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Abstract: Within residences, normative messaging interventions have been gaining interest as a
cost-effective way to promote energy saving behaviors. Behavioral reference groups are one
important factor in determining the effectiveness of normative messages. More personally relevant
and meaningful groups are likely to promote behavior change. Using readily available energy-use
profiles in a non-invasive manner permits the creation of highly personalized reference groups.
Unfortunately, how data granularity (e.g., minute and hour) and aggregation (e.g., one week and
one month) affect the performance of energy profile-based reference group categorization is not
well understood. This research evaluates reference group categorization performance across
different levels of data granularity and aggregation. We conduct a clustering analysis using one-
year of energy use data from 2,248 households in Holland, Michigan USA. The clustering analysis
reveals that using six-hour intervals results in more personalized energy profile-based reference
groups compared to using more granular data (e.g., 15 minutes). This also minimizes computational
burdens. Further, aggregating energy-use data over all days of twelve weeks increases the group
similarity compared to less aggregated data (e.g., weekdays of twelve weeks). The proposed
categorization framework enables interveners to create personalized and scalable normative
feedback messages.

Keywords: household energy consumption; behavior change; normative feedback; behavioral
reference group; smart meter

1. Introduction

In the United States (US), the residential sector consumes approximately 21% of total energy and
generates 19% of all carbon dioxide (CO:) emissions [1]. Residential energy consumption is
significantly affected by occupant behaviors within their homes [2,3]. As a consequence, numerous
behavioral intervention methods (e.g., education campaigns, goal setting interventions, and energy
saving incentives) aimed at improving occupant energy use behavior have been studied. Recently,
an increasing amount of research has investigated normative messaging interventions, as these
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interventions have been found to reduce overall household energy consumption and are very cost-
effective given its implementation cost (3.3 cents per kWh of electricity saved) [4-7]. Normative
messaging interventions typically provide households with information about their own energy
consumption as well as information about the mean or median energy use of other similar
households. The other households” energy use serves as a descriptive social norm (i.e., a guideline
about how other people behave). People feel social pressure to modify their own behavior to fit that
of the people around them, especially if they feel similar to those other people [8,9]. Thus, a
descriptive social norm that conveys that others are energy efficient can motivate high energy
consumers to reduce their own consumption to match their peers [10]. Yet, descriptive social norms
can also cause low energy users to increase their consumption by giving tacit permission to match
the norm of what their peers are using (i.e., the boomerang effect which refers to unintended
consequences of an attempt to persuade resulting in the adoption of an opposing position instead).
To mitigate the boomerang effect, injunctive norm messages are frequently added to descriptive
normative messages. Injunctive norms convey societal approval or disapproval of a behavior (e.g., a
smiley face indicating desirability of low energy use) and have been effective at mitigating the
boomerang effect [10]. From the perspective of electricity utility companies, using normative
feedback messages helps reduce overall electricity demand, thus avoiding expensive upgrades to
power lines or additional power plant construction. Several large-scale studies in multiple US cities
found that normative feedback messages included in monthly or quarterly bills lead to an
approximate 2% reduction in energy use (1.4% to 3.3% from approximately 600,000 households [11]
and 1.2% to 2.1% from approximately 170,000 households [12]). Even small reductions such as this
on the aggregate can have a tremendous impact on national energy consumption and thus, net CO:
emissions.

With norm-based interventions, researchers hypothesize that as reference groups become more
personally relevant individuals feel a greater sense of attachment to their group. This connection to
the reference group can increase norm adherence and the effectiveness of normative messaging
interventions [8,13]. Practically, reporting more personalized feedback messages is important
because it allows individuals to attend to only what is personally relevant to them [14]. Until recently,
the reference groups in norm-based interventions have been based on geographical proximity (e.g.,
street and city) and/or housing characteristics (e.g., housing size and heating type) [5,11]. Yet these
are not the only characteristics that might inspire feelings of connection between households; other
aspects—like similar lifestyles—may be even more important because of their larger impact on
household energy consumption [15]. Including information about households” lifestyle in
conjunction with geographic and housing characteristics can be used to create more personalized
reference groups. Further, because lifestyle information provides insights into when households
consume energy, using these reference groups can help individuals learn which time periods offer
the most opportunity for them to reduce energy consumption. Nevertheless, more personalized
reference group generation has traditionally not been applied as it has been prohibitively costly
because of the expense of necessary surveys and home energy audits or extensive manual data
collection [16]. Thus, until recently, personalized normative messaging interventions have not been
financially viable on a large scale.

Recent developments and deployment of smart energy metering technology provide new
opportunities for behavioral reference group classification as they collected energy consumption data
in real-time [17]. This permits a non-invasive means to generate residential energy use profiles. As
energy use profiles are largely dependent on how occupants behave at home, households can be
categorized into several normative feedback reference groups based on similar usage patterns [18-
22]. Thus, by integrating the smart energy metering technology with utility billing systems, it is
possible to provide households with the norm of energy profile-based reference groups (i.e., more
personalized reference groups) every billing cycle. Further, the non-invasive data collection process
makes personalized normative messaging interventions scalable. Unfortunately, although using
readily available energy use data permits the creation of personalized normative comparison groups,
there has been little understanding of how data granularity and aggregation affect the group
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categorization performance. In other words, it is still unknown which type of data produces the best
reference groups: groups in which members are the most similar to each other. This is important
because typical behavioral pattern of households can change depending on data granularity and
aggregation, thus causing different categorization results [23,24]. Therefore, the objective of this
research is to evaluate the performance of energy profile-based reference group categorization across
different temporal granularity and aggregation of energy-use data.

2. Related Works on Electric Energy Consumer Categorization

Studies have used readily available energy use data to find representative behavioral patterns
of electric energy consumers for energy tariff structure modelling [24], building energy use prediction
[25], and renewable electricity generation [26]. To find representative behavioral patterns, daily
energy use profiles for individual energy consumers are created and categorized into several
meaningful groups through a clustering analysis. To date, researchers have focused on how profiles
should be preprocessed during the categorization process to create more similar groups based on
behavioral patterns. The preprocessing step includes reducing the dimensionality of the profiles (e.g.,
principal component analysis [26,27]) and/or transforming the profiles (e.g., min-max normalization
[24,28] and frequency domain transformation [29-31]). Further, several studies [24,32] have evaluated
the performance of electric energy consumer categorization across different data reduction methods.

In addition to the wide variety of data reduction and transformation methods, researchers
[23,24] have considered the temporal granularity of energy use data during the categorization process
as it can affect group similarity and the number of group members. Specifically, using highly granular
data provides more specific information about energy use behaviors of individual electricity
consumers and, in turn, will contribute to finding other consumers who are most similar behaviorally
[23,33,34]. In contrast, highly granular data may reduce the number of group members, making it
difficult to create meaningful groups [35,36]. Therefore, the temporal granularity of energy use data
should be considered during the categorization process in order to create meaningful groups based
on behavioral patterns. Until recently, energy use behaviors of residential and commercial electricity
consumers have been represented at a 15-minute [24,28], 30-minute [26,37] or one-hour interval
[38,39]. However, which level of data granularity should be used is still unknown because most
studies did not evaluate the categorization performance across time scales. One study [23] has
investigated how data granularity affects the performance of residential electricity customer
categorization, but was not without limitation as all clustering results are averaged without
accounting for the number of clusters. Since no information is available on the best number of clusters
in given datasets, it is necessary to evaluate the clustering performance across different numbers of
clusters. Song et al. [40] examined different temporal granularity levels of residential energy use data
as well as the number of clusters during the cluster evaluation process, but did not examine the
compound effect of data granularity and aggregation. As a result, it remains unknown which time
scale of energy use data produces the best categorization performance.

Moreover, the temporal aggregation of energy use data during the categorization process may
improve the similarity within group members [24]. In general, data aggregation reduces
discrepancies in energy consumption caused by irregular changes in a household’s lifestyle (e.g.,
vacations), which helps more accurately represent typical energy use behaviors. Particularly, as
typical energy use behaviors are identified and used for normative comparison group categorization,
each household would be categorized into the same energy profile-based groups every intervention
cycle. Thus, considering that individuals are more likely to identify with social groups that do not
change frequently, the data aggregation would help households have a strong identification with the
profile groups. However, data aggregation may not be effective when using long-term data due to
significant seasonal changes in energy use behaviors caused by changing weather conditions [41].
Previous studies aggregated energy use data over one season [32,42] or more than six months [38,43]
to represent typical energy use behaviors of households. Several studies also considered the day
types (e.g., weekdays [32,38] and all days [43]). However, the best practice for data aggregation
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remains unclear as there have been no attempts to compare the clustering performance across
different aggregation levels.

