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1 Introduction

Geophysical fluid systems involve a tremendously wide range of spatiotemporal
scales. In the atmosphere and oceans, the spatial scale varies from millimeters
to tens of thousands of kilometers, while the time scale varies from seconds to
hundreds of years [34,37]. In the numerical simulation of such systems, it is es-
sential to develop a multiscale prediction model that is tractable by the current
(or the near future) generation computing powers. A challenge in multiscale
modeling is that the unique and relevant properties of such systems are char-
acterized by a complex interplay of different scale dynamics. Quasigeostrophic
turbulence includes regimes where there is a kinetic energy transfer from small
to large scales, an inverse cascade of energy [Bl[7], and the small (or unresolved
subgrid) scale affects and is affected by the large (or resolved coarse) scale.
Therefore, it is crucial to represent the effect of unresolved small scale, either
analytically or numerically, to close the large-scale dynamics, which is called
subgrid-scale parameterization in geophysical fluid systems.

There are several classes of subgrid-scale parameterization strategies for
geostrophic turbulence. A deterministic approach uses a physical model for
the effect of the unresolved small scale, for example, the Smagorinsky model
in LES. In [3l30], nonlinear deterministic models have been used in a LES
modeling of three-dimensional isotropic turbulence. The test problems consid-
ered in these models correspond to regimes where the net transfer of kinetic
energy is downscale with a negligible inverse cascade of energy. The cloud-
resolving method for tropical atmospheric convection (or Superparameteriza-
tion) by Grabowski [I2] and its extensions [I96] belong to another class of
subgrid-scale parameterization method. In a numerical computation point of
view, this strategy is closely related to the Heterogeneous Multiscale Method
(HMM) framework [Il[10]. The main idea of HMM is to run subgrid-scale
simulations in local domains to directly estimate the effect of the unresolved
small-scale dynamics on the large-scale dynamics. A typical local domain size
of these methods is comparable to the coarse grid mesh, and thus these meth-
ods depend strongly on scale separation.

The stochastic parameterization is a multiscale framework that can handle
a continuous range of scales without scale separation. It uses a stochastic pro-
cess for the subgrid-scale effect to mimic random and chaotic motions of the
unresolved small-scale turbulence. The stochastic approach using random forc-
ing terms has been successfully applied to atmospheric and oceanic turbulent
flows [4183T]. It has also improved the deterministic LES by incorporating
stochastic backscatters that mimic the inverse cascade of energy that is missed
by the deterministic model [26L[33]. In the subgrid-scale parameterization of
the tropical atmosphere, a stochastic modeling that uses additional damp-
ing and a random forcing showed successful prediction skills in capturing the
synoptic-scale variability of the Madden-Julian oscillation (MJO) [36].

In the stochastic parameterization of the unresolved scale, it is indispens-
able to introduce several modeling parameters, such as damping coefficients,
random forcing terms, etc. These parameters are estimated by tuning or fit-
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ting to observation data or statistical information. In many applications, ob-
servation or measurement data are limited or only partially available, which
makes it difficult to estimate the correct modeling parameters. Even if the
necessary information is available, tuning parameters, or optimization over
high-dimensional parameter space, is a challenging computational task.

The goal of this paper is to propose an estimation method for the mod-
eling parameters using a minimal requirement of data. Particularly, we focus
on the stochastic superparameterization (SSP) [T6LT727.[14], a variant of the
stochastic subgrid-scale parameterization method for quasigeostrophic turbu-
lence. In the stochastic superparameterization of quasigeostrophic turbulence,
there are six parameters to be estimated. These parameters are determined
by the information of the true system, such as eddy turnover time, linear in-
stability rate, and are tuned to match energy spectra. The proposed method
estimates five parameters out of them by generating subgrid-scale data in a
local domain. By assuming that energy spectra are available, the remaining
parameter, an enhanced viscosity, is tuned to match the energy spectra. We
note that the tuning process of the proposed method is more tractable than
the standard SSP as the number of the tuning parameters is low.

This paper has the following structures. We first describe a turbulence
model in Section two-layer quasigeostrophic turbulence, as an idealized
model of synoptic-scale turbulence in the atmosphere and oceans. As strin-
gent test cases for the proposed method, we consider two test regimes, strong
and moderate turbulence. The first regime is isotropic and homogeneous with
a strong inverse cascade of energy, breaking wave patterns, etc. The latter
regime is anisotropic and inhomogeneous with zonal direction strong jets.
In Section [3] we review the stochastic superparameterization for the model
problem and discuss modeling parameters to estimate. Section [4] explains the
proposed method to determine the modeling parameters in the stochastic su-
perparameterization. We also investigate how the local domain size affects the
estimation process and accuracy. Numerical results of the stochastic superpa-
rameterization using the modeling parameters from the proposed method can
be found in Section [f] The paper concludes with discussions in Section [6}

2 Model problem: two-layer quasigeostrophic turbulence

As a turbulence model for subgrid-scale parameterization, we consider a two-
layer quasigeostrophic equation in a two-dimensional space,

Og1 = —u1-V(q1) — 0.q1 — (k% + k3, — vV,
Oig2 = —ug - V(g2) + Ouqa — (K — k3)va — 1V %1hy — vV,

2
@ = V3 + %(lﬂz — 1), (1)

. P
g2 = V=12 2(¢2 P1).
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Regime kq | kg r v
Strong turbulence 50 [ 0 | 16 [ 1x 1077
Moderate turbulence | 50 | 25 4 1x10°7

Table 1: Parameters of the model equation for each test regime. kq: de-
formation wavenumber, kg nondimensional coefficient related to the Coriolis
force, r: Ekman drag coefficient, v: biharmonic viscosity.

