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1. Introduction

In traditional search, a group of searchers (modelled as mobile autonomous agents or robots) may collaboratively search
for an exit (or target) placed within a given search domain [1,2,18]. Although the searchers may have differing capabili-
ties (communication, perception, mobility, memory) search algorithms, previously employed, generally make no distinction
between them as they usually play identical roles throughout the execution of the search algorithm and with respect to
the termination time (with the exception of faulty robots, which may not contribute to searching or may even try to slow
its progress). In this work we are motivated by real-life safeguarding-type situations where a number of agents have the
exclusive role of facilitating the execution of the task by a distinguished agent. We introduce and study Priority Evacuation,
a new form of search in which the search time of the algorithm is measured by the time it takes a special searcher, called
the queen, to reach the exit. The remaining searchers in the group, called servants, are participating in the search but are
not required to exit.

1.1. Problem definition of Priority Evacuation with n servants (PE,)

An exit (or target) is hidden at an unknown location on the boundary of a unit disk. The exit can be located by any of
the n + 1 robots (searchers) when they walk over it. Robots have unique identities, share the same coordinate system, start
from the centre of the circle, and have maximum speed 1. Among them there is a distinguished robot, called the queen,
and the remaining n robots are referred to as servants. All servants are known to the queen by their identities. Robots may
run asymmetric algorithms, and can communicate their findings wirelessly and instantaneously (each message contains the
robots identity and location). Feasible solutions to this problem are evacuation algorithms, i.e., a set of robot trajectories that
guarantee the finding of the hidden exit and the queen reaching it. The cost of an evacuation algorithm is the evacuation
time of the queen, i.e., the worst case total time until the queen reaches the exit. None of the n servants needs to evacuate.

1.2. Related work

Much of the work related to ours started with the problem of linear search which refers to search on an infinite line.
There have been several interesting studies attempting to optimize the search time which were initiated by the influential
works of Bellman [7] and Beck [6]. A long list of results followed for numerous variants of the problem, citing all of which
is outside the scope of this work. For a comprehensive study of seminal search-type problems see [2,3].

The problem of searching in the plane by one or more searchers, has been considered by [4,5]. The unit disk model
considered in our present paper is a form of two-dimensional search that was initiated in the work of [11]. In that paper the
authors obtained evacuation algorithms in the wireless and face-to-face communication models both for a small number of
robots as well optimal asymptotic results for a large number of robots. Additional evacuation algorithms in the face-to-face
communication model were subsequently analyzed for two robots in [14] and later in [8], while, recently, [9] considered
worst-case average-case tradeoffs for the same problem. Other variations of the problem include the case of more than one
exit, see [10] and [17], triangular and square domains in [15], robots with different moving speeds [16], and evacuation in
the presence of crash or byzantine faulty robots [12].

Notably, all relevant previous work in search-type problems considered the objective of minimizing the time it takes
either by the first or the last agent to reach the hidden exit or target. In contrast, this paper considers an evacuation
(search-type) problem where the completion time is defined with respect to a distinguished mobile agent, the queen, while
the remaining n servants are not required to reach the exit. Notably, the algorithms we propose significantly improve upon
evacuation costs induced by naive trajectories, and in fact the trajectories we propose are surprisingly complex. Our main
contribution concerns priority evacuation for each of the cases of n =1, 2, 3 servants, all of which require special treatment.
Moreover, all our algorithms are characterized by the fact that the queen contributes effectively to the search for the exit. In
sharp contrast, the independent and concurrent work of [13] studies the same problem for n > 4 servants where in the best
known algorithms the queen does not contribute to the search. More importantly, the proposed algorithms of [13] admit a
unified description and analysis that does not intersect with the current work.

1.3. Our results & paper organization

Section 2 introduces necessary notation and terminology and discusses preliminaries. Section 3 is devoted to upper
bounds for PE, for n =1, 2, 3 servants (see Subsections 3.1, 3.2, and 3.3, respectively). All our upper bounds are achieved by
fixing optimal parameters for families of parameterized algorithms. In Section 4 we derive lower bounds for PE;, n =1, 2, 3.
An interesting corollary of our positive results is that priority evacuation with n =1, 2, 3 servants (i.e., with n+ 1 searchers)
can be performed strictly faster than ordinary evacuation with n + 1 robots where all robots have to evacuate. Indeed, an
argument found in [11] can be adjusted to show that the evacuation problem with n + 1 robots cannot be solved faster
than 1+ % + /3. We show that when one needs to evacuate only one designated robot, the task can provably (due
to our upper bounds) be executed faster. All our results, together with the comparison to the lower bounds of [11], are
summarized in Table 1. We conclude the paper in Section 5 with a discussion of open problems.
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Table 1
Upper bounds (UB) and lower bounds (LB) for priority evacuation.
# of servants UB for PE, LB for PE, LB for ordinary evacuation
n=1 4.8185 (Theorem 3.1) 4.3896 (Theorem 4.1) 4.826445 (see [11])
n=2 3.8327 (Theorem 3.3) 3.6307 (Theorem 4.6) 4128314 (see [11])
n=3 3.3738 (Theorem 3.7) 3.2017 (Theorem 4.10) 3.779248 (see [11])

2. Notation and preliminaries

We use n to denote the number of servants, and we set [n] ={1,...,n}. Queen and servant i will be denoted by Q and
S;, respectively, where i € [n]. We assume that all robots start from the origin O = (0,0) of a unit circle in R2. As usual,
points in A € R? will be treated, when it is convenient, as vectors from O to A, and ||A|| will denote the euclidean norm
of that vector.

2.1. Problem reformulation & solutions’ description

Robots’ trajectories will be defined by parametric functions F(t) = (f(t), g(t)), where f,g: R+~ R are continuous and
piecewise differentiable. In particular, search algorithms for all robots will be given by trajectories

Sn = {Q(t)7 {Si (t)}ie[n]} >
where Q(t), S;(t) will denote the position of Q and S;, respectively, at time t > 0.

Definition 2.1 (Feasible trajectories). We say that trajectories S, are feasible for PE, if:

(a) Q(0)=S;(0)=0, for all i € [n],

(b) Q(t), {Si(t)}iemn) induce speed-1 trajectories for Q, {S;}icn) respectively, and

(c) there is some time tg > 1, such that each point of the unit circle is visited (searched) by at least one robot in the time
window [0, tg]. We refer to the smallest such ty as the search time of the circle.

Note that feasible trajectories do indeed correspond to robots’ movements for PE, in which, eventually the entire cir-
cle is searched, and hence the search time is bounded. We will describe all our search/evacuation algorithms as feasible
trajectories, and we will assume that once the target is reported, @ will go directly to the location of the exit.

For feasible trajectories S, with search time tp, and for any trajectory F(t) (either of the queen or of a servant), we
denote by I(F) the subinterval of [0, to] that contains all x € [0, tp] such that || F(x)|| =1 (i.e., the robot is on the circle)
and no other robot has been to F(x) before. Since robots start from the origin, it is immediate that I(F) C [1, tg]. With this
notation in mind, note that the exit can be discovered by some robot F, say at time x, only if x € I(F). In this case, the
finding is instantaneously reported, so Q goes directly to the exit, moving along the corresponding line segment between
her current position Q(x) and the reported position of the exit F(x). Hence, the total time that O needs to evacuate equals

X+ —FXI.

Therefore, the evacuation time of feasible trajectories S, to PE, is given by expression

max sup {x+ [|Q(x) — FX)|}.
FE€Sn xel (F)

Notice that for “non-degenerate” search algorithms for which the last point on the circle is not searched by Q alone, the
previous maximum can be simply computed over the servants, i.e., the evacuation cost will be

max sup {x+[|Qx) —Si(x)ll}. W
i€[n] xel(S))

In other words, we can restate PE, as the problem of determining feasible trajectories S, so as to minimize (1).
2.2. Useful trajectories’ components

Feasible trajectories induce, by definition, robots that are moving at (maximum) speed 1. The speed restriction will be
ensured by the next condition.

