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Abstract: Within residences, normative messaging interventions have been gaining interest as a 18 
cost-effective way to promote energy saving behaviors. Behavioral reference groups are one 19 
important factor in determining the effectiveness of normative messages. More personally relevant 20 
and meaningful groups are likely to promote behavior change. Using readily available energy-use 21 
profiles in a non-invasive manner permits the creation of highly personalized reference groups. 22 
Unfortunately, how data granularity (e.g., minute and hour) and aggregation (e.g., one week and 23 
one month) affect the performance of energy profile-based reference group categorization is not 24 
well understood. This research evaluates reference group categorization performance across 25 
different levels of data granularity and aggregation. We conduct a clustering analysis using one-26 
year of energy use data from 2,248 households in Holland, Michigan USA. The clustering analysis 27 
reveals that using six-hour intervals results in more personalized energy profile-based reference 28 
groups compared to using more granular data (e.g., 15 minutes). This also minimizes computational 29 
burdens. Further, aggregating energy-use data over all days of twelve weeks increases the group 30 
similarity compared to less aggregated data (e.g., weekdays of twelve weeks). The proposed 31 
categorization framework enables interveners to create personalized and scalable normative 32 
feedback messages. 33 

Keywords: household energy consumption; behavior change; normative feedback; behavioral 34 
reference group; smart meter 35 

 36 

1. Introduction 37 

In the United States (US), the residential sector consumes approximately 21% of total energy and 38 
generates 19% of all carbon dioxide (CO2) emissions [1]. Residential energy consumption is 39 
significantly affected by occupant behaviors within their homes [2,3]. As a consequence, numerous 40 
behavioral intervention methods (e.g., education campaigns, goal setting interventions, and energy 41 
saving incentives) aimed at improving occupant energy use behavior have been studied. Recently, 42 
an increasing amount of research has investigated normative messaging interventions, as these 43 
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interventions have been found to reduce overall household energy consumption and are very cost-44 
effective given its implementation cost (3.3 cents per kWh of electricity saved) [4–7]. Normative 45 
messaging interventions typically provide households with information about their own energy 46 
consumption as well as information about the mean or median energy use of other similar 47 
households. The other households’ energy use serves as a descriptive social norm (i.e., a guideline 48 
about how other people behave). People feel social pressure to modify their own behavior to fit that 49 
of the people around them, especially if they feel similar to those other people [8,9]. Thus, a 50 
descriptive social norm that conveys that others are energy efficient can motivate high energy 51 
consumers to reduce their own consumption to match their peers [10]. Yet, descriptive social norms 52 
can also cause low energy users to increase their consumption by giving tacit permission to match 53 
the norm of what their peers are using (i.e., the boomerang effect which refers to unintended 54 
consequences of an attempt to persuade resulting in the adoption of an opposing position instead). 55 
To mitigate the boomerang effect, injunctive norm messages are frequently added to descriptive 56 
normative messages. Injunctive norms convey societal approval or disapproval of a behavior (e.g., a 57 
smiley face indicating desirability of low energy use) and have been effective at mitigating the 58 
boomerang effect [10]. From the perspective of electricity utility companies, using normative 59 
feedback messages helps reduce overall electricity demand, thus avoiding expensive upgrades to 60 
power lines or additional power plant construction. Several large-scale studies in multiple US cities 61 
found that normative feedback messages included in monthly or quarterly bills lead to an 62 
approximate 2% reduction in energy use (1.4% to 3.3% from approximately 600,000 households [11] 63 
and 1.2% to 2.1% from approximately 170,000 households [12]). Even small reductions such as this 64 
on the aggregate can have a tremendous impact on national energy consumption and thus, net CO2 65 
emissions. 66 

With norm-based interventions, researchers hypothesize that as reference groups become more 67 
personally relevant individuals feel a greater sense of attachment to their group. This connection to 68 
the reference group can increase norm adherence and the effectiveness of normative messaging 69 
interventions [8,13]. Practically, reporting more personalized feedback messages is important 70 
because it allows individuals to attend to only what is personally relevant to them [14]. Until recently, 71 
the reference groups in norm-based interventions have been based on geographical proximity (e.g., 72 
street and city) and/or housing characteristics (e.g., housing size and heating type) [5,11]. Yet these 73 
are not the only characteristics that might inspire feelings of connection between households; other 74 
aspects—like similar lifestyles—may be even more important because of their larger impact on 75 
household energy consumption [15]. Including information about households’ lifestyle in 76 
conjunction with geographic and housing characteristics can be used to create more personalized 77 
reference groups. Further, because lifestyle information provides insights into when households 78 
consume energy, using these reference groups can help individuals learn which time periods offer 79 
the most opportunity for them to reduce energy consumption. Nevertheless, more personalized 80 
reference group generation has traditionally not been applied as it has been prohibitively costly 81 
because of the expense of necessary surveys and home energy audits or extensive manual data 82 
collection [16]. Thus, until recently, personalized normative messaging interventions have not been 83 
financially viable on a large scale. 84 

