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prove, improve and generalize many of the known bounds on 
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1. Introduction

We consider bounds on Castelnuovo-Mumford regularity of a square-free quadratic 
monomial ideal I over a field of characteristic 0. Many recent papers investigated regu-
larity of such ideals [3,7,12,17,18,26], see also [19] for a survey. One can associate to a 
quadratic square-free monomial ideal I a graph G, whose vertices are the variables, and 
edges correspond to quadratic generators of I. Therefore, quadratic square-free monomial 
ideals are often called edge ideals in the literature.

Another popular approach, which we follow, is to associate to I a graph G(= G(I))
where quadratic generators of I are the non-edges of G. We note that the ideal I(G) is 
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the Stanley-Reisner ideal of the clique complex of G [24, Chapter 2]. We use reg(G) to 
denote Castelnuovo-Mumford regularity of the non-edge ideal I(G) of G.

Our main tool for bounding regularity is the following decomposition theorem, which 
is based on a straightforward application of Hochster’s formula [14].

Theorem 1.1. Let G be a graph. Let G1 and G2 be subgraphs which cover cliques of G
(i.e. any clique of G is a clique in either G1 or G2). Then,

reg(G) ≤ max{reg(G1), reg(G2), reg(G1 ∩G2) + 1}

We first apply this theorem to the case of a separator of G, i.e. a subset of vertices 
of G whose deletion disconnects G. For a subgraph H of G we use G \H to denote the 
induced subgraph on vertices of G that are not in H.

Theorem 1.2 (Cutset/separator decomposition). Let T be an induced subgraph of G such 
that G \ T is disconnected. Let C1, . . . , Ck be the connected components of G \ T . Then,

reg(G) ≤ max{reg(Gi)i=1,...,k, reg(T ) + 1}

where Gi are the induced subgraphs on vertices of Ci and T , for i = 1, . . . , k.

Theorem 1.2 generalizes a decomposition result used by Dao, Huneke and Schweig in 
[3, Lemma 3.1]. Recall that an open neighborhood NG(v) of a vertex v is the induced 
subgraph on the vertices adjacent to v, and a closed neighborhood NG[v] of v is the 
induced subgraph on v and all vertices adjacent to v. Decomposition in [3] arises as 
a special, but very useful case, where T is the open neighborhood of a vertex v. An 
additional simplification comes from the fact that regularity of the open and closed 
neighborhoods of v are the same.

Theorem 1.3 (Vertex decomposition). Let v be a vertex of G. Then,

reg(G) ≤ max{reg(G \ v), reg(NG(v)) + 1}.

The above decompositions allow us to leverage existing results in structural graph 
theory results to derive a number of interesting consequences. A family of graphs is 
called hereditary if it is closed under vertex deletion [16, Chapter 2]. Recall that a graph 
is chordal if it does not contain a cycle of length at least four as an induced subgraph 
[4, Section 5.5]. Chordal graphs form a hereditary family, and moreover in every chordal 
graph there exists a vertex whose neighborhood is the complete graph [4, Proposition 
5.5.1]. Therefore, we immediately obtain a result of Fröberg that regularity of chordal 
graphs is at most 2. With the same idea we obtain the following theorem:
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Theorem 1.4 (Hereditary theorem). Let G be a hereditary family with the following prop-
erty: there exists t ∈ N, such that for any G ∈ G there is a separator G′ of G with 
reg(G′) ≤ t. Then regularity of any G ∈ G is at most t + 1.

An induced chordless cycle of length at least four is called a hole. An interesting con-
nection between notions in algebra and structural graph theory was found by Eisenbud, 
Green, Hulek, and Popescu. A projective subscheme X ⊆ P r satisfies Green-Lazarsfeld 
condition N2,p for integer p ≥ 1 if the ideal I(X) of X is generated by quadratics and 
the first (p − 1)-steps of the minimal free resolution of the ideal I(X) are linear. It was 
shown in [6, Theorem 2.1] that a non-edge ideal I satisfies condition N2,p for some integer 
p ≥ 2 if and only if G does not contain a hole of length at most p + 2. Additionally, the 
resolution is often simpler if the ideal satisfies property N2,p with p ≥ 2, (see discussion 
in [3]). This motivates us to look at graphs with restrictions on holes. We say that a 
graph satisfies condition N2,p if the corresponding non-edge ideal I does.

A highly studied family of graphs are perfect graphs. A graph is perfect if its chromatic 
number is equal to its clique number, and the same is true for every induced subgraph 
[4, Section 5.5]. Thus, perfect graphs are simple from the point of view of coloring. One 
of the most celebrated results in structural graph theory is the Strong Perfect Graph 
Theorem [1], which states that G is perfect if and only if G and its complement do not 
contain odd holes. Using Corollary 1.4 we show that perfect graphs satisfying property 
N2,2 have regularity at most 3, since they form a hereditary family, and it is known that 
4-hole free perfect graphs have a vertex with a chordal neighborhood in [21]. We note 
that without property N2,2 a perfect graph on 2n vertices can have regularity n + 1 (see
Section 6 for details).