Lemma 2.2. An object following trajectory F(t) = (f(t), g(t)) has unit speed if and only if

(f' )+ (g®) =1, vt>0.
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Proof. For any t > 0, the velocity of F is given by F'(t) = (df (t)/dt, dg(t)/dt), and its speed is calculated as | F'(t)|. O
Robots’ trajectories will be composed by piecewise smooth parametric functions. In order to describe them, we introduce

some further notation. For any 6 € R, we introduce abbreviation Cy for point {cos (#), sin (§)}. Next we introduce parametric
equations for moving along the perimeter of a unit circle (Lemma 2.3), and along a line segment (Lemma 2.4).

Lemma 2.3.Letb € [0, 27) and o € {—1, 1}. The trajectory of an object moving at speed 1 on the perimeter of a unit circle with initial
location Cy is given by the parametric equation

C(b,ot):=(cos(ot+Db),sin(ot+Db)).

If o =1 the movement is counter-clockwise (ccw), and clockwise (cw) otherwise.

Proof. Clearly, C(b,0) = Cp. Also, it is easy to see that |C(b,t)| =1, i.e., the object is moving on the perimeter of the unit
circle. Lastly,

d 2 /d 2
<a cos (ot + b)) + (a sin(ot + b)) =02 (=sin(ot+b))? +0?(cos (ot +b))> =1,
so the claim follows by Lemma 2.2. O

Lemma 2.4. Consider distinct points A = (a1, az), B = (b1, b) in R2. The trajectory of a speed 1 object moving along the line passing
through A, B and with initial position A is given by the parametric equation

b1 —a by —a
[Z(A,B,t)::(l Ly yay, 2 2t+a2>.

A — B A — Bl

Proof. It is immediate that the parametric equation corresponds to a line. Also, it is easy to see that £(A, B,0) = A and
L(A, B,||A— BJ||) =B, i.e., the object starts from A, and eventually visits B. As for the object’s speed, we calculate

d (b1 —a ))2 (d (bz—az ))2 (b1—a1 )2 (bz—az )2
— | ——-t+a +{—-(———F-t+a = + =1
(df (IIA—BII ! dt \ |A— B 2 lA— B A — B

so, by Lemma 2.2, the speed is indeed 1. O

Robots trajectories will be described in phases. In each phase, robot, say F, will be moving between two explicit points,
and the corresponding trajectory JF(t) will be implied by the previous description, using most of the times Lemma 2.3 and
Lemma 2.4. We will summarize the details in tables of the following format.

Robot | # Description Trajectory  Duration

F 0 F(t) to
1 F(t) t1

Phase 0 will usually correspond to the deployment of F from the origin to some point of the circle. Also, for each phase
we will summarize its duration. With that in mind, trajectory J(t) during phase i, with duration t;, will be valid for all
t>0 with [t —(to+t1+...ti—1)| <t;.

Lastly, the following abbreviation will be useful for the exposition of the trajectories. For any p € [0, 1] and 0 € [0, 27),
we introduce notation

K(@, p) := (1~ p)Cr—g + pC_p.

In other words, K (6, p) is a convex combination of antipodal points C;_g, C_g of the unit circle, i.e., it lies on the diameter
of the unit circle passing through these two points. Moreover, it is easy to see that ||[Cr_s — K(8, p)|| =2p, and hence

IK®, p) — C_gll =2 —2p.
As it will be handy later, we also introduce abbreviation
AK (8, p):=ICx — K(®, p)lI.

The choice of the abbreviation is clear, if the reader denotes C; = (—1,0) by A.
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Fig. 1. An illustration of trajectories S(t), Q(t), and their critical angles at some fixed time 7, with S(1) =S, Q(t)=Q,S' (1) =u, Q' (1) =v.

2.3. Critical angles

The following definition introduces a key concept. In what follows, abstract trajectories will be assumed to be continuous
and differentiable, which in particular implies that corresponding velocities are continuous.

Definition 2.5 (Critical angle). Let S(t) € R? denote the trajectory of a speed-1 object, where t > 0. For some point Q € R?,
we define the (S, Q)-critical angle at time t = 7 to be the angle between the velocity vector S’(t) and vector S(t)Q, i.e.
the vector from S(t) to Q.

We make the following critical observation, see also Fig. 1.
Theorem 2.6. Consider trajectories S(t), Q(t) of two speed-1 objects S, Q, where t > 0. Let also ¢, 6 denote the (S, Q(t))-critical
angle and the (Q, S(t))-critical angle at time t, respectively. Then t + || Q(t) — S(t)|| is strictly increasing if cos (¢) + cos (0) < 1,
strictly decreasing if cos (¢) + cos (0) > 1, and constant otherwise.

Theorem 2.6 is an immediate corollary of the following lemma.
Lemma 2.7. Consider trajectories S(t), Q(t) and their critical angles 1, 6, as in the statement of Theorem 2.6. Then

d
T 1Q(t) — S(®)|| = cos (¢) + cos (0) .

Proof. For any fixed t, let d denote D(t), and S, Q denote points S(t), Q(t), respectively. Denote also by u, v the velocities
of S, O at time t, respectively, i.e. u =S'(t), v= Q/(t). See also Fig. 1.

With that notation, observe that H.Wl) H =d. Since ||u|| = ||v|| =1, we see that
. cos (¢p) —
Projsqt = —4 SQ
and
. cos (0) —
projsq v = QS.

Now consider two imaginary objects S, O, with corresponding velocities ?(t) = projsq u and @’(t) = projsq v. It is imme-
diate that Q) — S®)I = [2© - S©|.
In particular, projsqu — projsq v is the projection of the relative velocities of S, Q on the line segment connecting
S(t), Q(t). As such, the distance between S, Q changes at a rate determined by velocity
cos (¢p) + cos(f) —

Projsq U — projsq v = fSQ,

where Hprostu — Projsq v H = |cos (¢) + cos (9)|. Moreover, projsq U, projso v are antiparallel if and only if cos (¢) , cos () >
0, in which case the two objects come closer to each other. O

3. Upper bounds
3.1. Evacuation algorithm for PE;

This subsection is devoted in proving the following.
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Fig. 2. Algorithm SEARCH; (v, B) depicted for the optimal parameters of the algorithm. In all subsequent figures, as well as here, the orange points on the
perimeter of the disc correspond to the worst adversarial placements of the treasure, which due to our optimality conditions induce the same evacuation
cost. The orange points in Q’s trajectories correspond to the Q’s positioning when the treasures are reported, in the worst cost induced cases. The green
dashed line depicts Q’s trajectory after Q abandons her trajectory and moves toward the reported exit following a straight line. (For interpretation of the
colours in the figures, the reader is referred to the web version of this article.)

Theorem 3.1. Consider the real function f(x) = x + sin (x), and denote by ¢ > 0 the solution to equation

f(f (e —sin(@))) =sin(a),
with ag ~ 1.14193. Then PE; can be solved in time 1 + w — og + 2 sin (¢tg) ~ 4.81854.

The value of o is well defined in the statement of Theorem 3.1. Indeed, by letting g(x) = f(f(x — sin(x))) — sin (x),
we observe that g is continuous, while g(1) ~ —0.213934 and g(;r/2) ~ 1.00729, hence there exists g € (1,77 /2) with
g(ap) =0.

In order to prove Theorem 3.1, and given parameters «, 8, we introduce the family of trajectories SEARCH1 (¢, B), see also
Fig. 2.

Algorithm SEARCH; (¢, )

Robot | #  Description Trajectory Duration
Q 0 Move to point Cy L(0,Cxr,t) 1
1  Search circle ccw till point C_, C(w,t—1) T -«
2 Move to point C_qg4, L(OC_g,Cgyp,t—(A+mT—00)) 2sin (8/2)
3 Search circle cw till point C_, CB—a,1+m—a+2sin(/2)—t) B
S1 0 Move to point C, L(0,Cxr,t) 1
1 Search circle cw till point Cg_o  C(w,—t+41) T+a—p8

Partitioning the circle clockwise, we see that the arc with endpoints C;, C;4q—p is searched by &1, while the remaining
of the circle is searched by Q. Therefore, robots’ trajectories in SEARCH{(ct, B) are feasible, and it is also easy to see that
they are continuous as well. The search time equals 1+ 7 + max{o — 8, 2sin(8/2) + 8 — «}, as well as

[(Q)=[1,14+7 —a]U[1+7 —a+2sin(B/2), 1 +7 —a+2sin(8/2) + B, 1(S1) =[1,1+7 +a — B].