After preprocessing the energy use data, various clustering algorithms have been applied to the
preprocessed dataset to categorize electricity consumers into meaningful groups. The most widely
used clustering algorithms include k-means [37,44], hierarchical clustering [45] and self-organizing
maps [46,47]. Recently, several studies have reported the high capability of mean-shift clustering [48]
and mixture model-based clustering [49] to find representative behavioral patterns of electricity
consumers in non-linear or dense datasets. Further, many studies [43,50] have evaluated the
performance of electricity consumer categorization considering different clustering algorithms
because their performance varies depending on data characteristics. However, less effort has been
undertaken to investigate how clustering algorithms affect the performance of electricity consumer
categorization across different levels of data granularity and aggregation.

3. Behavioral Reference Group Categorization Framework

This research proposes a data mining-based categorization framework using readily available
energy use profiles to classify households into highly personalized behavioral reference groups based
on their behavioral patterns. The proposed categorization framework considers various levels of data
granularity and aggregation while identifying typical behavioral patterns of households. In addition
to energy use behavior, we consider housing size during the categorization process as this contributes
to significant variations in household energy consumption [15]. Because all households within
normative comparison groups exist in the same climate region, any effects of weather on energy
consumption are constant within clusters. By including energy use behaviors in conjunction with
housing size and climate region as variables in clustering, energy profile-based reference groups will
be more valid for normative comparison. Figure 1 describes the main process for creating behavioral
reference groups based on households’ behavioral patterns. First, data for energy consumption and
housing characteristics is preprocessed to improve the clustering performance. Next, clustering
algorithms are used for creating personally meaningful reference groups based on households’
energy use profiles. Lastly, clustering performance is evaluated to determine the ideal number of
behavioral reference groups.

1) Data Preprocessing 2) Application of Clustering
Algorithms
Household Creation of Typical Daily . N
Segmentation Energy Use Profiles LT S | s Sranaes: k-Means
1 ¥ t Clustering
Housing Time Interval sl N/
Size 1 Data Granularity a6 A Gradient in Hi hical
““““““ v 05 v Energy Use » A ICTAICHICH
Fousing 2 ] ; Clustering
Size 2 - R A
L5 /
____________ | ] seif
Housing . 1o 06 Normalized , Organizing
Size 3 0.5 ‘ :: j Energy Use || || +:000 Map
____________ 0.0 0.0 -
Housing 1 6 11 16 21 lteguw 4 .'
Size 4 A 100 Comulati 3) Clustering Performance
q = “umulative Evaluation
------------ Data Aggregation P
Percentage of
Housing Monitoring Period “ E % . G Similarit
Size 5 Day Type 0 nergy Use roup Similarity
‘T s u.a = Computational Time

Figure 1. Data mining-based behavioral reference group categorization framework.

3.1. Data Preprocessing

The data preprocessing begins with separating households by housing size. Since household
energy use is significantly dependent on housing size, comparing energy consumption of household
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with similar size homes makes more valid behavioral reference groups for normative comparison.
Additionally, using public records on housing size permits the creation of behavioral reference
groups without any participation of households (i.e., non-invasive manner). In this study, housing
size corresponds to the total floor area (m?) of a house. Five categories are created for various house
sizes as follows:

e HSI: Less than 92.9 m2
e HS2:92.9 to 139.2 m2

e HS3:139.3 to 185.7 m?
e HS4:185.8 t0232.1 m?
e HS5:232.2 m2 or more

The Energy Information Administration (EIA) generally divides housing units into seven
housing size categories; this current research uses five categories because using seven categories can
create several reference groups with a very low percentage of the total housing units [51]. Having
insufficient members in each reference group undermines the validity of normative comparisons
within the group and increases the chance of providing spurious results. For this reason, we combine
housing units with less than 92.9 m? and more than 232.2 m? into two housing size categories,
respectively (i.e., HS1 and HS5). This is due to the relatively small number of houses that fall into
these two categories; 2.5% of households have less than 46.4 m? and 8.3% are between 232.2 to 278.6
m? (Table 1). Combining these groups as such creates an even distribution of households across all
housing size categories. On the other hand, this combining process can treat households with small-
sized homes (i.e., less than 46.4 m? in HS1 and 232.2-278.6 m?2 in HS5) as low energy consumers within
their behavioral reference groups. This is because households with small-sized homes account for a
small percentage of total households in HS1 and HS5, and generally consume less energy than large-
sized homes. Consequently, small-sized homes in HS1 and HS5 may increase their energy
consumption when presented with descriptive social norms indicating that other households in their
group consume more than them. However, using injunctive norms may prevent households with
small-sized homes from increasing their energy consumption when they are treated as low energy
consumers in their behavioral reference groups.

Table 1. Number of Households (%) in the United States by Housing Size.

Floor Area (m?)
<46.4 46.4-92.8 92.9-139.2 139.3-185.7 185.8-232.1  232.2-278.6  =278.7
# of Households (%)* 2.5 219 212 16.2 12.5 8.3 17.4
2 The number of households for each housing size category are based on residential energy consumption
survey by Energy Information Administration [51].

After separating households by size, typical behavioral patterns of households are analyzed
using different time scales and levels of aggregation. As a data granularity variable, time interval
refers to the sampling rate of energy use data, including 15 minutes, 30 minutes, one hour, two hours,
six hours and twelve hours. The values of time interval have been widely used for representing
households’ daily energy use behaviors in previous studies [23,37,38]. The data aggregation variables
include monitoring period and day type. The monitoring period denotes the number of weeks: one
week, two weeks, three weeks, one month, two months and three months. These values are
dependent on messaging cycle (e.g., weekly feedback = all values; monthly messages = one month,
two months, and three months) and provide a basis for investigating the short-and long-term effect
of data aggregation on the behavioral reference groups categorization. The day type is a variable
which consists of weekdays only or all days. If data for energy consumption is collected at a one-hour
interval during the weekdays of one week, a typical daily energy use profile is represented in a time-
series with 24 time-points by averaging the values for each time interval of the five days (Figure 2).
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Figure 2. Example of typical daily energy use profile creation.
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On the other hand, if energy use date is collected during all days, a typical behavioral pattern is
represented by averaging the values for each time interval of the seven days.

Lastly, load shapes are extracted from the typical daily profiles of energy consumption. The load
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shape extracting process is important because households in a normative reference group should
have similar times of energy consumption (i.e., load shapes) but be able to be dissimilar in net energy
consumption. In addition, since load shapes represent households’ lifestyles, they should be similar
within a behavioral reference group. However, since the clustering process accounts for both the time
and volume of energy consumption, households with different patterns of use can be categorized
into the same group due to their similar volume of energy use [24,28]. For example, although
households A and C exhibit different behavioral patterns, they would be categorized into a single
group (Figure 3-a). To overcome the adverse effect of volume of the profiles during the categorization
process, the three load shape (LS) extraction methods proposed by Song et al [52] are adopted because
the clustering performance can vary depending on LS:



238

239
240
241
242

243
244
245
246
247

248
249
250
251
252
253

254
255

256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Energies 2020, 05, x FOR PEER REVIEW 7 of 22
Figure 3. Example of typical daily energy use profile creation.

e LS1: Gradient method transforms the existing value of energy consumption (e) into
the rate of change in energy consumption (ert). It is defined as the change in energy
consumption between two consecutive time points (Figure 3-b). The mathematical
terms of erej(i+1) can be described by the following equation.

eratesj (i +1) = ¢;(i +1) — ¢; (D) @™

where, ¢j(i+1) is the amount of energy consumption at time i+1 for household j, and ¢j(i) is the amount
of energy consumption at time i for household j.
e LS2: Normalization method transforms the existing values of energy consumption
(e) into the normalized energy consumption (exorn). It is calculated by normalizing the
amount of energy consumption between 0 and 1 (Figure 3-c).

i e(l) ~ Cminsj
€normsj (l) =z T (2)

emax*j - emin*j

where, ¢ is the original amount of energy consumed at time i, eminj is the minimum amount of energy
consumption for household j, enarj is the maximum amount of energy consumption for household ;.
e LS3: Cumulative method transforms the existing values of energy consumption (e)
into the cumulative percentage of energy consumption (exer). It is calculated by
dividing the cumulative energy consumption at each time by the total amount of
daily energy consumption (Figure 3-d).

ecum*j (l)

€cperxj @)= x 100 3)

ed*j

where, eaumyji) is the cumulative amount of energy consumption at time i for household j and e is the
amount of daily energy consumption for household j.

