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Abstract. Two robots stand at the origin of the infinite line and are
tasked with searching collaboratively for an exit at an unknown location
on the line. They can travel at maximum speed b and can change speed
or direction at any time. The two robots can communicate with each
other at any distance and at any time. The task is completed when
the last robot arrives at the exit and evacuates. We study time-energy
tradeoffs for the above evacuation problem. The evacuation time is the
time it takes the last robot to reach the exit. The energy it takes for a
robot to travel a distance z at speed s is measured as 2s?. The total and
makespan evacuation energies are respectively the sum and maximum of
the energy consumption of the two robots while executing the evacuation
algorithm.

Assuming that the maximum speed is b, and the evacuation time is at
most cd, where d is the distance of the exit from the origin, we study the
problem of minimizing the total energy consumption of the robots. We
prove that the problem is solvable only for bc > 3. For the case bc = 3,
we give an optimal algorithm, and give upper bounds on the energy for
the case bc > 3.

We also consider the problem of minimizing the evacuation time when
the available energy is bounded by A. Surprisingly, when A is a constant,
independent of the distance d of the exit from the origin, we prove that
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evacuation is possible in time O(d*/?logd), and this is optimal up to a
logarithmic factor. When A is linear in d, we give upper bounds on the
evacuation time.

Keywords: Energy - Evacuation - Linear - Robot - Speed + Time -
Trade-offs - Wireless communication

1 Introduction

Linear search is an online problem in which a robot is tasked with finding an
exit placed at an unknown location on an infinite line. It has long been known
that the classic doubling strategy, which guarantees a search time of 9d for an
exit at distance d from the initial location is optimal for a robot travelling at
speed at most 1 (see any of the books [1,2,25] for additional variants, details
and information). If even one more robot is allotted to the search then clearly an
exit at distance d can always be found in time d by one of the robots. Therefore
the problem of group search by multiple robots on the line is concerned with
minimizing the time the last robot arrives at the exit; the problem is also called
evacuation. It was first introduced as part of a study on cycle-search [10] and
further elaborated on an infinite line for multiple communicating robots with
crash [18] and Byzantine faults [16].

The time taken for group search on the line clearly depends on the com-
munication capabilities of the robots. In the wireless communication model, the
robots can communicate at any time and over any distance. In the face-to-face
communication model, the robots can only communicate when they are in the
same place at the same time. A straightforward algorithm achieves evacuation
time 3d in the wireless model, and can be seen to be optimal, while it has been
shown that in the face-to-face model, two robots cannot achieve better evacua-
tion time than one robot [8].

In this paper, we consider the energy required for group search on the line.
We use the energy model proposed in [11] in which the energy consumption of
a robot travelling a distance = at speed s is proportional to zs%. This model
is motivated by the concept of viscous drag in fluid dynamics; see Sect. 1.1 for
more details. The authors of [11], studied the question of the minimum energy
required for group search on the line by two robots travelling at speed at most
b while guaranteeing that both robots reach the exit within time cd, where d is
the distance of the exit from the starting position of the robots. For the special
case b = 1,c =9, they proved the surprising result that two robots can evacuate
with less energy than one robot, while taking the same evacuation time.

Our main approach throughout the paper is to investigate time-energy trade-
offs for group search by two robots in the wireless communication model. Assum-
ing that the maximum speed is b, and the evacuation time is at most cd, where
d is the distance of the exit from the origin, we study the problem of minimizing
the total energy consumption of the robots. We also consider the problem of
minimizing the evacuation time when the available energy is bounded by A.
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1.1 Model and Problem Definitions

Two robots are placed at the origin of an infinite line. An exit is located at
unknown distance d from the origin and can be found if and only if a robot
walks over it. A robot can change its direction or speed at any time, e.g., as a
function of its distance from the origin, or the distance walked so far. Robots
operate under the wireless model of communication in which messages can be
transmitted between robots instantaneously at any distance. Feasible solutions
are robots’ trajectories in which, eventually, both robots evacuate, i.e. they both
reach the exit. Given a location of the exit, the time by which the second robot
reaches the exit is referred to as the evacuation time. We distinguish between
constant-memory robots that can only travel at a constant number of hard-
wired speeds, and unbounded-memory robots that can dynamically compute
speeds and distances, and travel at any possible speed.