An illustration of the above trajectories for certain values of «, 8 can be seen in Fig. 2.
First we make some observations pertaining to the monotonicity of the evacuation cost.

Lemma 3.2. Assuming that « > 1 /3 and that cos () 4 cos (o — 8/2) > 1, the evacuation cost of SEARCH; (&, B) is monotonically
increasing if the exit is found by Sy during Q’s phase 1 and monotonically decreasing if the exit is found by Sy during Q'’s phase 2.

Proof. Suppose that the exit is found by &7 during Q’s phase 1, i.e., at time x after robots start searching for the first
time, where 0 <x < — «. It is easy to see that the critical angles between Q,S; are both equal to w — x. But then
2cos (;r —x) > 2cos (o) > 2cos (7t /3) = 1. Hence, by Theorem 2.6, the evacuation cost is decreasing in this case.

Now suppose that the exit is found by S; during Q’s phase 2, i.e., at time x after Q starts moving along the chord
with endpoints C_y, C_g4g, Where 0 <x <2sin(8/2). If ¢y, 0x denote the Sy, Q critical angles, then it is easy to see that
¢o = cos () and that 6y = o — B/2. Since cos (¢o) + cos (6p) > 1, Theorem 2.6 implies that the evacuation cost is initially
decreasing in this phase. For the remaining of Q’s phase 2, it is easy to see that both ¢y, 6y are decreasing in x, hence
cos (¢x) + cos (fy) is increasing in x, hence, the evacuation cost will remain decreasing in this phase. O
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Now we can prove Theorem 3.1 by fixing certain values for parameters «, 8 of SEARCH; (@, B). In particular, we set o as
in the statement of Theorem 3.1, and By = 2 f (g — sin (ctg)) &~ 0.925793. The trajectories of the robots, for the exact same
values of the parameters, can be seen in Fig. 2.

Proof. Let f, g be as in the statement of Theorem, and set Sy = 2 f(cg — sin (xtp)) ~ 0.925793. We argue that the worst
evacuation time of SEARCH1 (&g, Bo) is 1+ m —ap+2sin(xp). Note that for the given values of the parameters, we have that
oo > 1 /3, that ag — sin (Bo/2) < Bo, and that cos (cp) + cos (g — Bo/2) > 1.
First we observe that if the exit is found by Q, then the worst case evacuation time Eg (g, o) is incurred when the exit
is found just before O stops searching, that is
Eo(otg, Bo) =1+ 7 —ag + 2sin(Bo/2) + Po.
Next we examine some cases as to when the exit is found by Sy. If the exit is found by Sy during the 1st phase of Q,

then the evacuation time is, due to Lemma 3.2, given as

E1(ao, Bo) = sup {x+1Qx) —S1®|}=1+7 — o+ 2sin(xp) .

1<x<1+m—ap

Recall that cos («g) + cos (cg — Bo/2) > 1, and so, again by Lemma 3.2 we may omit the case that the exit is found
by &1 while Q is in phase 2. The end of Q’s phase 2 happens at time 7 :=1+4 7 — ®p + 2sin(Bp/2), when have that
Q(t) = C_g44, and S1(t) = Cy—25in(y/2), and both robots are intending to search ccw. Condition o — sin(Bo/2) < o says
that Sy will finish searching prior to Q, and this happens when S; reaches point C_y4g. During this phase, the distance
between Q, S; stays invariant and equal to 2ag — Bo — 2sin (Bg/2). We conclude that the cost in this case would be

Ex(atg, Bo) =147 + g — Po + 2sin (g — Bo/2 — sin(Bo/2)) .

Then, we argue that the choice of «g, Bp guarantees that Eg(xg, fo) = E1 (a0, o) = E2(c0, Bo), as wanted.
Indeed, Eo(ao, Bo) = E1(xo, Bo) implies that sin (80/2) 4+ Bo/2 = sin (cp). But then, we can rewrite E; (g, Bo) as

Ex(ao, Bo) =1+ 7 + oo — Po + 2 sin (g — sin (o)) -
Equating the last expression with E (g, Bo) implies that
Bo/2 = ag — sin () + sin (o — sin (xg)) = f (e — sin (xp)).
Substituting twice Sp/2 in the already derived condition sin (8p/2) + Bo/2 = sin (o) implies that

f(f (o —sin(ap))) = sin (ag) .

Fig. 2 depicts the worst placements of the exit, along with the trajectories of the queen (in dashed green lines) after the
exit is reported. O

It should be stressed that O’s Phases 2, 3 are essential for achieving the promised bound. Indeed, had we chosen
o = B =0, the worst case evacuation time would have been

sup {x+ Q) —S1®¥)|} = sup {1+x+2sin(x)}.
1<x<1+4m 0<x<m

The maximum is attained at xo = 2w /3 (and indeed, both critical angles in this case are 7 /3 and in particular
2cos (7w /3) = 1), inducing a cost of 1 + 27 /3 4+ +/3 &~ 4.82645. The latter is the cost of the evacuation algorithm for two
robots without priority of [11].

3.2. Evacuation algorithm for PE,
In this subsection we prove the following theorem.
Theorem 3.3. PE; can be solved in time 3.8327.

Given parameters «, p, we introduce the family of trajectories SEARCH; (¢, p), see also Fig. 3.
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- / SEARCH, (a, B)
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Fig. 3. Algorithm SEARCH; (&, B) depicted for the optimal parameters of the algorithm.

Algorithm SEARCH: (¢, p)

Robot | #  Description Trajectory Duration
Q 0 Move to point Cr_gq L(0,Cr_g,t) 1
1  Search the circle ccw till point C, Cir—a,t—1) o
2 Move to point K(c/2, p) L(Cr,K(x/2,p),t—(1+4+0a)) AK(x/2,p)
3 Move to point C_y /2 L(K(x/2,p),C_q/2) 2—-2p
S1 0 Move to point Cr_q L(0,Cr_gq) 1
1  Search the circle cw till point C_g /2 C(r—oa,—t+1) T—o/2
Sy 0 Move to point Cr L(0,Cy) 1
1  Search the circle ccw till point C_yp  C(w,t—1) T —a/2

Notice that, by definition of SEARCH;(c, p), robots’ trajectories are continuous and feasible, meaning that the entire circle
is eventually searched. Indeed, partitioning the circle clockwise, we see that: the arc with endpoints C, C;_, is searched
by Q, the arc with endpoints C;_q, C_g/ is searched by &1, and the arc with endpoints C_y /2, C is searched by S;.

It is immediate from the description of the trajectories that the search time is 1+ 7w — «/2. Moreover

1(Q) =[1,14al, I(S) =1(S2) =[1,1+7 —a/2].

An illustration of the above trajectories for certain values of o, p can be seen in Fig. 3. Now we make some observations, in
order to calculate the worst case evacuation time.

Lemma 3.4. Suppose that m — /2 > o + AK (e /2, p) +2 — 2p. Then || Q(x) — S1(t)|| is continuous and differentiable in the time
intervals 11, I, I3 of Q’s phases 1, 2, 3, respectively. Moreover, the worst case evacuation time of SEARCH; (&, p) can be computed as
1+a+2sin(x),

SUPger, {t + 112(8) — S1 (D1}

SUPgep, {t + 112(0) — S1 (O}

1+7m—w/2

max

where
Lh=[+4+a1+a+AK(@/2,0)],3=[14+a+AK(a/2,0),3 -2p +a+ AK(a/2, p)].

Proof. Note that the line passing through O and C_4 /3, call it €, has the property that each point of it, including K(«/2, p)
is equidistant from &7, S;. Moreover, in the time window [1 4+ «,1+ o + AK(/2, p)] that only S;,S, are searching,
Q stays below line €. At time 1+ « + AK(a/2, p), Q is, by construction, equidistant from Sp,S», a property that is
preserved for the remaining of the execution of the algorithm. As a result, the evacuation time of SEARCH (¢, p) is given by
SUP <t<147—a 2t + QW) — S1(O}.