3.2. Application of Clustering Algorithms

To categorize households into personally relevant behavioral reference groups, we applied k-
means clustering (KC), hierarchical clustering (HC), and self-organizing maps (SOM) to the
preprocessed dataset for three reasons. First, the performance of the clustering algorithms changes
depending on data characteristics [50,53]. Consequently, three different clustering algorithms were
tested to create more personalized behavioral reference groups. Second, the adopted clustering
algorithms do not require prior knowledge on data characteristics. Although other popular clustering
algorithms (e.g., mean-shift clustering [48,54] and mixture model-based clustering [49,55]) have
proven useful to categorize objects into several meaningful groups, they make assumptions about
how data is distributed within each cluster. Because data distribution as well as the number of
clusters in a given dataset of household energy consumption is unknown before the clustering
analysis, it is not ideal to apply the assumption-based clustering algorithms for this research. Third,
the adopted clustering algorithms have been widely used in the field of identifying representative
behavioral patterns of residential and commercial customers [24].

The KC algorithm partitions objects into k distinct clusters. The first step of KC is to arbitrarily
determine k initial cluster centers as the initial centroids of groups. Then, each object belongs to the
cluster whose centroid is closest to the object (Figure 4-a). If an object p is apart from the centroid c:
of a cluster C;, the sum of Euclidean distances between them can be minimized by the following
objective function E:
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E= zk: Z dist(p, ¢;)? 4)

i=1 pecC;

dist(p,c;) = 5)

n
Z(Pj - Ci-j)z
j=1

This objective function creates k clusters as tightly clustered and unique as possible. Until there
is no variation in similarities, the KC reallocates objects to new centroids of clusters and evaluate their
quality, using the objective function.

The HC decomposes the given set of data objects and generates a tree diagram, called a
dendrogram (Figure 4-b). The HC is implemented in the following four steps: 1) constructs a
similarity matrix which correspond to a symmetric matrix representing the distances among all the
data objects; 2) defines each object as one cluster; 3) combine the two nearest clusters until there is
only a single cluster; and 4) cuts the dendrogram at the proper level which corresponds to the k

clusters.

The SOM projects high dimensional input data onto a two-dimensional map using an
unsupervised network model that consists of an input and output layer (Figure 4-c). In the SOM map,
there are connections among the vectors (neurons) in the input and output layer. This connection is
dependent on a weighting vector, called the connection intensity. The SOM algorithms consists of the
following four steps. First, the Euclidean distance between the input neuron and the weigh vector is
calculated. Second, the closest output neuron to the input neuron is found and considered as the best
matching unit (BMU). Third, the weight vectors of the BMU and its surrounding area are updated
according to Eq. (6).

wi(k +1) = w;(k) + e(k)hy (i, k) {x; (k) — x; (k)} (6)
where, wi(k) is the previous weight of neuron, wi(k+1) is the new weight of neuron, (k) is the learning
rate and y(i,k) denotes the neighborhood size of the winning neuron p at an iteration of k. Fourth,

this learning process is continued until a termination criterion is met.

a) k-Means Clustering b) Hierarchical Clustering ¢) Self-Organizing Map
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Figure 4. Structure of k-means clustering algorithm, hierarchical clustering algorithm and self-
organizing map.

3.3. Clustering Performance Evaluation

The clustering results are evaluated using the Davies-Bouldin Index (DBI) to determine the best
number of behavioral reference groups in the given dataset. Many cluster validation indices (e.g.,
Silhouette Index and Clustering Dispersion Indicator) have been developed for clustering
performance evaluation. However, the DBI has proven to be representative of those indices because
it is capable of measuring group similarity regardless of data properties (i.e., monotonicity, noise,
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density and skewed distributions) [56]. The DBI is one of the most widely used indices in the field of
residential energy consumer categorization to not only determine the best number of clusters but also
evaluate the clustering performance across different data preprocessing methods [24,45] and
different clustering algorithms [24,48]. For these reasons, researchers [25,50,57] have adopted the DBI
as a cluster validation index when solving their clustering problems.

The DBI calculates the relative values to measure the group similarity based on between- and
within-cluster variances [58]. Smaller DBI values indicate better clustering performance; clusters are
more tightly knit and have greater distances between each other. The DBI is defined as

1% d; +d;
DBI = Ez Max;y; . (7)

i=1 Y

where k: the number of clusters; di: the average distance between all objects in the i cluster and the
centroid of the i" cluster; dj: the average distance between all objects in the j* cluster; and dj: the
distance between the centroids of the i and j* clusters. In addition to the group similarity,
computational time is evaluated since it can significantly vary depending on data granularity.

4. Data Collection

We collect energy use and housing size data of 3,000 households in Holland, Michigan. Each
residence has a smart energy meter administered by the Holland Board of Public Works (HBPW).
This smart metering technology captured electricity consumption data every 15 minute from January
1 through December 31, 2016. The city of Holland experienced four distinct seasons, thus causing
5784 heating degree days (HDD) and 756 cooling degree days (CDD) in 2016 [59]. In accordance with
the HDD and CDD that indicate needs for heating and cooling, energy consumption patterns varied
by season (Figure 5). Since clustering performance can vary depending on data characteristics,
clustering one-year electricity consumption data helped to generalize results across different seasons.
Additionally, HBPW provides housing size data.

50

N
o

No data on March 13, 2016

]

w
[}

Daily Energy
Consumption (kWh)
\e}
S

(=

(=]

1 31 61 91 121 151 181 211 241 271 301 331 361
Day of the Year

Figure 5. Mean household daily electrical energy use in kWh.

503 households are excluded from the data set as they moved or experienced smart meter failure,
causing missing and abnormal energy use data. In this research, households with abnormal energy
consumption are defined as homes who have energy consumption data outside of the following
range (Figure 6): Q1-1.5*IOR to Q3+1.5xIQR1.5, where IQR is the interquartile range (i.e., Q3-Q1), Q1
is the first quartile and Q3 is the third quartile of energy use data at a certain time of the day.
Additionally, no energy use data was gathered on March 13, 2016 due to a system malfunction with
the electrical metering systems. Lastly, no housing size data for 319 households was obtained from
HBPW, so these homes were excluded as well. In total, 2,248 households are included in the analysis
(Table 2).
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Figure 6. Example household with abnormal energy consumption at a certain time of day.

Table 2. Number of Households by Housing Size.

Housing Size Category
HS1 HS2 HS3 HS4 HS5
Floor Area (m?) <929 92.9-139.2 139.3-185.7 185.8-232.1 >232.2
Number of Households 525 1,083 435 132 73

5. Results

A clustering analysis is performed using the collected data in conjunction with the proposed
categorization framework to investigate the effect of data granularity and aggregation on the
behavioral reference group categorization. The proposed categorization framework is coded in
MATLAB R2017b and implemented on an Intel(R) Core(TM) i7-6700 CPU (3.40 GHz) with 16 GB
RAM. In order to conduct the clustering analysis under the same condition, we use the same number
of households across all the housing size categories since the number of households can affect
computational time. As shown in Table 2, HS5 has the fewest households (i.e., 73), so 73 households
are randomly selected from HS1, HS2, HS3 and HS4. Also, the cluster k variable changes from two to
ten across all housing size categories. Then, behavioral reference group categorization for each
housing size category is performed 52 times with energy use data of 73 randomly selected households
during different weekly billing periods of the year. This not only avoids biased clustering results by
unequal sample size but also simulates a year-long behavioral intervention that provides normative
feedback every week. For each messaging cycle, 72 different types of typical energy use profiles for
each household are created for each combination of data granularity and aggregation (i.e., six time
intervals by six monitoring periods by two day types = 72 typical daily energy use profiles per
household). After applying the clustering algorithms to the preprocessed dataset, we average the
clustering results (i.e., DBI and computational time) over different levels of data granularity and
aggregation. Lastly, once the most desirable categorization framework is found using DBI values, we
identify representative behavioral reference groups for a weekly intervention cycle (i.e.,, May 9-15,
2016) for two reasons. First, although the categorization framework makes group members the most
similar, it is uncertain whether the identified groups are characterized by households’ behavioral
patterns and distinguishable from each other. Second, diverse behavioral patterns of residential
energy consumers tend to be observed during this period due to the changes of seasons [40]. Thus,
this group identification process enables the testing of how distinguishable groups are in terms of
energy use patterns.
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5.1. Clustering Performance by Data Granularity

Representing daily energy use profiles using six-hour intervals produces the lowest average
values of DBI except for when three and eight behavioral reference groups are created based on the
profiles (Figure 7). The higher average values of DBI are found when using less granular data. When
investigating the average values of DBI by time interval across different load shape extraction
methods, using six-hour intervals in conjunction with LS1 generally produces the lowest average
values (Figure 8-a). However, the clustering results using LS2 and LS3 show that the lowest average
values of DBI are observed with six-hour and 12-hour intervals. Additionally, regardless of which
clustering algorithm is applied (KM, HC, or SOM), the lowest average values of DBI are obtained
from clustering analysis using six-hour intervals (Figure 8-b).
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Figure 7. Average values of DBI by time interval, monitoring period, and day type.
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clustering algorithms.

