiently large to be considered as a
real-size system. We assume that each load point includes a
solar photovoltaic system with a capacity (kWp) equal to 10%
of the annual peak load. We consider the same data used in the
previous test systems. The linearized economic characteristics
of components and the procedure for finding the final clusters of
scenarios discussed in case 4 of the small test system are used for
this case study. Given 10,000 initial scenarios, the K-means++
method is applied to cluster these scenarios [28]. Considering
the total within-cluster sum of squared distances in the elbow
method [29], the final number of clusters (K value) is set to 14.
The total within-cluster sum of squared distances in the elbow
method measures the compactness of the clustering, and it is
desired to be as small as possible. The total within-cluster sum of
squared distances with respect to different K values are depicted
in Fig. 11. It can be observed that for K values greater than 14,
the total within-cluster sum of squared distances does not change
significantly.

Considering 14 scenarios, the proposed stochastic MISOCP
GIS-based FR with a linear objective function is solved. The
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Fig. 8. Expected voltages with the tolerance of ten final scenarios (Case 4). TABLE 11

loss of generality, the elevation of all GIS nodes is assumed to
be the same. Four cases are considered.

Case 1: FR model without GIS nodes. Ignoring GIS nodes,
only eight electrical nodes remain, seven load points plus the
substation node. We perform a complete enumeration to find
the global optimal solution of this FR problem. The simulation
time for performing such complete enumeration is high and not
comparable with the solution time required by standard solvers.
However, carrying out a complete enumeration ensures the
global optimality of the solution. The total number of possible
trees (radial configurations) on |V| vertices is calculated by
Cayley’s formula as [V|(V1=2), which result in 8¢ = 262, 144
possible radial configurations. Given the system structure, the
FR problem is simplified to a minimum flow problem with
a quadratic cost for each possible configuration. The optimal
planning configuration shown in Fig. 7(b) is obtained with an
objective function of $0.4275M.

Case 2: The proposed MISOCP model is solved using Gurobi.
The objective function is not linearized in this case. The optimum
planning configuration is shown in Fig. 7(c), and the objective
function is $0.4114M.

Case 3: The proposed MISOCP model is solved. Economic
characteristics for each conductor are linearized into five equal
segments. The optimum planning configuration is the same as
that of case 2.

Case 4: The stochastic MISOCP model with linearized ob-
jective function is solved. The power law distribution given by
(39) is used for probabilistic net load forecasting.

—Q
p(x) = a-l (x) for x> Tmin (39)
Lmin Lmin

MLE and Kolmogorov-Smirnov tests are used for parame-
ter estimation (zpyin = 1564, o = 37.11). After obtaining the
distribution function, 10,000 scenarios are generated. The
K-means++ method is applied to cluster these scenarios into ten
final scenarios [28]. The optimal planning configuration is the
same as that in case 3. However, the objective function increases
to $0.4201M due to the presence of uncertainties. The expected
voltages of load nodes for the ten final scenarios are shown in
Fig. 8. All voltages are within the permissible limit.

1) Comparison of Results: The objective functions of all four
cases and the total simulation times are presented in Table I. The

LARGE-SCALE TEST SYSTEM RESULTS

Optimal objective  Simulation time

Stochastic MIP models

function (M$) (min)
Case 1: GIS-based FR without obstacles 1.499 32
Case 2: GIS-based FR with obstacles 1.515 10.1
Case 3: Resilient GIS-based FR with obstacles 1.524+0.525=2.049 9.5

objective function of case 2 is smaller than that of case 1. That
is, considering GIS nodes reduces the FR cost. Furthermore,
linearizing the cost functions improves the solution time signifi-
cantly, which apparent comparing cases 2 and 3. Modeling load
forecasting errors and uncertainty of rooftop solar generations
in case 4 leads to a higher variable cost (cost of losses), while
the investment cost remains unchanged due to the small size of
the system.

B. Realistic Test System

The realistic case study presented in [6] is considered here to
illustrate the effect of modeling resiliency and the presence of
geographical obstacles in the FR problem. The forecast annual
peak demand for each load node is given in Fig. 9(a). We assume
that each load point includes a solar photovoltaic system with a
size (kWp) of 10% of the annual peak load and with the same
data used in the previous test system. Three cases are studied
considering the same linearized economic characteristics and
the same procedure for finding the final clusters of scenarios
discussed in case 4 of the small test system. According to
simulation results, to keep the system reliable, the minimum
number of feeders starting from the substation node needs to be
two (i.e., F' = 2) for all three cases.

While the presence of obstacles is ignored is case 1, these
obstacles are considered in case 2. The optimal objective func-
tion and total simulation times are provided in Table II. The
optimal objective function values for cases 1 and 2 are $1.499M
and $1.515M, respectively, and the optimal planning configu-
rations are shown in Figs. 9(b) and (c) with solid lines. The
investment cost in the presence of obstacles is higher because
the geographical alternatives are more restricted. However, the
simulation time of case 2 is smaller since this case includes 25%
fewer binary variables as compared to case 1.