Now note that condition 7 — /2 > o + AK(a/2, p) + 2 — 2p guarantees that Q reaches point C_g/2 no later than Sy.
Moreover, in each time interval I1, I3, I3, Q’s trajectory is differentiable (and so is Si’s trajectory). O

Now Theorem 3.3 can be proven by fixing parameters «, p for SEARCH,(«, p), in particular, o = 0.6361, p = 0.7944.
Proof. We choose o = 0.6361, p = 0.7944. The trajectories of Fig. 3 correspond exactly to those values. The time that Q

needs to reach C_q/7 equals 1+ a + AK(a/2, p) + 2 — 2p = 3.6174, while the time that S, S, reach the same point is
1+ m —a/2=3.82354. Hence, Lemma 3.4 applies.
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Fig. 4. Algorithm SEARCH3(«, B, p) depicted for the optimal parameters of the algorithm.

The worst case evacuation time during phase 1 is 1+ o + 2sin (o) = 2.82423. The worst case evacuation time after Q
reaches C_y/2, equals 1+ 7 — o/2 = 3.82354. Hence, it remains to compute the maxima of t + || Q(t) — S1(t)|| in the two
intervals I, I3, which can be done numerically using the trajectories of SEARCH; (¢, p), since the expression is differentiable
in each of the intervals.

To that end, when t € I, =[1.6361, 3.2062] we have that

Q(t) = (0.9931t — 2.62481,0.191866 — 0.11727t)
S1(t) = (cos (3.50549 —t),sin (3.50549 —t)),

so that t + ||Q(t) — S1(t)|| becomes

t+ \/(— sin (3.50549 —t) — 0.11727t 4 0.191866)2 + (— cos (3.50549 —t) +0.9931t — 2.62481)?

When t € I3 =[3.2062, 3.6174] we have that

Q(t) = (0.949847t — 2.48613,0.818501 — 0.312715t)

while Sp’s trajectory equation remains unchanged, so that t + || Q(t) — S1(t)|| becomes

t+ \/(— sin (3.50549 — f) — 0.312715t + 0.818501)2 4 (— cos (3.50549 — t) + 0.949847t — 2.48613)?

In particular, it follows that

sup {t + [[Q(t) — S1(OI} = sup {t + | Q(t) — S1(O)I}

tely tels

~ 3.8327

with corresponding maximizers (with approximate values) 7, = 3.10066 and 73 = 3.32114, respectively. Fig. 3 also depicts
the locations of the optimizers, i.e., the worst case locations on the circle for the exit to be found, along with the corre-
sponding evacuation trajectory in dashed green colour. O

3.3. Evacuation algorithm for PE;3

3.3.1. Asimple algorithm
In this section we prove the following preliminary theorem (to be improved in Section 3.3.2).

Theorem 3.5. PE3 can be solved in time 3.37882.

Given parameters «, 3, p, we introduce the family of trajectories SEARCH3 (e, 8, p), corresponding to robots Q, Sy, S2, S3,
see also Fig. 4.
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Algorithm SEARCH3 (¢, 8, 0)

Robot | #  Description Trajectory Duration
Q 0 Move to point Cr_y L(0,Cr_qg,t) 1
1  Search the circle ccw till point C, C(r—a,t—1) o
2 Move to point I(("‘+ﬂ,p) L(Cyr, I((a+ﬂ p),t—(1+a)) AK(‘”ﬂ
3 Move to point C_aip .C(I((a+ﬁ,p), C atp) 2-2p
2 2
S1 0  Move to point Cr_q_g L0, Cr_aq-p) 1
1  Search the circle cw till point C_a+p Cr—a—pB,—t+1) T — #
2
Sy 0 Move to point Cy L(0,Cr) 1
1  Search the circle ccw till point C_o4p C(r,t—1) T — #
2
S3 0  Move to point Cr_q_g L0, Cr_aq-p) 1
1  Search the circle ccw till point C_, Cm—a—B,—t+1) B

As before, it is immediate that, in SEARCH3(, 8, p), Tobots’ trajectories are continuous and feasible, meaning that the
entire circle is eventually searched. In particular, the arc with endpoints C,, C;_ is searched by Q, the arc with endpoints
Cr—a—p,C_axp is searched by Si, the arc with endpoints C_5,C_ ats is searched by S, and the arc with endpoints

2

Cr—a, Cr—a—p is searched by Ss3. Also, the search time is 1+ 7 — M and

[(Q)=[1,1+«], I(S1) =1(S2) =1, 1+?T—Lﬂ], [(S3)=[1,1+ 8]

An illustration of the above trajectories for certain values of o, 8, p can be seen in Fig. 4.
Before we prove Theorem 3.5, we need to make some observation, in order to calculate the worst case evacuation time.

Lemma 3.6. Suppose that o < 8, o + AK(‘”ﬂ ,p) =B, and T — ‘”ﬂ >a+ AK(‘H‘S , ) + 2 — 2p. Then the following functions
are continuous and differentiable in each associated time intervals: || Q(x) S3linl={t=0: ax<t—1=<8} Q%) —S1®)|
inh={t>0: t—1—-«| < AK(‘Hﬁ,p)} andinl3={t>0: [t—1—«a — AK(#, p)| <2 — 2p}. Moreover, the worst case
evacuation time of SEARCH3 (&, B8, p) can be computed as

supee, {t +11Q1) — S3 ()11}
Suptey, {t 4+ [1Q() = S1(O}
Supre; {t +11Q1) — S1(O)1}
1+m— M

Proof. Conditions o < 8 and o + AK(“H} , ) > B mean that Q stops searching no later than Ss3, and that when S3 stops
searching Q is still in her phase 2, respectlvely

The line passing through O and C_(y4p)/2, call it €, has the property that each point of it, including K(‘”B

,p) s
equidistant from Sp, S. Moreover, while S1, Sy are searching, Q never goes above line €. At time 1+ « + AI((‘H’S 0),
Q is, by construction, equidistant from Sp, S, a property that is preserved for the remaining of the execution of the
algorithm. As a result, S, can be ignored in the performance analysis, and when it comes to the case that S; finds the exit,
the evacuation cost is given by the supremum of t + || Q(t) — S1(t)|| in the time interval I, or in the interval I5. Note that
in both intervals, the evacuation cost is continuous and differentiable, by construction.

If the exit is reported by S3 then the evacuation cost is t + || Q(t) — S3(t)|| for t € [1,1 + B]. However, it is easy to see
that the cost is strictly increasing for all ¢t € [1,1 + «] (in fact it is linear). Since the evacuation cost is also continuous, we
may restrict the analysis in interval I4.

Lastly, observe that & — # >o+ AK(‘”ﬂ,p) +2 —2p implies that &1, S; reach point C_(44p)/2 no earlier than Q.
Hence Q waits at C_y4),2 until the search of the circle is over, which can be easily seen to induce the worse evacuation
time after Q reaches C_(y4g)2. O

Next, we prove Theorem 3.5 by fixing parameters «, 8, p for SEARCH3(c, 8, ).
Proof. We choose o = 0.26738, 8 = 1.2949, p = 0.70685. The trajectories of Fig. 4 correspond exactly to those values. The

time that Q needs to reach C _asp equals 1+ o + AI((M, p) +2 —2p =3.17984, while the time that S1, S, reach the

same point is 1+ 7w — 5 =3. 36045 Hence, Lemma 3.6 applies.