The computational time decreases when behavioral reference groups are created based on less
granular energy use data (i.e., six and twelve hours) as would be expected (Figure 9-a). As the number
of households increases, the data granularity makes the difference in computational time
exponentially larger (Figure 9-b). This significant increase in computational time exists for all the
clustering algorithms (Figure 10).
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Figure 9. Computational time by time interval.
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5.2. Clustering Performance by Data Aggregation

13 of 22

Aggregating energy use data over twelve weeks produces the lowest average values of DBI
across all the number of clusters (Figure 7). The average values of DBI decrease with longer
monitoring periods. Looking closely at the average values of DBI by monitoring period across
different load shape extraction methods, more aggregated data (i.e., twelve weeks) produce the
lowest average values of DBI in case of LS1 (Figure 11-a). However, the clustering results using LS2
and LS3 show that the average DBI values do not vary by monitoring period. In addition, regardless
of clustering algorithms, aggregating energy use data over twelve weeks produces the lowest average

values of DBI (Figure 11-b).
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Figure 11. Average values of DBI by monitoring period across different load shape extraction

methods and clustering algorithms.
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405 Across different intervention cycles, aggregating energy use data over twelve weeks generally
406  produces the lowest average values of DBI except for the middle of Spring and Autumn (Figure 12).
407  The average values of DBI tend to decrease with longer monitoring periods.
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408
409 Figure 12. Average values of DBI by monitoring period across all the intervention cycles.
410 There is no difference in the average DBI values by day type (Figure 7). When investigating the

411  average values of DBI by day type across different load shape extraction methods, more aggregate
412 data (i.e., all days) in conjunction with LS2 and LS3 produce the lowest average values of DBI (Figure
413 13-a). In contrast, the clustering results using LS1 show that aggregating energy use profiles over
414  weekdays produces the lowest average values of DBI. Further, across all the clustering algorithms,
415  the average values of DBI do not vary by day type (Figure 13-b).
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419 5.3. Overall Clustering Performance

420 Figure 14 shows the results of the clustering analysis considering data granularity and
421  aggregation, load shape extraction methods, and clustering algorithms. The lowest average value of
422 DBl is achieved under the following conditions: 1) data granularity of six hours, 2) data aggregation
423  over all days of twelve weeks, 3) load shape extraction by LS3, and 4) application of hierarchical
424 clustering algorithm to find the ideal number of clusters.
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5.4. Behavioral Reference Group Identification

Using three energy profile-based groups produces the lowest DBI values in housing groups HS1
and HS5 (Figure 15). For housing groups HS2, HS3 and HS4, four energy profile-based groups
produce the lowest DBI values. Considering that two groups in H54 and HS5 show similar behavioral
patterns of households, the identified groups have five distinguishable daily energy use profiles
(Figure 16). Households in Group 1 consume energy mostly in the evening. Households in the Group
4 consume energy mostly in the morning. The energy use profiles are also contingent on the housing
size category.
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Figure 16. Typical daily energy use profiles for identified energy profile-based groups across different
housing size categories.

6. Discussion

Since lower values of DBl indicate higher intra-class similarities and lower inter-class similarities
within a group, it is clear that capturing typical daily energy use profiles of households using a six-
hour interval leads to the most similar behavioral reference groups in terms of DBI (Figure 7). These
results are be supported by the following two conflicting observations. First, the sparsity of data
points in a group increases with higher dimension of data [35,36]. Thus, behavioral reference groups
may not be meaningful for normative comparison in a highly dimensional space. Second, groups
become more distinguishable as the number of data attributes increase.

The computational efficiency of the group categorization process decreases when using less
granular data (i.e, 6 and 12 hours). Time to create groups increases exponentially with more
households. This exponential increase is attributed to the linear time complexity of the KC and SOM
with respect to the number of data objects [60]. Clustering a small number of data objects shortly
converge clustering results to the global optimum after twelve iterations [61]. However, when using
a large number of data objects, these clustering algorithms make the number of iterations larger and
then cause longer computational time for the convergence process. For the HC, the time complexity
is quadratic or worse depending on the number of data objects [62].

Table 3. Time complexity of clustering algorithms.

Clustering Algorithm Time Complexity
k-Means Clustering O(n'k-D-1)

Hierarchical Clustering O(n?-D) or O(n3-D)
Self-Organizing Map O(n-i-N)

n: the number of data objects, k: the number of clusters, D: the number of data attributes, i:
the number of iterations, N: the number of neurons in the output layer.

Moreover, it appears that aggregating energy use data over longer monitoring periods (i.e.,
twelve weeks) makes behavioral reference groups more similar (Figure 7). These results align with
the previous findings that the aggregation periods should be long enough in the same seasonal
context to represent typical daily energy use profiles for each electricity customer [24]. Interestingly,
using 8-week aggregate energy use data produces the lowest average values of DBI in the middle of
Spring and Autumn (Figure 12) when the weather is shifting from warm to cold and vice versa. These
results can be expected because households tend to exhibit similar energy use behaviors within the
same season but different behaviors while seasons are changing (e.g., April to May) [41]. Thus, as the
monitoring periods include more days that correspond to this period, using less aggregated energy
use data (i.e., eight weeks) produces the lowest average values of DBL

Further, the similarity of households in behavioral reference groups does not vary by day type
(Figure 7). This conflicts with previous studies that suggested aggregating energy use data over all
days of the given monitoring period (e.g., season or year) could interrupt typical energy use patterns
of households [24,38,44]. However, these clustering results are understandable because households
are likely to consume different amounts of energy but exhibit similar behavioral patterns (i.e., load
shape) [20,41,63] and not all regions have similar heating and cooling loads as Holland, Michigan.
Consequently, considering weekdays and weekends together contributed to creating typical daily
energy use profiles and make behavioral reference groups more meaningful.

Figure 14 presents the most desirable behavioral reference group categorization framework for
normative comparison. This framework not only increases the similarity of households in behavioral
reference groups, but also makes the groups distinguishable based on daily energy use profiles
(Figure 16). Using six-hour intervals will make behavioral reference groups more personalized and
require a relatively short computation time. However, this doesn’t mean that energy use data should
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be sampled from smart meters at a six-hour interval. This is because different data granularity can be
required for other energy saving purposes in the residential sector. For example, using high
resolution energy use data makes it possible to predict and avoid daily peak demand in homes [64].
Therefore, instead of setting a low data sampling rate, we recommend collecting highly granular
energy use data from smart meters and then change the data granularity to six-hour intervals when
creating more personally relevant comparison groups.

Additionally, when a normative messaging intervention is deployed to one million homes, using
six-hour intervals does not create a feedback lag (it takes approximately two hours for their
categorization). However, if household energy use profiles were clustered at a large spatial scale (e.g.,
state, climate region) to improve the validity of normative comparison with sufficient group
members, this could cause a latency of normative behavioral feedback despite using six-hour
intervals. Coupling parallel computing techniques with the proposed categorization framework
solves this computational issue (e.g., it is 30 times faster for image dataset categorization [65]).
Further, aggregating energy use data over all days of twelve weeks makes behavioral reference
groups more similar. A data aggregation issue might arise due to the large volume of historical data
that must be stored and processed in databases to create more personally relevant comparison
groups. As mentioned by Kaisler et al. [66], the existing database management systems operated by
utility companies may be unable to solve such storage and processing issues due to their limited
capacity. This will, in turn, be a barrier to create more personally relevant comparison groups by
aggregating energy use data over all days of twelve weeks. However, big data technologies (e.g.,
cloud computing) have been widely adopted as a means for implementing the smart grid and
continue to become more widespread [67,68]. In addition to the data storage and processing issues,
data aggregation process may have difficulty creating typical energy use profiles when home energy
use data has outliers at certain times. This is important because outliers make mean values biased
toward them, and thus are not representative of given data. While we removed households with
outliers from this analysis, electricity utility companies would include all residential customers in
normative feedback programs for overall electricity demand reduction. Therefore, it is recommended
that the data aggregation process involves removing outliers and averaging the values of remaining
energy use data to create typical daily energy use profiles.