In case 3, the cost of resiliency and the presence of obstacles
are considered. The values of average repair time, average speed
to repair, and VoLL are 5 hours, 20 miles per hours, and
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and the null hypothesis is rejected [24]. We apply the approach
presented in [23], and after estimating the power law distri-
bution for each demand, a large enough number of scenarios
is generated. Then, only a limited number of non-redundant
scenarios are considered. A multivariate K-means algorithm
is applied to reduce the number of scenarios generated into
multiple groups. This reduces the computational burden of the
problem while keeping an acceptable level of accuracy. K-means
is a model-free method for data clustering and partitioning.
K-means is compared with alternative techniques for scenario
reduction in [25]. Additionally, [26] and [27] use K-means to
reduce scenarios in transmission expansion planning problems.
Here, to alleviate the dependency of the K-means algorithm to
the initial centroids, we apply an initialization approach, called
K-means++, that is proven to work better than K-means [28].
To find the optimal number of clusters (K value), different
approaches are presented in the literature, such as the elbow
method [29], the Silhouette method [30], and the gap statistic
method [31]. We have used the elbow method for numerical
studies.

Step 5 (solving MISOCP model): The proposed stochastic
MISOCP model is solved: minimize (38) subject to (15), (16),
(19)-(22), (24)—(32), (34), and (35).

Steps 67 (reliability evaluation): Using the obtained FR
solution, reliability indices are calculated. If the indices are not
good enough, the reliability violation is corrected by increasing
the minimum degree of the substation node (i.e., parameter F').

B. On Computational Complexity

One might be concerned with the fact that the proposed model
is impractical as it includes a large number of binary variables.
We provide the following discussion on the computational com-
plexity of the proposed method to address this concern:

® The GIS-based FR problem is NP-hard. That is, there is no
guarantee that it can be solved within a reasonable solution
time if the size of the problem grows up significantly.
However, as illustrated in the Numerical Results section,
the solution time is acceptable for real-world systems.

e Parallel processing might be a practical solution for in-
tractable instances.

e For realistic cases, a considerable number of binary vari-
ables are known in advance due to existing edges and
geographical barriers. This is particularly so in urban areas.

® Some parameters of the model can be adjusted to provide
an acceptable tradeoff between solution time and accuracy
level, e.g., the optimality gap of the solver, the number of
segments of the piecewise linear approximations, and the
number of GIS points (GIS resolution). These parameters
can be set to appropriate values to reduce the solution time
for large-scale problems.

® One additional criterion that could be considered for deter-
mining the GIS resolution is the distance between poles. It
does not generally make sense to have a resolution in which
the distance between GIS nodes is less than the standard
distance between two neighboring poles.
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VI. NUMERICAL RESULTS

The proposed algorithm is tested on three case studies: a small
test system, a realistic one, and a synthetic large test system. A
nominal voltage of V' = 20 kV is assumed, and the permissible
voltage range is 0.95 to 1.05 per unit. Four types of candidate
conductors are selected with economic characteristics shown
in Fig. 4. Admittances of the conductors, ACSR-16, ACSR-35,
ACSR-50, and ACSR-95, are 0.317-j0.065, 0.63-j0.268, 0.81-
j0.486, and 0.989-j1.038 siemens, respectively. All problems are
solved using Gurobi 8.1 under GAMS [32]. A computer with an
Intel(R) Xeon(R) CPU @2.6 GHz, including eight cores and
16 GB of RAM, is used for simulations.

A. Small Test System

This test system is used to illustrate the impact of including
GIS nodes and to evaluate the presence of uncertainties in the
FR problem. The test system is shown in Fig. 7(a). The annual
peak load of each load point is depicted in the figure, and the cost
of resiliency is ignored [6]. It is assumed that each load point
includes a solar photovoltaic system with a capacity (kWp) of
10% of the annual peak load. The data of solar generations are
obtained from the Ausgrid study on 300 solar homes from July
2010 to June 2013 [33]. For the sake of simplicity and without
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Fig. 5. Illustration of the resiliency concept used in this paper.

a disruption event is provided in Fig. 5. The grid resiliency can
be improved by reducing the magnitude of the event and the
restoration time.

We introduce below an economic resiliency metric that can be
included in the proposed GIS-based FR model. Our resiliency
metric directly relies on the resiliency concept as shown in
Fig. 5. That is, no specific disruption is considered, but its
consequences. Note that it is common to add costs pertaining
to future disruptions (e.g., a penalty cost for violating the NV — 1
security criterion and a cost for lack of resiliency) to the objective
function of a planning problem to ensure obtaining reliable net-
work proposals [20]. The consistency of the exact geographical
locations of power system components and the GIS nodes is
taken into account in the metric definition. Knowing which GIS
nodes correspond to the geographical location of the repair and
maintenance centers (RMCs), the restoration time for edge (¢, j)
is given by (36). The restoration time depends on the distance of
edge (4, ) to the closest RMC, the average speed of the repair
team, the required time to repair edge (i, j) and availability of
nearby components. The total resiliency cost of the system is cal-
culated by (37). The magnitude of the outage is modeled by the
MW flow carried by the conductor installed (£} . ). Note that
the restoration time for each edge is considered known, and that
the value of lost load (VoL L), in dollars per MWh, is assumed to
be known [21]. The constant coefficient VoL L, i.e., the cost of
unserved energy, is used to express the resiliency cost in dollars
(.. 7ij (h) X VOLL(5555) X B0 ,(MW) = Cpes(8)).