Corollary 1.5. If a perfect graph G does not contain a hole of length four, then regularity 
of G is at most 3.

We observe that graphs without even holes form a hereditary family, and it was 
shown in [2] that an even-hole free graph contains a vertex with a chordal neighborhood. 
Therefore we obtain the following corollary:

Corollary 1.6. If the graph G is even-hole free, then regularity of G is at most 3.

We also generalize a result of Nevo [20, Theorem 5.1]. Let F be the graph on 5 vertices, 
consisting of an isolated vertex and two triangles sharing one edge. If G satisfies condition 
N2,2 and does not contain F as an induced subgraph then regularity of G is at most 3.

Corollary 1.7. Let G be a graph satisfying N2,2 which does not contain F as an induced 
subgraph. Then regularity of G is at most 3.
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Nevo’s result assumes that G satisfies N2,2 and does not contain the union of an 
isolated vertex with a triangle as an induced subgraph, which is a stronger condition on 
G.

So far we only considered decompositions which use induced subgraphs of G, but now 
we consider an interesting decomposition where subgraphs G1 and G2 are not induced. 
Let M be a subgraph of G (not necessarily induced). We use G − M to denote the 
subgraph of G obtained by deleting edges of M . Let GM be the induced subgraph on 
vertices of M and vertices of G which are adjacent to both vertices of an edge in M . 
In other words, GM = G[V (M) ∪ W ] where W is the subset of vertices of G given by 
k ∈ W if ik, jk ∈ E(G) for some ij ∈ E(M).

Theorem 1.8. Let G be a graph and M be a subgraph in G. Then, we have

reg(G) ≤ max{reg(G−M), reg(GM ), reg(GM −M) + 1}.

As a special case, by taking M to be an edge e = ij in G in Theorem 1.8, we get the 
following edge-neighborhood decomposition theorem.

Theorem 1.9 (Edge-neighborhood decomposition). Let G be a graph and e = ij be an edge 
in G with vertices i and j. Then,

reg(G) ≤ max{reg(G− e), reg(Ge − e) + 1}.

In [8], Fernández-Ramos and Gimenez classified bipartite graphs whose edge ideals 
have regularity at most 3. Using Corollary 1.9 and structural graph theory results we 
quickly recover their classification in Theorem 5.2 Another measure of complexity of a 
graph is its genus, which is defined as the genus of the smallest orientable surface on 
which G can be drawn in such a way that edges of G intersect only at the vertices [27]. 
The famous case of planar graphs corresponds to genus 0. Woodroofe showed in [28]
that planar graphs have regularity at most 4 and this bound is tight. We generalize this 
bound to arbitrary genus:

Theorem 1.10. Let Sg be the orientable 2-dimensional manifold of genus g. Suppose that 
a graph G is embedded into Sg. Then, regularity of G is at most �1 +

√
1 + 3g
 + 2.

Note that this bound is also tight. Indeed, it is known by [23] that the genus of the 
complete m-partite graph with every part of size two, Km(2)(= K2,2,...,2) is (m−3)(m−1)

3
for m �≡ 2 (mod3). Then, reg(Km(2)) ≤ �1 +

√
1 + 3g
 + 2 = m + 1 which is tight.

Let n be the number of vertices of G. It is well known (see [25, Lemma 2.1]) that 
reg(G) ≤ n

2 + 1, and this is tight, by considering G = Kn
2 (2) with n even. However, as 

shown in [3], the bounds on regularity become much better if G satisfies condition N2,p
for some p ≥ 2. Specifically, if G satisfies N2,p for p ≥ 2, then
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reg(G) ≤ log p+3
2

n− 1
p

+ 3.

We prove the following upper bound of regularity of G, which slightly improves on 
the bound above.

Theorem 1.11. If G satisfies property N2,p for p ≥ 2, then,

reg(G) ≤ log p+4
2

n

p + 1 + 4.

2. Graphs and clique complexes

A simple graph G consists of the vertex set V (G) and the edge set E(G). For a 
subgraph G′ of G we use G \G′ to denote the induced subgraph on V (G) \ V (G′), and 
G −G′ to denote the subgraph of G obtained by deleting all edges of G′ (but no vertices). 
An induced subgraph on a subset of vertices W is denoted by G[W ].

A simple graph G with vertex set [n] can be identified with a square-free quadratic 
monomial ideal I(G) over a field k via I(G) = 〈xixj | ij /∈ E〉. We call I(G) the non-edge 
ideal of G.

