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Abstract  

Within residences, normative messaging interventions have encouraged households to engage in 

various pro-environmental behaviors. In norm-based intervention campaigns, it is hypothesized 

that more personally relevant reference groups increase norm adherence, thus improving the 

effectiveness of normative messaging interventions. Advanced energy grid infrastructure, such as 

smart meters and cloud computing, enables the creation of highly personalized behavioral 

reference groups in a non-invasive manner by dynamically classifying households into highly 

similar user groups based on usage patterns. Unfortunately, it remains unclear how readily 

available data on household energy use and housing characteristics affect the classification 

performance of dynamic behavioral reference groups. Therefore, this research evaluates the 
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classification performance of dynamic behavioral reference groups using readily available data. 

An energy-cyber-physical system for personalized normative messaging interventions is trained 

and tested using one-year of energy use data from 2,248 households in Holland, Michigan. 

Dynamic behavioral reference group classification proved very accurate, 94.7-95.9% for weekly 

feedback and 89.9-93.1% for monthly feedback using only readily available data. In addition, 

using more historical energy use data contributes to enhancing classification accuracy. Lastly, high 

classification performance for each behavioral reference group is achieved at 97.6% of precision, 

recall and F1-score. With the proposed system, it is possible to dynamically assign highly 

personalized behavioral reference groups to households every billing cycle even if behavioral 

patterns are subject to change. Thus, interveners will be able to deploy personalized normative 

feedback messages on a large scale. 
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1. Introduction 

In the United States, residential buildings account for approximately 21% of all energy expenditure 

and 19% of all carbon dioxide (CO2) emissions, making them a prime target for energy reduction 

strategies [1]. As occupant behaviors substantially influence household energy expenditures, 

behavioral interventions attempting to promote more pro-environmental household behaviors have 

become widespread [2,3]. One advantage of behavior interventions aimed at reducing household 

energy consumption, compared to technological methods (e.g., retrofitting), is that behavioral 

intervention methods are often cost efficient and applicable to most if not all of the residential 

population [4]. 

A wide variety of behavioral intervention methods have been designed and implemented 

to increase pro-environmental behaviors, including reducing home energy use [5]. One prominent 

intervention method for reducing home energy use is behavioral feedback, which is inexpensive 

to implement and has repeatedly been found to be effective at inducing occupants to reduce their 

energy consumption [6-10]. Energy use feedback informs residents of their energy consumption 

(i.e., individual feedback), may be presented in numerous different forms (e.g., power in watts and 

cost [11]), and can include descriptive and/or injunctive normative feedback elements [12,13]. 

Descriptive normative feedback compares a household’s energy consumption to a reference group, 

providing the household with the social norm of the group for home energy consumption. 

Injunctive normative feedback indicates a level of social approval or disapproval of the 

household’s behavior. 

In several previous field experiments, including normative feedback elements on 

messages resulted in energy savings between 5.4% and 8.9% [14,15]. In these studies, normative 

messages were created based on the weekly energy use of nearby households and given to 
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households via a smartphone application. Psychologists hypothesize that when individuals are 

given normative information from more personally relevant reference groups, the persuasiveness 

of the message and norm adherence increases [16,17]. Currently, most normative feedback 

reference groups are based on geographical proximity (e.g., street, city, and distance) or less 

commonly on housing characteristics (e.g., housing size and heating type). Unfortunately, creating 

more personalized reference groups with high degrees in similarity with regards to location, 

behavior, composition, and/or housing characteristics have traditionally required either households’ 

participation to collect the data (e.g., surveys and home energy audits) or prohibitively costly data 

collection. Thus, it has been financially infeasible to use highly personalized normative messages 

on a large scale. 

Recently, the increased deployment of advanced energy grid infrastructure (e.g., smart 

energy meters and cloud computing systems) offers new opportunities to overcome some of these 

limitations. With advanced energy metering technology, it is possible to collect highly granular 

energy consumption data in a non-invasive manner without requiring active participation from 

residents. Highly granular and readily available consumption data can be used to construct home 

energy use profiles for each household. Energy use profiles inherently include information about 

how occupants behave in their home.  These profiles, in conjunction with geographic information 

and basic household information (e.g., housing size) offer new opportunities to generate more 

personally relevant behavioral reference groups for use in normative feedback messaging 

campaigns [18-22]. With the addition of advanced computation systems (e.g., cloud computing), 

interveners can store and process a large volume of energy use data making it possible to develop 

and deploy scalable personalized normative messaging interventions. 

To date, readily available energy use data have been widely used to create representative 
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behavioral patterns of electricity consumers for energy tariff structure modelling [23], building 

energy use prediction [24] and renewable electricity generation [25]. Also, behavioral patterns of 

residential and commercial energy customers have been found to shift energy consumption from 

peak hours to off-peak hours in response to changes in the price of electricity [26-29]. In order to 

isolate unique behavioral patterns, clustering algorithms have been successfully applied across 

numerous studies to categorize the energy use profiles of households into several meaningful 

groups without any prior knowledge of the groups [23,30]. Before conducting a clustering analysis, 

the dimensionality of energy use data is typically reduced to improve clustering performance 

[23,31]. The most widely used data reduction techniques include changing the resolution of energy 

use data (i.e., time interval) [32,33] and projecting the original data into a lower dimensional 

subspace (e.g., principal component analysis [25,34]). Several research efforts have transformed 

the measured time-domain data to a different frequency domain data (e.g., Fourier coefficients 

[35,36] and wavelet coefficients [37,38]) during the data preprocessing step to increase the 

similarity in behavioral patterns of electricity consumers within each group. Once representative 

behavioral pattern groups have been identified from historical energy use data, classifiers assign 

new and existing energy consumers into the identified groups using newly collected consumption 

data and housing characteristics. This classification approach has been applied in personalized 

energy service marketing [39,40] and demand response programs [28]. 