From the above, it is 1mmed1ate that the worst evacuation time after Q reaches C_(y44)/2 equals 1+ — # =3.36045.
Hence, it remains to compute the maxima of t + || Q(t) — S3(t)|| in interval Iy, and of t + || Q(t) — S1(t)|| in intervals Iy, I3.
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To that end, when t € I; =[1.26738, 2.2949] we have that

O(t) = (—2.23643 + 0.97558t, 0.278372 — 0.219643¢)
S3(t) = (cos(t + 0.579313), sin(t + 0.579313)),

so that t + || Q(t) — S3(t)|| becomes

t ++/(—0.219643t — sin(t 4 0.579313) + 0.278372)2 + (0.97558t — cos(t + 0.579313) — 2.23643)2

in which case

sup{t + [|Q() = S3OI} =1+ B+ 121+ B) — S3(1+ B)|| ~ 3.37882

tely

When t € I =[1.26738, 2.59354], Q’s trajectory is the same as in I; and

S1(t) = (cos(2.57931 —t), sin(2.57931 —t)),

so that t + || Q(t) — S1(t)|| becomes

t ++/(—sin(2.57931 —t) — 0.219643t + 0.278372)2 + (— c0s(2.57931 — t) 4 0.97558t — 2.23643)2.

When t € I3 =[2.59354, 3.17984], S1’s trajectory is the same as in I, and

Q(t) =(—1.54793 + 0.710111¢, 1.5348 — 0.704089¢) ,

so that t + || Q(t) — S1(t)|| becomes

t++/(sin(2.57931 — ) + 0.704089t — 1.5348)2 + (c0s(2.57931 — t) — 0.710111¢ + 1.54793)2.

Numerically

sup{t + 1Q(t) — S1(OII} = 72 + 1Q(T2) — S1(72) | = 3.37882

tely

sup {t + [|Q(t) — S1 (O} = 13 + | Q(13) — S1(73) ]| =~ 3.37882

tels

where 1 /&~ 2.34029 and 13 ~2.84758. O

3.3.2. Improved search algorithm
In this section we improve the upper bound of Theorem 3.5 by 0.00495 additive term.

Theorem 3.7. PE3 can be solved in time 3.37387.

The main idea can be described, at a high level, as a cost preservation technique. By the analysis of Algorithm
SEARCH3 (e, B, p) for the value of parameters of «, B, p as in the proof of Theorem 3.5, we know that there is a critical
time window [T2, 73] so that the total evacuation time is the same if the exit is found by S either at time 72 or 3, and
strictly less for time moments strictly in-between. In fact, during time [72,1 + o + AK(#, p)] Q is executing phase 2,

and in the time window [1 + « + AK(#, p), T3] Q is executing phase 3 of SEARCH3(c, B, p).

From the above, it is immediate that we can lower Q’s speed in the time window [t2, T3] so that the evacuation time
remains unchanged no matter when &7 finds the exit in the same time interval (notably, S3 has finished searching prior
to 72 and || Q(t) — S1l| > || Q(t) — S2||). But this also implies that we must be able to maintain the evacuation time even
if we preserve speed 1 for Q, that will in turn allow us to twist parameters «, 8, p, hopefully improving the worst case
evacuation time. We show this improvement is possible by using the following technical observation:

Theorem 3.8. Consider point Q = (q1, q2) € R2. Let S(t) be the trajectory of an object S moving at speed 1, where t > 0, and denote
by ¢ the (S, Q)-critical angle at time t = 0. Assuming that cos (¢)) > 0, then there is some T > 0, and a trajectory Q(t) = (f(t), g(t))
of a speed-1 object, where t > 0, so that t + || Q(t) — S(t)| remains constant, for all t € [0, T]. Moreover, Q(t) can be determined by
solving the system of differential equations
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Fig. 5. Algorithm SEARCH3(«, B, p) depicted for the optimal parameters of the algorithm.

(f'©) +(g©®) =1 )
t+ Q) — SOl = 1S©) — Q| 3)
(£(0), 2(0)) = (g1, q2). (4)

Proof. An object with trajectory (f(t), g(t)) satisfying (2) and (4) has speed 1 (by Lemma 2.2), and starts from point
Q =(q1,q2). We need to examine whether we can choose f, g so as to satisfy (3).

By Lemma 2.7, such a trajectory Q(t) exists exactly when we can guarantee that cos (¢) + cos (9) =1 over time t. When
t =0 we are given that cos(¢) > 0, hence there exists 6 satisfying cos (¢) + cos (6) = 1. This uniquely determines the
velocity of Q at t =0.

By continuity of the velocities, there must exist a T > 0 such that cos (¢) + cos (f) =1 admits a solution for 6 also as
¢ changes over time t € [0, t], in which time window the cosine of the (S, Q(t))-critical angle at time t remains non-
negative. 0O

Note that condition cos (¢) > 0 of Theorem 3.8 translates to ||S(t) — Q| is not increasing at t = t, i.e., that S does not
move away from point Q.

Now fix parameters «, B, p together with the trajectories of Si, Sz, &3 as in the description of Algorithm
SEARCH3 (¢, B, p). The description of our new algorithm N-SEARCH3(c, B, p) will be complete once we fix a new trajec-
tory for Q. Naming specific values for parameters «, 8, p will eventually prove Theorem 3.7. In order to do so, we introduce
some further notation and conditions, denoted below by (Conditions i-iv), that we later make sure are satisfied.

Consider Q’s trajectory as in SEARCH3(«, 8, p). Let 7p denote a local maximum of

t+112) - SOl

as it reads for t >0 with [t —1—«| < AK(#, p) (recall that in this time window, the expression is differentiable by
Lemma 3.6), i.e.,

atp
5
Set Q = Q(1p), and assume that

[To—1—a| < AK( p). (Condition i)

“The cosine of the (S, Q )-critical angle at time 7y is non-negative.” (Condition ii)

Then obtain from Theorem 3.8 trajectory (f(t), g(t)) that has the property that it preserves 7o + || Q(t9) — S1(70)|| in the
time window [T, T']. Assume also that

“There is time 71 < t’ such that point K1 := (f(t1), £(71)) is equidistant from S;(11), S2(71),” (Condition iii)
for the first time after time tg, such that

o
T1<1+m— %ﬂ (Condition iv)

Then consider the following modification of SEARCH3(«, B, p), where the trajectories of Si, Sy, S3 remain unchanged, see
also Fig. 5.
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Algorithm N-SEARCH3 (¢, 8, p)

Robot | #  Description Trajectory Duration
Q 0 Move to point Cr_q L(0,Cr_qg,t) 1
1  Search the circle ccw till point C, C(r —o,t—1) o
2 Move toward point K (%3, p) LCx KL p)t—(1+a) w-1-a
3 Preserve 7o + [|Q(70) — S1(70) |l (f®), g®) T1—1T0
4 Move to point C_uy LK1, C_asp) H Ki=C_ag ’

Note that in phase 2, Q is not reaching (necessarily) point K rather it moves toward it for a certain duration. The search
time is still 1+ — # Trajectories of S1, Sy, S3 are continuous as before, and

1S) =1(S) =[1,1+7 — #1, 183 =[1.14 81,

as well as I(Q) =[1,1+«].

Condition i makes sure that while Q is in phase 2, and before it reaches K(#, p), there is a time moment 19 when
the rate of change of t + || Q(t) — S1(t)|| is 0. Together with condition ii, this implies that Theorem 3.8 applies. In fact, for
the corresponding critical angles ¢, 6 between Sp, Q at time 7y, we have that cos (¢) + cos () =1 by construction. Hence
the trajectory (f(t), g(t)) of phase 3 is well defined, and indeed, @ jumps from phase 2 to phase 3 while Q is still moving
toward point K. Notably, Q’s trajectory is even differentiable at t = t¢ (but not necessarily at t = t7). Then, Condition iii says
that Q eventually will enter phase 4, and that this will happen before S, S finish the exploration of the circle. Overall, we
conclude that in N-SEARCH3(cv, p), robots’ trajectories are continuous and feasible. An illustration of the above trajectories
for certain values of «, 8, o can be seen in Fig. 5.

Now we make some observations, in order to calculate the worst case evacuation time.