For a vertex v of G, we define the open neighborhood of v, denoted by NG(v), to be 
the induced subgraph of G on vertices which are adjacent to v. We also define the closed 
neighborhood of v, denoted by NG[v], to be the induced subgraph on v and the vertices 
adjacent to v. Now we introduce the clique complex of a graph.

Definition. Given a graph G, the clique complex of G, denoted by ΔG, is a simplicial 
complex that consists of t-simplices (xi1 , xi2 , . . . , xit) whenever G[{xi1 , xi2 , . . . , xit}] =
Kt where Kt is the complete graph on t vertices.

We observe that the non-edge ideal I(G) is the Stanley-Reisner ideal of the clique 
complex ΔG [24, Chapter 2]. The graph G associated with the clique complex ΔG is 
uniquely determined as the closure of the 1-skeleton of ΔG. Thus, there is a one-to-
one correspondence between the family of simple graphs G and the family of clique 
complexes ΔG given by G �→ ΔG and F �→ G(F ). Homology of clique complexes ΔG

gives Betti numbers of non-edge ideal I(G) (or equivalently the Stanley-Reisner rings 
k[Δ] := k[x1, . . . , xn]/I(G)) via Hochster’s formula, if the characteristic of the field k is 
0 (see [9, Remark 7.15]).

Theorem 2.1 (Hochster). Let I(G) be the non-edge ideal of a graph G. Then for t ≥ i +2,

βi,t(I(G)) =
∑

|W |=t

dimk(H̃t−i−2(ΔG[W ])),

where W runs over all subsets of the vertex set of G of size t.
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We refer to [24, Corollary 4.9] and [9, Theorem 7.11] for Hochster’s formula. We define 
regularity of a graph G to be the Castelnuovo-Mumford regularity of the corresponding 
ideal I(G) [22, Definition 18.1].

Definition 2.2. Let reg(G) be the Castelnuovo-Mumford regularity of the non-edge ideal 
I(G) of graph G. In detail, reg(G) := max{r|βi,i+r(I(G)) �= 0 for some i}. Regularity of 
the complete graph, which corresponds to the empty ideal, is one.

By Hochster’s formula we see that regularity of a graph G is the smallest integer q ≥ 1
such that (q− 2)-nd (reduced) homology of the clique complex of any induced subgraph 
of G is non-zero. Note that regularity of the Stanley-Reisner ring k[Δ] is one less than 
regularity of the non-edge ideal I(G).

3. Graph decompositions

Since Betti numbers of a Stanley-Reisner ideal can be obtained by calculating homol-
ogy of subcomplexes of the corresponding clique complex, two subgraphs that cover all 
cliques of G give us enough information to bound regularity of G.

Theorem 3.1. Let G be a graph. Let G1 and G2 be subgraphs which cover cliques of G
(i.e. any clique of G is a clique in either G1 or else G2). Then,

reg(G) ≤ max{reg(G1), reg(G2), reg(G1 ∩G2) + 1}.

Proof. Let W be an induced subgraph of G. Let W1 = W ∩G1 and W2 = W ∩G2. We 
claim that a subcomplex of ΔW is the union of subcomplexes of ΔW1 and ΔW2. Let 
F = (v1, . . . , vt) be a face in ΔW . Then G(F ) is a clique in G, and since G1 and G2

cover cliques of G, we see that F is a face of either W1 or W2, and the claim follows. 
Additionally, we have Δ(W1 ∩W2) = ΔW1 ∩ ΔW2.

Now, we prove the main inequality. Let m = max{reg(G1), reg(G2), reg(G1∩G2) +1}. 
Given any induced subgraph W , by the Mayer-Vietoris sequence [13, p. 149], we have 
following exact sequence of complexes

· · · → H̃i(Δ(W1∩W2)) → H̃i(ΔW1)⊕H̃i(ΔW2) → H̃i(ΔW ) → H̃i−1(Δ(W1∩W2)) → · · ·

Since regularity of G1 ∩ G2 is at most m − 1, we have H̃i(Δ(W1 ∩ W2)) = 0 for all 
i ≥ m − 2. Therefore, H̃i(ΔW ) � H̃i(ΔW1) ⊕ H̃i(ΔW2) for all i ≥ m − 1. Since both G1

and G2 have regularity at most m, H̃i(ΔW1) = H̃i(ΔW2) = 0 for all i ≥ m − 1. Thus, 
H̃i(ΔW ) = 0 for all i ≥ m − 1 and regularity of G is at most m. �

Our first application deals with the case of defining G1 and G2 via a cutset.
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Theorem 3.2 (Cut-set/separator decomposition). Let T be an induced subgraph of G such 
that the induced graph G \T is disconnected. Let C1, . . . , Ck be the connected components 
of G \ T and Gi be induced subgraphs on vertices of Ci and T for i = 1, . . . , k. Then, 
reg(G) ≤ max{reg(Gi)i=1,...,k, reg(T ) + 1}.