B Distance from the closest RMC

Tij = Average speed of repair team
-+ Repair time of edge (i) (36)
Cres= Y. 3.3 perij.VoLLP; .~ (37)

(i,4,c)e€ s€S Vv

To minimize the resiliency cost of the planned network, (37) is
added to the objective function of the FR problem. The objective
function of the resilient GIS-based FR problem is given by (38).

min E {dij.a,ij7(:.1ij7c

(i,4,c)e€

+ Z Z ps(d” Mij,cy + Tij~V0LL)~Pi8j,c7»y} (38)
seS Yy
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Fig. 6.

Finally, to solve the resilient GIS-based FR, objective function
(38) is minimized subject to (15), (16), (19)—(22), (24)—(32),
(34), and (35).

V. SOLUTION ALGORITHM

A. Solution Steps

The flowchart of the proposed solution algorithm for the GIS-
based FR problem is shown in Fig. 6.

Step 1: The first step is to map the graph to the system’s
GIS image with the desired resolution level, i.e., number of
points in the representing graph. Geographical mapping and
map rasterizing techniques have been previously studied using
sophisticated techniques [7] and [22]. However, for the sake of
simplicity and without loss of generality, the representing graph
of Fig. 3 is mapped to the GIS image so that most electrical
nodes are covered by GIS nodes. Each electrical node that is
not covered by a GIS node is associated with its closest GIS
node.

Steps 2—4 (uncertainty modeling): Historical data of load and
PV generation for each load point is obtained. A probabilistic
load forecasting technique is applied to find a pdf that is the
best fit for the net load. As experimentally shown in [23],
the daily peak load of distribution feeders follows a power
law distribution. Parameters of the power law distribution are
obtained using a maximum likelihood estimator (MLE) and a
Kolmogorov-Smirnov test, while the uncertainty of the model
is quantified by a bootstrapping method. Having the null hy-
pothesis of the test as “the observed data follow the power law
distribution”, the p-value is greater than the significance level of
the test. This means that the null hypothesis cannot be rejected.
However, for other distributions, e.g., exponential, gamma, and
lognormal, the p-value will be smaller than the significance level,
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It should be noted that the constraints of the proposed model
must be satisfied for all possible realizations. The nodal power
balance for each GIS node (or vertex) is enforced by (15) and
(16). Parameter PD?/ QD7 is the forecast peak value of the net
active/reactive power demand connected to vertex ¢ in scenario
s. Conic expressions of the power flow constraints are given by
(17)—(19). The constraints of conic variables must be satisfied
as shown in (20) and (21) [9]. Permissible voltage constraints,
maximum thermal limit of conductors, and capacity limit for
each conductor are given by (22), (23) and (24), respectively.
Constraint (25) enforces that only one conductor from a set of
parallel conductors can be selected. The minimum number of
feeders starting from the substation node is restricted by (26).
Since the reliability of the planned distribution network increases
by increasing the number of feeders leaving the substation node
[18], parameter F is used to achieve the required reliability level.
Parameter F is initialized to one and then iteratively increased to
reach the required reliability level. Since the typical number of
feeders leaving a substation node (the actual value of parameter
F) is limited, e.g., less than eight as presented in [15], few
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iterations would be enough to reach the required reliability level.
If it is not possible to reach the required reliability level, the
planner might need to add new substations. Definitions of binary
variables are stated in (27). The value of PD; is positive for
load points, and negative for the substation node as indicated by
(28).

The product of binary and continuous variables in (17) and
(18) make the model nonlinear. We replace (17) and (18) with
their equivalent linear constraints (29)—(32) using a disjunctive
technique and Big-M values (M;; .):

ZJ c (\/> Gl] Cu Gl] CR:] c + Bi] CL;y c)

+ Mij,c- (1 — Iij,c) > 0; (i,j, C) S 8, se s 29)
P, - (\f Gijeul — Gy o Ry + Bij oL, 0)

— Mij,c- (1 — Iij,c) § 0; (i,j,C) € 5, seS (30)
ZJ c (\/> Bl] Ui BZJ CRZSJ c Gl] ch] c)

+ Mijc. (1= 1ijc) > 0; (4,5,c) €&, s€ S 31
ZJ c (\f Bij.cui — Bij, CR’f] c— Gije ij c)