Recent developments and deployment of smart energy metering technology provide new 85 
opportunities for behavioral reference group classification as they collected energy consumption data 86 
in real-time [17]. This permits a non-invasive means to generate residential energy use profiles. As 87 
energy use profiles are largely dependent on how occupants behave at home, households can be 88 
categorized into several normative feedback reference groups based on similar usage patterns [18–89 
22]. Thus, by integrating the smart energy metering technology with utility billing systems, it is 90 
possible to provide households with the norm of energy profile-based reference groups (i.e., more 91 
personalized reference groups) every billing cycle. Further, the non-invasive data collection process 92 
makes personalized normative messaging interventions scalable. Unfortunately, although using 93 
readily available energy use data permits the creation of personalized normative comparison groups, 94 
there has been little understanding of how data granularity and aggregation affect the group 95 
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categorization performance. In other words, it is still unknown which type of data produces the best 96 
reference groups: groups in which members are the most similar to each other. This is important 97 
because typical behavioral pattern of households can change depending on data granularity and 98 
aggregation, thus causing different categorization results [23,24]. Therefore, the objective of this 99 
research is to evaluate the performance of energy profile-based reference group categorization across 100 
different temporal granularity and aggregation of energy-use data. 101 

2. Related Works on Electric Energy Consumer Categorization 102 

Studies have used readily available energy use data to find representative behavioral patterns 103 
of electric energy consumers for energy tariff structure modelling [24], building energy use prediction 104 
[25], and renewable electricity generation [26]. To find representative behavioral patterns, daily 105 
energy use profiles for individual energy consumers are created and categorized into several 106 
meaningful groups through a clustering analysis. To date, researchers have focused on how profiles 107 
should be preprocessed during the categorization process to create more similar groups based on 108 
behavioral patterns. The preprocessing step includes reducing the dimensionality of the profiles (e.g., 109 
principal component analysis [26,27]) and/or transforming the profiles (e.g., min-max normalization 110 
[24,28] and frequency domain transformation [29–31]). Further, several studies [24,32] have evaluated 111 
the performance of electric energy consumer categorization across different data reduction methods.  112 

In addition to the wide variety of data reduction and transformation methods, researchers 113 
[23,24] have considered the temporal granularity of energy use data during the categorization process 114 
as it can affect group similarity and the number of group members. Specifically, using highly granular 115 
data provides more specific information about energy use behaviors of individual electricity 116 
consumers and, in turn, will contribute to finding other consumers who are most similar behaviorally 117 
[23,33,34]. In contrast, highly granular data may reduce the number of group members, making it 118 
difficult to create meaningful groups [35,36]. Therefore, the temporal granularity of energy use data 119 
should be considered during the categorization process in order to create meaningful groups based 120 
on behavioral patterns. Until recently, energy use behaviors of residential and commercial electricity 121 
consumers have been represented at a 15-minute [24,28], 30-minute [26,37] or one-hour interval 122 
[38,39]. However, which level of data granularity should be used is still unknown because most 123 
studies did not evaluate the categorization performance across time scales. One study [23] has 124 
investigated how data granularity affects the performance of residential electricity customer 125 
categorization, but was not without limitation as all clustering results are averaged without 126 
accounting for the number of clusters. Since no information is available on the best number of clusters 127 
in given datasets, it is necessary to evaluate the clustering performance across different numbers of 128 
clusters. Song et al. [40] examined different temporal granularity levels of residential energy use data 129 
as well as the number of clusters during the cluster evaluation process, but did not examine the 130 
compound effect of data granularity and aggregation. As a result, it remains unknown which time 131 
scale of energy use data produces the best categorization performance. 132 

Moreover, the temporal aggregation of energy use data during the categorization process may 133 
improve the similarity within group members [24]. In general, data aggregation reduces 134 
discrepancies in energy consumption caused by irregular changes in a household’s lifestyle (e.g., 135 
vacations), which helps more accurately represent typical energy use behaviors. Particularly, as 136 
typical energy use behaviors are identified and used for normative comparison group categorization, 137 
each household would be categorized into the same energy profile-based groups every intervention 138 
cycle. Thus, considering that individuals are more likely to identify with social groups that do not 139 
change frequently, the data aggregation would help households have a strong identification with the 140 
profile groups. However, data aggregation may not be effective when using long-term data due to 141 
significant seasonal changes in energy use behaviors caused by changing weather conditions [41]. 142 
Previous studies aggregated energy use data over one season [32,42] or more than six months [38,43] 143 
to represent typical energy use behaviors of households. Several studies also considered the day 144 
types (e.g., weekdays [32,38] and all days [43]). However, the best practice for data aggregation 145 
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remains unclear as there have been no attempts to compare the clustering performance across 146 
different aggregation levels. 147 

After preprocessing the energy use data, various clustering algorithms have been applied to the 148 
preprocessed dataset to categorize electricity consumers into meaningful groups. The most widely 149 
used clustering algorithms include k-means [37,44], hierarchical clustering [45] and self-organizing 150 
maps [46,47]. Recently, several studies have reported the high capability of mean-shift clustering [48] 151 
and mixture model-based clustering [49] to find representative behavioral patterns of electricity 152 
consumers in non-linear or dense datasets. Further, many studies [43,50] have evaluated the 153 
performance of electricity consumer categorization considering different clustering algorithms 154 
because their performance varies depending on data characteristics. However, less effort has been 155 
undertaken to investigate how clustering algorithms affect the performance of electricity consumer 156 
categorization across different levels of data granularity and aggregation. 157 