Here 1; is the stream function and g; is the potential vorticity in the upper
( = 1) and lower (j = 2) layers. The velocity field u; follows the velocity-
stream function relation u; = (uj,v;) = (—0y¥,0,¢). kq is a deformation
wavenumber, 7 is the linear Ekman drag coefficient at the bottom layer, and
v is the biharmonic viscosity that is commonly used in eddy permitting ocean
models [I3]. We use the biharmonic viscosity to dissipate small scale while
maintaining the large-scale dynamics of the model. The term related to a
nondimensional kg results from the variation of the vertical projection of
Coriolis frequency with latitude. Also the model has a large-scale zonal ver-
tical shear that results in the term(—1)7(8,q; + k2v;). In [37], it is shown
that when kg < kg, the imposed vertical shear leads to a baroclinic insta-
bility that maintains the model dynamics without an additional explicit force
term. The quasigeostrophic equation is often expressed equivalently in terms of
barotropic gy = % and baroclinic g, = 5% variables, which correspond
to the vertical average and the vertical difference.

This model is a classical idealized model of synoptic-scale turbulent flows
in the atmosphere and oceans [37] with features such as complicated patterns
of waves, jets, and vortices. To generate the features, we consider two test
regimes, 1) strong and 2) moderate turbulent flows. These two regimes are
different by varying the Coriolis effect kg and the Ekman drag r while the
deformation wavenumber kq and the viscosity v are fixed at 50 and 1 x 1077
respectively for all regimes. For the strong turbulent regime, we set kg = 0
and r = 16. For the moderate turbulent regime, there is a Coriolis effect with
ks = 25 but with a weaker drag r = 4 (see Table [I| for each test regime
parameters). A similar model and test regimes have been used for testing
stochastic parameterization in [I7I4,23] but with a hyperviscosity —V®g;
instead of the biharmonic viscosity used in the current study.

Our reference simulation solves the model equation in a domain {2 =
(0,27)? with a doubly-periodic boundary condition. For a spatial discretiza-
tion, we use the Fourier spectral method for the linear terms while the non-
linear term is discretized by the finite difference method by Arakawa [2] that
preserves energy and enstrophy. Regarding time integration, we use a fourth-
order Runge-Kutta time integrator. The spatial resolution is 512 x 512 for
each layer, which is comparable to the finest resolution of the baroclinic tur-
bulence simulation in [35]. We fix the time step at 2 x 1075 for all simulations.
Each simulation is initialized with a small energy randomly generated poten-
tial vorticity field and runs until it reaches a quasi-stationary state, i.e., the
total energy is fully developed.
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Fig. 1: Direct numerical reference simulations of the model (T)). Strong (left)
and moderate (right) turbulent regimes.

Figure [I{a) and (b) show time series of the zonal (x-direction) average
of barotropic velocity component up = % and snapshots of barotropic
potential vorticity g (left column: strong regime, right column: moderate
regime). The strong regime shows homogeneous isotropic turbulence domi-
nated by small-scale coherent vortices. The moderate regime, on the other
hand, shows anisotropic and inhomogeneous structures with four jets. The
jets are asymmetric with stronger zonal velocity. The inverse energy cascades
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from small scale to large scale and maintains the large-scale jets (see [9] for
a study of large-scale jet structure of quasigeostrophic turbulence). As the
formation of the jets are related to the small scale, it is a challenging task to
capture jets using multiscale modeling that does not resolve all active subgrid-
scale components. Figure (c) shows energy spectra of the kinetic energy (KE)
>; 5 [ |uj?dedy and the potential energy (PE) %”2’ [[o (W1 — 2)?dady as
functions of the wavenumber k = |k| (here k is the wave vector), whose sum
(i.e., the total energy) is conserved by the model for the unforced and in-
viscid case. The model has both downscale and upscale energy cascade. The
interaction between the y-direction velocity and the imposed baroclinic po-
tential vorticity gradient generates potential vorticity and energy at the large
scale determined by the bottom friction and kg. The potential energy cas-
cades downscale to the small scale determined by the deformation radius, and
is converted to barotropic kinetic energy [32]. The kinetic energy, on the other
hand, cascades upscale and becomes barotropic at the large scale, which is fur-
ther dissipated by bottom friction. In addition to energy spectra, the model
has heat flux that is related to the background temperature gradient with the
imposed mean shear. The heat flux [[(vi + v2)(¢1 — 12)/4 is weaker in the
moderate regime than in the strong regime as the zonal jets obstruct the heat
transport in the y-(meridional) direction. From the reference simulation, the
time averaged heat fluxes are 223 and 20 for the strong and the moderate
regimes respectively.

A numerical test shows that the model requires a spatial resolution higher
than 256 x 256 for each layer. Various spatial resolutions N? for N = 256, 192
and 96, are tested with a tuned biharmonic viscosity to match the energy
spectra. The test result (Figure shows that none of the resolutions can
achieve the correct spectra even with the tuned viscosity. In Section [3] and [4]
we show that the stochastic superparameterization with a coarse resolution
96 x 96 approximates the energy spectra and heat flux well, including the jet
structure of the moderate turbulent regime.