— Mije. (1= Lije) <0; (i,5,c) €€, s€5  (32)

The proposed model includes a large number of binary
variables, which is equal to the number of edges (|€]) of the
representing graph. Solving models including a large number of
binary variables using standard solvers might be time consuming
or infeasible. Therefore, deriving a more tractable version of the
GIS-based FR problem is desirable. With this purpose, we apply
a piecewise linear approximation of the economic cost curves
of conductors using an equal segmentation technique. Other
linearization techniques are also possible [19]. The proposed
linearized objective function is:

min Z {dij.aijﬁ.fij,c + Z Zpgdm mij,(!,’Y'PiSj,c,’y}

(i,5,c)€€ s€S Yy
(33)

Z zgc,'y; Zj7c)€(€,ses (34)

0< P, <P 1ije; (i,5,¢) €€, s€8, Vy (35)

where m;; ., is the slope of segment «y of the cost curve, and
P . 1s a continuous variable for active power flow in edge
(4, j, ¢) corresponding to segment - in scenario s. We note that

(34) is added to the model, and (23) is replaced by (35).

D. Resiliency Modelling for GIS-Based FR

The main objective of grid resiliency is to reduce the mag-
nitude of undesirable events and alleviate its consequences that
result in disruptions. These consequences are closely related to
power delivery and grid operation. Therefore, most of the perfor-
mance metrics defined for resiliency modeling are consequence-
based metrics [4]. A simple illustration of the three stages (i.e.,
normal, disruption, and restoration) of system operation during
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Fig. 4.  Economic characteristics of four conductors.

we = ay + b.P? ($/mile) (7)

The total cost for each conductor in terms of peak load is a
quadratic function. As shown in Fig. 4, four quadratic curves,
corresponding to different conductors, intersect with each other.
That is, for a specific peak load, there is only one type of
conductor that results in minimum cost [15]. In other words,
the economic loading limit of a conductor, which is always less
than its thermal loading limit, is at the intersecting point of its
curve and the curve of the next larger conductor. For instance,
ACSR-16 is the optimal conductor size for peak loads less than
0.61 MW, and ACSR-95 is the optimal conductor size for peak
loads higher than 1.97 MW.

B. SOCP Model for Power Flow

Considering two adjacent nodes 7 and j connected through
one conductor, the active and reactive power flow through the
conductor can be calculated by (8) and (9).

Pij = Gijvf - GZ]V;V} COS Gij + BUV;‘/] Sinﬁij (8)
Qij = Bij‘/f - B”V;ij COS Qij — G”V;ij sinﬁij (9)

where V; and 6; are voltage magnitude and angle at node 1,
Y;; = Gij — jB;; is series admittance of conductor ij, and
0;; = 0; — 0;. The sufficient conditions under which the SOCP
relaxation is exact for branch flow models of radial distribu-
tion systems are discussed in [16]. Since these conditions hold
for most practical power distribution systems, (8) and (9) can
be expressed as conic constraints (10)—(12) [9]. By defining
U; = V;Q/\/ﬁ 3Rij = V; V} COS@ij, and Lij = V; V} sin@ij, (8)
and (9) are rewritten as (10)—(12).

Pij = V2 Giju; — GijRij + Bij Ly (10)
Qij - \@ Bi]‘ui — Binij — GijLij (11)
2usu; > (Rij)® + (Lij)° (12)

Note that the linear constraints (10) and (11) along with the
rotated quadratic cone (12) are a set of convex constraints, which
are computationally efficient.

Incorporating the representing graph of Fig. 3 in the FR model
ensures radiality of the network. Hence, there is no need to add
any radiality constraints in the model and therefore SOCP is an
exact relaxation of the full AC power flow.
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C. Stochastic MISOCP Model for GIS-Based FR

Having economic curves of different conductors and the pro-
posed graph shown in Fig. 3, the stochastic MISOCP model of
the GIS-based FR problem is described below. The objective
function is modeled as (13).

min Z {dij.aij,c.lij’c + dyj. bij}c.(Pi‘;-’c)Q} (13)

(i,5,c)€€

where indices 7 and j represent GIS nodes. Individual conductors
within a set of parallel conductors are indicated by c. We note
that an edge (i, 7, ¢) belongs to the set of all possible edges
E. Parameter d;; is the distance between GIS nodes 7 and
j. Note that the distances between all pairs of adjacent GIS
nodes are not the same since the geographical elevations of GIS
nodes are different. Parameter b;; . is the variable cost of edge
(i, j, c) obtained by (6). Parameter a;; . is the fixed cost of edge
(i, ,c) calculated by (2) plus additional penalty (positive) or
incentive (negative) costs (i.e.,a = a1 + a2 + a3 + - - - ). These
penalty/incentive costs are defined according to the environmen-
tal condition of each edge. For instance, an edge that is close to
a road should be incentivized since it is comparatively more
accessible for operation and maintenance. On the other hand,
an edge close to a commonly flooded area should be penalized
since it deteriorates the reliability of the FR solution [8]. For
edges that are geographically impossible for installing a line,
the parameter a;; . should be set to a large enough value. For
all other edges, both a;; . and b;; . should be normalized to
improve the efficiency of the solution algorithm. Continuous
decision variable P;; . is the flow of the line installed at edge
(4,7, ¢). Binary variable I;; . represents the installation status
of a candidate conductor at edge (i, 7, ). It is equal to one if
the conductor is installed, and zero otherwise. In addition, for
upgrading an existing system, variables I;; . corresponding to
existing feeders must be set to one.