Future research should identify personalized behavioral reference groups within a seasonal
context. While using more aggregated and less granular data creates more personalized behavioral
reference groups, households can be provided with the norm of different reference groups every
billing cycle if they change behavioral patterns. Considering that individuals do not strongly identify
with social groups that they can easily join and leave (e.g., people who live in temporary housing
such as military family homes does not have a strong identification with their neighbors [69,70]),
frequent changes in behavioral reference groups may weaken the households’ identification with
those groups. Therefore, understanding how frequently individuals change their energy use
behaviors will allow interveners to not only find an appropriate categorization cycle but also provide
suitable comparison groups across all seasons. Additionally, future work should investigate how
households perceive their energy profile-based reference groups, since compliance with social norms
depends on residents’ identification with those groups [71]. Unlike traditional geographic proximity-
based groups (e.g., neighbors) whose members may know each other, residents in energy profile-
based groups are not expected to know each other on a personal level. Thus, this could make it
difficult for residents to feel strongly attached to other members of the profile-based groups.
However, individuals regularly build social relationships with others in online communities (e.g.,
movie-related communities, online gaming) despite a lack of physical contact [72-74]. Sharing not
only the characteristics of groups but also member behavior makes people feel more attached to their
online communities [72]. Therefore, despite limited physical contact among the members of energy
profile-based groups, by highlighting similar patterns of behavior, interveners can encourage
residents to strongly identify with their profile group and thus adhere to group norms.

7. Conclusions
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Recent advances in energy monitoring technology provide new opportunities to construct more
personalized feedback messages by constructing energy-use profiles of consumers on a large scale.
The creation of meaningful personalized reference groups based on similar behavioral patterns of
households can lead to increases in social norm adherence and thus, improvements in normative
messaging intervention effectiveness. However, previous research efforts had two limitations:
uncertainties about the role of temporal granularity in group categorization performance and
uncertainties about the ideal aggregation of energy use. Therefore, this research evaluates the
performance of behavioral reference group categorization across different levels of temporal
granularity and aggregation of energy-use data.

Reducing the temporal granularity of energy-use data (i.e., six-hour intervals) creates
personalized behavioral reference groups while minimizing computational time, as compared to
more granular data intervals. These results are consistent regardless of load shape extraction method
and clustering algorithm. Additionally, aggregating energy use data (i.e., across all days of twelve
weeks) generally increases the similarity of behavioral reference groups. Data aggregation effects
decreases only when seasons change. Also, the compound effect of data granularity and aggregation
varies depending on load shape extraction method and clustering algorithm. Using more aggregated
but less granular data results in further improvement in the similarity of behavioral reference groups
by cumulative percentage-based load shape extraction in conjunction with hierarchical clustering.
These results provide a guideline for norm-based energy conservation interventions, specifically for
households in Holland and residential areas with similar energy use patterns: energy-use profiles
should be categorized after aggregating energy-use data across all days of twelve-weeks using six-
hour increments.

This research contributes to the literature by enhancing our knowledge of how the temporal
granularity and aggregation of energy use data affects the similarity of behavioral reference groups
in terms of energy use profiles. Creating energy profile-based reference groups with higher similarity
among group members will help maximize the effectiveness of residential energy use normative
feedback interventions. In addition, this research establishes a data mining-based categorization
framework to classify households into several personalized normative comparison groups. With this
categorization framework, it is possible to generate personally relevant normative comparison
groups in a non-invasive manner and likely increase normative feedback effectiveness. The proposed
categorization framework provides interveners with a scalable option for creating personalized
normative feedback messages.

Author Contributions: Conceptualization, K.S., K.A., S.L., K.T.R,, and P.S.H.; Investigation, K.S., KA., S.L.,
K.T.R., and P.S.H.; Supervision, S.L.; Validation, K.S., K.A., S.L., KT.R,, and P.S.H.; Writing-original draft, K.S.
and K.A.; Writing-review and editing, S.L., K.T.R., and P.S.H.

Acknowledgments: The work presented in this paper was supported financially with a National Science
Foundation Award (No. CBET-1705273) and collaborated with Holland Board of Public Works (HBPW) at
Michigan, U.S. Also, we thank Ms. Anne Saliers, Community Energy Services Manager of HBPW, for her
assistance with the data collection. Any opinions, findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Energy Information Administration Total Energy: Energy Consumption by Sector Available online:
https://www.eia.gov/totalenergy/data/monthly/index.php (accessed on Aug 1, 2019).

2. Bahaj, AS.; Myers, L.; James, P.A.B. Urban energy generation: Influence of micro-wind turbine output on
electricity consumption in buildings. Energy Build. 2007, 39, 154-165.

3. Yu, Z; Fung, B.CM.; Haghighat, F.; Yoshino, H.; Morofsky, E. A systematic procedure to study the
influence of occupant behavior on building energy consumption. Energy Build. 2011, 43, 1409-1417.

4. Allcott, H.; Rogers, T. The short-run and long-run effects of behavioral interventions: Experimental
evidence from energy conservation. Am. Econ. Rev. 2014, 104, 3003-3037.



583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

Energies 2020, 05, x FOR PEER REVIEW 20 of 22

5.

10.

11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Anderson, K.; Song, K; Lee, S.; Krupka, E.; Lee, H.; Park, M. Longitudinal analysis of normative energy
use feedback on dormitory occupants. Appl. Energy 2017, 189.

Peschiera, G.; Taylor, J.E. The impact of peer network position on electricity consumption in building
occupant networks utilizing energy feedback systems. Energy Build. 2012, 49, 584-590.

Darby, S. The Effectiveness of Feedback on Energy Consumption: A Review for DEFRA of the Literature
on Metering, Billing and Direct Displays; 2006;

Goldstein, N.J.; Cialdini, R.B.; Griskevicius, V. A Room with a Viewpoint: Using Social Norms to Motivate
Environmental Conservation in Hotels. J. Consum. Res. 2008, 35, 472—-482.

Cialdini, R.B. Crafting Normative Messages to Protect the Environment. Curr. Dir. Psychol. Sci. 2003, 12,
105-109.

Schultz, P.W.; Nolan, J.M.; Cialdini, R.B.; Goldstein, N.J.; Griskevicius, V. The constructive, destructive,
and reconstructive power of social norms: Research article. Psychol. Sci. 2007, 18, 429-434.

Allcott, H. Social norms and energy conservation. J. Public Econ. 2011, 95, 1082-1095.

Ayres, I; Raseman, S.; Shih, A. Evidence from Two Large Field Experiments that Peer Comparison
Feedback can Reduce Residential Energy Usage. Ssrn 2009, 29.

Festinger, L. A theory of social comparison processes. Hum. Relations 1954, 7, 117-40.

Abrahamse, W.; Steg, L.; Vlek, C.; Rothengatter, T. A review of intervention studies aimed at household
energy conservation. J. Environ. Psychol. 2005, 25, 273-291.

Guerra Santin, O.; Itard, L.; Visscher, H. The effect of occupancy and building characteristics on energy use
for space and water heating in Dutch residential stock. Energy Build. 2009, 41, 1223-1232.

Mathew, P.A.; Dunn, L.N.; Sohn, M.D.; Mercado, A.; Custudio, C.; Walter, T. Big-data for building energy
performance: Lessons from assembling a very large national database of building energy use. Appl. Energy
2015, 140, 85-93.

Yildiz, B.; Bilbao, J.I; Dore, ]J.; Sproul, A.B. Recent advances in the analysis of residential electricity
consumption and applications of smart meter data. Appl. Energy 2017, 208, 402—427.

Capasso, A.; Lamedica, R.; Prudenzi, A.; Grattieri, W. A bottom-up approach to residential load modeling.
IEEE Trans. Power Syst. 1994, 9, 957-964.

Richardson, L; Thomson, M.; Infield, D.; Clifford, C. Domestic electricity use: A high-resolution energy
demand model. Energy Build. 2010, 42, 1878-1887.

Widén, J.; Wackelgard, E. A high-resolution stochastic model of domestic activity patterns and electricity
demand. Appl. Energy 2010, 87, 1880-1892.

Shimoda, Y.; Asahi, T.; Taniguchi, A.; Mizuno, M. Evaluation of city-scale impact of residential energy
conservation measures using the detailed end-use simulation model. Energy 2007, 32, 1617-1633.
Tanimoto, J.; Hagishima, A.; Sagara, H. Validation of methodology for utility demand prediction
considering actual variations in inhabitant behaviour schedules. J. Build. Perform. Simul. 2008, 1, 31-42.
Granell, R; Axon, C.J.; Wallom, D.C.H. Impacts of Raw Data Temporal Resolution Using Selected
Clustering Methods on Residential Electricity Load Profiles. IEEE Trans. Power Syst. 2015, 30, 3217-3224.
Chicco, G. Overview and performance assessment of the clustering methods for electrical load pattern
grouping. Energy 2012, 42, 68-80.