The energy model being used throughout the paper is motivated from the
concept of viscous drag in fluid dynamics [4]. In particular, an object moving
with constant speed s will experience a drag force Fp proportional' to s2. In
order to maintain the speed s over a distance x the object must do work equal
to the product of Fp and x resulting in a continuous energy loss proportional to
the product of the object’s squared speed and travel distance. For simplicity we
take the proportionality constant to be one, and define the energy consumption
moving at constant speed s over a segment of length = to be zs?. We extend
the definition of energy for a robot moving in the same direction from point
a to point b on the line, using speed s(z) € R,z € [a,b], as fab s?(z)dx. The
total energy of a specific robot traversing more intervals, possibly in different
directions, is defined as the sum of the energies used in each interval.

Given a collection of robots, the total evacuation energy is defined as the
sum of the robots’ energies used till both robots evacuate. Similarly, we define
the makespan evacuation energy as the maximum energy used by any of the two
robots.

For each d > 0 there are two possible locations for the exit to be at distance
d from the origin: we will refer to either of these as input instances d for the
group search problem. More specifically, we are interested in the following three
optimization problems:

Definition 1. Problem EEZ (¢): Minimize the total evacuation energy, given
that the evacuation time is no more than cd (for all instances d) and using
speeds no more than b.

Definition 2. Problem TEZ (A): Minimize the evacuation time, given that the
total evacuation energy is no more than A (for all instances d), and using speeds
at most b.

! The constant of proportionality has (SI) units kg/m and depends, among other
things, on the shape of the object and the density of the fluid through which it
moves.
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Definition 3. Problem ME}, (A): Minimize the evacuation time, given that the
makespan evacuation energy is no more than A (for all instances d), and using
speeds at most b.

For the last two problems, we consider two cases when the evacuation energy
A is a constant and when it is linear in d.

1.2 Our Results

Consider the following intuitive and simple algorithm for wireless evacuation,
which is a parametrized version of a well-known algorithm for the case of unit
speed robots that achieve evacuation time 3d.

Definition 4 (Algorithm Simple Wireless Search N ,). Robots move at
opposite directions with speed s until the exit is found. The finder announces
“exit found” and halts. The other robot changes direction and moves at speed r
until the exit is reached.

We analyze the behaviour of this algorithm for all three proposed problems,
and determine the speeds that achieve the minimum evacuation energy (or time)
among all algorithms of this class, while respecting the given bound on evacua-
tion time (resp. energy). In some cases, the algorithms derived are shown to be
optimal. In particular, our main results are the following:

1. We show that the problem EEZ (¢) admits a solution if and only if ¢b > 3.
Furthermore, for every ¢,b > 0 with ¢b = 3, we show that the optimal total
evacuation energy is 4b%d, and this is achieved by N, with s = r = b
(Theorem 1).

2. For every ¢,b > 0 with ¢b > 3, we derive the optimal values of s and r for the
algorithm N , that minimize the total evacuation energy (Theorem 2).

3. We observe that if total or makespan energy A is a constant, problems
TEY (A) and ME] (A) cannot be solved by robots that can only use a finite
number of speeds. We prove that if A is bounded by a constant, the optimal
evacuation time is £2(d%/2) (see Theorem 4). Somewhat surprisingly, we give
an algorithm with total evacuation time O(d®/?logd) (see Theorem 5); thus
the algorithm is optimal up to a logarithmic factor. Our algorithm requires
the robots to continuously change their speed at every distance = from the
origin. This is the only part that requires robots to have unbounded memory.

4. For the problems TEY (A) and MEY, (A) with total or makespan energy A =
O(d) and b = 1, we give upper bounds on the total evacuation time (see
Theorems 5 and 7 respectively).