3 Stochastic parameterization for subgrid-scale variables

In this section, we review the stochastic parameterization method, particu-
larly the stochastic superparameterization, and discuss its characteristics and
limitations. In the subgrid-scale parameterization, it is typically assumed that
a full resolution variable has a natural decomposition into large-scale vari-
ables (-) and subgrid-scale variables (-)’. An application of the large-scale and
subgrid-scale projections to the model equation yields the equations for the
large-scale and subgrid-scale variables

0y, =—uy - V(qy) — v} - Vg — 0,4, — (kj + k3)v1 — vV'qy,
Oy = — Wz - V(qy) — uh - Vb + 0uGy — (kj — k302 — vV Gy — rV1hy,

(2)
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Fig. 2: Kinetic energy (KE; left) and potential energy (PE; right) spectra from
various spatial resolutions. Viscosity is tuned to match the spectra.

and
gy = — ) -V =y - V) —ul -V, — 9pq1 — (kj + k3)vi — vV,
Dy =—uy-Vgy — Uy - Vh —ub - VG, + 9ugh — (k3 — k)b — vV, (3)
- TV%Z};a

respectively. The main issue of the large-scale scale equation, which is called
"closure problem in multiscale modeling [29], is that the subgrid-scale effect
on the large-scale variables, u - V¢, requires the subgrid-scale variables u
and Vqé» that are not available unless the subgrid-scale equation is solved.
In many applications, this term must be accurately approximated as it has
a nontrivial effect on the coarse-scale dynamics. The inverse energy cascade
of geostrophic turbulent flows is an example that the small-scale dynamics
affect the large-scale dynamics. Among different methods to account for the
subgrid-scale effect, we focus on the stochastic parameterization method.

The standard stochastic parameterization [I8[36] models the subgrid-scale
effect as a stochastic system typically using the following form

u) -V ~ —d;ig; + Fj (4)

where d > 0 is a damping coefficient, § is a large-scale variable, and F is
a random force. The coefficients d and F' are tuning parameters determined
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by fitting the system to observation/climatological data. This approach has
been successfully applied to many interesting problems in geophysical turbu-
lent problems including the synoptic-scale variability of the Madden-Julian
oscillation [36].

3.1 Stochastic superparameterization

The stochastic superparameterization (SSP) [16,[17] is a variant of the stochas-
tic parameterization approach for subgrid-scale parameterization. Instead of
the stochastic modeling directly for the effect of the subgrid-scale on the large-
scale dynamics, the stochastic superparameterization uses stochastic modeling
for the subgrid-scale dynamics . By replacing the nonlinear term in (not
in ) with additional damping and random forcing, the subgrid-scale equation
becomes a linear system conditioned to the large-scale variables. The modified
subgrid-scale equation is then solved to estimate the effect of the subgrid-scale
variables on the large-scale equation. That is, the stochastic superparame-
terization calculates the subgrid-scale effect by calculating the subgrid-scale
dynamics using a cheap stochastic model. The standard stochastic parame-
terization, on the other hand, mimics the subgrid-scale effect directly using a
stochastic model. The idea of the stochastic superparameterization is similar
to the heterogeneous multiscale method [I[I0] in that both methods generate
subgrid-scale information to estimate the subgrid-scale effect on the large-scale
dynamics. The main difference is that the stochastic superparameterization
uses stochastic modeling for the subgrid-scale dynamics while the heteroge-
neous multiscale method uses the original subgrid-scale equation under scale
separation. The model in the stochastic superparameterization is cheap to solve
and also enables to cover a broader range of scales without scale separation.
For completeness, we review some technical details of the stochastic super-
parameterization [I7[I4]. SSP replaces the nonlinear term in the subgrid-scale
equation by an additional damping —I'g; and a random force F;

Oqy =~ —Tqy+ F) —1y - Vqy — 0,q¢) —u} - Vg, — (k% + k2 — vViq),
Orgy = — I'gy + Fy — Wy - Vi + 0pqy — uy - Vg, — (kF — k3)vy —vViqy (5)
— V2.

I' is a positive definite pseudo-differential operator, and the random force
Fj’ are correlated in space and white in time. One key idea used in SSP is
a point approximation for multiscale modeling. This approximation imposes
an artificial dynamical scale separation where the subgrid-scale equations are
understood in an embedded domain. For each set of the large-scale variables
u; and g; defined on the coordinates (x,y,t), SSP introduces new coordinates
(Z,9,7;x,y,t) for the subgrid-scale variables. All variations of the subgrid-

scale variables are interpreted on the new coordinates (Z, 9, 7;x,y,t), which
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yields
Orqy = —Tqy + F{ =W - Viagqy — 0z¢) — 0} - Vg — (k3 + k3o
—Vip
Oy = — I'gy + Fy — Wy - Vg 5,5 + 055 — 05 - Vg 5, — (k5 — k3)va

(6)

~ Wiag @ — VeV
where V3 5 = (03, 03). In the point approximation, the large-scale projection is
understood as an average over the new coordinates. Also note that in equation
@, the large-scale variables are understood as constants while in equation ,
the large-scale variables vary over the domain.
For fixed large-scale variables, the Fourier transform of equation @ (by
suppressing the notation (-)) is

dq — . . — . N

% = —i(U; - k)g1 — (ik x VQ )1 + A Wik — (ne + vk G

dis o - ) .
% = —i(Us - k)G2 — (ik x VQq)th2 + A1 x Wi x — (v + vk* )2 + rk*1)s,

(7)

where k = (kg, ky) is the wave vector, k = |k|, W; x are independent complex
Wiener processes, and Aj;y are complex constants. Here we introduced new
large-scale variables U; = W; — (—1)% and Q; = q; + (k3 — (=1)7k3)y. The
damping operator I" is defined to satisfy

I'q; = 54 (8)

where 7y ; is a positive real number for each k. Through the relation between
q; and ¢}, we can represent the above equation as an equation for 1,

d (Zﬁ;) 5 (Z;) dr + ok AW, )

where o = <A(1)’k AO >, Wy = <%1’k>, and the linear operator Ly (that
2.k 2,k

depends on the large-scale variables)