While it has been demonstrated that household can be classified into meaningful groups 

at any given time, the performance of behavioral reference group classification over time remains 

unclear. It is important to understand how classification performs over time as households can 

exhibit different behavioral patterns in different billing cycles. If behavioral reference groups are 

fixed when there are changes in household behaviors over time, norm adherence would be 
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expected to degrade, reducing the effectiveness of the normative messaging interventions. This 

makes it necessary to periodically reassess and reassign household behavioral reference groups. 

Until recently, many studies have created representative behavioral patterns of households 

using readily available energy use data but have not dynamically classified households; in other 

words, they used fixed groups. Clustering households every billing cycle enables interveners to 

provide more personally relevant behavioral reference groups, but also requires the interveners’ 

participation to examine the appropriateness of the identified groups (e.g., difference in behavioral 

patterns between groups). This repetitive clustering processes limits the scalability of the 

intervention. 

To the best of the authors’ knowledge, no studies to date have investigated the performance 

of dynamic behavioral reference group classification using readily available data over time, but 

instead have only considered using fixed groups [41,42]. In the most related attempt, Figueiredo 

et al. [43] proposed an electric energy consumer classifier using real-time meter data and collected 

the data from residential, commercial and industrial customers. In addition, Martinez-Pabon et al. 

[28] trained four different machine learning-based classifiers using smart meter data to predict 

target groups of residential and commercial customers who participate in demand response 

programs. However, as different energy sectors have different data characteristics, which can 

significantly affect the classification performance, it remains unclear how readily available energy 

use data from households affect classification performance. 

To address this gap in the literature, this paper evaluates the classification performance of 

dynamic behavioral reference groups using readily available data. To achieve this objective, we 

propose an energy-cyber-physical system (e-CPS) to identify representative behavioral reference 

groups from historical energy use data and repeatedly classify households into the identified 
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groups as new energy use data are received. To improve the usability of the proposed e-CPS for 

weekly and monthly energy use feedback, its classification accuracy is evaluated for every 

messaging cycle for one year. The proposed e-CPS enables interveners to assign highly 

personalized behavioral reference groups and personalized normative feedback messages to 

households every billing cycle in a scalable and non-invasive manner.  

This paper is organized as follows. First, an e-CPS is developed using data-mining 

techniques in conjunction with readily available energy use data. This is followed by an overview 

of data collection. Then, the clustering and classification results using the proposed e-CPS are 

presented. This is followed by a discussion of the results and conclusions. 

 

2. Energy-Cyber-Physical System for Personalized Normative Messaging Interventions 

This research proposes a non-invasive scalable energy-cyber-physical system (e-CPS) to provide 

households with personalized normative feedback messages every billing cycle. The proposed 

system consists of two physical modules (i.e., data entry and messaging modules) that interact with 

two cyber modules (i.e., identification and classification modules) (Fig. 1). The data entry module 

collects energy consumption and housing characteristics data. Energy data is collected using smart 

metering technology; housing characteristics are collected from public records. Using readily 

available data, the identification module conducts a clustering analysis using one-year of historical 

energy use data to identify representative behavioral reference groups for each season. Next the 

historical data is labeled using the identified groups. The energy profiles of each representative 

group are then stored in a database as daily energy use profiles (i.e., labeled data). The 

classification module trains classifiers using historical daily energy use profiles and then predicts 

the behavioral reference groups for new data (i.e., predict daily energy use profiles for the last 
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billing cycle for each household). Lastly, in the messaging module, the predicted behavioral 

reference groups are used to construct the personalized normative messages. The messages are 

then sent to each household. 

 

 

< Fig. 1. Energy-Cyber-Physical System (e-CPS) for personalized normative messaging 

intervention framework > 

 

In the next section, we provide the details of how the two cyber modules identify 

representative behavioral reference groups and allocate the identified groups to households every 

billing cycle.  

 

2.1 Identification Module 

To find representative behavioral reference groups across all seasons, this module conducts a 

clustering analysis using the previous year’s energy use data and housing characteristics as follows. 

First, historical energy use data and housing characteristics are preprocessed to improve the 

clustering performance. Second, clustering algorithms are applied to the preprocessed data to 

generate k historical daily energy use profile patterns. Third, all the clustering results are evaluated 

in terms of group similarity to identify the optimal number of behavioral reference groups for each 

season. Fourth, the historical data is labeled using the best clustering configuration and then stored 

in a database as daily energy use profiles. 

2.1.1 Data Preprocessing 

First, households are divided into five groups based on their footprint (m2). This makes for more 
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meaningful and relevant normative comparisons since housing size is the most significant 

determinant of household energy use [44]. Square meter data is automatically scraped from public 

records. Households are grouped by size: HS1 (less than 92.9 m2), HS2 (92.9 to 139.2 m2), HS3 

(139.3 to 185.7 m2), HS4 (185.8 to 232.1 m2), and HS5 (232.2 m2 or more). Housing units are 

generally divided into seven housing size categories; however, using seven groups tends to have 

an unequally distributed number of households in each group, leaving some groups with few 

members, so five groups are used [45]. Behavioral reference groups with an insufficient number 

of members undermine the validity of normative comparisons within the group. For this reason, 

housing units with less than 92.9 m2 and more than 232.2 m2 are respectively combined into HS1 

and HS5. 