Song, K.; Kwon, N.; Anderson, K.; Park, M.; Lee, H.-S.; Lee, S. Predicting hourly energy consumption in
buildings using occupancy-related characteristics of end-user groups. Energy Build. 2017, 156.

Motlagh, O.; Paevere, P.; Hong, T.S.; Grozev, G. Analysis of household electricity consumption behaviours:
Impact of domestic electricity generation. Appl. Math. Comput. 2015, 270, 165-178.

Ferraro, P.; Crisostomi, E.; Tucci, M.; Raugi, M. Comparison and clustering analysis of the daily electrical
load in eight European countries. Electr. Power Syst. Res. 2016, 141, 114-123.

Panapakidis, I.P.; Papadopoulos, T.A.; Christoforidis, G.C.; Papagiannis, G.K. Pattern recognition
algorithms for electricity load curve analysis of buildings. Energy Build. 2014, 73, 137-145.

Al-Otaibi, R.; Jin, N.; Wilcox, T.; Flach, P. Feature Construction and Calibration for Clustering Daily Load
Curves from Smart-Meter Data. IEEE Trans. Ind. Informatics 2016, 12, 645-654.

Kotzur, L.; Markewitz, P.; Robinius, M.; Stolten, D. Impact of different time series aggregation methods on
optimal energy system design. Renew. Energy 2018, 117, 474-487.

Jiang, Z.; Lin, R.; Yang, F.; Wu, B. A fused load curve clustering algorithm based on wavelet transform.
IEEE Trans. Ind. Informatics 2018, 14, 1856-1865.

Chicco, G.; Napoli, R.; Piglione, F. Comparisons Among Clustering Techniques for Electricity Customer
Classification. IEEE Trans. Power Syst. 2006, 21, 933-940.

Gouveia, J.P.; Seixas, J.; Long, G. Mining households’ energy data to disclose fuel poverty: Lessons for
Southern Europe. J. Clean. Prod. 2018, 178, 534-550.



640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697

Energies 2020, 05, x FOR PEER REVIEW 21 of 22

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Ross, S.A.; Cheah, L. Uncertainty Quantification in Life Cycle Assessments: Interindividual Variability and
Sensitivity Analysis in LCA of Air-Conditioning Systems. J. Ind. Ecol. 2017, 21, 1103-1114.

Ding, H.; Trajcevski, G.; Scheuermann, P.; Wang, X.; Keogh, E. Querying and mining of time series data.
Proc. VLDB Endow. 2014, 1, 1542-1552.

Steinbach, M.; Ertdz, L.; Kumar, V. The Challenges of Clustering High Dimensional Data. In New
Directions in Statistical Physics; Springer Berlin Heidelberg, 2004; pp. 273-309.

Miller, C.; Nagy, Z.; Schlueter, A. Automated daily pattern filtering of measured building performance
data. Autom. Constr. 2015, 49, 1-17.

Costa, N.; Matos, I. Inferring daily routines from electricity meter data. Energy Build. 2016, 110, 294-301.
Gulbinas, R.; Khosrowpour, A.; Taylor, ]J. Segmentation and Classification of Commercial Building
Occupants by Energy-Use Efficiency and Predictability. IEEE Trans. Smart Grid 2015, 6, 1414-1424.

Song, K.; Anderson, K.; Lee, S.; Raimi, K.T.; Hart, P.S. Exploring the Effect of Data Granularity on
Personalized Normative Messaging Interventions for Reducing Household Energy Consumption. In
Proceedings of the Computing in Civil Engineering 2019; American Society of Civil Engineers (ASCE),
2019; pp. 483-489.

do Carmo, C.M.R,; Christensen, T.H. Cluster analysis of residential heat load profiles and the role of
technical and household characteristics. Energy Build. 2016, 125, 171-180.

Haben, S.; Singleton, C.; Grindrod, P. Analysis and clustering of residential customers energy behavioral
demand using smart meter data. IEEE Trans. Smart Grid 2016, 7, 136-144.

Tsekouras, G.J.; Kotoulas, P.B.; Tsirekis, C.D.; Dialynas, E.N.; Hatziargyriou, N.D. A pattern recognition
methodology for evaluation of load profiles and typical days of large electricity customers. Electr. Power
Syst. Res. 2008, 78, 1494-1510.

Figueiredo, V.; Rodrigues, F.; Vale, Z.; Gouveia, ].B. An electric energy consumer characterization
framework based on data mining techniques. IEEE Trans. Power Syst. 2005, 20, 596—-602.

Song, K.; Anderson, K.; Lee, S.H. An energy-cyber-physical system for personalized normative messaging
interventions: Identification and classification of behavioral reference groups. Appl. Energy 2020, 260,
114237.

Llanos, J.; Morales, R.; Nufez, A.; Saez, D.; Lacalle, M.; Marin, L.G.; Hernandez, R.; Lanas, F. Load
estimation for microgrid planning based on a self-organizing map methodology. Appl. Soft Comput. J.
2017, 53, 323-335.

Senabre, C.; Verdu, S.V. Garcia, M.O.; Franco, F.J.G; Marin, A.G. Classification, Filtering, and
Identification of Electrical Customer Load Patterns Through the Use of Self-Organizing Maps. IEEE Trans.
Power Syst. 2006, 21, 1672-1682.

Lee, E.; Kim, J.; Jang, D. Load Profile Segmentation for Effective Residential Demand Response Program:
Method and Evidence from Korean Pilot Study. Energies 2020, 13, 1348.

Li, R; Wang, Z.; Gu, C,; Li, F.; Wu, H. A novel time-of-use tariff design based on Gaussian Mixture Model.
Appl. Energy 2016, 162, 1530-1536.

Ozawa, A.; Furusato, R.; Yoshida, Y. Determining the relationship between a household’s lifestyle and its
electricity consumption in Japan by analyzing measured electric load profiles. Energy Build. 2016, 119, 200
210.

Energy Information Administration Residential Energy Consumption Survey (RECS) Available online:
https://www.eia.gov/consumption/residential/index.php (accessed on Feb 27, 2019).

Song, K.; Anderson, K.; Lee, S.H. An energy-cyber-physical system for personalized normative messaging
interventions: Identification and classification of behavioral reference groups. Appl. Energy 2020, 260,
114237.

Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques; 3rd ed.; Morgan Kaufmann: Waltham,
2012;

Yoo, W.; Kim, H.; Shin, M. Stations-oriented indoor localization (SOIL): A BIM-Based occupancy schedule
modeling system. Build. Environ. 2020, 168, 106520.

Lu, Y,; Tian, Z,; Peng, P.; Niu, ]J.; Li, W.; Zhang, H. GMM clustering for heating load patterns in-depth
identification and prediction model accuracy improvement of district heating system. Energy Build. 2019,
190, 49-60.

Liu, Y,; Li, Z,; Xiong, H.; Gao, X.; Wu, J. Understanding of Internal Clustering Validation Measures. In
Proceedings of the 2010 IEEE International Conference on Data Mining; IEEE, 2010; pp. 911-916.

Lin, S.; Li, F,; Tian, E.; Fu, Y.; Li, D. Clustering load profiles for demand response applications. IEEE Trans.
Smart Grid 2019, 10, 1599-1607.

Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979,
PAMI-1, 224-227.



698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

736

Energies 2020, 05, x FOR PEER REVIEW 22 of 22

59.

60.
61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

71.

72.

73.

74.

National Center for Environmental Information Data Tools: Find a Station Available online:
https://www.ncdc.noaa.gov/cdo-web/datatools (accessed on Feb 27, 2019).

Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. Appl. Stat. 1979, 28, 100.
Vattani, A. k-means Requires Exponentially Many Iterations Even in the Plane. Discret. Comput. Geom.
2011, 45, 596-616.

Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Networks 2005, 16, 645-678.
Widén, J.; Lundh, M.; Vassileva, I.; Dahlquist, E.; Ellegard, K.; Wéackelgard, E. Constructing load profiles
for household electricity and hot water from time-use data-Modelling approach and validation. Energy
Build. 2009, 41, 753-768.

Jain, RK, Smith, K.M.; Culligan, P.J.; Taylor, J.E. Forecasting energy consumption of multi-family
residential buildings using support vector regression: Investigating the impact of temporal and spatial
monitoring granularity on performance accuracy. Appl. Energy 2014, 123, 168-178.