1 ({U;-k 0

L[~k x VO, 0
+Q ( 0 k2 ikxVQ,)

. . . —(k2/2 + k%) k2/2
for the 2 x 2 1 = (kq d B
or the 2 x 2 identity matrix I and Qy ( k22 (k224 R?) n

[17], it is shown that the subgrid-scale effect u} - V¢j has the following repre-
sentation

(10)

(19K

W Vg, = VW ] — )+ (02 =)+, ()7 — (W)?) - (1)
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As we interpret the large-scale projection as the average over the small-scale
coordinates, the subgrid-scale effect is derived from the average of [¢;1;| (see
equation - for the representations of each term in in terms of

A T2 T T
wiw;f). Thus, it is sufficient to solve for the covariance matrix Cy = (%ll w} ¢§> ,
Vi |is]
whose evolution is governed by
d
%Ck = LyCx + CkLik( + Uka: (12)

using the Ito formula. We note that this system has an interaction with the
large-scale variables through the dependence of Ly on ﬁj and Qj.

In solving for CY, there are several parameters left to be determined. First,
the damping coefficient 7y ; is assumed to be equal for both layers and is
modeled as isotropic and proportional to the nonlinear subgrid timescale for
each k = [k|

ok /ka)?3 for k < kg,
Yk,j = Tk = Vk = {% for k > ky (13)

In SSP, the base damping coefficient -y is chosen so that it is slightly more
than sufficient to damp the linear instability of the imposed shear. To find the
noise level oy, SSP specifies the equilibrium state of the covariance matrix.
Using the ideas of fully developed quasigeostrophic turbulence, in particular,
the subgrid-scale dynamics are isotropic (see [I7] for details), SSP models the
equilibrium covariance as

2(2k+k2) 12
) (14)

_ 1+« d
Cx,eq = Any, ( 12 202k +k2)
d 1+a

where A is a tunable eddy amplitude parameter, « is the energy ratio between
layers, and

0 for k < ko and k > ke
ng = (AR (K2 +kg) ™ for ko < k < kg (15)
K3 (kS (k2 + k2))™Y for kg < k < K.

Here kg is the Nyquist wavenumber of the coarse resolution and kg, is 256,
which is the Nyquist wavenumber of the reference simulation using 512 x 512
grid points for each layer. As the equilibrium covariance is specified, the noise
level oy is chosen to satisfy

UkO'i: = 2'kak7eq. (16)

In the deterministic closure of superparameterization, the covariance equa-
tion is solved for and is integrated over all wave vectors. To reduce the cost
and impose randomness of the subgrid-scale effect, the stochastic closure [16],
1714) introduces randomness in the direction 6 of the wave vector k =
(kcosf, ksinf) and calculate the subgrid effect by integrating the covariance
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components along the radial direction. That is, the covariance equation is
solved for each radial wavenumber k = k|

d
EC'“ = L;Cy + Cy L}, + o0y, (17)

Using the equilibrium covariance as an initial value, the stochastic superpa-
rameterization solves the above ODE for a duration of % and estimates each

term of using

Emaz 1/e o
T =) = / K sin(6)) ( / E[imag<w1w;>> dk,  (18)

ko
ko

Emax e
ki 0

0

Emaz 1/e o
W) = — / K2 cos(6) ( / E[z‘magwlw;)) dk,  (19)

02 — (u')?2 = e 3 c0s(20.) | € e ho|2

CALTA —/ko K <29J></0 Elli; %] | dk, (21)
G, 0 = @, —7) (22)
W, —9h) = L — ) (23)

Here the time period 1/e called eddy averaging time, a tunable parameter.

In the estimation of the subgrid-scale effect through stochastic modeling,
the influence of the large-scale variables on the subgrid-scale is incorporated
through the dependence of the linear operators on the large-scale variables
(note that Ly in depends on the large-scale variables). In a recent ver-
sion of SSP [14], a temporal correlation and spatial smoothing techniques are
introduced to impose a stronger correlation with the large-scale variables in
the subgrid-scale parameterization. The spatial smoothing in [I4] averages the
subgrid-scale effect on a coarse grid point with the subgrid-scale effects on the
two adjacent coarse grid points in each direction, which introduces a spatial
correlation in the subgrid-scale parameterization. Regarding a correlation in
time, the direction 6; is modeled as a Wiener process on the circle

0; = bjdWj, (24)

where b; is a tunable parameter that is set to close to the eddy turnover time
U%Cd (U is the RMS velocity). In [I4], it is shown that these methods are essen-
tial to remove an artificial bump on the potential energy spectrum in addition
to imposing large-scale correlations in the subgrid-scale effect. Combining all
the techniques explained in this section, SSP requires only 96 x 96 spatial
resolution to capture the features of quasigeostrophic turbulence, including
breaking waves and jets. SSP has also proved to be an essential method in sta-
bilizing data assimilation methods [24] in addition to an increased ensemble
size due to its low computational complexity [231[15].
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3.2 Tunable modeling parameters

In the stochastic superparameterization (and also in the stochastic parameter-
ization), an important issue is how to choose the modeling parameters. SSP
requires to specify six modeling parameters:

noise level b; for the angle 6;
base damping coefficient g ;
eddy averaging time 1/e

eddy amplitude A;

energy ration a between layers
enhanced biharmonic viscosity v;

SO N

Physical information can help to estimate some of these parameters, such as
eddy turnover time, etc, but such information often requires a high-resolution
simulation result or dense observation data. Also, even if these parameters are
available, some parameters (in our case, the eddy amplitude and the viscosity)
are tuned to match the energy spectra. In the stochastic superparameteriza-
tion, the modeling parameters, which can be different for each layer, are as-
sumed to be equal for all layers due to the computational complexity to tune
all of the parameters. The goal of the current study is to estimate the modeling
parameters 1-5 (possibly for each layer), without using a high-resolution sim-
ulation result or dense observation data, while the viscosity is tuned through
optimization in a low dimensional parameter space.