Next, daily energy use profiles are represented using six-hour intervals corresponding to 

morning (6 AM – 12 PM), afternoon (12 PM – 6 PM), evening (6 PM – 12 AM) and night (12 AM 

– 6 AM). Behavioral reference groups have been found to be the most distinguishable using 

slightly less granular data that represent larger periods (e.g., morning, afternoon, evening, and 

night) [30,46]. Using six-hour intervals for energy use data has the additional benefit of reducing 

data sizes and faster computing times. 

Third, load shapes are extracted from the daily energy use profiles. In order for normative 

messages to be able to induce meaningful reductions in energy consumption, there must be non-

trivial variation in household consumption within the peer reference group. In other words, when 

there is little difference between the norm and high users, there is little possibility for reductions 

in energy use as normative messaging campaigns attempt to get individuals to conform to social 

norms (i.e., reduce from high use to norm use). Therefore, it is important to be able to classify 

individual households by load shapes when they may vary in net consumption (Fig. 2-a). To enable 
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this, three load shape (LS) extraction methods are applied: 

 

< Fig. 2. Daily energy use profile transformation using three load shape extraction methods > 

 

 LS1 (Gradient method): The rate of change in energy consumption (erate) is calculated 

by subtracting the original values of energy consumption (e) between two consecutive 

time points (Fig. 2-b). The original amount of energy ej(i) spent at time i for household 

j is transformed as follows. 

𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∗𝑗𝑗(𝑖𝑖) = 𝑒𝑒𝑗𝑗(𝑖𝑖 + 1) − 𝑒𝑒𝑗𝑗(𝑖𝑖) (1) 

 where, erate*j(i): the gradient in energy consumption at time i for household j, and 

ej(i+1): the original amount of energy consumption at time i+1 for household j. 

 

 LS2 (Normalization method): Normalized energy consumption (enorm) is calculated by 

transforming the original value of energy consumption (e) within a range of zero to 

one (Fig. 2-c). The mathematical terms of enorm*j(i) can be described by Eq 2. 

𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∗𝑗𝑗(𝑖𝑖) =
𝑒𝑒𝑗𝑗(𝑖𝑖) − 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚∗𝑗𝑗

𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚∗𝑗𝑗 − 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚∗𝑗𝑗
 (2) 

where, ej(i): the original amount of energy consumed at time i for household j, emin*j: 

the minimum amount of energy consumption for household j, emax*j: the maximum 

amount of energy consumption for household j. 
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 LS3 (Cumulative method): The cumulative percentage of energy consumption (ecper) 

is calculated by dividing the cumulative energy consumption at each time by the total 

amount of daily energy consumption (Fig. 2-d). The mathematical terms of ecper*j(i) 

can be defined as follows. 

𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗𝑗𝑗(𝑖𝑖) =
𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐∗𝑗𝑗(𝑖𝑖)
𝑒𝑒𝑑𝑑∗𝑗𝑗

× 100 (3) 

where, ecum·j(i): the cumulative amount of energy consumption at time i for household 

j and ed*j: the amount of daily energy consumption for household j. 

 

2.1.2 Application of Clustering Algorithms 

To create representative behavioral reference groups, a hierarchical clustering algorithm (HC) is 

applied to the preprocessed data set. A HC is used instead of the k-means algorithm (KC), a 

commonly used clustering algorithm for categorizing objects into several meaningful groups, for 

two main reasons. First, KC results are dependent on initial cluster centroid position for each 

iteration [47]. Second, several studies have shown that HC performs better than KC at categorizing 

households into several meaningful groups based on similarity in daily energy use patterns [23]. 

The HC clusters data objects by generating a hierarchy of nested partitions, called a 

dendrogram. The HC is implemented in the following four steps. First, a similarity matrix is 

constructed by calculating the distances among all the data objects. Second, each object is 

considered as a cluster. Third, the two clusters that are the closest in distance are merged until the 

total number of clusters reaches to one. Lastly, the dendrogram is cut at a certain level (i.e., k 

clusters) to determine the number of clusters. 

2.1.3 Clustering Performance Evaluation 
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After applying the HC to the preprocessed historical data set, the clustering results are evaluated 

in terms of group similarity to find the best number of behavioral reference groups across all 

seasons. Various clustering evaluation criteria such as Silhouette Index (SI), Davies-Bouldin Index 

(DBI), Cluster Dispersion Indicator (CDI) have been used to determine the best number of groups 

in given datasets. The DBI is selected here due to its robust performance regardless of data 

properties (e.g., monotonicity, noise, density and skewed distributions) [48] and its accepted use 

in the field of residential energy consumer segmentation [23]. The DBI is based on a ratio of sum 

of within-cluster scatter to between-cluster separation [49] and is defined as follows: 

 

𝐷𝐷𝐷𝐷𝐷𝐷 =  
1
𝑘𝑘
�𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗≠𝑖𝑖 �

𝑑𝑑𝚤𝚤� + 𝑑𝑑𝚥𝚥�

𝑑𝑑𝑖𝑖𝑖𝑖
�

𝑘𝑘

𝑖𝑖=1

 (4) 

 

where k: the number of clusters; di: the average distance between all objects in the ith cluster and 

the centroid of the ith cluster; dj: the average distance between all objects in the jth cluster; and dij: 

the distance between the centroids of the ith and jth clusters. A lower DBI value indicates better 

clustering performance. 