FR is a long-term expansion planning problem that needs
long-term load and solar generation forecasts. A stochastic
framework is necessary to cope with deviations from forecast
values. There are two types of decisions in the FR problem: here
and now decisions (I;; ), and wait and see decisions (F;; ) that
depends on realization of the stochastic parameters. A two-stage
stochastic optimization model is applied in this situation. We
combine load and solar generation to derive the net load (PD;)
and transform the two-stage stochastic optimization model into
the equivalent deterministic formulation presented in (14)—(32)
(see [17] for more details). The second term of the objective
function is replaced by the expected value of the variable cost,
which is the sum over all possible net load realizations. A finite
number of scenarios (s) with associated weights (ps) is con-
sidered. Note that the summation of weights over all scenarios
must be equal to one (i.e., ZSGS ps = 1).

min Y {dijaijeLije + Es [Q (Pije, )|}
(i,4,c)€E

Es [Q (Pij,ca S)] = Z Z psd%] bijvc'(PiSj@)2

(i,j,c)€E s€S

(14)
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Fig. 3. Representing graph for the GIS-based FR problem: (a) network graph

and (b) possible edges (different conductor size) between two adjacent nodes.

time algorithm to find the solution of the problem. Since the
dependency of the cost of each edge on its energy loss increases
the computational complexity of the problem, it holds that the
GIS-based FR problem is NP-hard. |

Because of the NP-hard nature of the GIS-based FR problem
and the recent progress in integer programming, we propose
a mixed-integer second-order cone programming (MISOCP)
model for the GIS-based FR problem. The proposed MISOCP
model accurately represents power system constraints and the
accuracy of the solution can be measured by the duality gap.

Dynamic programming is not a good option for the GIS-based
FR problem due to two main reasons. First, the principle of
optimality does not hold for the GIS-based FR (Steiner tree)
problem [11]. Therefore, the solution obtained from dynamic
programming for the GIS-based FR problem is just an ap-
proximation. Second, as presented in [6], the accuracy of this
approximation cannot be characterized.

To construct a graph-based model for the GIS-based FR prob-
lem, we propose a representing graph in the Euclidean plane as
shown in Fig. 3(a). Although the representing graph of Fig. 3(a)
is mapped on a two-dimensional Euclidean plane, the elevation
of the vertices is considered in the mathematical model. Consid-
ering this representing graph, the continuous geographical space
can be discretized to nodes (vertices of the representing graph)
and lines (edges of the representing graph) as shown in Fig. 3(a).
This is useful since graph-based models can be constructed
for the FR problem after discretization. The substation node
is located in the center of the graph and is named point zero
(k = 0) (to avoid any confusion with stochastic optimization,
we have used the term “point zero” instead of “stage zero”).
Dashed red lines distinguish other points (k =1, 2, ...). The
specific property of this directed graph is that there is no path
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from farther points to closer ones. Having this feature and
knowing that the optimal solution is a subgraph of the initial
graph, radiality constraint of the solution is guaranteed. This
means that there will be no cycle in the final solution. Each
edge in the representing graph includes parallel candidate paths,
each of which represents a candidate conductor size as depicted
in Fig. 3(b). This is an important feature for modeling the FR
problem in the context of MISOCP.

IV. MATHEMATICAL MISOCP FORMULATION
A. Cost of a Feeder

The total cost of a conductor is divided into three components:
initial installation cost, annual operation and maintenance cost,
and losses. The initial installation cost ¢; is a constant cost to be
paid at the time of building the feeder. This cost differs for differ-
ent conductor sizes [12]. Annual operation and maintenance cost
cog M 1s also higher for larger conductors. The present worth
of this cost with a discount rate d over a period of n years is
calculated by the present worth factor wy given in (1). Thus, the
fixed part of the cost per unit length ($/mile) is modeled as (2).

(I +d)" -1
LT ) M
a1 = ¢; + (w1 X cognm) (2

The variable cost depends on energy losses, which are a
function of the load. This cost increases yearly due to load
growth. For a specific demand for which the peak load in the
first year is P MW, the power factor PF, and the line-to-line
voltage V kV, the required current is calculated by (3). Hence,
for a three-phase line with a resistance of » ohm and an annual
loss factor Ly, the total energy loss per mile for the first year
is calculated by (4). Note that having a fixed power factor, the
annual loss factor, which is the ratio of average loss to actual loss
at the peak load, can be obtained directly from the conductor
resistance and load profile [13].