Proof. Let G1 be the induced subgraph on vertices of C1 and T and let G′
1 be the 

induced subgraph on ∪k
i=2V (Ci)∪ V (T ). In other words, G′

1 = G \C1. Then, we can see 
that G1 and G′

1 cover all cliques of G. Indeed, if a vertex in C1 and a vertex in ∪k
i=2Ci

are contained in a clique in G, the induced subgraph on the two vertices must be an 
edge of G. However, it is not possible because C1 and ∪k

i=2Ci are disjoint. Therefore, two 
induced subgraphs G1 and G′

1 cover all cliques in G. Then, by Theorem 3.1, we have

reg(G) ≤ max{reg(G1), reg(G′
1), reg(T ) + 1}.

Now, let G′
j be the induced subgraph on vertices of Cj+1, . . . , Ck, and T for j = 2, . . . , k. 

Then, by the same process,

reg(G′
j−1) ≤ max{reg(Gj), reg(G′

j), reg(T ) + 1}

Thus,

reg(G) ≤ max{reg(G1), reg(G′
1), reg(T ) + 1}

≤ max{reg(G1), reg(G2), reg(G′
2), reg(T ) + 1}

...

≤ max{reg(Gi)i=1,...,k, reg(T ) + 1}. �
We call T in Theorem 3.2 a separator of G. Given any graph G, an open neighborhood 

of a vertex of G is a separator of G, and so we obtain the following Vertex Neighborhood 
Decomposition.

Corollary 3.3 (Vertex neighborhood decomposition). Let v be any vertex of a graph G. 
Then,

reg(G) ≤ max{reg(G \ v), reg(NG(v)) + 1}.

Proof. By Theorem 3.2, we have reg(G) ≤ max{reg(G \ v), reg(NG[v]), reg(NG(v)) +1}, 
where NG(v) is the open neighborhood of v in G and NG[v] is the closed neighborhood of 
v in G (see Section 2 for definitions). So, it suffices to show that reg(NG[v]) = reg(NG(v)). 
This follows by a simple application of Hochster’s formula, since the clique complex ΔH

of an induced subgraph H of NG[v] with v ∈ H is contractible. �
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So far, we have only considered graph decompositions coming from induced subgraphs, 
but we now define a useful decomposition where this is not the case. Let M be a subgraph 
of G. Let GM be the induced subgraph of G on vertices in M and vertices of G which 
are adjacent to both vertices of some edge of M . Namely, GM = G[V (M) ∪W ] where 
W is a subset of vertices in G such that k ∈ W if ik ∈ E(G) and jk ∈ E(G) for some 
ij ∈ E(M). Then, we have following decomposition theorem.

Theorem 3.4. Let M be a subgraph of a graph G. Then,

reg(G) ≤ max{reg(G−M), reg(GM ), reg(GM −M) + 1}.

Proof. We first claim that G −M and GM cover all cliques of G. Let F be any clique in G. 
If F does not contain any edges in M , then G −M contains the clique F . Suppose that F
contains some edges of M . If all vertices in F are contained in M , then F is contained in 
GM since GM contains M . If v is any vertex in F outside of M , then uv, wv ∈ F for some 
uw ∈ E(F ∩M). This implies that v ∈ V (GM ) and so F ⊆ GM since both F and GM

are induced subgraphs of G. Additionally, the intersection of G −M and GM is GM −M . 
Indeed, V (GM∩(G −M)) = V (GM∩G) = V (GM ) and E(GM∩(G −M)) = E(GM−M). 
Thus, by Theorem 3.1, reg(G) ≤ max{reg(G −M), reg(GM ), reg(GM −M) + 1}. �

Similarly to vertex-neighborhood decomposition in Corollary 3.3, if we take M to be 
an edge e = ij in Theorem 3.4, then we can bound regularity of G by regularity of two 
subgraphs.

Corollary 3.5 (Edge-neighborhood decomposition). Let G be a graph and e = ij be an 
edge in G. Then, reg(G) ≤ max{reg(G − e), reg(Ge − e) + 1}.

Proof. By Theorem 3.4, it suffices to show that reg(Ge) ≤ reg(Ge − e) + 1 for edge e. 
Indeed, for any graph G, reg(G) ≤ reg(G \ v) + 1 for any vertex v by Corollary 3.3, and 
so we have

reg(Ge) ≤ reg(Ge \ i) + 1

≤ reg(Ge − e) + 1,

for the edge e = ij because Ge \ i is an induced subgraph of Ge − e. �
We will use this decomposition to describe complements of bipartite graphs that have 

regularity 3 in Section 5.

4. Hereditary families

Let G be a family of graphs. We call G a hereditary family if it is closed under taking 
induced subgraphs, or equivalently under deleting vertices.
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Theorem 4.1 (Hereditary theorem). Let G be a hereditary family with the following prop-
erty: there exists t ∈ N, such that for any G ∈ G there is a separator G′ of G with 
reg(G′) ≤ t. Then regularity of any G ∈ G is at most t + 1.