 

2.2 Classification Module 

To classify households into one of the identified behavioral reference groups each billing cycle, 

this module performs the following two tasks. First, new and historic energy use data and housing 

characteristics (i.e., readily available data) are preprocessed in the same way as for the 

identification module. Next, we extract load indices as well as load shapes from daily energy use 

profiles for training the classifier. The details of load indices are described in the following section. 
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Second, this module trains and tests classifiers using the preprocessed historical data and then uses 

the trained classifiers every billing cycle to predict which group a household belongs to given their 

new consumption data.  

2.2.1 Data Preprocessing 

For each housing size category, new and historic daily energy use profiles are generated as 

described in the identification module. Then, two types of features (i.e., load shapes and load 

indices) are extracted from the daily energy use profiles since they influence classification 

performance. In general, features are used as input variables during the classifier training process. 

Previous studies to date have extracted load shapes [39] or load indices [39,40,50,51] from daily 

energy use profiles for classifying new electricity customers. Load indices here correspond to 

energy consumption characteristics for the four different time periods of the day and include: load 

factor (i1), off-peak factor (i2), night impact coefficient (i3), lunch impact coefficient (i4), and 

modulation coefficient for off peak hours (i5). The mathematical terms of the load indices can be 

described by the following equations. 

 

𝑖𝑖1 = 𝑃𝑃𝑎𝑎𝑎𝑎.𝑑𝑑𝑑𝑑𝑑𝑑
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.𝑑𝑑𝑑𝑑𝑑𝑑
�  (5) 

 

𝑖𝑖2 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.𝑑𝑑𝑑𝑑𝑑𝑑
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.𝑑𝑑𝑑𝑑𝑑𝑑
�  (6) 

 

𝑖𝑖3 = 1
(3 × 𝑃𝑃𝑎𝑎𝑎𝑎.𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 × 𝑃𝑃𝑎𝑎𝑎𝑎.𝑑𝑑𝑑𝑑𝑑𝑑)�  (7) 
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𝑖𝑖4 = 1
(8 × 𝑃𝑃𝑎𝑎𝑎𝑎.𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ × 𝑃𝑃𝑎𝑎𝑎𝑎.𝑑𝑑𝑑𝑑𝑑𝑑)�  (8) 

 

𝑖𝑖5 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.𝑑𝑑𝑑𝑑𝑑𝑑
𝑃𝑃𝑎𝑎𝑎𝑎.𝑑𝑑𝑑𝑑𝑑𝑑
�  (9) 

where, 𝑃𝑃𝑎𝑎𝑎𝑎.𝑑𝑑𝑑𝑑𝑑𝑑 : average hourly energy consumption, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.𝑑𝑑𝑑𝑑𝑑𝑑 : maximum hourly energy 

consumption, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.𝑑𝑑𝑑𝑑𝑑𝑑: minimum hourly energy consumption, 𝑃𝑃𝑎𝑎𝑎𝑎.𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡: average hourly energy 

consumption from 11 PM to 6 AM, 𝑃𝑃𝑎𝑎𝑎𝑎.𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ: average hourly energy consumption from 12 PM to 

3 PM. The values for each load index are normalized using Min-Max normalization between zero 

and one since features with larger values can dominate other features. 

2.2.2 Classifier Development 

Classifiers are trained and tested using the preprocessed historical data. Since a classifier’s 

performance varies depending on data characteristics, this study applies four standard classifiers 

to assign the identified behavioral reference groups to households. These classifiers have been 

widely used in the field of human activity recognition and are applicable for this objective [52,53]. 

Although state-of-the-art classifiers (i.e., deep learning-based classifiers) are able to solve complex 

classification problems (e.g., image recognition and natural language processing), they require 

significantly large datasets (i.e., a large number of data objects in a high dimensional space) to 

achieve a high classification performance [54]. Considering that households are represented in a 

very low dimensional space (i.e., four load shape features or five load index features), the 

following four traditional classifiers are sufficient to be able to classify new daily energy use 

profiles into the identified behavioral reference groups.  
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The first classifier, decision tree (DT), is a hierarchical model that recursively splits 

landslide conditioning factors into two classes (landslide and non-landslide) in terms of probability 

[55]. The second classifier, discriminant analysis (DA), is a statistical method for discriminating 

between categories of historical data based on the observed characteristics of a certain number of 

samples and discriminant criterion, according to their distance from the categories [56]. The third 

classifier, k-nearest neighbor (KNN), searches for the k most similar data points from the historical 

data to new data [57]. The similarity is typically calculated using distance measures such as 

Euclidean, Cosine, or Minkowski distances. The fourth classifier, support vector machine (SVM), 

uses kernel functions and hyperplanes as a decision boundary to separate historical data into two 

or more classes in a n-dimensional space where n corresponds to the total number of input variables 

[58]. 

During classifier training ten-fold cross validation is used which randomly divides the 

preprocessed historical data into ten folds for training and validation [59]. More specifically, the 

preprocessed historical data are divided into ten parts containing the same number of samples. In 

the first fold, 90% of the preprocessed historical data is used to train the classifiers and the 

remaining 10% is used for testing. In the second fold, the next 10% of the preprocessed historical 

data is used as a test dataset with the remaining 90% used as the training dataset. This process is 

repeated for the remaining eight folds and enhances the robustness of the trained classifiers. 