Due to space limitations, some proofs are omitted from this extended abstract.
The interested reader may see [12] for a full version of the paper.
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1.3 Related Work

In group search, a set of communicating robots interact and co-operate by
exchanging information in order to complete the task which usually involves find-
ing an exit placed at an unknown location within a given search domain. Some of
the pioneering results related to our work are concerned with search on an infinite
domain, like a straight line [3,5,6,24], while others with search on the perimeter
of a closed domain like unit disk [10] or equilateral triangle or square [20]. The
communication model being used may be either wireless [10] or F2F [7,17,20].
Search and evacuation problems with a combinatorial flavour have been recently
considered in [13,14] and search-and-fetch problems in [22,23], while [9] studied
average-case/worst-case trade-offs for a specific evacuation problem on the disk.
The interested reader may also wish to consult a recent survey paper [15] on
selected search and evacuation topics.

Traditional approaches to evaluating the performance of search have been
mostly concerned with time. This is apparent in the book [2] and the research
described in the seminal works on deterministic [3], stochastic [5,6] and random-
ized [24] search and continued up to the most recent research papers on linear
search for robots with terrain dependent speeds [19] and robots with Byzan-
tine [16] and crash fault behaviour [18] (see also the survey paper [15]). Aside
from the research by [21], in which the authors are looking at the turn cost
when robots change direction during the search, little or no research has been
conducted on other measures of performance.

The first paper on search and evacuation to change this focus from optimiz-
ing the time to the energy consumption required to find the exit as well as to
time/energy tradeofls is due to [11]. The authors determine optimal (and in some
cases nearly optimal) linear search algorithms inducing the lowest possible energy
consumption and also propose a linear search algorithm that simultaneously
achieves search time 9d and consumes energy 8.42588d, for an exit located at
distance d unknown to the robots. However, the previously mentioned paper [11]
differs from our present work in that the authors focus exclusively on the face-
to-face communication model while here we focus on the wireless model. In the
present paper, we extend the results of [11] to the realm of the wireless commu-
nication model and study time/energy trade-offs for evacuating two robots on
the infinite line. Despite their apparent similarities, the face-to-face and wireless
communication models lead to completely different approaches for the design of
efficient linear search algorithms.

2 Minimizing Energy Given Bounds on Evacuation Time
and Speed

This section is devoted to the problem EE} (¢) of minimizing the total evacuation
energy, given that the robots can travel at speed at most b and are required to
complete the evacuation within time cd for every instance d where d is the
distance of the exit from the origin. We start with establishing a necessary
condition on the product bc.
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Lemma 1. No online (wireless) algorithm can solve EEY, (¢) if be < 3.

Proof (Lemmal). Fix 0 < € < 3 and let bc = 3 — e. We show that no algorithm
can solve problem EEY (¢). For the sake of contradiction, consider a wireless
algorithm solving EE((f’_G)/ b (b), and having evacuation time no more than (3 —
€)d/b, if the exit is placed d away from the origin. For a large enough d > 0, we
let the algorithm run till the first point among +d is reached by a robot (and
maybe they are reached simultaneously). Without loss of generality, assume that
—+d is reached, say by robot R, no later than the other point. Note that for this
point to be reached, at least time d/b has passed. Now, we place the exit at point
—d. The additional time that R needs to reach the exit is 2d/b, for a total time
of 3d/b, a contradiction to the stipulated evacuation time of (3 — €)d/b.

Next we show that algorithm N ; is an optimal solution to the problem
EE) (¢) when be = 3. We start with the following lemma:

Lemma 2. Let b,c > 0 with bc = 3 and consider an evacuation algorithm such
that robots use mazximum speed b and evacuate by time cd for an exit at distance
d from the origin. Then for every d > 0, the points d, —d, must be visited at time
d/b.

Proof (Lemma?2). Suppose not. Notice that the points +d cannot be visited
before time d/b using speed at most b. We look at two cases.