Proof. Let G be a hereditary family with the above property for some t ∈ N. We will 
induct on the number of vertices n in graphs of G . The base case n = 1 is trivial, since 
t ≥ 0 and G includes the one vertex graph. Now consider the inductive step. Let G ∈ G

be a graph on n +1 vertices, and let G′ be a separator of G. Applying Theorem 3.2 with 
T = G′, we get the desired inequality by the induction assumption. �

Chordal graphs form a hereditary family, and it is known in [5] that any chordal 
graph contains a vertex v such that neighborhood of v is a complete graph. Therefore 
we immediately obtain the following result of Fröberg:

Corollary 4.2. Let G be a chordal graph. Then regularity of G is at most 2.

Moreover, we can see that regularity of any hole is at least 3 and therefore chordal 
graphs are the only graphs of regularity at most 2. On the other hand, by combining 
Fröberg’s result with neighborhood decomposition 3.3 we can give a criterion for graphs 
that have regularity at most 3:

Corollary 4.3. Let G be a hereditary family of graphs with the following property: for any 
G ∈ G there is a vertex v of G which has a chordal neighborhood. Then regularity of any 
G ∈ G is at most 3.

To illustrate the power of the above Corollary 4.3, we give a quick proof of a general-
ization of a result by Nevo [20, Section 5]. Let F ′ be a graph on four vertices consisting 
of an isolated vertex and a triangle. He showed that if G does not contain F ′ and a 
four-cycle as induced subgraphs then regularity of G is at most three. We note that not 
containing a four-cycle as an induced subgraph corresponds to G satisfying condition 
N2,2. Let F be a graph on five vertices consisting of an isolated vertex and two triangles 
sharing an edge. We show that if G does not contain a four-cycle and F as induced 
subgraphs, then regularity of G is at most 3, which is a weaker condition on G.

Corollary 4.4. Let G be the hereditary family of graphs that do not contain F and the 
four cycle as induced subgraphs. Then regularity of any G ∈ G is at most 3.

Proof. We will show that any G ∈ G contains a vertex with a chordal neighborhood. 
Suppose not, and let G ∈ G be a graph such that no vertex of G has a chordal neighbor-
hood. Let v be the vertex of minimal degree in G. Observe that v is not connected to all 
vertices of G, otherwise G is the complete graph, which is a contradiction. It follows by 
our assumption that NG(v) contains a hole C of length at least 5, and there exists w ∈ G

such that v is not connected to w. Since G is F -free we see that w must be connected 
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to two non-adjacent vertices u1, u2 of C. But then the induced subgraph on u1, v, u2, w
is a 4-cycle, which is a contradiction. �

We also generalize Corollary 4.4 to the case where G does not contain larger cycles 
as induced subgraphs. Recall that a graph G not containing an �-hole for � = 4, ..., p + 2
with p ≥ 2 is equivalent to G satisfying condition N2,p. Let a fan Fi for i ≥ 1 be the 
graph consisting of an isolated vertex and the graph join of a path on i + 1 vertices and 
a distinct vertex. With essentially the same proof as Corollary 4.4 we can also show the 
following:

Corollary 4.5. If for some i ≥ 2 a graph G is �-hole free for � = 4, ..., i + 2 and does not 
contain Fi as an induced subgraph, then regularity of G is at most 3.

It is known that if G is perfect and does not contain 4-holes or if G is even-hole free, 
then there is a vertex in G whose neighborhood is chordal (for 4-free perfect graphs 
see [21] and for even-hole free graphs see [2]). Moreover, both 4-hole free perfect graphs 
and even-hole free graphs form hereditary families. Thus, we obtain another criterion to 
make graphs to have regularity 3.

Corollary 4.6. If G is perfect and does not contain 4-holes, or if G is even-hole free then 
regularity of G is at most 3.

It follows from the Strong Perfect Graph Theorem [1], that G is perfect and 4-hole 
free if and only if G is 4-hole free and also odd-hole free. Thus Corollary 4.6 implies that 
if G is 4-hole free, and regularity of G is at least 4, then G must contain both even and 
odd holes. This observation is used for improving a bound on regularity in Section 7.

5. Complements of bipartite graphs

Fernández-Ramos and Gimenez gave an explicit description of bipartite graphs asso-
ciated to edge ideals that have regularity 3 in [8]. We give an independent proof of their 
result by using Edge Neighborhood Decomposition. Since we consider non-edge ideals, 
we work with complements of bipartite graphs.

Let G be the complement of a bipartite graph H with bipartition of vertices X and 
Y . Let B be the subgraph of G with V (B) = V (G) and the edge set consisting of edges 
of G between vertices in X and vertices in Y . We call B the bipartite part of G. We 
recall chordal bipartite graphs [10, Section 12.4].