The trained classifiers are evaluated using test data to identify the best classifier. 

Classification accuracy is the primary measure of classification performance. Classification 

accuracy is the percentage of correctly predicted observations (e.g., predicted vs actual group) with 

respect to the total number of observations (Eq. 10).  This metric has been widely applied for 

classifying electricity customers [28,39,40]. In addition to raw accuracy, recall (Eq. 11), precision 



16 
 

(Eq. 12), and F1-score (Eq. 13) are also used to evaluate the classification performance for each 

class (i.e., behavioral reference group). These metrics are useful when classifiers are trained using 

imbalanced class data (i.e., different percentage of behavioral reference groups) [60,61]. The 

classification performance metrics are calculated using the following equations: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
�𝑡𝑡𝑡𝑡𝑐𝑐

𝑘𝑘

𝑐𝑐=1

 (10) 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 =
𝑡𝑡𝑡𝑡𝑐𝑐

𝑡𝑡𝑡𝑡𝑐𝑐 + 𝑓𝑓𝑓𝑓𝑐𝑐
 (11) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐 =
𝑡𝑡𝑡𝑡𝑐𝑐

𝑡𝑡𝑡𝑡𝑐𝑐 + 𝑓𝑓𝑓𝑓𝑐𝑐
 (12) 

 

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 = 2 ×
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐

 (13) 

where, 𝑡𝑡𝑡𝑡𝑐𝑐 : the number of correctly identified observations for class 𝑐𝑐 , 𝑓𝑓𝑓𝑓𝑐𝑐 : the number of 

incorrectly identified observations for class 𝑐𝑐, 𝑓𝑓𝑓𝑓𝑐𝑐: the number of incorrectly rejected observations 

for class 𝑐𝑐. After the classifier training and testing are complete, the newly collected energy use 

data is used as an input data of the trained classifier every billing cycle to classify households into 

one of the previously identified behavioral reference groups. 

 

3. Data Collection 
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To evaluate the performance of the proposed e-CPS, energy consumption and housing size data 

are collected from 3,000 households in Holland, Michigan. Housing size data is gathered from the 

Holland Board of Public Works (HBPW). Electrical energy consumption data is obtained from 

smart meters at a 15-minute interval from January 1, 2016 through December 31, 2016. Heating 

degree days (HDD) and cooling degree days (CDD) vary substantially by season of the year in 

Holland, MI (Fig. 3). Corresponding to the changes in HDD and CDD during the year, individuals 

exhibited substantially different energy use patterns by season. 

 

< Fig. 3. Heating degree days, cooling degree days and the mean monthly energy use in kWh per 

household > 

 

Of the 3,000 households 503 exhibited abnormal values or had missing data. In addition, 

no information could be collected on the square meter of 319 households. This resulted in 752 

households being excluded from the analysis. In total, 2,248 households are included in the 

analysis (Table 1). 

 

< Table 1. Number of Households by Housing Size > 

 

4. Results 

Using the proposed e-CPS, the performance of behavioral reference group classification is 

evaluated in the MATLAB environment using the Classification Learner Toolbox as follows. First, 

a clustering analysis is performed using one-year of energy use data to find representative 

behavioral reference groups by housing size category. The number of clusters, k, is tested from 



18 
 

two to ten across all housing size categories. The upper bound on the number of clusters is limited 

to ten; with more clusters it increases the chances that each cluster has an insufficient number of 

observations which will lead to invalid normative comparison. The hierarchical clustering 

algorithm is run using Euclidean distance as a metric and Ward linkage.  

Second, the parameterization values of the four different classifiers (i.e., DT, DA, SVM, 

and KNN) can be seen in Table 2. The three DT-based classifiers are trained using a different 

maximum number of branch nodes. For the two DA-based classifiers, different types of 

discriminant functions are considered during its development. The six SVM-based classifiers are 

developed using different combinations of kernel functions and kernel scale. The six KNN-based 

classifiers are trained by adjusting the distance metric, the number of nearest neighbors, and the 

distance weighting function. Using these parameters, a sensitivity analysis is conducted using 

4,000 randomly selected daily energy use profiles from each housing size category to select the 

best parameter values for each classifier. Across all the housing size categories, the best classifiers 

are: KNN1 (76.1%), DT1 (74.3%), DA2 (70.6%), and SVM4 (70.4%) (Fig. 4). 

 

< Table 2. Parameter values for decision tree (DT), discriminant analysis (DA), support vector 

machine (SVM) and k-nearest neighbor (KNN) > 

 

< Fig. 4. Classification accuracy across different parameter values of classifiers (DT: decision 

tree, DA: discriminant analysis, SVM: support vector machine, KNN: k-nearest neighbor) > 

 

Next, each classifier is trained and tested 20 times using all the collected data to improve 

the reliability of the proposed e-CPS. The data is randomly split between training and testing with 
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a 60/40 split. Once the best classifier is identified by accuracy percentage for daily energy use 

profile classification, it is further evaluated for recall, precision, and F1-score. Then, the 

performance of the best classifier is evaluated with changes in the number and type of training data 

because they may significantly affect the classification performance [62-64]. The training/testing 

data split proportions is then evaluated by increasing training to testing ratio from 60/40 to 90/10 

by altering it five percent an iteration. These are respectively identified as TD60, TD65, TD70, 

TD75, TD80, TD85, TD90. The training data is broken down into two varieties: all inclusive (i.e., 

overall training data from the whole year) and seasonal only (i.e., seasonal training data which 

groups data by season). Further, to validate the usability of the trained classifiers for weekly and 

monthly energy use feedback, the predicted values are only considered correct if the predicted 

values are equal to the target values for every day during the entire period.  