Lemma 3.9. Suppose that e < 8,1+ B <719, and 1+ — # >11 + Hlﬁ — C_# H as well as Conditions i-iv are satisfied. Then
the following functions are continuous and differentiable in each associated time intervals: |Q(x) — S3(@®)||in {1 ={t>0: «a <
E-1=pLIQW-Si®linl={t20: 1+ast=rlandinlz={r=0: -7 < Hlﬁ “C g ‘
case evacuation time of N-SEARCH3 (&, B, p) can be computed as ’

supeey, {t + [1Q(0) — S3(O)11}
SUPge, {t +11Q(6) — S1(O11}

}. Moreover, the worst

max
SUPgey, {E+ 11206 — S1(O11}
14742

Proof. Conditions o < 8 and 1+ 8 < tp mean that Q stops searching no later than &3, and that when Q enters phase 3
after Sz is done searching, respectively.

The line passing through O and C_(44p)/2, call it €, has the property that each point of it, including K(#,p) is
equidistant from Sp, S». Moreover, while S1, Sy are searching, Q never goes above line €. Also, while Q is executing phase
3, Q remains equidistant from Sy, S, and this is preserved for the remainder of the execution of the algorithm. As a result,
S, can be ignored in the performance analysis, and when it comes to the case that S; finds the exit, the evacuation cost is
given by the supremum of t + || Q(t) — S (t)| in the time interval Iy or in the interval Is. Note that in both intervals, the
evacuation cost is continuous and differentiable, by construction.

If the exit is reported by S3 then the evacuation cost is t + || Q(t) — S3(t)|| for t € [1,1 + B]. However, it is easy to see
that the cost is strictly increasing for all t € [1,1 + «] (in fact it is linear). Since the evacuation cost is also continuous, we
may restrict the analysis in interval 4.

Lastly, observe that 1+ m — # >11 + HK1 — C7#

Hence Q waits at C_(44p)/2 till the search of the circle is over, which can be easily seen to induce the worse evacuation
time after Q reaches C_(q4py,2. O

) implies that &1, S; reach point C_(44p)/2 No earlier than Q.

Next we prove Theorem 3.7 by fixing parameters «, 8, p for N-SEARCH3(ct, B, p).

Proof. We choose o = 0.27764, 8 = 1.29839, p = 0.68648. The trajectories of Fig. 4 correspond exactly to those values. For
these values we see that AK(O‘ZLﬂ, p) = 1.29041, while 79 — o — 1 = 1.04877. Hence the transition between phase 1 and

phase 2 of Q is well defined.
The time that Q needs to reach C_o+s equals 1+ 71 + Hlﬁ —C_atp
2 2

‘ = 3.18073, while the time that S;, Sy reach

the same point is 1+ 7 — # = 3.35358. Therefore we may attempt to solve numerically the differential equation of
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Theorem 3.8. It turns out that for the resulting trajectory (f(t), g(t), and for t; = 2.89288, point (f(t1), g(t1) is equidistant
from &1, S,. Moreover, Q enters phase 4 at time 7; = 2.89288, prior to 1+ — # Hence, Conditions i-iv are all met, as
well as Lemma 3.9 applies.
From the above, it is immediate that the worst evacuation time after Q reaches C_y)/2 equals 147w — # = 3.35358.
Hence, it remains to compute the maxima of t + ||Q(t) — S3(t)| in interval I, and of t + || Q(t) — S1(t)| in intervals Iy, Is.
To that end, when t € I; =[1.27764, 2.29839] we have that

Q(t) = (0.978782t — 2.25053,0.261795 — 0.204905t)
S3(t) = (cos(t + 0.565563), sin(t + 0.565563)) ,
so that t + || Q(t) — S3(t)|| becomes

t 4+ +/(—0.204905¢ — sin(t + 0.565563) + 0.261795)2 + (0.978782t — cos(t + 0.565563) — 2.25053)2

in which case

sup{t +[1Q(1t) — S3(OII =1+ B+ 11Q(1 + B) — S3(1+ B)Il =3.37387

tely

When t € I, =[1.27764, 2.32641], Q’s trajectory is the same as in I; and

S1(t) = (cos(2.56556 — t), sin(2.56556 — 1)),

so that t + || Q(t) — S1(t)|| becomes

t+ \/(— sin(2.56556 — t) — 0.204905¢ + 0.261795)% + (— c0s(2.56556 — t) + 0.978782t — 2.25053)2.
When t € I3 =[2.89288, 3.18073], Si’s trajectory is the same as in I, and

Q(t) = (0.705254t — 1.53797, 1.54604 — 0.708955t0.706399t — 1.53762, 1.5407 — 0.707814t),
so that t + || Q(t) — S1(t)|| becomes

t +v/(—sin(2.56556 — t) — 0.708955t + 1.54604)2 + (— c0s(2.56556 — t) + 0.705254t — 1.53797)2.

Numerically,

sup{t + Q1) —S1 (D} =70 + [12(T0) — S1(To) | =71 + 12(T1) — S1 (Tl

tel

=sup{t+ Q) — S1(OI} ~ 3.37387.

tels

The reader may also consult Fig. 5. O
4. Lower bounds

In this section we derive lower bounds for evacuation. In Section 4.1 we treat the case of n =1 (see Theorem 4.1) and in
Section 4.2 we treat the case of n =2 and 3 (see Theorem 4.3).

4.1. Lower bound for PE4

We will derive the lower bound using an adversarial argument placing the exit at an unknown vertex of a regular
hexagon.

Theorem 4.1. The worst-case evacuation time for PE is at least 3 + 17 /6 + +/3/2 ~ 4.3896.

Proof. At time 1+ 77 /6, at most 7r /3 of the perimeter of the circle can have been explored by the queen and servant. Thus,
there is a regular hexagon, none of whose vertices have been explored. If the exit is at one of these vertices, by Theorem 4.2,
it takes 2 4+ +/3/2 for the queen to evacuate. The total time is 1+ 7 /6 +2++/3/2. O

Next we proceed to provide a lower bound on a unit-side hexagon. Label the vertices of the hexagon V as A,...,F as
shown in Fig. 6. Fix an evacuation algorithm .A. For any vertex v of the hexagon, we call f(v) the time of first visit of the
vertex v by either the servant or the queen, according to algorithm .A. We call q(v) the time that the queen gets to the
vertex v. Clearly, q(v) > f(v), and if the queen arrives at the vertex no later than the servant, q(v) = f(v).



J. Czyzowicz et al. / Theoretical Computer Science 806 (2020) 595-616 609

A B
C D
R
E F
2+ 33 — f(s3)

Fig. 6. The queen must be in region R at time f(s3). Here s3 =E and q3 = F.

Theorem 4.2. For any algorithm A, the evacuation time for the queen when the exit is at one of the vertices of the hexagon is
maxvev {q(V)} = 2 ++/3/2.

Proof. Suppose there is an algorithm in which the queen can always evacuate in time < 2 ++/3/2. Consider the trajectories
of the servant and the queen. If either the queen or the servant are the first to visit 4 vertices, then for the fourth such
vertex v, we have f(v) > 3, a contradiction. Therefore, the queen is the first to visit three vertices, and the servant is the
first to visit three vertices. We denote the three vertices visited first by the servant as s1, sz, s3 (in the order they are visited)
and the three vertices visited first by the queen as q1, g2, g3, and note that they are all distinct.

Notice that neither s3 nor g3 can be visited before time 2, that is, f(s3), f(q3) > 2. If f(g3) < f(s3), then we place the
exit at s3, and the queen needs time at least 1 to get to s3, which implies that T > q(s3) > f(q3) + 1 > 3, a contradiction.
We conclude that at time f(s3), the queen is yet to visit g3. Since the exit can be at either s3 or g3, at time f(s3), the
queen must be at distance < 2 + «/§/2 — f(s3) < ﬁ/Z from both s3 and qs.

Assume without loss of generality that s3 = E (see Fig. 6). Since A, B, D are all at distance at least /3 from E, we
conclude that g3 is either C or F. Assume without loss of generality that g3 = F. Let R denote the lens-shaped region that
is at distance < 2 + ﬁ/Z — f(s3) from both E and F. Recall that at time f(s3), the queen must be inside the region R.
Notice that if f(s3) > 1.5+ +/3/2, the region R is empty, yielding a contradiction. So it must be that 2 < f(s3) < 1.54++/3/2.