Definition 5.1. A chordal bipartite graph is a bipartite graph which contains no induced 
cycles of length greater than four.

It is shown in [11] that any chordal bipartite graph G with bipartition of vertices X
and Y contains an edge ij for i ∈ X and j ∈ Y such that the induced subgraph on 
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vertices of NG(i) and NG(j) is a complete bipartite graph. Such an edge ij is called a 
bisimplicial edge. Additionally, it is known in [11] that the subgraph G − ij is again a 
chordal bipartite graph. This implies that subgraphs obtained by deleting a bisimplicial 
edge from a chordal bipartite graph are also chordal bipartite graphs.

Combining Corollary 3.5 with property of chordal bipartite graph, we get an exact 
description of complements of bipartite graphs of regularity 3.

Theorem 5.2. Let G be the complement of a bipartite graph. Regularity of G is 3 if and 
only if G contains a hole and the bipartite part B of G is chordal bipartite.

Proof. Suppose that the complement G of a bipartite graph H has at least one hole and 
the bipartite part B of G is a chordal bipartite graph. Since G contains at least one hole, 
regularity of G is at least 3. To show that regularity of G is at most 3 we induct on 
the number of edges � in B. The base case � = 0 is simple, since G is then chordal and 
therefore reg(G) ≤ 2. Now we consider the induction step. Let G be the complement of 
a bipartite graph such that its bipartite part B is a chordal bipartite graph with � + 1
edges. Then B contains a bisimplicial edge e. By Theorem 3.5,

reg(G) ≤ max{reg(G− e), reg(Ge − e) + 1}.

Since e is a bisimplicial edge in B, Ge − e is a chordal graph, and reg(Ge − e) ≤ 2. 
Additionally, reg(G −e) ≤ 3 by the induction assumption, and the desired result follows.

Conversely, suppose that bipartite part B of G contains a hole of length at least 6. We 
claim that ΔG contains a subcomplex whose 2nd (reduced) homology is not zero. Let 
G′ be the subgraph of G induced by vertices that form the shortest hole in B. Let X ′

and Y ′ be the partitions of vertices G′ (induced from the partition of vertices of G). Let 
v be any vertex of X ′. Then, the closed neighborhood NG′ [v] and the deletion G′ \ v of 
v cover cliques of G′. Observe that H̃1(ΔNG′ [v]) = H̃1(Δ(G′ \ v)) = 0 since ΔNG′ [v] is 
contractible, and any hole in G′−v is covered by cliques of size 3, but H̃1(ΔNG′(v)) �= 0
since NG′(v) contains a hole (of length 4). Since H̃2(ΔG′) → H̃1(ΔNG′(v)) is surjective 
by the Mayer-Vietoris sequence, H̃2(ΔG′) �= 0, and this implies that regularity of G is 
at least 4. �
6. Regularity and genus

The following bound on regularity is well-known in [25, Lemma 2.1] (or see [28] for a 
geometric proof), but we provide a short proof for the sake of completeness.

Lemma 6.1. If the number of vertices of G is at most 2n − 1, then regularity of G is at 
most n.

Proof. We use induction on n. For n = 1, regularity is obviously at most 1 since there 
are no generators in the non-edge ideal of the graph. Assume that any graph with at 
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most 2� − 1 vertices has regularity at most �. Let G be a graph on 2� + 1 vertices. 
Note that by Corollary 3.3 we can delete a vertex v without changing regularity if 
reg(G) > reg(NG(v)) + 1. After deleting such vertices, if possible, let v be the vertex of 
minimal degree in G. If the degree of v is 2�, then G is a complete graph (which has 
regularity 1). Therefore, we can assume that degree of v is at most 2� −1. Then, we have

reg(G) ≤ reg(NG(v)) + 1 ≤ � + 1,

since NG(v) contains at most 2� − 1 vertices. �
In fact, the bound in Lemma 6.1 is tight. Let Kn(2) be the complete n-partite graph, 

with each part of size two. Since the ideal of Kn(2) is a complete intersection of n quadrics, 
its minimal resolution is given by the Koszul complex. Thus regularity of Kn(2) is n + 1. 
We also note that Kn(2) is a perfect graph on 2n vertices.

Recall that the genus of a graph G is the minimal genus of an orientable surface 
Sg into which G can be embedded (see [27] for reference). Note that any graphs can be 
embedded into an orientable surface Sg for some genus g and the genus of graphs inscribes 
a topological complexity of graphs. By using the Lemma 6.1, we can immediately give 
an alternative proof of a result in [28] that any planar graphs have regularity at most 4
and it is tight. We note that this is the case of genus 0 and we can provide bounds on 
regularity of graphs in terms of arbitrarily genus.

Theorem 6.2. Let g be the genus of a graph G. Then, regularity of G is at most �1 +√
1 + 3g
 + 2.