4 Subgrid-scale modeling parameter estimation

This paper proposes a method to estimate the modeling parameters in the
stochastic superparameterization listed in section (except the biharmonic
viscosity). The key idea of the proposed method is to generate local subgrid-
scale data and use its physical and statistical information to estimate the
modeling parameters. As there is no scale separation between the resolved and
unresolved scales, the local domain size to solve the PDE model is relatively
larger than the one used in the heterogeneous multiscale method but remains
small enough to be cheap in comparison with the reference simulation.

In general, the subgrid-scale parameterization depends on the large-scale
variables. It is possible to generate local data as the large-scale variables change
and estimate modeling parameters that also depend on the large-scale vari-
ables. This approach will definitely increase the correlations between the large-
scale and the subgrid-scale effects. To reduce the cost and the complexity of
the proposed method, we estimate modeling parameters that are independent
of the large-scale variables. This approach does not mean that the subgrid-
scale parameterization is independent of the large-scale variables. The linear
operator Ly depends on the large-scale variables and thus the subgrid-
scale parameterization depends on the large-scale variables as we solve the
covariance ODE for different set of large-scale variables, which is cheaper to
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solve than the local PDE model. Additionally, to impose much stronger depen-
dence on the large-scale variables in the subgrid-scale parameterization, the
stochastic superparameterization uses the spatial smoothing method discussed
in the previous section. As we look for modeling parameters independent of
the large-scale variables, the local PDE simulation is run only one time to
estimate the parameters.

The information to estimate the parameters are decorrelation times and
energy of corresponding variables (the stream function ¢ and the angle 6).
As this information is available for each layer, we can estimate the modeling
parameters separately for each layer. In this section, we describe the setup
of a local simulation to generate subgrid-scale information and methods to
estimate the modeling parameters from the local data.

4.1 Local simulation setup

The best (but not practical) way to generate the subgrid-scale information is
to solve the subgrid equation for each set of large-scale variables in the
original domain 2 = (0, 27)2. As we need only the subgrid-scale information,
we solve the subgrid-scale equation in a local domain 2;, = (0, 27”)2 where
L > 1 is a scaling factor. In HMM, L is set to be an order of N where N is
the number of the coarse grid points(thus the local domain size is comparable
to the coarse mesh size). This approach is possible when there is strong scale
separation between the resolved and unresolved scales. However, when there is
no apparent scale separation as in our model, it is necessary to use a relatively
large (but small compared to the original domain for efficiency) local domain
to generate subgrid-scale information. In the current study, we choose L that
covers several coarse grid points (this setup guarantees that the local domain
contains coarse wave components, i.e., waves with wavenumber less than or
equal to the Nyquist wavenumber of the coarse resolution).

As we assume that the modeling parameters are independent of the large-
scale variables (while the overall subgrid-scale effect eventually depends on the
large-scale variables through the operator Ly,), we run the local simulation only
one time for a specific set of large-scale variables. Among many possibilities,
we choose them to be zero. More specifically, the subgrid equation (with all
large-scale variables are set to zero) is solved in the local domain 27, with the
double periodic boundary condition. An initial value is chosen as a random
field from a small energy, and the simulation runs until it reaches a quasi-
stationary state, i.e., the energy is saturated. Note that there is no modification
for the subgrid-scale equation, except we choose zero values for the large-scale
variables.
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Fig. 3: Decorrelation time of upper layer sin(26;) as a function of the domain
scaling factor L. Strong turbulent regime without (left) and with (right) low
wavenumber truncation. Note the different vertical scales.

4.2 Data process for modeling parameter estimation
4.2.1 Noise level b; for the angle 0;

The noise level b; in for the angle 6; is determined by the decorrelation
time of sin(26). In [I4], it is shown that the decorrelation time of sin(26,) is

equal to ﬁ Thus, if the decorrelation time of sin(26;) is available for each

layer j, the noise level of 0, bj, is estimated by

1
b; = . 25
’ \/2 x decorrelation time of sin(26;) (25)

We use the following way to estimate the decorrelation time of sin(26;). For
each velocity field (u;,v;), the angle 6; is estimated by arctan(v;/u;). From
the angle information, an autocorrelation function is computed from a time
series sin(26;). From the decaying rate of the autocorrelation function, the
decorrelation time is estimated. This decorrelation time depends on the phys-
ical location to sample the time series. In our setup, we use four different
physical locations, (0,0), (,0),(0,7), and (7, 7), to estimate the noise level
using the average of the decorrelation times at these locations.

Figure [3|(a) shows the decorrelation time of the upper layer sin(26;) for
the strong turbulent regime with varying local domain sizes. There is no con-
sistency or convergence as the local domain size increases (i.e., L — 1). This
result can be explained by the relative size of the local domain compared to
the local domain used in HMM. In HMM, the typical domain size is and is
typically contained in a coarse grid mesh. Thus, the local simulation does
not contain wave components corresponding to the coarse resolution. In our
method, the local domain size is large enough that it contains a few coarse-
scale wave components.