3
V3 x V.PF
103 x Ly.r.P?

0 =3 xrl*=8760 x 5
(V.PF)

(kWh/mile) (4)

To obtain the cost of energy loss in $/mile for the first year,
(4) is multiplied by the cost of energy e. ($/kWh). Considering
an annual increasing rate o for the peak load, the energy loss
will increase at a rate of = o2 + 20. Therefore, to derive the
present worth of losses with a discount rate of d over a period of
n years, the value of energy loss for the first year is multiplied by
a present worth factor wy [14]. Finally, the total present worth
cost per mile for a specific conductor is calculated by (1)—(7)
considering installation cost and the present worth of operation,
maintenance, and losses.

1+7\"
1_(1+d)

i 5)

Wwo =

103 X Lf.r.ec.w2

b = 8760 x -
(V.PF)

(6)
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Fig. 1. A small segment of a distribution system: illustration of lateral nodes;
(a) without GIS nodes, (b) with GIS nodes.

three electrical nodes. Assume that there is a load at each
electrical node identified by a circle, and that a substation
is located at the electrical node identified by a square. Note
that no other electrical nodes exist in this small segment
of the distribution system. Hence, the solution of the FR
problem is a connection between the load points L1 and
L2 and the substation node. In the case with no GIS nodes
(the space is discretized in a way that only electrical nodes
exist), the optimal solution is shown in Fig. 1(a). However,
with GIS nodes (the space is discretized in a way that
several GIS nodes identified by gray dots exist), the optimal
solution is obtained if the lateral node “M” is located at a
GIS node as depicted in Fig. 1(b). Note that GIS nodes
are assumed to be at the center of GIS pixels, as shown in
Fig. 1(b). Assuming that the solution cost depends only on
the lengths of feeders, it can be concluded that the solution
cost in case (b) with GIS nodes (1 + 2v/2 = 3.83) is better
than that in case (a) without GIS nodes (2 + /5 & 4.24).
Thus, it can be concluded that discretizing the continuous
space without having GIS-nodes reduces the quality of the
solution.

e Multiple right-of-ways between two adjacent electrical
nodes can be defined if GIS nodes are in place. That is, there
are multiple alternatives to connect two adjacent electrical
nodes, each of these alternatives having a specific cost
related to its geographical situation (see Fig. 1). However,
if GIS nodes are not in place, there is only one candidate
path (right-of-way) between two adjacent electrical nodes,
and the feasible design space of the optimization problem
is reduced. By using GIS information, geographical ob-
stacles, high-cost routes, and land ownership issues can be
avoided. Moreover, having alternative paths to connect two
electrical nodes is more realistic and gives more flexibility
to optimization.

e [f GIS nodes are not considered, the cost of FR can be as
high as twice the GIS-based FR optimal cost. This is shown
in Proposition 1.

Definition: Given an undirected graph G = (V, ), a cost
function for each edge, and a partition of V into two sets O and
S, the problem of finding a minimum cost tree that contains all
vertices in O and any subset of the vertices in S is called Steiner
tree problem. If the set of vertices S is empty, and O =V, it is
called minimum spanning tree problem.
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Fig. 2. Illustrative proof for optimality of the GIS-based FR solution.

Proposition 1: 1f the cost of each feeder depends only on its
length, the FR solution without GIS nodes is within a factor of
2 from the GIS-based FR optimal solution.

Proof: If radiality constraints are enforced, the GIS-based
FR problem is equivalent to the Steiner tree problem [10],
while the FR problem without GIS nodes is equivalent to the
minimum spanning tree problem of the corresponding Steiner
tree problem. Therefore, to prove proposition 1, it is sufficient
to show that the cost of the minimum spanning tree problem is
at most twice the cost of its corresponding Steiner tree problem.
To do so, we proceed as follows.

Let us consider the graph in Fig. 2(a) as the optimal Steiner
tree (GIS-based FR) solution, where O = {1, 2, 3, 4}, and
S = {M, N} is the set of GIS nodes. If we double each edge
of this graph, we get an Eulerian graph. An Eulerian graph is a
connected graph including even degree vertices. Using Eulerian
graph properties, we follow that there exists an Eulerian tour
whose cost is twice the optimum Steiner tree cost. The reason
is that in the Eulerian tour (1 = M —2 - M — N — 3 —
N —4— N — M — 1), each edge of the graph shown in
Fig. 2(a) (the optimum Steiner tree) is passed twice. The Eulerian
tour, which includes the vertices in @ and S, is a Hamiltonian
cycle on O. A Hamiltonian cycle is a closed-loop on a graph
where every node is visited exactly once. The corresponding
Hamiltonian cycle is redrawn in Fig. 2(b) in a way that the
cost of path (1 — 2) in Fig. 2(b) is equal to the cost of path
(1 - M — 2) in Fig. 2(a). Removing one optional edge from
the Hamiltonian cycle as shown in Fig. 2(b) results in a minimum
spanning tree of O as shown in Fig. 2(c). Since one edge is
removed, the cost of the minimum spanning tree is at most twice
the optimal Steiner tree cost. Thus, the cost of a minimum span-
ning tree on O (i.e., FR solution without GIS nodes) is between
once and twice the cost of the Steiner tree (i.e., GIS-based FR
solution). This concludes the proof of Proposition 1. |

III. COMPUTATIONAL COMPLEXITY AND DIRECTED
GRAPH REPRESENTATION

In this section, the computational complexity of the GIS-based
FR problem is discussed. Then, a representing directed graph,
including the location of GIS nodes and candidate edges, is
presented.