 

4.1 Clustering Results 

4.1.1 Clustering Performance by Load Shape Extraction Method 

LS3 produces the lowest average DBI values for the HS1, HS3, HS4 and HS5 of the three load 

shape extraction methods (Fig. 5). However, for the housing group HS2, there is no difference in 

the average values of DBI by load shape extraction method. 

 

< Fig. 5. Average values of Davies-Bouldin Index by load shape extraction method across 

different housing sizes > 

 

4.1.2 Behavioral Reference Group Identification 

Fig. 6 shows a dendrogram of hierarchical clustering algorithms of the collected daily energy use 
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profiles. Five behavioral reference groups are found to be optimal, producing the lowest DBI 

values, for HS1, HS2, HS3 and HS5 (Fig. 7). In housing group HS4, using six reference groups 

performs the best. The daily energy use profiles for the identified behavioral reference groups are 

unique and easily distinguishable (Fig. 8). While households in the Group 1 tend to consume the 

most energy in the afternoon and evening, households in the Group 5 tend to consume the most 

energy in the morning. These energy use profiles also vary by housing size category. 

 

< Fig. 6. A dendrogram of hierarchical clustering algorithm of the collected daily energy use 

profiles > 

 

< Fig. 7. Davies-Bouldin Index by number of clusters across different housing size categories > 

 

< Fig. 8. Typical daily energy use profiles for identified behavioral reference groups across 

different housing size categories > 

 

The frequency of households grouped into each reference group fluctuates with the 

seasons. Group 1 is the most commonly assigned reference group throughout the year (HS1: 32.6-

45.1%, HS2: 36.9-49.3%, HS3: 38.6-56.0%, HS4: 25.7-37.3%, HS5: 33.2-47.9%) (Fig. 9). 

Alternatively, some reference groups are assigned less than 10% of all households at some points 

during the year (HS1: Group 6, HS2: Group 5, HS3: Group 3, HS4: Group 4, HS5: Group 3). 

 

< Fig. 9. Number of daily energy use profiles across different housing size categories > 
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4.2 Classification results 

The KNN1 with load shapes (i.e., KNN1-LS) predicts the most accurate behavioral reference 

groups every day (average classification accuracy: 97.7%) (Fig. 10). The difference between the 

maximum and minimum classification accuracy is relatively low in the KNN1-LS compared to the 

other classifiers. When investigating the average classification accuracy by feature type across the 

different classifiers, load shapes produce higher average classification accuracy than using load 

indices: 95.2% to 44.9% for DT1, 89.4% to 39.3% for DA2, 96.8% to 19.8% for SVM4, 97.7% to 

38.2% for KNN1. The distribution of prediction accuracy is relatively low when the classifiers are 

trained using load shapes. Looking at the average classification accuracy by classifier across the 

different feature types, DT1 has on average the best classification accuracy when using load 

indices (44.9% for DT1-LI vs 39.3% for DA2-LI, 19.8% for SVM4-LI and 38.2% for KNN1-LI). 

When using load shapes, KNN1 produces the most accurate classification results (97.7% for 

KNN1-LS vs 95.2% for DT1-LS, 89.4% for DA2-LS and 96.8% for SVM4-LS). 

 

< Fig. 10. Average classification accuracy by classifier > 

 

Further, KNN1-LS has an average precision of 97.6% and average recall of 97.6% (Fig. 

11). Across all the identified behavioral reference groups, KNN1-LS achieves 97.3 to 97.7% 

precision and 97.3 to 97.7% recall. The F1-score of KNN1-LS is on average 97.6% and ranges 

from 97.3 % to 97.7% depending on the behavioral reference group being scored (Table 3). 

 

< Fig. 11. Precision and Recall of KNN1 for behavioral reference group classification > 
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< Table 3. F1-score of behavioral reference group classification using KNN1 > 

 

Additionally, for KNN1-LS as the percentage of data attributed to the training data 

increases the testing accuracy increases from 97.7% to 98.4% (Fig. 12-a). Looking at the average 

classification accuracy of KNN1-LS by type of training data, higher classification accuracy is 

observed when the KNN1-LS is trained using the complete training dataset regardless of season 

(Winter: 97.6% to 94.1%, Spring: 97.5% to 94.0%, Summer: 97.7% to 94.1%, Fall: 97.6% to 

93.9%) (Fig. 12-b). Also, across the seasons, using overall the complete training dataset has lower 

variance in classification accuracy. 

 

< Fig. 12. Classification accuracy of KNN1-LS by number and type of training data > 

 

The KNN1-LS produces an average prediction accuracy of 94.7 to 95.9% across all the 

billing cycles for weekly feedback (Fig. 13). For the monthly energy use feedback, the average 

classification accuracy of the KNN1-LS ranges from 89.9 to 93.1%. 