We now work backwards to deduce the trajectories of the servant and the queen. Clearly s # F since g3 = F. If s #C,
then f(s3) >+v/3+1>15+ «/§/2, a contradiction. Therefore, s, = C. By the same reasoning, s; = A. Therefore, the queen
is the first to visit D and B. If g1 = D and g = B, we place the exit at E; since f(q2) > 1 and dist(B, E) = 2, we have
T > q(E) > 3, a contradiction. Thus, g = D and q; = B.

Consider the location of the queen at time 1. If she is at distance > 1+ +/3/2 from C at time 1, then if the exit is at
C, q(C) > 2+ +/3/2. So at time 1, the queen must be at distance < 1+ +/3/2 from C and consequently she is at distance
>1—+/3/2 from vertex D. Therefore f(q2) = f(D) >2 — +/3/2. Also, f(D) < 1.5 since if the queen reaches D at or after
time 1.5, she cannot reach the region R before time 1.5+ +/3/2 > f(s3). So f(D) < f(s3). I the exit is at E = s3, the queen
cannot reach the exit before time f(D) + dist(D, E) > 2 — +/3/2 + /3 =2+ /3, concluding the proof by contradiction. O

We remark that the above bound is optimal, and is achieved by the algorithm depicted in Fig. 7.
4.2. Lower bounds for PE; and PE3 - proof outline

In the case of n =2 and n =3 the proof is rather technical. Next we present a high level outline as to why the lower
bounds hold.

Theorem 4.3. The worst-case evacuation time for PE, is at least 3.6307 and for PE3 at least 3.2017.

Throughout this section we will use 7 to refer to the evacuation time of an arbitrary algorithm and use U/ to refer to
the unit circle which must be evacuated.

The main thrust of the proof relies on a simple idea - the queen should aid in the exploration of ¢{. This is immediately
evident for the particular case of n =2 since, if the queen does not explore, it will take time at least 1+ ;v for the servants
to search all of ¢/ and we already have an upper bound smaller than this (Theorem 3.3). Thus, a general overview of the
proof is as follows: we show that in order to evacuate in time 7 the queen must explore some minimum length of the
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Fig. 7. Blue trajectory: servant and red trajectory: queen. At point H, if the queen hears of an exit at E, she goes there, otherwise she goes to F.

perimeter of U. We will then demonstrate that the queen is not able to explore this minimum amount in any algorithm
with evacuation time smaller than what is given in Theorem 4.3.

To be concrete, consider the case of n =2 and assume that we have an algorithm with evacuation time 7 < 1+ . Then,
in order for the robots to have explored all of I/ in time 7, the queen must explore a subset of the perimeter of total length
at least 2(1 + r — 7). Intuitively, this minimum length of perimeter will increase in size as 7 decreases.

Now consider that it is not possible for the queen to always remain on the perimeter (indeed, in each of the algorithms
presented, the queen leaves the perimeter). To see why this is consider that, in any algorithm with evacuation time 7, it
must be the case that all unexplored points of I/ are located a distance no more than 7 — t from the queen at all times
t < 7. If the queen is on the perimeter at any time t satisfying 7 — t < 2, then, there will be some arc 6(t,7) CU (see
Lemma 4.4) such that all points of 6(t, 7) are at a distance at least 7 — t from the queen. Thus, if the queen is to be on
the perimeter at the time t we can conclude that all of the arc 6(t, 7) must have already been discovered. However, we
will find (see Lemma 4.5) that 6(t, 7) will often grow at a rate much larger than the robots can collectively explore and
at some point the queen will have to leave the perimeter. In fact, there will be an interval of time during which it is not
possible for the queen to be exploring and this in turn implies that there is a maximum amount of perimeter that can be
explored by the queen. Intuitively, the maximum length of perimeter that can be explored by the queen will decrease as 7
decreases. The lower bound will result by balancing the minimum amount of perimeter the queen needs to search and the
maximum amount of perimeter that the queen is able to search.

The above argument will need a slight modification in the case of n = 3. In this case we will show that there is some
critical time t, before which the queen must have explored some minimum amount of perimeter. Again, the lower bound
follows by balancing the maximum amount of perimeter the queen can explore by the time t, and the minimum amount
of perimeter the queen needs to explore before the time t.,.

4.3. Lower bounds for PE, and PE3 - proof details

In this section we present the complete details of the proofs for the lower bounds in the cases n =2 and n = 3. Through-
out this section we will use 7 to refer to the evacuation time of an arbitrary algorithm and use U/ to refer to the unit circle
which must be evacuated.

The idea of the proofs is to bound the amount of perimeter the queen can search for a given evacuation time 7 and
then show that the queen must search a minimum amount of the perimeter in order to achieve the evacuation time 7. The
lower bounds result by balancing the minimum amount of perimeter the queen must search with the maximum amount of
perimeter the queen can search.

We begin with two lemmas which will be used for both the n =2 and n =3 bounds. Their necessity will become
apparent shortly.

Lemma 4.4. Consider any r < 2 and a point P € U. Define the circle Dp as the disk centred on P with radius r. Then the subset of the
perimeter of U which is not contained in Dp has length 6 = 4 cos™! (%)

Proof. Without loss of generality assume that the point P is located at (—1, 0). Since r < 2 the disks ¢ and Dp will
intersect at two boundary points A and B between which the distance along the perimeter of ¢/ is 6. This situation is
depicted in Fig. 8. Referring to this figure, one can easily observe that r = 2sin (% - %) =2cos (%). Rearranging for 6 we

find that 6 =4cos™! (5). O
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Fig. 8. Setup for the proof of Lemma 4.4. The boundary of the disk Dp is indicated in blue. The arc of &/ which is excluded from Dp is highlighted in red
and has length 6.

Lemma 4.5. Consider the function 6(t, T) = 4cos ™! (%) with T > 0. Then % > 2 for all t satisfying T —2 <t < T and 4 > 3
for t satisfying T — 2 <t < T — 3/5. Furthermore, 3% < —2 forall T —2 <t <T.

Proof. The rate of change of 6(t, 7) with t is given by
de 4

a = a7 -0
do(r)

From this relation it is simple to confirm that ‘C’l—f >2for T—2<t<T and that =3~ >3 for T -2 <t <7 — %\/5 It
should also be obvious by the symmetry of 7 and t in the function 6(t, 7) that 1%9 <=2foral T-2<t<7. O

4.3.1. Lower bound forn =2
We begin with the main result of the section.

Theorem 4.6. For n = 2 and any algorithm the queen cannot be evacuated in time less than T, which is the solution to the equations

T—1
r=7'2—2cos<T>

1
t*zi(ﬁ+l)
2t T 3
7’2=t*+2cos( » _4_1>'

Solving these equations numerically gives T ~ 1.7815, t, ~ 2.3154, and T, ~ 3.6307.

We will see that the queen cannot be located on the perimeter of the circle during the interval of time (7, t.) and thus
T — 1 represents the maximum amount of perimeter that can be explored by the queen before the time t,. The time ¢, is
chosen such that for all 7 < 73 a solution to the equations in Theorem 4.6 does not exist, and, as such, T — 1 will represent
the maximum length of the perimeter that can be explored by the queen. In the following lemma we show that the queen
must explore a length of the perimeter greater than 7 — 1 in order to evacuate in time less than 75.

Lemma 4.7. For n = 2 and any evacuation algorithm with 7 < 1 + 7, the queen must explore a subset of the perimeter of length
y>2(1+m — 7). Inparticular, if T < T, weneed y > 2(1 +m — T3) ~ 1.0217.
Proof. If the queen explores a subset of the perimeter of length y then the robots will take time 1+ MT_Y to explore

the circle. The robots need to at least explore the entire circle in time 7 and therefore 1 + MT_y < T, or, equivalently,
y>2(1+m —73). For T <7T,~3.6307 we need y > 1.0217. O
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We will now show that the maximum length of perimeter the queen can explore is less than T — 1 if 7 < 75. This will
be the goal of the next two lemmas.

Lemma 4.8. Consider the equation T =t + 2 cos (%(t -1+ %a) with T > 0, « satisfying 0 < o <t and t satisfying 1 <t < T.