3. Behavioral Reference Group Categorization Framework 158 

This research proposes a data mining-based categorization framework using readily available 159 
energy use profiles to classify households into highly personalized behavioral reference groups based 160 
on their behavioral patterns. The proposed categorization framework considers various levels of data 161 
granularity and aggregation while identifying typical behavioral patterns of households. In addition 162 
to energy use behavior, we consider housing size during the categorization process as this contributes 163 
to significant variations in household energy consumption [15]. Because all households within 164 
normative comparison groups exist in the same climate region, any effects of weather on energy 165 
consumption are constant within clusters. By including energy use behaviors in conjunction with 166 
housing size and climate region as variables in clustering, energy profile-based reference groups will 167 
be more valid for normative comparison. Figure 1 describes the main process for creating behavioral 168 
reference groups based on households’ behavioral patterns. First, data for energy consumption and 169 
housing characteristics is preprocessed to improve the clustering performance. Next, clustering 170 
algorithms are used for creating personally meaningful reference groups based on households’ 171 
energy use profiles. Lastly, clustering performance is evaluated to determine the ideal number of 172 
behavioral reference groups. 173 

 174 
Figure 1. Data mining-based behavioral reference group categorization framework. 175 

3.1. Data Preprocessing 176 

The data preprocessing begins with separating households by housing size. Since household 177 
energy use is significantly dependent on housing size, comparing energy consumption of household 178 
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with similar size homes makes more valid behavioral reference groups for normative comparison. 179 
Additionally, using public records on housing size permits the creation of behavioral reference 180 
groups without any participation of households (i.e., non-invasive manner). In this study, housing 181 
size corresponds to the total floor area (m2) of a house. Five categories are created for various house 182 
sizes as follows: 183 

• HS1: Less than 92.9 m2 184 
• HS2: 92.9 to 139.2 m2 185 
• HS3: 139.3 to 185.7 m2 186 
• HS4: 185.8 to 232.1 m2 187 
• HS5: 232.2 m2 or more 188 

The Energy Information Administration (EIA) generally divides housing units into seven 189 
housing size categories; this current research uses five categories because using seven categories can 190 
create several reference groups with a very low percentage of the total housing units [51]. Having 191 
insufficient members in each reference group undermines the validity of normative comparisons 192 
within the group and increases the chance of providing spurious results. For this reason, we combine 193 
housing units with less than 92.9 m2 and more than 232.2 m2 into two housing size categories, 194 
respectively (i.e., HS1 and HS5). This is due to the relatively small number of houses that fall into 195 
these two categories; 2.5% of households have less than 46.4 m2 and 8.3% are between 232.2 to 278.6 196 
m2 (Table 1). Combining these groups as such creates an even distribution of households across all 197 
housing size categories. On the other hand, this combining process can treat households with small-198 
sized homes (i.e., less than 46.4 m2 in HS1 and 232.2-278.6 m2 in HS5) as low energy consumers within 199 
their behavioral reference groups. This is because households with small-sized homes account for a 200 
small percentage of total households in HS1 and HS5, and generally consume less energy than large-201 
sized homes. Consequently, small-sized homes in HS1 and HS5 may increase their energy 202 
consumption when presented with descriptive social norms indicating that other households in their 203 
group consume more than them. However, using injunctive norms may prevent households with 204 
small-sized homes from increasing their energy consumption when they are treated as low energy 205 
consumers in their behavioral reference groups.  206 

 207 

Table 1. Number of Households (%) in the United States by Housing Size. 208 

 Floor Area (m2) 
 <46.4 46.4-92.8 92.9-139.2 139.3-185.7 185.8-232.1 232.2-278.6 ≥278.7 

# of Households (%)a 2.5 21.9 21.2 16.2 12.5 8.3 17.4 
a The number of households for each housing size category are based on residential energy consumption 

survey by Energy Information Administration [51]. 

After separating households by size, typical behavioral patterns of households are analyzed 209 
using different time scales and levels of aggregation. As a data granularity variable, time interval 210 
refers to the sampling rate of energy use data, including 15 minutes, 30 minutes, one hour, two hours, 211 
six hours and twelve hours. The values of time interval have been widely used for representing 212 
households’ daily energy use behaviors in previous studies [23,37,38]. The data aggregation variables 213 
include monitoring period and day type. The monitoring period denotes the number of weeks: one 214 
week, two weeks, three weeks, one month, two months and three months. These values are 215 
dependent on messaging cycle (e.g., weekly feedback = all values; monthly messages = one month, 216 
two months, and three months) and provide a basis for investigating the short-and long-term effect 217 
of data aggregation on the behavioral reference groups categorization. The day type is a variable 218 
which consists of weekdays only or all days. If data for energy consumption is collected at a one-hour 219 
interval during the weekdays of one week, a typical daily energy use profile is represented in a time-220 
series with 24 time-points by averaging the values for each time interval of the five days (Figure 2). 221 
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On the other hand, if energy use date is collected during all days, a typical behavioral pattern is 222 
represented by averaging the values for each time interval of the seven days. 223 