Proposition 2: If the cost of each feeder depends on its length
and energy loss, the GIS-based FR problem is NP-hard.

Proof: Assume that the cost of each feeder (edge) depends
only on its length. In this case, the GIS-based FR problem is the
Steiner tree problem. It was proven by Karp that the Steiner tree
problem is NP-hard [11]. This means that there is no polynomial
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Multiple factors such as system planning cost, losses, reliability,
voltage quality, and grid resiliency are directly related to the
configuration of the system. The financial justification of a new
expansion plan depends on all these factors, and therefore, they
should be considered in an integral evaluation. Various FR for-
mulations have been presented in the literature. A static concave
nonlinear cost function was used in [2] for radial distribution
system planning. A nonlinear non-differentiable optimization
model for minimizing the FR reliability cost was proposed in
[3]. Due to the complexity of the proposed model, a heuristic
algorithm was used to find a feasible FR solution. In [1], the
total cost of reliability for feeder routing design was considered.
Criteria were developed for improving customer and utility
reliability costs.

One important aspect of FR is the resiliency of the planned
grid that is defined as its ability to continue operating and
delivering power even in low probability events that produce
high disruptions, such as hurricanes, floods, earthquakes, and
cyber-attacks [4]. A grid with low resiliency is vulnerable and
difficult-to-recover when an event occurs. In other words, the
cost of a system with low resiliency is high in the case of an
extreme event. On the other hand, designing a highly resilient
grid might be very expensive. Hence, a tradeoff exists between
grid resiliency and investment costs.

Recently, applications of geographical information system
(GIS) have been extended to distribution system operation and
maintenance [5]. Power distribution systems can be represented
in more detail by taking advantage of GIS. GIS tools can be
further extended to cover distribution systems expansion plan-
ning and feeder routing. The use of GIS tools results in more
effective resiliency analysis since they, for instance, help to
incorporate the exact geographical location of each component
into the expansion planning model. As another advantage, GIS
tools can be used to model the level of accessibility and repair
time of each feeder after an extreme event. This is useful, in
particular, for resiliency modeling.

Despite traditional FR models without GIS data, few works
have been reported on GIS-based feeder routing. To the best of
our knowledge, a GIS-based FR problem was firstly presented
in [6], and a dynamic programming technique was proposed
to solve it. However, since the principle of optimality does not
hold for the GIS-based FR problem, the solution obtained is
an approximation with no accuracy guarantee. Afterward, a
mixed-integer nonlinear programming model was reported in
[7] for spatial power system planning using GIS tools. Unlike
transmission systems, the energy loss in distribution systems
cannot be ignored. Using the DC power flow model reported
in [7] is not appropriate for the FR problem since the variable
cost of feeders (cost of energy losses) cannot be modeled. A
GIS-based methodology was proposed in [8] for transmission
line routing using an analytic hierarchical process. It is important
to note that in all of these references, uncertainties of demand
and renewable energy resources, energy losses, voltage limits,
and resiliency of the planned network are ignored.

In this paper, we propose a stochastic programming model
for the GIS-based resilient feeder routing problem in power
distribution networks. By introducing a representing graph, the
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radiality of the planned network is guaranteed. A second-order
cone programming (SOCP) formulation is used to represent
feeder power flows. Since the goal of a feeder routing problem
is to design a radial distribution system, the developed SOCP
model is exact and provides the same results as those of a full-
AC power flow model [9]. Hence, the proposed SOCP-based
feeder routing model is expected to provide more accurate results
as those provided by a DC power flow-based model or other
approximated linearized mixed-integer programming models.
Using a power law distribution function for generating scenarios
and a K-means algorithm for scenario reduction, we model the
uncertainty pertaining to rooftop solar generations and demand
forecasting errors. The proposed GIS-based resilient FR model
represents investment costs, power losses and resiliency, while
maintaining feasibility regarding voltage limits and reliability.

In addition to the proposed systematic approach for the GIS-
based FR problem using available techniques such as SOCP,
maximum likelihood estimator, bootstrapping method, power
law distribution, and K-means, this paper contributes as follows:

® A proof is provided to show the cost reduction improve-
ment of a GIS-based FR solution with respect to that of an
FR model without GIS data.