Proof. Let |V | be the number of vertices, |E| be the number of edges, and |F | be the 
number of (2-dimensional) faces in the embedding of G. By considering the Euler char-
acteristic of the surface S into which G is embedded, we see that |V | −|E| + |F | = 2 −2g. 
Recall that 2|E| =

∑
v∈V

deg(v) =
∑

F∈Δ2

�F where Δ2 is the set of 2-cells in the embedding 

and �F is the number of edges in the face F . In particular, 2|E| =
∑

F∈Δ2

�F ≥ 3|F | since 

�F ≥ 3 for any face F . Let d be the minimal degree of G. Then, 2|E| =
∑
v∈V

deg(v) ≥ d|V |. 

Therefore,

2 − 2g = |V | − |E| + |F |

≤ |V | − |E| + 2
3 |E| = |V | − 1

3 |E|

≤ |V | − d

6 |V | = 6 − d

6 |V |.

Moreover, we can see that |V | ≥ d + 2 since d ≤ deg(v) ≤ |V | − 2. (Note that, if 
d = |V | − 1, the graph is complete graph, which can be excluded.) Thus,
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6(2g − 2) ≥ (d− 6)|V | ≥ (d− 6)(d + 2) ⇒ 0 ≥ d2 − 4d− 12g.

This implies that d ≤ 2 +
√

4 + 12g = 2 + 2
√

1 + 3g. Let v be the vertex of degree 
d. Then, reg(NG(v)) ≤ �1

2�2 + 2
√

1 + 3g

 + 1 = �1 +
√

1 + 3g
 + 1. By Theorem 4.1, 
reg(G) ≤ �1 +

√
1 + 3g
 + 2. �

Note that this bound is indeed tight. It is known in [23, Section 4.4] that the genus 
of 2-regular complete n-bipartite graphs Kn(2)(= K2,2,...,2) is at least (n−3)(n−1)

3 . More-
over, the genus of Kn(2) is exactly (n−3)(n−1)

3 if n �≡ 2 mod 3 by [15]. In this case, 
we have reg(Kn(2)) = n + 1 and the right hand side of inequality in Theorem 6.2 is 

�1 +
√

1 + 3 (n−3)(n−1)
3 
 + 2 = n + 1.

7. Bounds on regularity of graphs without small holes

Even though regularity of a graph can depend linearly on the number of vertices n, 
if G does not contain small holes, then regularity of G can be bounded from above by a 
logarithmic function of n. It was shown in [6] that absence of small holes corresponds to 
the ideal satisfying property N2,p for some p ≥ 2.

Theorem 7.1. Let p ≥ 2 and I(G) be the non-edge ideal corresponding to a graph G. 
Then, the followings are equivalent.

(1) The minimal graded free resolution of I(G) is (p − 1)-step linear.
(2) The graph G does not contain a hole Ci of length i for i ≤ p + 2.
(3) I(G) satisfies N2,i for all 2 ≤ i ≤ p.

It was shown in [3] that if G satisfies N2,p for p ≥ 2, then

reg(G) ≤ log p+3
2

n− 1
p

+ 3.

We also provide (a similar and) asymptotically better upper bound on regularity of 
graphs.

Theorem 7.2. Suppose that G satisfies property N2,p for p ≥ 2. Then,

reg(G) ≤ min{log p+3
2

(n(p + 1)
p(p + 3)

)
+ 3, log p+4

2

( n(p + 2)
(p + 1)(p + 4)

)
+ 4}.

Proof. Given a graph G, there is an induced subgraph G0 such that reg(G) = reg(G0) =
reg(NG0(v)) +1 for any vertex v in G0. Indeed, we can keep deleting vertices y such that 
reg(G) = reg(G \ y) until we arrive at a graph G0, where reg(G0 \ v) = reg(G0) − 1 for 
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any vertex v of G. Then, by Corollary 3.3 we have reg(G0) = reg(NG0(v)) + 1 for any 
vertex v in G0. We call such G0 a trimming of G. Note that a trimming is not unique.

Let x0 be a vertex of minimal degree in G0. Let G1 be a trimming of the open 
neighborhood NG0(x0) of x0 in G0. Now we repeat this process: let xi be a vertex of 
minimal degree in Gi and let Gi+1 be a trimming of the open neighborhood of xi in Gi. 
We obtain a sequence of induced subgraphs Gi of G such that

reg(G) = reg(G0) = reg(G1) + 1 = · · · = reg(Gt) + t.

Let � be the maximal integer such that G� contains a hole, and let Cm be the hole in G�

of smallest length m, with m ≥ p + 3 ≥ 5. Note that Cm is a hole that is present in all 
graphs Gi, with 0 ≤ i ≤ �. We use di to denote the degree of xi in Gi.