 224 
Figure 2. Example of typical daily energy use profile creation. 225 

Lastly, load shapes are extracted from the typical daily profiles of energy consumption. The load 226 
shape extracting process is important because households in a normative reference group should 227 
have similar times of energy consumption (i.e., load shapes) but be able to be dissimilar in net energy 228 
consumption. In addition, since load shapes represent households’ lifestyles, they should be similar 229 
within a behavioral reference group. However, since the clustering process accounts for both the time 230 
and volume of energy consumption, households with different patterns of use can be categorized 231 
into the same group due to their similar volume of energy use [24,28]. For example, although 232 
households A and C exhibit different behavioral patterns, they would be categorized into a single 233 
group (Figure 3-a). To overcome the adverse effect of volume of the profiles during the categorization 234 
process, the three load shape (LS) extraction methods proposed by Song et al [52] are adopted because 235 
the clustering performance can vary depending on LS: 236 

 237 
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Figure 3. Example of typical daily energy use profile creation. 238 

• LS1: Gradient method transforms the existing value of energy consumption (e) into 239 
the rate of change in energy consumption (erate). It is defined as the change in energy 240 
consumption between two consecutive time points (Figure 3-b). The mathematical 241 
terms of erate*j(i+1) can be described by the following equation. 242 

𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∗𝑗𝑗(𝑖𝑖 + 1) = 𝑒𝑒𝑗𝑗(𝑖𝑖 + 1) − 𝑒𝑒𝑗𝑗(𝑖𝑖) (1) 

where, ej(i+1) is the amount of energy consumption at time i+1 for household j, and ej(i) is the amount 243 
of energy consumption at time i for household j. 244 

• LS2: Normalization method transforms the existing values of energy consumption 245 
(e) into the normalized energy consumption (enorm). It is calculated by normalizing the 246 
amount of energy consumption between 0 and 1 (Figure 3-c). 247 

𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∗𝑗𝑗(𝑖𝑖) =
𝑒𝑒𝑗𝑗(𝑖𝑖) − 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚∗𝑗𝑗
𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚∗𝑗𝑗 − 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚∗𝑗𝑗

 (2) 

where, ej(i) is the original amount of energy consumed at time i, emin*j is the minimum amount of energy 248 
consumption for household j, emax*j is the maximum amount of energy consumption for household j. 249 

• LS3: Cumulative method transforms the existing values of energy consumption (e) 250 
into the cumulative percentage of energy consumption (ecper). It is calculated by 251 
dividing the cumulative energy consumption at each time by the total amount of 252 
daily energy consumption (Figure 3-d). 253 

𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗𝑗𝑗(𝑖𝑖) =
𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐∗𝑗𝑗(𝑖𝑖)
𝑒𝑒𝑑𝑑∗𝑗𝑗

× 100 (3) 

where, ecum·j(i) is the cumulative amount of energy consumption at time i for household j and ed*j is the 254 
amount of daily energy consumption for household j. 255 

3.2. Application of Clustering Algorithms 256 

To categorize households into personally relevant behavioral reference groups, we applied k-257 
means clustering (KC), hierarchical clustering (HC), and self-organizing maps (SOM) to the 258 
preprocessed dataset for three reasons. First, the performance of the clustering algorithms changes 259 
depending on data characteristics [50,53]. Consequently, three different clustering algorithms were 260 
tested to create more personalized behavioral reference groups. Second, the adopted clustering 261 
algorithms do not require prior knowledge on data characteristics. Although other popular clustering 262 
algorithms (e.g., mean-shift clustering [48,54] and mixture model-based clustering [49,55]) have 263 
proven useful to categorize objects into several meaningful groups, they make assumptions about 264 
how data is distributed within each cluster. Because data distribution as well as the number of 265 
clusters in a given dataset of household energy consumption is unknown before the clustering 266 
analysis, it is not ideal to apply the assumption-based clustering algorithms for this research. Third, 267 
the adopted clustering algorithms have been widely used in the field of identifying representative 268 
behavioral patterns of residential and commercial customers [24]. 269 

The KC algorithm partitions objects into k distinct clusters. The first step of KC is to arbitrarily 270 
determine k initial cluster centers as the initial centroids of groups. Then, each object belongs to the 271 
cluster whose centroid is closest to the object (Figure 4-a). If an object p is apart from the centroid ci 272 
of a cluster Ci, the sum of Euclidean distances between them can be minimized by the following 273 
objective function E: 274 
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 (5) 

This objective function creates k clusters as tightly clustered and unique as possible. Until there 275 
is no variation in similarities, the KC reallocates objects to new centroids of clusters and evaluate their 276 
quality, using the objective function. 277 

The HC decomposes the given set of data objects and generates a tree diagram, called a 278 
dendrogram (Figure 4-b). The HC is implemented in the following four steps: 1) constructs a 279 
similarity matrix which correspond to a symmetric matrix representing the distances among all the 280 
data objects; 2) defines each object as one cluster; 3) combine the two nearest clusters until there is 281 
only a single cluster; and 4) cuts the dendrogram at the proper level which corresponds to the k 282 
clusters. 283 

The SOM projects high dimensional input data onto a two-dimensional map using an 284 
unsupervised network model that consists of an input and output layer (Figure 4-c). In the SOM map, 285 
there are connections among the vectors (neurons) in the input and output layer. This connection is 286 
dependent on a weighting vector, called the connection intensity. The SOM algorithms consists of the 287 
following four steps. First, the Euclidean distance between the input neuron and the weigh vector is 288 
calculated. Second, the closest output neuron to the input neuron is found and considered as the best 289 
matching unit (BMU). Third, the weight vectors of the BMU and its surrounding area are updated 290 
according to Eq. (6). 291 