Bhimani, J.; Leeser, M.; Mi, N. Accelerating K-Means clustering with parallel implementations and GPU
computing. In Proceedings of the 2015 IEEE High Performance Extreme Computing Conference, HPEC
2015; Institute of Electrical and Electronics Engineers Inc., 2015.

Kaisler, S.; Armour, F.; Espinosa, J.A.; Money, W. Big data: Issues and challenges moving forward. In
Proceedings of the Proceedings of the Annual Hawaii International Conference on System Sciences; 2013;
pp- 995-1004.

Lai, C.S.; Lai, L.L. Application of Big Data in Smart Grid. In Proceedings of the Proceedings - 2015 IEEE
International Conference on Systems, Man, and Cybernetics, SMC 2015; Institute of Electrical and
Electronics Engineers Inc., 2016; pp. 665-670.

Intel Corporation Smart Grid Data Management Solution Enables Utility Companies to Improve Overall
System Operation Available online:
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/energy-smart-grid-
solution-blueprint.pdf (accessed on Feb 27, 2019).

McKain, J.L. Relocation in the Military: Alienation and Family Problems. J. Marriage Fam. 1973, 35, 205.
Hoshmand, L.T.; Hoshmand, A.L. Support for military families and communities. J. Community Psychol.
2007, 35, 171-180.

Hogg, M.A. Social Identity Theory. In Understanding Peace and Conflict through Social Identity Theory;
McKeown, S., Haji, R., Ferguson, N., Eds.; Springer: Cham, 2016; pp. 3-17.

Ren, Y.; Harper, F.M.; Drenner, S.; Terveen, L.; Kiesler, S.; Ried]l, J.; Kraut, R.E. Building member attachment
in online communities: Applying theories of group identity and interpersonal bonds1. MIS Q. Manag. Inf.
Syst. 2012, 36, 841-864.

Yuging Ren; Kraut, R.; Kiesler, S. Applying Common Identity and Bond Theory to Design of Online
Communities. Organ. Stud. 2007, 28, 377-408.

Fiedler, M.; Sarstedt, M. Influence of community design on user behaviors in online communities. J. Bus.
Res. 2014, 67, 2258-2268.

© 2020 by the authors. Submitted for possible open access publication under

‘ @ @ the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).



	1. Introduction
	2. Related Works on Electric Energy Consumer Categorization
	3. Behavioral Reference Group Categorization Framework
	3.1. Data Preprocessing
	3.2. Application of Clustering Algorithms
	3.3. Clustering Performance Evaluation

	4. Data Collection
	5. Results
	5.1. Clustering Performance by Data Granularity
	5.2. Clustering Performance by Data Aggregation
	5.3. Overall Clustering Performance
	5.4. Behavioral Reference Group Identification