As an example, consider the case when L = 10 and a coarse resolution
Nyquist wavenumber 48 in each direction. Considering only the zonal direction,
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for example, wavenumber 1 to 4 in the local domain correspond to wavenumber
10, 20, 30, and 40 in the original domain. On the other hand, a wavenumber
larger than 4 in the local domain do not have corresponding wavenumber
that can be represented on the coarse grid (as there is no way to represent
wavenumber 50 on the coarse resolution of Nyquist wavenumber 48). For the
same Nyquist wavenumber, any L greater than 5 (we are assuming that L is
an integer for simplicity) will contain two different wave groups that belong
to coarse and subgrid scale components. In the estimation of the subgrid-scale
modeling parameters, we need data only related to the subgrid-scale. There-
fore, we truncate the wave components corresponding to the coarse resolution
and use the remaining wave components to estimate the pure properties of the
subgrid components. That is, we remove the low wavenumber components 1
to 4 in the above example, and use only wavenumber larger than 5 to estimate
the subgrid modeling parameters. We note that the distinction between the
low and the high wave groups is determined by the coarse resolution Nyquist
wavenumber. Figure [I(b) shows the decorrelation time of sin(26) after trun-
cation, which shows convergence as L decreases.

4.2.2 Base damping coefficient o ; and eddy averaging time 1/e

The base damping coeflicient ~yg ; is similarly estimated using a decorrelation
time, which determines the damping coefficient «y; through the relation ,
For a linear stochastic system for u € C

du = (= + iw)udt + adW,

where W is a Brownian motion, the autocorrelation function is proportional
to e cos(wt) where % is the decorrelation time (see Chapter 5 of [28] for

an derivation of this relation). As the equation for Jjj @[) is a linear stochastic

system, we use the time series data of 1[)]- to estimate the damping coefficient
through the decorrelation time estimation. Note that wy, is determined by the
large-scale variables and thus we need to estimate only v that corresponds
to v, + vk* in . For the simplicity and the efficiency of the algorithm, in-
stead of estimating the damping coefficient for each k, we estimate the base
damping coefficient 79 and use the model to estimate 5 from ~y. We
choose a wavenumber k that is the minimum multiple of the scaling factor
L such that k > ko (where kg is the Nyquist wavenumber of the coarse res-
olution). For this wavenumber, extract a time series of @(l;) from the local
simulation data and estimate the decorrelation time of this time series, which
yields
1 74

= — —vk". 26
109 decorrelation time of v; (k) (26)

In the estimation of the eddy averaging time that is same for both layers, the
averaging time must be long enough for the system to evolve away from the
initial state but not too long compared to the coarse time step. We choose
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Fig. 4: Spectra of time averaged |1ﬁ|2 Strong turbulent regime with L = 10.
Top (left) and bottom (right) layers.

the eddy averaging time to be two times longer than the average decorrelation
time of 9; (k)

p 2 (27)
= decorrelation time of ¢ (k) + decorrelation time of ¢ (k),

1 5 decorrelation time of ¢ (k) 4 decorrelation time of (k)

where k is the smallest multiple of L that is greater than or equal to the
Nyquist wavenumber.

4.2.8 Eddy amplitude A; and energy ratio o

The two modeling parameters A; and « in are related to energy. A;
determines the actual energy scale (the modeling of the equilibrium covariance
(the right hand side of (I4)) does not provide any information for the actual
magnitude). In our model , the effect of topography is described as a drag
(corresponding to the term —rV?2p5) and thus the bottom layer has less energy
than the upper layer. Parameter « is essential to determine the energy ratio
between different layers. In the stochastic superparameterization, where A; is
assumed to be same for both layers, specifying « is crucial as it is the only
way to impose different energy scale for each layer. In the current study, we
estimate A; separately for each layer and thus the effect of « is not important.
Thus, we set a = 1 and estimate the eddy amplitudes for each layer using the
following covariance model

O (Ar(2E 4 k) VAL Ak (28)
Bt TR\ VALV ARk Az(2K° + k)

As the covariance matrix C}, is initialized proportional to the equilibrium co-
variance and the noise covariance is also proportional to the equilibrium co-
variance, the variances E(|1)1|?) and E(|4)2]?) are proportional to A; and A,
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respectively. Thus, if E([1);]2)srue and E([1);]?)sqe represent the variances of 1)
from the true signal and from the SDE system, they satisfy

E(19[*)erue = AE(951%)sae (29)

Instead of the true variance of ¢ (which is not available), we use the variance
from the local simulation, E(|’t/}j|2)local, to estimate the eddy amplitude

A = E(hﬁj |2)local

j = . 30
' E(|¢j|2)sde ( )

Figure |4 shows the spectra of time averaged |1&J |2 for both layers from both
the local simulation (squared) and the stochastic system (dash line) for the
strong turbulent regime with L = 10. As the damping coefficient ~;, is mod-
eled as based on qualitative information of two-dimensional geostrophic
turbulent flow while the local domain does not cover the original domain, two
spectra have slightly different decay rates. The lowest wavenumber has the
largest magnitude that has the most significant impact on the coarse scale.
Therefore, we estimate the eddy amplitude by matching the time averaged
4|2 at the smallest wavenumber (the dash-dot line in Figure {4 is the spectra
multiplied by the estimated eddy amplitude).

4.2.4 Enhanced biharmonic viscosity v;

The remaining modeling parameter is the enhanced biharmonic viscosity v;.
This parameter is estimated by matching the energy spectra of the system as
in the standard stochastic superparameterization. In contrast to matching the
energy spectra over all modeling parameters in the stochastic superparame-
terization, we match the energy spectral using only two scalar values, 17 and
vo and thus this process is significantly efficient than the original stochastic
superparameterization.