 

< Fig. 13. Classification accuracy of KNN1 for weekly and monthly energy use feedback > 

 

5. Discussion 

Training the classifiers with load shapes of daily energy use profiles (i.e., DT1-LS, DA2-LS, 

SVM4-LS, and KNN1-LS) produces the highest levels of classification accuracy. This can be 

explained by the fact that the identified behavioral reference groups are created based on similarity 

in load shapes of daily energy use profiles. Therefore, using load shapes would enable classifiers 
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to better learn about the characteristics of the identified behavioral reference groups during its 

training process and to produce more accurate classification results (i.e., assign more personally 

relevant behavioral reference groups to households). Additionally, classifier performance is 

conditional on feature type. For instance, while DT1 produces the highest classification accuracy 

when using load indices, KNN1 performs the best when using load shapes. These results are in 

line with observations from previous studies which found that classification performance 

significantly differs with data characteristics [39].  

When considering both classifier and feature type, it is clear that training the KNN1 

classifier with load shapes (i.e., KNN1-LS) produces the most accurate behavioral reference group 

predictions. Compared to the other classifiers, the KNN1-LS has higher accuracy as well as a less 

variance (Fig. 10). These results can be explained by the fact that the KNN1-LS classifier searches 

for the nearest neighbor (i.e., the most similar load shapes in historical dataset) that is close in 

distance to the new observations (i.e., new load shapes) and then determines the neighbor’s group 

as a group of new data [57]. As previous studies have achieved between a 74.0-88.3% [39,43] 

classification accuracy using smart meter data and/or survey data, this marks a significant 

improvement in behavioral reference group classification performance (Table 4). 

 

< Table 4. Comparison of classification accuracy between KNN1-LS and other classifiers for 

energy consumer classification > 

 

Moreover, KNN1-LS’s performance is slightly correlated with the percentage of data used 

in the training set (Fig. 12-a). These results align with the previous studies that found increasing 

the proportion of training data accounts for the diversity of data objects (i.e., households) during 
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the classifier training and thus improve classification accuracy [47,62]. Interestingly, training the 

KNN1-LS using the complete dataset produces better classification accuracy than the KNN1-LS 

using the seasonal training dataset (Fig. 12-b). These results do not concur with the previous 

findings that classifiers using a large data do not improve the prediction accuracy due to the usage 

of unnecessary data during its training process [63,64]. This discrepancy may be caused by the fact 

that the seasonal training data has almost the same proportion of behavioral reference groups across 

different seasons (Fig. 9). In other words, the overall training data doesn’t have unnecessary data 

to train the KNN1-LS classifier even though it includes data for all the seasons. 

Throughout the year, using readily available data makes it possible to have high 

classification accuracy over seven-and 28-consecutive day periods (Fig. 13). These results indicate 

that after investigating the most common behavioral patterns for the week or month, interveners 

are able to provide households with dynamically updated highly accurate personalized behavioral 

reference groups every billing cycle. This ability offers a unique opportunity; Ozawa et al. [65] 

suggested that uncommon behavioral patterns for the week or month can be used by households 

to recognize the dates and time when they consume more energy compared to average. 

Consequently, this outlier behavior could also be presented with the normative feedback in an 

attempt to help further promote energy savings behavior. 

The proposed e-CPS has three main limitations in the identification and classification 

modules. First, representative behavioral reference groups from previous years may not be the 

ideal basis for effective normative comparison. This is possibly a limitation as housing 

characteristics can change over time, although widespread changes would likely not occur year to 

year. Therefore, as representative behavioral reference groups are updated periodically (e.g., every 

year), the classifiers should be retrained using the updated historical energy use profiles and groups. 
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Second, the developed classifiers that were identified to be the best may be climate and region 

specific. Without testing additional regions and climates the generalizability of them remains 

limited. In order to develop a generic classifier for all regions additional data from other climate 

regions is required [30]. Alternatively, classifiers for each climate region could be created and 

would likely perform better than a generalized classifier for all regions. Lastly, it is possible that 

imbalanced data classification issues may arise if representative behavioral reference groups are 

unevenly distributed (e.g., 1:100 among two groups); this can significantly compromise the 

performance of most classifiers [66]. In practice, many real-life classifier applications suffer 

having imbalanced data during its training (e.g., insider threat detection in organizations [67], 

medical diagnosis [68], face recognition [69]). Fortunately, significant attention has been applied 

to this problem and many potential solutions exist to balance the distribution of the original data 

(e.g., oversampling) and to modify existing classifiers to alleviate bias towards majority groups 

(e.g., different parameter weights) [70]. 

Future research efforts should investigate how households perceive their behavioral 

reference group, since norm adherence is correlated with identification with the reference group 

[71]. In addition, future work should examine how the time scale of social norm presentation (e.g., 

daily norm, weekly norm and monthly norm) affects households’ actual energy use behaviors. This 

will provide insights into how to better design personalized normative feedback messages. Lastly, 

future studies should investigate how households change once they receive information about other 

group members’ energy consumption. The proposed e-CPS will provide households with highly 

personalized normative feedback messages every billing cycle (e.g., “You used less electricity this 

month compared with the average Night Owl! Night Owls are people who exhibits peak energy 

use behavior late at night.”). Nevertheless, some households may exhibit undesirable behavior 
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changes. For example, Schultz et al. [72] discovered that when residents recognize that they used 

less energy than neighbors (i.e., descriptive norms), they increase energy consumption up to their 

group norms. This adverse effect of descriptive norm messages has been found to be prevented by 

including injunctive norms to the messages (e.g., a smiley face indicating approval of their 

behavior). On the other hand, the benefit of using injunctive norms was not found when normative 

feedback messages were delivered via email [7]. Therefore, it remains is necessary to investigate 

how highly personalized normative feedback messages affect households’ behavior change. 