𝑤𝑤𝑖𝑖(𝑘𝑘 + 1) =  𝑤𝑤𝑖𝑖(𝑘𝑘) + 𝜀𝜀(𝑘𝑘)ℎ𝑝𝑝(𝑖𝑖, 𝑘𝑘){𝑥𝑥𝑖𝑖(𝑘𝑘) − 𝑥𝑥𝑖𝑖(𝑘𝑘)} (6) 

where, wi(k) is the previous weight of neuron, wi(k+1) is the new weight of neuron, ɛ(k) is the learning 292 
rate and hp(i,k) denotes the neighborhood size of the winning neuron p at an iteration of k. Fourth, 293 
this learning process is continued until a termination criterion is met. 294 

 295 
Figure 4. Structure of k-means clustering algorithm, hierarchical clustering algorithm and self-296 
organizing map. 297 

3.3. Clustering Performance Evaluation 298 

The clustering results are evaluated using the Davies-Bouldin Index (DBI) to determine the best 299 
number of behavioral reference groups in the given dataset. Many cluster validation indices (e.g., 300 
Silhouette Index and Clustering Dispersion Indicator) have been developed for clustering 301 
performance evaluation. However, the DBI has proven to be representative of those indices because 302 
it is capable of measuring group similarity regardless of data properties (i.e., monotonicity, noise, 303 
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density and skewed distributions) [56]. The DBI is one of the most widely used indices in the field of 304 
residential energy consumer categorization to not only determine the best number of clusters but also 305 
evaluate the clustering performance across different data preprocessing methods [24,45] and 306 
different clustering algorithms [24,48]. For these reasons, researchers [25,50,57] have adopted the DBI 307 
as a cluster validation index when solving their clustering problems. 308 

The DBI calculates the relative values to measure the group similarity based on between- and 309 
within-cluster variances [58]. Smaller DBI values indicate better clustering performance; clusters are 310 
more tightly knit and have greater distances between each other. The DBI is defined as 311 

𝐷𝐷𝐷𝐷𝐷𝐷 =  
1
𝑘𝑘
�𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗≠𝑖𝑖 �

𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑗𝑗
𝑑𝑑𝑖𝑖𝑖𝑖

�
𝑘𝑘

𝑖𝑖=1

 (7) 

where k: the number of clusters; di: the average distance between all objects in the ith cluster and the 312 
centroid of the ith cluster; dj: the average distance between all objects in the jth cluster; and dij: the 313 
distance between the centroids of the ith and jth clusters. In addition to the group similarity, 314 
computational time is evaluated since it can significantly vary depending on data granularity. 315 

4. Data Collection 316 

We collect energy use and housing size data of 3,000 households in Holland, Michigan. Each 317 
residence has a smart energy meter administered by the Holland Board of Public Works (HBPW). 318 
This smart metering technology captured electricity consumption data every 15 minute from January 319 
1 through December 31, 2016. The city of Holland experienced four distinct seasons, thus causing 320 
5784 heating degree days (HDD) and 756 cooling degree days (CDD) in 2016 [59]. In accordance with 321 
the HDD and CDD that indicate needs for heating and cooling, energy consumption patterns varied 322 
by season (Figure 5). Since clustering performance can vary depending on data characteristics, 323 
clustering one-year electricity consumption data helped to generalize results across different seasons. 324 
Additionally, HBPW provides housing size data. 325 

 326 
Figure 5. Mean household daily electrical energy use in kWh. 327 

503 households are excluded from the data set as they moved or experienced smart meter failure, 328 
causing missing and abnormal energy use data. In this research, households with abnormal energy 329 
consumption are defined as homes who have energy consumption data outside of the following 330 
range (Figure 6): Q1-1.5*IQR to Q3+1.5xIQR1.5, where IQR is the interquartile range (i.e., Q3-Q1), Q1 331 
is the first quartile and Q3 is the third quartile of energy use data at a certain time of the day. 332 
Additionally, no energy use data was gathered on March 13, 2016 due to a system malfunction with 333 
the electrical metering systems. Lastly, no housing size data for 319 households was obtained from 334 
HBPW, so these homes were excluded as well. In total, 2,248 households are included in the analysis 335 
(Table 2). 336 
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 337 

 338 
Figure 6. Example household with abnormal energy consumption at a certain time of day. 339 

Table 2. Number of Households by Housing Size. 340 

 Housing Size Category 
 HS1 HS2 HS3 HS4 HS5 

Floor Area (m2) <92.9 92.9-139.2 139.3-185.7 185.8-232.1 ≥232.2 
Number of Households 525 1,083 435 132 73 