Case 1: There exists d > 0 such that neither d nor —d is visited at time d/b.
Consider the first time ¢ > d/b when either of them is visited, wlog let the
point +d be visited at time ¢ > d/b by robot R;. We put the exit at —d. Then
R; has to travel an additional distance of 2d, and can use speed at most b,
so needs time at least 2d/b to get to the exit. The total time taken by R; to
evacuate is at least t + 2d/b > 3d/b = cd.

Case 2: There exists d > 0 such that d is visited at time d/b but —d is not
visited at this time (or vice versa). Wlog suppose R; is at point d at time
d/b. Let —d + 2¢ be the closest point to —d that has been visited at time d/b
where € > 0 since by assumption —d is not visited at this time. We put the
exit at —d + e. The time limit to evacuate is ¢(d — €). At time d/b, R; is at
distance 2d — € from the exit, so the total time for R; to reach the exit is at
least ce

d/b+ (2d —€)/b=3d/b—€/b=cd — 3 > cd — ce

In both cases, we showed that the robots cannot evacuate in the required
time bound. This completes the proof by contradiction.

Theorem 1. For every b,c > 0 with bc = 3, the algorithm Ny is the only
feasible solution to EEZ (¢), and is therefore optimal, and has total energy con-
sumption 4bd.
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Proof (Theorem 1). Lemma 2 implies that in order to achieve an evacuation time
cd, both robots must use the maximum speed b and explore in different direc-
tions. If the exit is found at distance d by one of the robots, the time is d/b,
and therefore, the other robot must travel at the maximum speed b in order to
arrive at the exit in time cd. Thus, the only algorithm that can evacuate within
time cd while using speed at most b is 3. A total distance of 4d is travelled
by the two robots, all at speed b, therefore the total energy consumed is 4b2d.

Next we consider the case of ¢,b > 3 and determine the optimal choices of
speeds s, for N ., as well as the induced total evacuation energy and compet-
itive ratio for problem EEY (c).

Theorem 2. Let § = 2 + /2 ~ 3.25992. For every ¢,b > 0, problem EEY (c)
admits a solution by algorithm N, if and only if cb > 3. For the spectrum of
¢, b for which a solution exists, the following choices of speeds s,r are feasible
and optimal for N ,

‘3§Cb§(58b>(5

s b )
be—2 ¥3e

r b 2

C

d

where

The induced total evacuation energy is f(cb)i

)

’

f(x>~—{<xf3>2+x2 3wt

%(2+\3@)3,x>6

It was observed in [11] that the optimal offline solution, given that d is
known, equals i—gl. The competitive ratio is given by sup, % e(e,b,d) = f(cb) for
algorithms inducing total evacuation energy e(c, b, d). The competitive ratio of
N, for the choices of Theorem 2 is summarized in Fig. 1. Note that in particular,
Theorem 2 claims that the competitive ratio only depends on the product cb, and
when ¢b = 3, the competitive ratio is 18 and is decreasing in cb (strictly only
when ¢b < §). The optimal speed choices for the unbounded problem EE (c0)
are exactly those that appear under case ¢b > §. The remaining of the section is
devoted to proving Theorem 2.

First we derive closed formulas for the performance of N ,. From the defini-
tion of energy used, and given that the robots move at speed 1, we deduce what
the evacuation time and energy are when the exit is placed at distance d from
the origin. The following two functions will be invoked throughout our argument
below.

T (s,r):= (1)

? (2)

1 2
s T
E(s,r) =847
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18.0
17.8

17.6

Fig. 1. The competitive ratio of N, for the choices of Theorem 2.

Lemma 3. Let b,c be such that there exist s,r for which N, is feasible. Then,
for instance d of EEY (), the induced evacuation time of N, is d - T (s,r) and
the induced total evacuation energy is 2d - € (s,r).

Next we show the spectrum of ¢, b for which N , is applicable.