® A representing graph including candidate edges for the
GIS-based FR model is proposed. The specific feature of
the proposed graph is that any of its subgraphs is a tree.
Using this representing graph and considering the fact that
the FR solution is a subgraph of the representing graph,
radiality of the planned network is guaranteed. This means
that no radiality constraint is required in the GIS-based FR
model. Moreover, this also means that the SOCP model is
an exact AC power flow model.

e The cost of resiliency of the planned distribution network
is quantified using GIS data. The FR objective function is
augmented with additional cost terms to incorporate the
resiliency component.

The remainder of the paper is organized as follows. The GIS-
based FR model and its advantage are discussed in Section II.
Computational complexity of the GIS-based FR problem and the
proposed representing graph are discussed in Section III. The
mathematical MISOCP formulation and the solution algorithm
are presented in Sections IV and V, respectively. Numerical
results are discussed in Section VI. Concluding remarks are
provided in Section VII.

II. GIS-BASED FEEDER ROUTING

A GIS-based FR model has several advantages over conven-

tional models:

® A GIS-based FR model is comparatively more realistic
due to its capability for representing barriers and obstacles
that are mapped with geographical settings. This benefit is
compatible with representing resiliency aspect.

e If only electrical nodes are considered, laterals (branches
with lower thermal limits that are separated from the main-
line by fuses) are restricted to start from electrical nodes.
This might degrade the FR solution quality. Consider
Fig. 1 that shows a segment of a distribution system with
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Graph-Based Second-Order Cone Programming
Model for Resilient Feeder Routing Using GIS Data

Mahdi Mehrtash ™, Member, IEEE, Amin Kargarian

Abstract—One important task in power distribution system ex-
pansion planning is feeder routing (FR), which is to determine the
optimal route from a medium voltage substation to load points
and the optimal size of the conductors to be installed. This pa-
per proposes a novel graph-based model for the resilient feeder
routing problem using geographical information system (GIS).
We show that incorporating GIS data enhances the FR solution
optimality. Moreover, by introducing a representing graph, radi-
ality of the planned network is guaranteed. A second-order cone
programming (SOCP) model is used to model power flows through
feeders. Since the representing graph ensures radiality, the SOCP
model is exact. The uncertainty of rooftop solar generations and
demand forecasting errors are taken into account, and a stochastic
programming-based solution algorithm is developed. The proposed
model represents practical aspects such as economic objectives
(installation cost, power losses, resiliency), technical constraints
(voltage limits, radiality constraint, reliability), and geographical
constraints. The efficiency of the algorithm is demonstrated using
three case studies: a small test system, a realistic one, and a synthetic
large test system.

Index Terms—Distribution network expansion planning, feeder
routing, geographical information system, resiliency, second-order
cone programming.

NOMENCLATURE

A. Indices and Sets

c Index for conductors.

; Index of sending and receiving nodes of edge (i, j).
Index for scenarios.

Index for segments of cost curves.

Set of all possible edges of the representing graph.
Set of all nodes of the representing graph.

~
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B. Parameters

Qije Fixed cost of conductor ¢ at edge (3, ).
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Series susceptance of edge (1, ).
c; Installation cost.

CO&M Annual operation and maintenance cost.

Cres Total resiliency cost of the system.

dij distance between nodes 7 and j.

e, Cost of energy [$/kWh].

F Minimum number of feeders starting from the sub-
station node

Gij Series conductance of edge (i, 7).

Ly Annual loss factor.

Mije~  Slope of segment «y of the cost curve of conductor c.
M;j e Large enough numbers, called big-M.
PF Power Factor.

PD; Net active load at node 7 in scenario s.
QD; Net reactive load at node 7 in scenario s.
T Resistance of conductors.

S Maximum thermal limit of conductor c.
VoLL  Value of lost load.

Tij Restoration time for edge (4, ).

W1, Wo Present worth factors.

Ds Weight of scenario s.

C. Variables

Variable cost of conductor ¢ at edge (i, 7).

Binary decision variable represents the installation
decision of conductor c at edge (i, ).

l Total energy loss per mile [kWh/mile].

bij.c
Iij,c

Pijec Active power of conductor ¢ at edge (4, j).

Qij.c Reactive power of conductor c at edge (i, ).

R;;, L;; Auxiliary variables for conic AC power flow model.

Uu; Aucxiliary variable of voltage magnitude in conic
model.

Vi Voltage magnitude at node 7.

0; Voltage angle at node 7.

I. INTRODUCTION

OWER distribution networks are key components of the
Pelectricity infrastructure. A distribution network should
have adequate capacity and appropriate design for reliable,
secure, and high-quality electricity delivery to consumers. De-
signing new distribution systems and upgrading existing ones
are required to support load growth.

An important step in distribution expansion planning is feeder
routing (FR) [1]. By definition, FR refers to finding the optimum
radial routes and conductors’ sizes from a medium voltage
substation to residential, commercial, or industrial load points.
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