 341 

5. Results 342 

A clustering analysis is performed using the collected data in conjunction with the proposed 343 
categorization framework to investigate the effect of data granularity and aggregation on the 344 
behavioral reference group categorization. The proposed categorization framework is coded in 345 
MATLAB R2017b and implemented on an Intel(R) Core(TM) i7-6700 CPU (3.40 GHz) with 16 GB 346 
RAM. In order to conduct the clustering analysis under the same condition, we use the same number 347 
of households across all the housing size categories since the number of households can affect 348 
computational time. As shown in Table 2, HS5 has the fewest households (i.e., 73), so 73 households 349 
are randomly selected from HS1, HS2, HS3 and HS4. Also, the cluster k variable changes from two to 350 
ten across all housing size categories. Then, behavioral reference group categorization for each 351 
housing size category is performed 52 times with energy use data of 73 randomly selected households 352 
during different weekly billing periods of the year. This not only avoids biased clustering results by 353 
unequal sample size but also simulates a year-long behavioral intervention that provides normative 354 
feedback every week. For each messaging cycle, 72 different types of typical energy use profiles for 355 
each household are created for each combination of data granularity and aggregation (i.e., six time 356 
intervals by six monitoring periods by two day types = 72 typical daily energy use profiles per 357 
household). After applying the clustering algorithms to the preprocessed dataset, we average the 358 
clustering results (i.e., DBI and computational time) over different levels of data granularity and 359 
aggregation. Lastly, once the most desirable categorization framework is found using DBI values, we 360 
identify representative behavioral reference groups for a weekly intervention cycle (i.e., May 9-15, 361 
2016) for two reasons. First, although the categorization framework makes group members the most 362 
similar, it is uncertain whether the identified groups are characterized by households’ behavioral 363 
patterns and distinguishable from each other. Second, diverse behavioral patterns of residential 364 
energy consumers tend to be observed during this period due to the changes of seasons [40]. Thus, 365 
this group identification process enables the testing of how distinguishable groups are in terms of 366 
energy use patterns. 367 
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5.1. Clustering Performance by Data Granularity 368 

Representing daily energy use profiles using six-hour intervals produces the lowest average 369 
values of DBI except for when three and eight behavioral reference groups are created based on the 370 
profiles (Figure 7). The higher average values of DBI are found when using less granular data. When 371 
investigating the average values of DBI by time interval across different load shape extraction 372 
methods, using six-hour intervals in conjunction with LS1 generally produces the lowest average 373 
values (Figure 8-a). However, the clustering results using LS2 and LS3 show that the lowest average 374 
values of DBI are observed with six-hour and 12-hour intervals. Additionally, regardless of which 375 
clustering algorithm is applied (KM, HC, or SOM), the lowest average values of DBI are obtained 376 
from clustering analysis using six-hour intervals (Figure 8-b). 377 

 378 
Figure 7. Average values of DBI by time interval, monitoring period, and day type. 379 

 380 
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 381 
Figure 8. Average values of DBI by time interval across different load shape extraction methods and 382 
clustering algorithms. 383 

The computational time decreases when behavioral reference groups are created based on less 384 
granular energy use data (i.e., six and twelve hours) as would be expected (Figure 9-a). As the number 385 
of households increases, the data granularity makes the difference in computational time 386 
exponentially larger (Figure 9-b). This significant increase in computational time exists for all the 387 
clustering algorithms (Figure 10). 388 

 389 
Figure 9. Computational time by time interval. 390 



Energies 2020, 05, x FOR PEER REVIEW 13 of 22 

 

 391 
Figure 10. Computational time by time interval across different clustering algorithms. 392 

5.2. Clustering Performance by Data Aggregation 393 

Aggregating energy use data over twelve weeks produces the lowest average values of DBI 394 
across all the number of clusters (Figure 7). The average values of DBI decrease with longer 395 
monitoring periods. Looking closely at the average values of DBI by monitoring period across 396 
different load shape extraction methods, more aggregated data (i.e., twelve weeks) produce the 397 
lowest average values of DBI in case of LS1 (Figure 11-a). However, the clustering results using LS2 398 
and LS3 show that the average DBI values do not vary by monitoring period. In addition, regardless 399 
of clustering algorithms, aggregating energy use data over twelve weeks produces the lowest average 400 
values of DBI (Figure 11-b). 401 

 402 
Figure 11. Average values of DBI by monitoring period across different load shape extraction 403 
methods and clustering algorithms. 404 
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Across different intervention cycles, aggregating energy use data over twelve weeks generally 405 
produces the lowest average values of DBI except for the middle of Spring and Autumn (Figure 12). 406 
The average values of DBI tend to decrease with longer monitoring periods. 407 

 408 
Figure 12. Average values of DBI by monitoring period across all the intervention cycles. 409 

There is no difference in the average DBI values by day type (Figure 7). When investigating the 410 
average values of DBI by day type across different load shape extraction methods, more aggregate 411 
data (i.e., all days) in conjunction with LS2 and LS3 produce the lowest average values of DBI (Figure 412 
13-a). In contrast, the clustering results using LS1 show that aggregating energy use profiles over 413 
weekdays produces the lowest average values of DBI. Further, across all the clustering algorithms, 414 
the average values of DBI do not vary by day type (Figure 13-b). 415 
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Figure 13. Average values of DBI by day type across different load shape extraction methods and 417 
clustering algorithms. 418 

5.3. Overall Clustering Performance 419 

Figure 14 shows the results of the clustering analysis considering data granularity and 420 
aggregation, load shape extraction methods, and clustering algorithms. The lowest average value of 421 
DBI is achieved under the following conditions: 1) data granularity of six hours, 2) data aggregation 422 
over all days of twelve weeks, 3) load shape extraction by LS3, and 4) application of hierarchical 423 
clustering algorithm to find the ideal number of clusters. 424 