Lemma 4. Algorithm N, gives rise to a feasible solution to problem EEZ (¢)
if and only if bc > 3. For every such b,c > 0, the optimal choices ostfr can be
obtained by solving Convex Program:

. b
nin & (s,7) (NLP)

sit. T(s,r)<c
0<s,r<hb.

Moreover, if sg,r9 are the optimizers to NLPg, then the competitive ratio of
Nio.ro €quals ¢ - € (s0,70) -

A corollary of Lemma4 is that any candidate optimizer to NLPlc’ satisfying
1st order necessary optimality conditions is also a global optimizer. As a result,
the proof of Theorem 2 follows by showing the proposed solution is feasible and
satisfies 1st order necessary optimality conditions. This is done in Lemmatab
and 6.

Towards proving that 1st order optimality conditions are satisfied, we argue
first that for all ¢,b > 0 with ¢b > 3, the optimizers of NLPZS satisfy the time
constraint tightly. Indeed, if not, then one could reduce any of the values among
s, to make the constraint tight, improving the induced energy. Hence, in the
optimal solutions to NLPQ, any of s, < b could be additionally tight or not. In
what follows, § represents 2 + /2, as in the statement of Theorem 2.

Lemma 5. For each ¢,b > 0 for which 3 < ¢b < §, the optimal solution to

NLPg is given by s = &,r =b.
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Lemma 6. For each ¢,b > 0 for which cb > J, the optimal solution to NLPg 18

; _ _0 _ 0
given by s = E o

Proof (Theorem 2). By Lemmas4 and 5, the optimal induced energy when 3 <

chb <4 is
2dE Lb =2d LM?
be—2"") (bc — 2)2

and the induced competitive ratio is

(cb)? (1 + (Cb_12)2> .

Finally, by Lemmas4 and 6, the optimal induced energy when cb > § is

2/3 94 ¢ 2+ 2)°
2d5<1+2 2+\/§>d( +2)

bl

c c c2 '

Hence the competitive ratio is constant and equals
1 3=\ 3
= (2 n \/5) ~ 17.3217,

completing the proof of Theorem 2.

3 Minimizing Evacuation Time, Given Constant
Evacuation Energy

In this section we consider the problem of minimizing evacuation time, given
constant total (or makespan) evacuation energy. First we observe that if the
robots can use only a finite number of speeds, there is no feasible solution to the
problems MEY, (A) or TEY (A).

Theorem 3. If A is a constant, and the robots have access to only a finite num-
ber of speeds, there is no feasible solution to the problems MEY (A) or TEY (A)

Proof (Theorem 3). Suppose the robots can only use speeds in a finite set. Wlog
let s be the minimum speed in the set. Define d’ = A/s?, and place the exit at
d + € for any € > 0. Travelling at any speed at or above s, it is impossible for
even one of the robots to reach the exit with energy < A.

Next we prove a lower bound on the evacuation time in this setting.

Theorem 4. For every constant e € Ry, the optimal evacuation time for prob-
lem MEY, (e) is 2(d%/?), asymptotically in d.

Proof (Theorem4). For any arbitrarily large value of d, we place the exit at
distance d from the origin. For any robot to reach the exit before running out of
battery, a robot can travel at speed at most e/ V/d. Therefore the time for even
the first robot to reach the exit is at least j‘f/ﬁ =d3/?e.
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Note that the above lower bound also holds for problem TEY (e) (if the total
evacuation energy is no more than e, then also the makespan evacuation energy
is no more than e). Next we prove that this naive lower bound is nearly tight
(up to a logd factor). First we consider the case that e < 1. Then, we show how
to modify our solution to also solve the problem when e > 1.

The key idea is to allow functional speed s = s(x) to depend on the distance
x of the robot from the origin. We will make sure that the choice of s is such
that, for every large enough d, once the exit is located at distance d, there is
“enough” leftover energy for the other robot to evacuate too. For that, we will
choose the maximum possible speed r (which can now depend on d, and which
will be constant) so as to evacuate without exceeding the maximum energy
bounds. Notably, even though our algorithmic solution is described as a solution
to TE} (e), it will be transparent in the proof that it is also feasible to MEY (e).