It is shown in [20] that the order of the viscosity term must increase with
resolution and the strength of the turbulence to correctly match the energy
spectra without artificial dissipation regime of the coarse model. That is, it
is more appropriate to use hyperviscosity instead of biharmonic viscosity in
the current setting. This approach, however, requires non-constant viscosity
varying over wavenumber to capture other features, such as time averaged
zonal jets [21]. Instead of estimating the spectral slope and use this information
to determine the varying viscosity coefficients, we restrict our interest to the
biharmonic viscosity and constant viscosity coefficients, which still captures
zonal jets and large-scale energy spectra at the cost of artificial dissipative
regime.
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5 Numerical tests

We test the stochastic superparameterization for the two test regimes of the
model equation , strong and moderate turbulent regimes, using the mod-
eling parameter values estimated by the proposed method. First, the coarse
model is resolved by 96 x 96 grid points for each layer using the same nu-
merical method as the reference simulation, energy and enstrophy conserving
Arakawa finite difference [2] for the advection term and the Fourier spectral
method for the linear terms. Also, we use the same fourth-order time integrator
for the coarse model. The derivatives related to the subgrid terms are approx-
imated by the second-order finite difference with the spatial smoothing [14].
The computational cost of the stochastic superparameterization is 280 times
cheaper than the reference simulation considering the time step 2 x 10~ for
the coarse model. Regarding the subgrid-scale covariance, the covariance ma-
trix is solved using a fourth-order Runge-Kutta method for wavenumber
k = 48,49, ...,256 where 48 and 256 correspond to the Nyquist wavenumbers
of the coarse and the reference resolutions. Instead of solving this equation
at each coarse time step when a new set of large-scale variables is available,
we precompute the system for possible combinations of large-scale variables.
In the stochastic superparameterization, the actual subgrid-scale terms are
interpolated from the precomputed values.

To estimate the modeling parameters, we use a local domain with scaling
factor L = 10, which is the smallest local domain size to get converged mod-
eling parameters as L changes (see Figure [3| for the estimated decorrelation
time of sin(26;) as a function of L). This local domain covers only 155 of the
original domain {2, and thus the local simulation can be done efficiently in
comparison with the reference simulation. For the local simulation, we use a
slightly finer resolution than the reference simulation using 64 x 64 grid points
in each layer (note that the number of grid points for L = 10 maintaining the
same resolution of the reference simulation is 52 x 52). The numerical scheme
to solve the subgrid-scale equation is the same as the reference simulation,
while all large-scale variables are set to zero. The system is initialized from a
random field with small energy and runs until the energy is saturated. This
system 1is solved only one time for each test regime. The estimated modeling
parameters are shown in Table

The angle 0; changes more randomly in the strong regime than in the
moderate regime, i.e., b; is larger in the strong case, which complies with the
physics, although the difference is marginal. There is a significant difference
in other parameters between the regimes. The strong turbulent regime has
a strong damping coefficient for the subgrid-scale, which is about 2.7 times
stronger than the moderate regime. The energy in the strong regime subgrid-
scale is about seven times larger than in the moderate case. The viscosity also
follows the same relation, stronger viscosity for the strong regime than for the
moderate regime. This result conforms to the study in [25]. The study shows
that the eddy viscosity in the cascading inertial range is proportional to the
cube root of the constant enstrophy flux, which is also shown by the scaling
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Strong turbulent Moderate turbulent
upper layer [ bottom layer | upper layer [ bottom layer

b, 2.47 x 10T 2.38 x 10T 2.17 x 10T 2.04 x 10T
Y0,; || 8.06 x 10T 7.75 x 101 3.03 x 101 2.94 x 10T
1/e 2.53 x 1072 6.69 x 10~ 2

Aj 3.31 x 107 1.57 x 107 4.63 x 107 2.53 x 103
v; 5x 1077 5x 1077 1x10~° 2 x 10~

Table 2: Estimated stochastic superparameterization modeling parameters.
The local domain {2y has a scaling factor L = 10 that covers only T%o of the
original domain f2.
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Fig. 5: Kinetic energy (KE) and potential energy (PE) spectra by SSP (dash
line), along with the reference result (solid line). The dash-dot line uses dif-
ferent viscosity coeflicients between different layers.

laws in [20]. A similar pattern is observed between different layers. The bottom
layer has a drag modeling the viscous effect of the bottom layer, and this drag
plays an additional stabilizer of the bottom layer. Thus, it is natural to expect
that the bottom layer is less turbulent than the upper layer. The estimated
modeling parameters support the relation; the bottom layer has a weaker noise
for the angle, weaker damping for the subgrid-scale, and less energy than the
upper layer.

The kinetic energy (KE) and potential energy (PE) spectra of the stochas-
tic superparameterization (SSP) are shown in Figure[5|along with the reference
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Fig. 6: Top: time series of zonal average of barotropic velocity component ;.
Bottom: time and zonal average of barotropic velocity component . Strong
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simulation (DNS) spectra. The energy spectra of the stochastic superparam-
eterization show a good match with the reference spectra as the parameter-
ization accounts for the subgrid-scale effect judiciously. We note that as we
have seen in Figure [2] the parameterization of the subgrid-scale is essential
to obtain the correct spectrum shape using 96 x 96 grid points in each layer.
In the standard stochastic superparameterization with all tuned parameters
by matching the energy spectra, each modeling parameter is assumed to be
same for both layers, which significantly reduced the dimension of the mod-
eling parameters by a factor 2. To see the effect of the same parameter value
for both layers, the dash-dot line in Figure b) shows the energy spectra of
the moderate regime using the same viscosity value for both layers. While the
kinetic energy spectrum is not affected, the potential energy, which is related
to the difference of the stream function between different layers, degrades sig-
nificantly where there is no difference in the viscosity for different layers; the
tail of the potential energy decreases if the same viscosity value is used for
both layers.