	6. Discussion
	7. Conclusions
	References
	1. Energy Information Administration Total Energy: Energy Consumption by Sector Available online: https://www.eia.gov/totalenergy/data/monthly/index.php (accessed on Aug 1, 2019).
	2. Bahaj, A.S.; Myers, L.; James, P.A.B. Urban energy generation: Influence of micro-wind turbine output on electricity consumption in buildings. Energy Build. 2007, 39, 154–165.
	3. Yu, Z.; Fung, B.C.M.; Haghighat, F.; Yoshino, H.; Morofsky, E. A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy Build. 2011, 43, 1409–1417.
	4. Allcott, H.; Rogers, T. The short-run and long-run effects of behavioral interventions: Experimental evidence from energy conservation. Am. Econ. Rev. 2014, 104, 3003–3037.
	5. Anderson, K.; Song, K.; Lee, S.; Krupka, E.; Lee, H.; Park, M. Longitudinal analysis of normative energy use feedback on dormitory occupants. Appl. Energy 2017, 189.
	6. Peschiera, G.; Taylor, J.E. The impact of peer network position on electricity consumption in building occupant networks utilizing energy feedback systems. Energy Build. 2012, 49, 584–590.
	7. Darby, S. The Effectiveness of Feedback on Energy Consumption: A Review for DEFRA of the Literature on Metering, Billing and Direct Displays; 2006;
	8. Goldstein, N.J.; Cialdini, R.B.; Griskevicius, V. A Room with a Viewpoint: Using Social Norms to Motivate Environmental Conservation in Hotels. J. Consum. Res. 2008, 35, 472–482.
	9. Cialdini, R.B. Crafting Normative Messages to Protect the Environment. Curr. Dir. Psychol. Sci. 2003, 12, 105–109.
	10. Schultz, P.W.; Nolan, J.M.; Cialdini, R.B.; Goldstein, N.J.; Griskevicius, V. The constructive, destructive, and reconstructive power of social norms: Research article. Psychol. Sci. 2007, 18, 429–434.
	11. Allcott, H. Social norms and energy conservation. J. Public Econ. 2011, 95, 1082–1095.
	12. Ayres, I.; Raseman, S.; Shih, A. Evidence from Two Large Field Experiments that Peer Comparison Feedback can Reduce Residential Energy Usage. Ssrn 2009, 29.
	13. Festinger, L. A theory of social comparison processes. Hum. Relations 1954, 7, 117–40.
	14. Abrahamse, W.; Steg, L.; Vlek, C.; Rothengatter, T. A review of intervention studies aimed at household energy conservation. J. Environ. Psychol. 2005, 25, 273–291.
	15. Guerra Santin, O.; Itard, L.; Visscher, H. The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock. Energy Build. 2009, 41, 1223–1232.
	16. Mathew, P.A.; Dunn, L.N.; Sohn, M.D.; Mercado, A.; Custudio, C.; Walter, T. Big-data for building energy performance: Lessons from assembling a very large national database of building energy use. Appl. Energy 2015, 140, 85–93.
	17. Yildiz, B.; Bilbao, J.I.; Dore, J.; Sproul, A.B. Recent advances in the analysis of residential electricity consumption and applications of smart meter data. Appl. Energy 2017, 208, 402–427.
	18. Capasso, A.; Lamedica, R.; Prudenzi, A.; Grattieri, W. A bottom-up approach to residential load modeling. IEEE Trans. Power Syst. 1994, 9, 957–964.
	19. Richardson, I.; Thomson, M.; Infield, D.; Clifford, C. Domestic electricity use: A high-resolution energy demand model. Energy Build. 2010, 42, 1878–1887.
	20. Widén, J.; Wäckelgård, E. A high-resolution stochastic model of domestic activity patterns and electricity demand. Appl. Energy 2010, 87, 1880–1892.
	21. Shimoda, Y.; Asahi, T.; Taniguchi, A.; Mizuno, M. Evaluation of city-scale impact of residential energy conservation measures using the detailed end-use simulation model. Energy 2007, 32, 1617–1633.
	22. Tanimoto, J.; Hagishima, A.; Sagara, H. Validation of methodology for utility demand prediction considering actual variations in inhabitant behaviour schedules. J. Build. Perform. Simul. 2008, 1, 31–42.
	23. Granell, R.; Axon, C.J.; Wallom, D.C.H. Impacts of Raw Data Temporal Resolution Using Selected Clustering Methods on Residential Electricity Load Profiles. IEEE Trans. Power Syst. 2015, 30, 3217–3224.
	24. Chicco, G. Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy 2012, 42, 68–80.
	25. Song, K.; Kwon, N.; Anderson, K.; Park, M.; Lee, H.-S.; Lee, S. Predicting hourly energy consumption in buildings using occupancy-related characteristics of end-user groups. Energy Build. 2017, 156.
	26. Motlagh, O.; Paevere, P.; Hong, T.S.; Grozev, G. Analysis of household electricity consumption behaviours: Impact of domestic electricity generation. Appl. Math. Comput. 2015, 270, 165–178.
	27. Ferraro, P.; Crisostomi, E.; Tucci, M.; Raugi, M. Comparison and clustering analysis of the daily electrical load in eight European countries. Electr. Power Syst. Res. 2016, 141, 114–123.
	28. Panapakidis, I.P.; Papadopoulos, T.A.; Christoforidis, G.C.; Papagiannis, G.K. Pattern recognition algorithms for electricity load curve analysis of buildings. Energy Build. 2014, 73, 137–145.
	29. Al-Otaibi, R.; Jin, N.; Wilcox, T.; Flach, P. Feature Construction and Calibration for Clustering Daily Load Curves from Smart-Meter Data. IEEE Trans. Ind. Informatics 2016, 12, 645–654.
	30. Kotzur, L.; Markewitz, P.; Robinius, M.; Stolten, D. Impact of different time series aggregation methods on optimal energy system design. Renew. Energy 2018, 117, 474–487.
	31. Jiang, Z.; Lin, R.; Yang, F.; Wu, B. A fused load curve clustering algorithm based on wavelet transform. IEEE Trans. Ind. Informatics 2018, 14, 1856–1865.
	32. Chicco, G.; Napoli, R.; Piglione, F. Comparisons Among Clustering Techniques for Electricity Customer Classification. IEEE Trans. Power Syst. 2006, 21, 933–940.
	33. Gouveia, J.P.; Seixas, J.; Long, G. Mining households’ energy data to disclose fuel poverty: Lessons for Southern Europe. J. Clean. Prod. 2018, 178, 534–550.
	34. Ross, S.A.; Cheah, L. Uncertainty Quantification in Life Cycle Assessments: Interindividual Variability and Sensitivity Analysis in LCA of Air-Conditioning Systems. J. Ind. Ecol. 2017, 21, 1103–1114.
	35. Ding, H.; Trajcevski, G.; Scheuermann, P.; Wang, X.; Keogh, E. Querying and mining of time series data. Proc. VLDB Endow. 2014, 1, 1542–1552.
	36. Steinbach, M.; Ertöz, L.; Kumar, V. The Challenges of Clustering High Dimensional Data. In New Directions in Statistical Physics; Springer Berlin Heidelberg, 2004; pp. 273–309.
	37. Miller, C.; Nagy, Z.; Schlueter, A. Automated daily pattern filtering of measured building performance data. Autom. Constr. 2015, 49, 1–17.
	38. Costa, N.; Matos, I. Inferring daily routines from electricity meter data. Energy Build. 2016, 110, 294–301.
	39. Gulbinas, R.; Khosrowpour, A.; Taylor, J. Segmentation and Classification of Commercial Building Occupants by Energy-Use Efficiency and Predictability. IEEE Trans. Smart Grid 2015, 6, 1414–1424.
	40. Song, K.; Anderson, K.; Lee, S.; Raimi, K.T.; Hart, P.S. Exploring the Effect of Data Granularity on Personalized Normative Messaging Interventions for Reducing Household Energy Consumption. In Proceedings of the Computing in Civil Engineering 201...
	41. do Carmo, C.M.R.; Christensen, T.H. Cluster analysis of residential heat load profiles and the role of technical and household characteristics. Energy Build. 2016, 125, 171–180.
	42. Haben, S.; Singleton, C.; Grindrod, P. Analysis and clustering of residential customers energy behavioral demand using smart meter data. IEEE Trans. Smart Grid 2016, 7, 136–144.
	43. Tsekouras, G.J.; Kotoulas, P.B.; Tsirekis, C.D.; Dialynas, E.N.; Hatziargyriou, N.D. A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers. Electr. Power Syst. Res. 2008, 78, 1494–1510.
	44. Figueiredo, V.; Rodrigues, F.; Vale, Z.; Gouveia, J.B. An electric energy consumer characterization framework based on data mining techniques. IEEE Trans. Power Syst. 2005, 20, 596–602.
	45. Song, K.; Anderson, K.; Lee, S.H. An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups. Appl. Energy 2020, 260, 114237.
	46. Llanos, J.; Morales, R.; Núñez, A.; Sáez, D.; Lacalle, M.; Marín, L.G.; Hernández, R.; Lanas, F. Load estimation for microgrid planning based on a self-organizing map methodology. Appl. Soft Comput. J. 2017, 53, 323–335.
	47. Senabre, C.; Verdu, S.V.; Garcia, M.O.; Franco, F.J.G.; Marin, A.G. Classification, Filtering, and Identification of Electrical Customer Load Patterns Through the Use of Self-Organizing Maps. IEEE Trans. Power Syst. 2006, 21, 1672–1682.
	48. Lee, E.; Kim, J.; Jang, D. Load Profile Segmentation for Effective Residential Demand Response Program: Method and Evidence from Korean Pilot Study. Energies 2020, 13, 1348.
	49. Li, R.; Wang, Z.; Gu, C.; Li, F.; Wu, H. A novel time-of-use tariff design based on Gaussian Mixture Model. Appl. Energy 2016, 162, 1530–1536.
	50. Ozawa, A.; Furusato, R.; Yoshida, Y. Determining the relationship between a household’s lifestyle and its electricity consumption in Japan by analyzing measured electric load profiles. Energy Build. 2016, 119, 200–210.
	51. Energy Information Administration Residential Energy Consumption Survey (RECS) Available online: https://www.eia.gov/consumption/residential/index.php (accessed on Feb 27, 2019).
	52. Song, K.; Anderson, K.; Lee, S.H. An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups. Appl. Energy 2020, 260, 114237.
	53. Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques; 3rd ed.; Morgan Kaufmann: Waltham, 2012;
	54. Yoo, W.; Kim, H.; Shin, M. Stations-oriented indoor localization (SOIL): A BIM-Based occupancy schedule modeling system. Build. Environ. 2020, 168, 106520.
	55. Lu, Y.; Tian, Z.; Peng, P.; Niu, J.; Li, W.; Zhang, H. GMM clustering for heating load patterns in-depth identification and prediction model accuracy improvement of district heating system. Energy Build. 2019, 190, 49–60.
	56. Liu, Y.; Li, Z.; Xiong, H.; Gao, X.; Wu, J. Understanding of Internal Clustering Validation Measures. In Proceedings of the 2010 IEEE International Conference on Data Mining; IEEE, 2010; pp. 911–916.
	57. Lin, S.; Li, F.; Tian, E.; Fu, Y.; Li, D. Clustering load profiles for demand response applications. IEEE Trans. Smart Grid 2019, 10, 1599–1607.
	58. Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227.
	59. National Center for Environmental Information Data Tools: Find a Station Available online: https://www.ncdc.noaa.gov/cdo-web/datatools (accessed on Feb 27, 2019).
	60. Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. Appl. Stat. 1979, 28, 100.
	61. Vattani, A. k-means Requires Exponentially Many Iterations Even in the Plane. Discret. Comput. Geom. 2011, 45, 596–616.
	62. Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Networks 2005, 16, 645–678.
	63. Widén, J.; Lundh, M.; Vassileva, I.; Dahlquist, E.; Ellegård, K.; Wäckelgård, E. Constructing load profiles for household electricity and hot water from time-use data-Modelling approach and validation. Energy Build. 2009, 41, 753–768.
	64. Jain, R.K.; Smith, K.M.; Culligan, P.J.; Taylor, J.E. Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accu...
	65. Bhimani, J.; Leeser, M.; Mi, N. Accelerating K-Means clustering with parallel implementations and GPU computing. In Proceedings of the 2015 IEEE High Performance Extreme Computing Conference, HPEC 2015; Institute of Electrical and Electronics Engi...
	66. Kaisler, S.; Armour, F.; Espinosa, J.A.; Money, W. Big data: Issues and challenges moving forward. In Proceedings of the Proceedings of the Annual Hawaii International Conference on System Sciences; 2013; pp. 995–1004.
	67. Lai, C.S.; Lai, L.L. Application of Big Data in Smart Grid. In Proceedings of the Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015; Institute of Electrical and Electronics Engineers Inc., 2016; pp. 665–670.
	68. Intel Corporation Smart Grid Data Management Solution Enables Utility Companies to Improve Overall System Operation Available online: https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/energy-smart-grid-solution-blueprint...
	69. McKain, J.L. Relocation in the Military: Alienation and Family Problems. J. Marriage Fam. 1973, 35, 205.
	70. Hoshmand, L.T.; Hoshmand, A.L. Support for military families and communities. J. Community Psychol. 2007, 35, 171–180.
	71. Hogg, M.A. Social Identity Theory. In Understanding Peace and Conflict through Social Identity Theory; McKeown, S., Haji, R., Ferguson, N., Eds.; Springer: Cham, 2016; pp. 3–17.
	72. Ren, Y.; Harper, F.M.; Drenner, S.; Terveen, L.; Kiesler, S.; Riedl, J.; Kraut, R.E. Building member attachment in online communities: Applying theories of group identity and interpersonal bonds1. MIS Q. Manag. Inf. Syst. 2012, 36, 841–864.
	73. Yuqing Ren; Kraut, R.; Kiesler, S. Applying Common Identity and Bond Theory to Design of Online Communities. Organ. Stud. 2007, 28, 377–408.
	74. Fiedler, M.; Sarstedt, M. Influence of community design on user behaviors in online communities. J. Bus. Res. 2014, 67, 2258–2268.