Theorem 5. For every constant e < 1, problem TEZ (e) admits a solution by
Ns.r, where (functional) speed s is chosen as

1
) = e (te + gl 2))

When the ezit is found (hence its distance d from the origin becomes known),
speed r is chosen as

"= \/2d(elog(d+ H+1)

inducing evacuation time O (d3/2 log d), where in particular the constant in the
asymptotic (in d) is independent of e.

Proof (Theorem 5). First we observe that since e < 1, s(z) < 1 for all x > 0.
Given that d is at least, say, 1, it is also immediate that r < 1, hence the speed
choices comply with the speed bound.

The exit placed at distance d from the origin is located by the finder in time

3/2
s(z) €T = 9¢ <d IOg d,

/d g ~ 2v2((d+1)%2(3elog(d + 1) — 2e + 3) + 2¢ — 3)

where the inequality holds for every e < 1, and for big enough d.
When the exit is located by a robot, the other robot is at distance 2d from
the exit. Moreover, each of the robots have used energy

/dsz(x)dx S —
0 2 2elog(d+1)+2

hence the leftover energy for the non-finder (i.e., the robot that did not find the
exit) to evacuate is at least

(& (& (&
_2 - — = .
¢ (2 Qelog(d+1)+2> clog(d+ 1) + 1
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The non-finder is informed of d, and hence can choose constant speed r so as to
use exactly all of the leftover energy, i.e. by choosing r satisfying

2 .
d = -_— .
/0 mar elog(d+1)+1

Note that our choice of r is also feasible to problem MEY, (e). Solving for r gives
the value declared at the statement of the theorem. Finally, choosing this specific
value of r, the non-finder needs additional 2d/r time to evacuate, which is at
most

(2d)3/2\/(6 log(d+ 1)+ 1) < (2d)3/2 log(d+ 1) < d¥2log d,
e e
where the last inequality holds for big enough d, since e is constant. So the overall

evacuation time is no more than 2d3/2logd, for big enough d, as promised.

It remains to address the case e > 1. For this, we recall that we solve TEZ (e)
for large enough values of d, and we modify our solution so as to choose functional

speed
3(z) := min{s(x), 1},
effectively using even less energy than before. The distance that is traversed at

speed 1 depends only on constant e, and hence the additional evacuation time
is O(1) with respect to d.

4 Minimizing Evacuation Time with Bounded Linear
Total Evacuation Energy

In this section we study the problem TE} (A) of minimizing the total evacua-
tion time, where A = ed for some constant e. We show how to choose optimal
speed values s, r for algorithm N ;.. Note that even though d is unknown to the
algorithm, speeds s, may depend on the known constant e, and the maximum
speed b= 1.

In this section we prove the following theorem:

Theorem 6. Let § = 2+ /2 ~ 3.25992. For every constant e € R, problem
TE}j (ed) admits a solution by N, where speeds s,r are chosen as follows

‘ e<d eclhd)e>4

€ e—2 1
2(1422/3) 2

r 1 1

€
(2+21/3)

The induced total evacuation time is given by g(e)d where g(e) is given by:

(CLeED RY

gle) = 2+ 2 ,e €16,4)
e>4
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First we observe that, given the values of s = s(e),r = r(e), it is a matter
of straightforward calculations to verify, assuming they are feasible and optimal,
that the induced evacuation time is indeed equal to g(e)d as promised. Given
Lemma 3, we know that the optimal speed choices for algorithm N ., for problem
TE} (ed) are obtained as the solution to the following NLP.

m (NLF?)
s.t. 2(52 +r9)<e
0<s,r<1

<

The optimal solutions to NLP’, can be obtained by solving complicated algebraic
systems and by invoking KKT conditions, for the various values of e, as we also
did for NLPg. However, the advantage is that one can map the optimal solutions
to NLP}:7 see Theorem 2 and use b = 1, to feasible solutions to NLP’. Then, we
just need to wverify 1st order optimality conditions for the candidate optimizers.
Since the NLP is convex, these should also be unique global optimizers.