We claim that for 1 ≤ i ≤ � the sum of the degrees of vertices of Cm in NG�−i
[x�−i]

is at most

md�−i −
mi(m− 3)

2i−1 ,

which we prove by induction on i. The base case is i = 1: a vertex of Cm is connected 
to exactly two vertices of Cm and can be connected to all other vertices in NG�−1 [x�−1]. 
Therefore, the sum of degrees of vertices of Cm is at most 2m + m(d�−1 + 1 − m) =
md�−1 −m(m − 3).

For the inductive step, assume that the sum of the degrees of vertices of Cm in 
NG�−i+1 [x�−i+1] is at most md�−i+1− mi−1(m−3)

2i−2 . Observe that any vertex in G�−i+1 not 
connected to x�−i+1 can be adjacent to at most two vertices of Cm. Otherwise G�−i+1
is forced to have a 4-hole, which is a contradiction. Since degree of x�−i+1 in G�−i+1 is 
at least the degree of any vertex of Cm is G�−i+1 we see that there are at least

1
2

(
md�−i+1 − (md�−i+1 −

mi−1(m− 3)
2i−2 )

)
= mi−1(m− 3)

2i−1 (7.1)

vertices in G�−i+1 \NG�−i+1 [x�−i+1].
Any vertex of NG�−i

[x�−i] belongs to exactly one of NG�−i
[x�−i] \Gl−i+1, or Gl−i+1 \

NGl−i+1 [xl−i+1], or NGl−i+1 [xl−i+1]. As before, any vertex of Gl−i+1 \ NG�−i+1 [x�−i+1]
can be adjacent to at most two vertices in Cm, and a vertex of Cm can be adjacent to 
all vertices of NG�−i

[x�−i] \G�−i+1. Therefore,

∑
v∈Cm

degNG�−i
[x�−i](v) ≤ m|NG�−i

[x�−i] \G�−i+1| + 2|G�−i+1 \NG�−i+1 [x�−i+1]|

+
∑

v∈Cm

degNG�−i+1 [x�−i+1](v).

Using the induction assumption on 
∑

v∈C degN [x ](v) we see that

m G�−i+1 �−i+1
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∑
v∈Cm

degNG�−i
[x�−i](v) ≤ md�−i − (m− 2)

(
|G�−i+1 \NG�−i+1 [x�−i+1]|

)
− mi−1(m− 3)

2i−2 .

By (7.1) we see that

(m− 2)
(
|G�−i+1 \NG�−i+1 [x�−i+1]|

)
+ mi−1(m− 3)

2i−2 ≥ mi(m− 3)
2i−1 ,

and therefore

∑
v∈Cm

degNG�−i
[x�−i](v) ≤ md�−i −

mi(m− 3)
2i−1 ,

as desired. The argument above shows that there are at least m
i(m−3)

2i vertices in G�−i \
NG�−i

[x�−i]. Since G�−i+1 is a subgraph of NG�−i
[x�−i], we see that

|G�−i| − |G�−i+1| ≥
mi(m− 3)

2i .

Therefore,

|G�−i| ≥
i∑

t=1

mt(m− 3)
2t + m,

and by summing the above geometric series we see that

|G�−i| ≥
mi+1(m− 3)

2i(m− 2) .

Plugging in i = �, we see that

n ≥ |G0| ≥
m�+1(m− 3)

2�(m− 2) ≥ p(p + 3)�+1

2�(p + 1) .

Thus,

reg(G) ≤ reg(G�+1) + � + 1 ≤ log p+3
2

(
n(p + 1)
p(p + 3)

)
+ 3,

which gives us the first upper bound.
For the second upper bound, we observe that if regularity of G is at least four, then 

G contains both even and odd holes by Corollary 4.6. With the same setting above, 
regularity of NG�−2(x�−2) (or equivalently, G�−1) is four. Let m be the length of the 
smallest hole in NG�−2(x�−2). Then NG�−2(x�−2) must also contain a hole of size m +2α+1
for some positive integer α. We can now apply the same process as above to bound 
number of vertices of G�−i using this larger hole to obtain
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|G�−i| ≥
(m + 2α + 1)i(m + 2α− 2)

2i−1(m + 2α− 1) ,

for 2 ≤ i ≤ �. By taking i = �, we see that

n ≥ |G0| ≥
(m + 2α + 1)�(m + 2α− 2)

2�−1(m + 2α− 1) ≥ (p + 4)�(p + 1)
2�−1(p + 2) .

Thus,

reg(G) ≤ reg(G�+1) + � + 1 ≤ log p+4
2

n(p + 2)
(p + 1)(p + 4) + 4. �

Note that the former term in the bound in Theorem 7.2 is slightly better (if n ≥ p+3
2 ) 

than the bound in [3, Theorem 4.9] and the former term will be smaller than the latter 
term if the size of a graph is relatively small. However, the latter term of the bound is 
better asymptotically.
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