We also check the spatial structure generated by the stochastic superpa-
rameterization through a time series of the zonal average of the barotropic
zonal velocity component uy; shown in Figure Eka). In comparison with the
reference result (Figure[[(a)), SSP generates similar patterns mimicking criti-
cal features of each regime; in the strong turbulent regime, the time series by
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SSP shows breaking waves with no significant spatial structures. In the mod-
erate turbulent regime that is anisotropic and inhomogeneous, SSP shows the
same number of zonal jets of comparable magnitudes (see Figure @(b) for the
time and zonal average of the barotropic velocity component ;). We want
to note that the stochastic superparameterization can capture the anisotropic
and inhomogeneous structure of the moderate turbulent regime using model-
ing parameters that are independent of large-scale variables. Anisotropic and
inhomogeneous characteristics in the coarse-scale are achieved by solving the
ODE for the covariance that depends on large-scale variables, while the
modeling parameters remain independent of large-scale variables. As a quanti-
tative performance of the proposed method, the heat flux using the estimated
modeling parameters is 235 for the strong turbulent regime and 22 for the
moderate turbulent regime. These values are in a 10% error range of the true
values (223 and 20 for the strong and the moderate regimes, respectively).

One issue of the standard superparameterization, estimating all modeling
parameters by matching the energy spectra, is that the modeling parameter
set is not unique. We have already seen that we can match the kinetic energy
spectra by using the same viscosity for both layers. As a more extreme case,
we found the following set of parameters for the moderate turbulent regime
by matching the energy spectra without using the proposed method

by = by =1.78 x 10,701 = Y02 = 30, 1/e = 4.00 x 1072,

31
Ay = 3330, Ay = 1670, 14 = 15 = 8 x 1076, (31)

The energy spectra and the time and zonal average of barotropic velocity com-
ponent uy: of the stochastic superparameterization using this parameter set
are shown in Figure [} Except for the kinetic energy spectra, all the other
measures show significant differences between the stochastic superparameter-
ization and the reference result. The potential energy is lower in the tail, and
the jets are much weaker than the reference result. The heat flux is much worse,
32 by the stochastic superparameterization, compared to 20 from the reference
simulation. The proposed method uses (local) information from the model to
estimate the modeling parameters that are physically correct and thus pro-
vides a more accurate result than just tuning the parameters to match the
energy spectra.

6 Discussion and conclusion

In geophysical fluid systems, the stochastic parameterization of unresolved
subgrid-scale dynamics as a low computational cost mutiscale model involves
several modeling parameters to be determined (for example, additional damp-
ing coefficient, noise level, etc.). The estimation of these parameters typically
requires a specific type of information (such as dense observation data) that
may not be available. We proposed an approach to estimate subgrid-scale mod-
eling parameters in the stochastic superparameterization of quasigeostrophic
turbulence. By assuming that only energy spectra are available, the proposed
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Fig. 7: Moderate turbulent regime result using the parameter set . This
parameter set is hand tuned by matching the energy spectra without using the
proposed method. The time series has the same gray scale as the other time
series plots.

method directly uses the subgrid-scale PDE equation to generate local data
for subgrid-scale variables. The method utilizes the physical/statistical infor-
mation of the local data to estimate the modeling parameters.

In the subgrid-scale parameterization, it is natural to assume that the
subgrid-scale effect depends on the large-scale variables. Instead of estimating
the subgrid-scale effect on the large-scale dynamics directly, the stochastic su-
perparameterization approximates the subgrid-scale effect by solving a cheap
ODE system where large-scale variables play as input parameters of the sys-
tem. The modeling parameters used in the ODE system are independent of
large-scale variables. Therefore, the local PDE problem needs to be solved only
one time to estimate the modeling parameters.

We considered two turbulent regimes (strong and moderate regimes) with
an inverse cascade of energy to test the proposed method. The strong tur-
bulent regime is isotropic and homogeneous with breaking wave patterns and
a strong inverse cascade of kinetic energy. The moderate turbulent regime
is anisotropic and inhomogeneous with a nontrivial spatial structure, zonal
jets. The proposed method showed skillful prediction in capturing complicated
features of the test regimes, including complicated wave patterns, turbulent
energy spectra, and heat flux.

The proposed method can estimate most of the modeling parameters in
the stochastic superparameterization except one parameter, the enhanced bi-
harmonic viscosity. This parameter is tuned to match energy spectra. It is nat-
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ural to investigate an estimation method of this parameter using local data
or physics for the completeness of the proposed approach. Particularly, we
plan to incorporate the higher-order viscosity term with viscosity coefficients
varying over wavenumber [21] to remove the artificial dissipative regime and
further reduce the resolution of the coarse model. For an advection-diffusion
problem where the velocity field has a turbulent spectrum, there is a numeri-
cal technique to estimate the enhanced diffusion coefficient using a hierarchical
computation of the subgrid-scale effect [22]. It would be interesting to apply
or extend the method in [22] to the current setting as an estimation method
of the enhanced viscosity.

The quasigeostrophic model in this study has several features of geophysical
turbulence, but many realistic features are lacking, such as lateral boundaries,
adiabatic effect, a more realistic topography, etc. Also, there are scenarios
in which the subgrid-scale is also anisotropic. In the current study, we have
considered isotropic subgrid-scale problems, while anisotropic and inhomoge-
neous characteristics appear on the large-scale. This characteristic can be a
reason for the success of the current study that estimates modeling parame-
ters independent of the large-scale variables. To validate the effectiveness and
robustness of the proposed method, we plan to apply the proposed method
to various test scenarios, including a case to estimate modeling parameters
that strongly depend on the large-scale variables. This investigation will be
reported in another place.
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