 425 
Figure 14. Average values of DBI across different time interval, monitoring period, day type, load 426 
shape extraction methods and clustering algorithms. 427 
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5.4. Behavioral Reference Group Identification 428 

Using three energy profile-based groups produces the lowest DBI values in housing groups HS1 429 
and HS5 (Figure 15). For housing groups HS2, HS3 and HS4, four energy profile-based groups 430 
produce the lowest DBI values. Considering that two groups in HS4 and HS5 show similar behavioral 431 
patterns of households, the identified groups have five distinguishable daily energy use profiles 432 
(Figure 16). Households in Group 1 consume energy mostly in the evening. Households in the Group 433 
4 consume energy mostly in the morning. The energy use profiles are also contingent on the housing 434 
size category. 435 

 436 
Figure 15. Davies-Bouldin Index by number of clusters across different housing size categories. 437 

 438 
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Figure 16. Typical daily energy use profiles for identified energy profile-based groups across different 439 
housing size categories. 440 

6. Discussion 441 

Since lower values of DBI indicate higher intra-class similarities and lower inter-class similarities 442 
within a group, it is clear that capturing typical daily energy use profiles of households using a six-443 
hour interval leads to the most similar behavioral reference groups in terms of DBI (Figure 7). These 444 
results are be supported by the following two conflicting observations. First, the sparsity of data 445 
points in a group increases with higher dimension of data [35,36]. Thus, behavioral reference groups 446 
may not be meaningful for normative comparison in a highly dimensional space. Second, groups 447 
become more distinguishable as the number of data attributes increase. 448 

The computational efficiency of the group categorization process decreases when using less 449 
granular data (i.e., 6 and 12 hours). Time to create groups increases exponentially with more 450 
households. This exponential increase is attributed to the linear time complexity of the KC and SOM 451 
with respect to the number of data objects [60]. Clustering a small number of data objects shortly 452 
converge clustering results to the global optimum after twelve iterations [61]. However, when using 453 
a large number of data objects, these clustering algorithms make the number of iterations larger and 454 
then cause longer computational time for the convergence process. For the HC, the time complexity 455 
is quadratic or worse depending on the number of data objects [62]. 456 
 457 

Table 3. Time complexity of clustering algorithms. 458 

Clustering Algorithm Time Complexity 
k-Means Clustering O(n·k·D·i) 

Hierarchical Clustering O(n2·D) or O(n3·D) 
Self-Organizing Map O(n·i·N) 

*n: the number of data objects, k: the number of clusters, D: the number of data attributes, i: 
the number of iterations, N: the number of neurons in the output layer. 

Moreover, it appears that aggregating energy use data over longer monitoring periods (i.e., 459 
twelve weeks) makes behavioral reference groups more similar (Figure 7). These results align with 460 
the previous findings that the aggregation periods should be long enough in the same seasonal 461 
context to represent typical daily energy use profiles for each electricity customer [24]. Interestingly, 462 
using 8-week aggregate energy use data produces the lowest average values of DBI in the middle of 463 
Spring and Autumn (Figure 12) when the weather is shifting from warm to cold and vice versa. These 464 
results can be expected because households tend to exhibit similar energy use behaviors within the 465 
same season but different behaviors while seasons are changing (e.g., April to May) [41]. Thus, as the 466 
monitoring periods include more days that correspond to this period, using less aggregated energy 467 
use data (i.e., eight weeks) produces the lowest average values of DBI. 468 

Further, the similarity of households in behavioral reference groups does not vary by day type 469 
(Figure 7). This conflicts with previous studies that suggested aggregating energy use data over all 470 
days of the given monitoring period (e.g., season or year) could interrupt typical energy use patterns 471 
of households [24,38,44]. However, these clustering results are understandable because households 472 
are likely to consume different amounts of energy but exhibit similar behavioral patterns (i.e., load 473 
shape) [20,41,63] and not all regions have similar heating and cooling loads as Holland, Michigan. 474 
Consequently, considering weekdays and weekends together contributed to creating typical daily 475 
energy use profiles and make behavioral reference groups more meaningful. 476 

Figure 14 presents the most desirable behavioral reference group categorization framework for 477 
normative comparison. This framework not only increases the similarity of households in behavioral 478 
reference groups, but also makes the groups distinguishable based on daily energy use profiles 479 
(Figure 16). Using six-hour intervals will make behavioral reference groups more personalized and 480 
require a relatively short computation time. However, this doesn’t mean that energy use data should 481 
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be sampled from smart meters at a six-hour interval. This is because different data granularity can be 482 
required for other energy saving purposes in the residential sector. For example, using high 483 
resolution energy use data makes it possible to predict and avoid daily peak demand in homes [64]. 484 
Therefore, instead of setting a low data sampling rate, we recommend collecting highly granular 485 
energy use data from smart meters and then change the data granularity to six-hour intervals when 486 
creating more personally relevant comparison groups. 487 