 

6. Conclusions 

In recent years, normative feedback messaging interventions have been gaining increased interest 

as a cost-efficient means to promote pro-environmental behaviors in residences. In energy use 

normative messaging feedback campaigns, households are given data on their own consumption 

as well the norm consumption of a reference group. Psychologists believe that the more personally 

relevant and meaningful the behavioral reference groups are to the recipient, the more likely the 

recipient is to adhere to the described social norm within it. Integrating homes with sensing, 

communication, and computation technologies enable a means to collect home energy use profiles 

on a grand scale. Categorizing households into meaningful reference groups based on similarities 

in their energy use profiles enables interveners to create more personally relevant normative 

messages. 

This research bridges a gap in the literature on behavioral intervention strategies through 

the development of an energy-cyber-physical system for behavioral reference group classification 

using readily available energy use data. Testing the proposed system, three key results are found. 

First, using readily available energy use data can substantially improve behavioral reference group 
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classification accuracy for weekly and monthly feedback. By using only readily available data, it 

is inherently scalable. Second, using longer histories of energy use data also contributes to 

enhancing the accuracy of classifying behavioral reference groups. Third, using readily available 

data yields high classification performance for each behavioral reference group. 

More accurate classification is expected to increase the personal relevance of normative 

messages and increase norm adherence. This will in turn promote energy saving behaviors among 

residences. Further, the proposed system paves a path for accurate reference group assignment 

dynamically every messaging cycle even when household behaviors are subject to changes. In 

other words, this system permits to deployment of highly personalized normative messaging 

interventions on a large scale in a non-invasive manner. 
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< Fig. 1. Energy-Cyber-Physical System (e-CPS) for personalized normative messaging 

intervention framework > 
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< Fig. 2. Daily energy use profile transformation using three load shape extraction methods 
(LS1: gradient method, LS2: normalization method and LS3: cumulative method) > 

 

  



35 
 

 
< Fig. 3. Heating degree days, cooling degree days and the mean monthly energy use in kWh per 

household > 
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< Fig. 4. Classification accuracy across different parameter values of classifiers (DT: decision 
tree, DA: discriminant analysis, SVM: support vector machine, KNN: k-nearest neighbor) > 
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< Fig. 5. Average values of Davies-Bouldin Index by load shape extraction method across 

different housing sizes (LS1: gradient method, LS2: normalization method and LS3: cumulative 
method) > 
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< Fig. 6. A dendrogram of hierarchical clustering algorithm of the collected daily energy use 
profiles > 
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< Fig. 7. Davies-Bouldin Index by number of clusters across different housing size categories > 
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< Fig. 8. Typical daily energy use profiles for identified behavioral reference groups across 

different housing size categories > 
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< Fig. 9. Number of daily energy use profiles for each behavioral reference group across 

different housing size categories and seasons > 
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< Fig. 10. Average classification accuracy across different feature types by classifier > 
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< Fig. 11. Precision and Recall of KNN1-LS for behavioral reference group classification > 
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< Fig. 12. Classification accuracy of KNN1-LS by number and type of training data > 
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< Fig. 13. Classification accuracy of KNN1-LS for weekly and monthly energy use feedback > 
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< Table 1. Number of Households by Housing Size > 
Housing Size Category # of Households 

HS1 (Less than 92.9 m2) 525 

HS2 (92.9 to 139.2 m2) 1,083 

HS3 (139.3 to 185.7 m2) 435 

HS4 (185.8 to 232.1 m2) 132 

HS5 (232.2 m2 or more) 73 

Total 2,248 
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< Table 2. Parameter values for decision tree (DT), discriminant analysis (DA), support vector 
machine (SVM) and k-nearest neighbor (KNN) > 

Classifier  Parameter setting 

DT DT1 100 branch nodes 

 DT2 20 branch nodes 

 DT3 4 branch nodes 

DA DA1 Linear discriminant analysis 

 DA2 Quadratic discriminant analysis 

SVM SVM1 Linear kernel function, kernel scale = auto 

 SVM2 Polynomial kernel function of order 2, kernel scale = 0 

 SVM3 Polynomial kernel function of order 3, kernel scale = 0 

 SVM4 Gaussian kernel function, kernel scale = 0.5 

 SVM5 Gaussian kernel function, kernel scale = 2 
 SVM6 Gaussian kernel function, kernel scale = 8 

KNN KNN1 Euclidean distance, 1 nearest neighbor, equal distance weighting 

 KNN2 Euclidean distance, 10 nearest neighbors, equal distance weighting 

 KNN3 Euclidean distance, 100 nearest neighbors, equal distance weighting 

 KNN4 Cosine distance, 10 nearest neighbors, equal distance weighting 

 KNN5 Minkowski distance, 10 nearest neighbors, equal distance weighting 

 KNN6 
Euclidean distance, 10 nearest neighbors, square inverse distance 
weighting 
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< Table 3. F1-score of behavioral reference group classification using KNN1-LS > 

Classifier Behavioral Reference Group Average 

 1 2 3 4 5 6  

KNN1 97.5% 97.7% 97.6% 97.6% 97.7% 97.3% 97.6% 

 
 

  



49 
 

< Table 4. Comparison of classification accuracy between KNN1-LS and other classifiers for 
energy consumer classification > 

Classifier Sector Meter Data Survey Data Accuracy 

   Household Housing HVAC Appliance  

KNN1-LS Residential O     97.8% 

Viegas et al. [39] Residential O O O O O 80.8-88.3% 

Figueiredo et al. [43] Multiple O     74~81% 

 
 