Indeed, one of the critical structural properties pertaining to the optimizers
of NLPi is that the time constraint % + % < cd is satisfied tightly. At the same
time, the optimal speed values, as described in Theorem 2, as a function of ¢,
achieve evacuation energy equal to f (c)dc%. Attempting to find the correspon-
dence between parameters ¢, e (and problems NLP!, NLP’), we consider the
transformation f (c)(%2 = e. For the various cases of the piece-wise function f,
the transformation gives rise to the piece-wise function g and optimal speeds s, r
(as a function of e) of Theorem 6.

Overall, the previous approach provides just a mapping between the provable
optimizers s(c),r(c) to NLP!, and candidate solutions s(e),r(e) to NLP’, and
more importantly, it saves us from solving complicated algebraic systems induced
by KKT conditions. What we verify next (which is much easier), is that feasibility
and KKT conditions are indeed satisfied for the obtained candidate solutions
s(e), r(e). Since the NLP is convex, that also shows that s(e),r(e), as stated in
Theorem 6 are actually global optimizers to NLP?.

Lemma 7. Foreverye € Ry, speeds s(e), r(e), as they are defined in Theorem G,
are feasible to NLP..

Lemma 8. For every e € R, speeds s(e),r(e), as stated in Theorem 6, are the
optimal solutions to NLP..

5 Minimizing Evacuation Time with Bounded Linear
Makespan Evacuation Energy

In this section we study the problem ME; (A) of minimizing the makespan
evacuation time, given that the makespan evacuation energy A = ed for some
constant e. We show how to choose optimal speed values s, r for algorithm N ..
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Note that even though d is unknown to the algorithm, speeds s,r may depend
on the known value e, and the maximum speed b = 1.

Theorem 7. For every constant e € R, problem ME}i (ed) admits a solution
by N, where speeds s,r are chosen as follows

The induced evacuation time is given by g(e)d where

o(e) = {3\/§,e<3

1 ,e >3

Proof (Theorem 7). What distinguishes the performance, and feasibility, of N ,
between TE} (ed) and ME} (ed), is that in the former, the total evacuation
energy (equal to d(2s%+27?)) is bounded by e, while in the latter the makespan
evacuation energy (equal to d(s? + 2r?)) is bounded by e. Hence, similar to the
analysis for TE} (ed), the optimal speed choices for Ny, to ME} (ed) are the
optimal solutions to the following NLP.

min 1 + 2 (NLPY)

s.t. 82+ 2r? <e
0<s,r<1

Note that NLP” is convex, hence any choice of feasible speeds satisfying 1st
order optimality (KKT) conditions is also the unique global minimizer. More-
over, the choices of s,r of the statement of the theorem are clearly feasible to
NLP!. Hence, it suffices to show that the choices of s, do indeed satisfy KKT
conditions.

When e < 3 we note that the energy constraint is tight, while both speed
constraints are not tight. Hence, s, are the unique optimizers if there exists
A > 0 satisfying

12\ 9 9 1/s*\ 2s
_v<8+r> =AV(s*+2r°) & <2/r2 = Ar
from which we conclude that A = 1/(2s%) = 1/(2r®) > 0 as wanted (for s =7 =
e/3).
When e > 3 we note that the speed constraints are both tight, while the
energy constraint is tight only when e = 3. In that case, it suffices to show that
there exist nonnegative A1, Ay satisfying

(02)n () (1)

Clearly, A\; = 1/52 =1 > 0 and Ay = 2/72 = 2 > 0, which concludes the proof.
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6 Conclusion

We investigated how the wireless communication model affects time/energy
trade-offs for completion of the evacuation task by two robots. Our study raises
several interesting problems worth investigating. In addition to improving the
trade-offs, it would be interesting to consider search with multiple agents some
of which may be faulty in linear [16,18] as well as cyclical [10] search domains.
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