Additionally, when a normative messaging intervention is deployed to one million homes, using 488 
six-hour intervals does not create a feedback lag (it takes approximately two hours for their 489 
categorization). However, if household energy use profiles were clustered at a large spatial scale (e.g., 490 
state, climate region) to improve the validity of normative comparison with sufficient group 491 
members, this could cause a latency of normative behavioral feedback despite using six-hour 492 
intervals. Coupling parallel computing techniques with the proposed categorization framework 493 
solves this computational issue (e.g., it is 30 times faster for image dataset categorization [65]). 494 
Further, aggregating energy use data over all days of twelve weeks makes behavioral reference 495 
groups more similar. A data aggregation issue might arise due to the large volume of historical data 496 
that must be stored and processed in databases to create more personally relevant comparison 497 
groups. As mentioned by Kaisler et al. [66], the existing database management systems operated by 498 
utility companies may be unable to solve such storage and processing issues due to their limited 499 
capacity. This will, in turn, be a barrier to create more personally relevant comparison groups by 500 
aggregating energy use data over all days of twelve weeks. However, big data technologies (e.g., 501 
cloud computing) have been widely adopted as a means for implementing the smart grid and 502 
continue to become more widespread [67,68]. In addition to the data storage and processing issues, 503 
data aggregation process may have difficulty creating typical energy use profiles when home energy 504 
use data has outliers at certain times. This is important because outliers make mean values biased 505 
toward them, and thus are not representative of given data. While we removed households with 506 
outliers from this analysis, electricity utility companies would include all residential customers in 507 
normative feedback programs for overall electricity demand reduction. Therefore, it is recommended 508 
that the data aggregation process involves removing outliers and averaging the values of remaining 509 
energy use data to create typical daily energy use profiles.  510 

Future research should identify personalized behavioral reference groups within a seasonal 511 
context. While using more aggregated and less granular data creates more personalized behavioral 512 
reference groups, households can be provided with the norm of different reference groups every 513 
billing cycle if they change behavioral patterns. Considering that individuals do not strongly identify 514 
with social groups that they can easily join and leave (e.g., people who live in temporary housing 515 
such as military family homes does not have a strong identification with their neighbors [69,70]), 516 
frequent changes in behavioral reference groups may weaken the households’ identification with 517 
those groups. Therefore, understanding how frequently individuals change their energy use 518 
behaviors will allow interveners to not only find an appropriate categorization cycle but also provide 519 
suitable comparison groups across all seasons. Additionally, future work should investigate how 520 
households perceive their energy profile-based reference groups, since compliance with social norms 521 
depends on residents’ identification with those groups [71]. Unlike traditional geographic proximity-522 
based groups (e.g., neighbors) whose members may know each other, residents in energy profile-523 
based groups are not expected to know each other on a personal level. Thus, this could make it 524 
difficult for residents to feel strongly attached to other members of the profile-based groups. 525 
However, individuals regularly build social relationships with others in online communities (e.g., 526 
movie-related communities, online gaming) despite a lack of physical contact [72–74]. Sharing not 527 
only the characteristics of groups but also member behavior makes people feel more attached to their 528 
online communities [72]. Therefore, despite limited physical contact among the members of energy 529 
profile-based groups, by highlighting similar patterns of behavior, interveners can encourage 530 
residents to strongly identify with their profile group and thus adhere to group norms. 531 

7. Conclusions 532 
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Recent advances in energy monitoring technology provide new opportunities to construct more 533 
personalized feedback messages by constructing energy-use profiles of consumers on a large scale. 534 
The creation of meaningful personalized reference groups based on similar behavioral patterns of 535 
households can lead to increases in social norm adherence and thus, improvements in normative 536 
messaging intervention effectiveness. However, previous research efforts had two limitations: 537 
uncertainties about the role of temporal granularity in group categorization performance and 538 
uncertainties about the ideal aggregation of energy use. Therefore, this research evaluates the 539 
performance of behavioral reference group categorization across different levels of temporal 540 
granularity and aggregation of energy-use data. 541 

Reducing the temporal granularity of energy-use data (i.e., six-hour intervals) creates 542 
personalized behavioral reference groups while minimizing computational time, as compared to 543 
more granular data intervals. These results are consistent regardless of load shape extraction method 544 
and clustering algorithm. Additionally, aggregating energy use data (i.e., across all days of twelve 545 
weeks) generally increases the similarity of behavioral reference groups. Data aggregation effects 546 
decreases only when seasons change. Also, the compound effect of data granularity and aggregation 547 
varies depending on load shape extraction method and clustering algorithm. Using more aggregated 548 
but less granular data results in further improvement in the similarity of behavioral reference groups 549 
by cumulative percentage-based load shape extraction in conjunction with hierarchical clustering. 550 
These results provide a guideline for norm-based energy conservation interventions, specifically for 551 
households in Holland and residential areas with similar energy use patterns: energy-use profiles 552 
should be categorized after aggregating energy-use data across all days of twelve-weeks using six-553 
hour increments. 554 

This research contributes to the literature by enhancing our knowledge of how the temporal 555 
granularity and aggregation of energy use data affects the similarity of behavioral reference groups 556 
in terms of energy use profiles. Creating energy profile-based reference groups with higher similarity 557 
among group members will help maximize the effectiveness of residential energy use normative 558 
feedback interventions. In addition, this research establishes a data mining-based categorization 559 
framework to classify households into several personalized normative comparison groups. With this 560 
categorization framework, it is possible to generate personally relevant normative comparison 561 
groups in a non-invasive manner and likely increase normative feedback effectiveness. The proposed 562 
categorization framework provides interveners with a scalable option for creating personalized 563 
normative feedback messages. 564 
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