Then £ > 1, and,if0 <t <1427 — % then & > 0.

Proof. Implicitly differentiating the equation 7 =t + 2 cos (%(t -1+ %oz) with respect to 7 gives us

dt 1
dT 1 -sin(3¢ -1+ 1)

Since the sine function ranges from —1 to 1 we can easily see that 7 >
Implicitly differentiating the equation 7 =t + 2 cos (2 t—-1)+ a) Wlth respect to « gives us

dt sin(3(t—1) + Ja)

1
do _5.]—sin(%(t—1)+}ta)'

We can easily see that the denominator of g‘; will never be negatlve and thus d—é > 0 provided that the numerator is

positive. This clearly occurs for %(t -1+ }la <mort<l42r—-%. O

Lemma 4.9. Define t as in Theorem 4.6. Then, for n = 2 and any evacuation algorithm with T < 75, the queen cannot explore a subset
of the perimeter with length y >t — 1.

Proof. We start with an observation: if the queen is to evacuate in time 7, then, at any time t < 7, all points of ¢/ that are
a distance greater than 7 —t from the queen must be explored by a robot. If the queen is located on the perimeter at the
time t > 7 — 2 then by Lemma 4.4 there is an arc of length

o, T)= 4cos™! (%)

all points of which lie a distance greater than 7 — t from the queen (as an abuse of notation we will refer to the arc
with length 6(t,T) as 6(t, T)). Thus, in order for the queen to be on the perimeter at the time t, the arc 6(t, 7) must
be explored. As we have 3 robots in total the maximum length of 6(t, 7) that can be explored at any time ¢t is 3(t — 1).
However, we claim that the queen cannot have explored any of 8(t, 7) if the time t satisfies t < %(T—i— 1). Indeed, observe
that the endpoints of 6(t, 7) lie a distance 7 —t away from the queen (by definition) and the queen - who took a unit
of time to reach the perimeter - could have explored a point on the perimeter at most a distance t — 1 from her current
position. Thus, if t —1 < T —t, or, alternatively, t < %(T—i— 1), the queen cannot have explored any of the arc 4(t, 7). We
must therefore have 9(t, 7) < 2(t — 1) for times t that satisfy t<1 (T +1).

We note that there is a trivial lower bound of 1+ 2Z > 3 and thus we can assume that 7 > 3. We make the following

claim: if 7 < 7 then the smallest time tg > 0 solving Q(to, T)=2ty—1) satisfies 4 E >2and tg < §(T+ 1). We note
=to

that, if this is the case, the queen will have to leave the perimeter at the time tg (smce she has not explored any of the arc
6(t, T) and, immediately after the time to, 6(t, 7) will be too large to have been explored by the servants alone).
We first show that tg < %(T+ 1). To this end we rearrange the equation 6(tg) =2(to — 1) to get

to—1
to=7T — 2cos 5

which is the definition of T in Theorem 4.6 (in the case that 7 = 73). One can easily confirm that in the case of 7 =7, we

have ‘z,—f ~52511>2and 7 < 2(7'—{— 1). Now observe that 6(t, 7) is a decreasing function of 7 and this implies that

for T < 7} tWe have 0(t,T) > 0(t, 7T2). We can therefore conclude that the time ty must occur earher than the time 7. We
note that 7 <2 and, since 7 > 3, we have 7 < 5 L(T +1). Since ty < T we can conclude that ty < 5 LT +1).

The second part of the claim follows directly from Lemma 4.5 where we show that ‘é—f > 2 for all t satisfying T — 2 <
t<T.

As the queen must leave the perimeter at the time tg < 7, by Lemma 4.7, we can say that the queen must be able to
return to the perimeter and explore before the algorithm terminates. Thus, consider the smallest time t; > tp at which the
queen may return to the perimeter. In order for the queen to be on the perimeter we will still need the arc 6(t,7) to be
completely explored. However, in this case it may be possible that t; > %(7’—1— 1) and as such the queen could have explored
at most a length to — 1 of O(t, 7) at the time t;. We can therefore conclude that t; will satisfy 6(t;) =2(t; — 1) + y with
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y=0ift; < %(T—f— 1),and y <tg—1if t; > %(7’—# 1). Writing the equation 6(t;) =2(t; — 1) + y in full and rearranging
we find that

1 1
t1 =T —2cos| =(t1 — 1 -y.
1=T (2(1 )+4)’>
We will now consider the cases t; < %(T—I— 1) and t; > %(T+ 1) separately.

Casel:t; < (T +1)

In this case t; can be observed to satisfy the same equation as tp. We claim that this is not possible if t; > to. Indeed, by

Lemma 4.5 we have ‘Zi—f > 2 and the arc 0(t, 7) will always grow at a rate larger than the servants alone can explore. Thus,

a solution to the equation 6(t1) = 2(t; — 1) with t; > to does not exist. This implies that the queen can explore a maximum
subset of the perimeter of total length tg —1 <t —1if t] < %(T—k 1).

Case 2:t1 > %(T—}— 1)
In this case t1 satisfies

1 1
t1=T -2 —t1—=D+-y].
1=T c05<2(1 )+4y>

Although it can be confirmed that %} > 0 (see Lemma 4.8) we will show that, even when ty is as large as possible (i.e.

y =to— 1), we cannot have t; > %(T—i— 1). Thus we assume that t; satisfies

1 1
t1 =T — 2cos (5(“ -1+ Z(to—])).

Now write t; = t1(7) as a function of 7 and note that, by Lemma 4.8, we have %1, > % Using this we can say that
t1(72) —t1(T) > %(75 — 7). By definition of 7; we have t{(73) = %(7} +1) and we can therefore write %(Tz +1)—t1(T) >
%(7’2 — 7). Rearranging this inequality gives us t1(7) < %(T+ 1) which contradicts with our assumption that t; > %(T-l— 1)

and we must conclude that t; < %(T—l— 1). This concludes the proof. O
At this point the proof of Theorem 4.6 is rather trivial.

Proof. Assume that we have an algorithm with evacuation time 7 < 7,. Then, by Lemma 4.7, the queen must explore a
subset of the perimeter of length at least y > 1.0217. However, by Lemma 4.9, the queen can only explore a subset of
the perimeter of length y <7 —1~0.7815 if 7 < 75. It is therefore not possible for the queen to evacuate in time less
than 7,. O

4.3.2. Lower bound forn =3
The main result of this section is given below:

Theorem 4.10. For n = 3 and any algorithm the queen cannot be evacuated in time less than 73 which is the solution to the equations
3
T="7T3—2cos Z(T_l)
2 -2 T—-1
t*zl—i—icos*](—)—( )

3 3
3(t*—1)+(r—1)>

2
Solving these equations numerically gives T ~ 1.2319, t, ~ 2.4564, and 73 ~ 3.2017.

7§:t*+sin<

As before, T represents the beginning of an interval of time during which the queen cannot be located on the perimeter.
In this case, however, t, is not the first time at which it is possible for the queen to return to the perimeter. Instead it
represents a particularly critical time of any algorithm with n =3 at which the evacuation time is maximized (although
it will happen that t, occurs before the queen can return to the perimeter). We will show that the queen must explore a
subset of the perimeter with total length more than T — 1 before the time t, in order to evacuate in time less than 75.

We begin with a lemma that was first introduced in [11]:

Lemma 4.11. Consider a perimeter of a disk whose subset of total length u+¢€ > 0 has not been explored for somee > 0andw > u > 0.
Then there exist two unexplored boundary points between which the distance along the perimeter is at least u.
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This next lemma is used to determine the critical time t.,.

Lemma 4.12. Consider an evacuation algorithm with n servants and assume that at the time t the queen has explored a total subset
. P T—y 2m—y . . _ . n(it—1)+y

of the perimeter of length y. Then, for x and y satisfying 1 + = <t <1+ ==, it takes time at least T =t + sin (T) to

evacuate the queen.

Proof. Consider an algorithm with evacuation time 7 and with n servants. Then, at the time ¢, the total length of perimeter
that the robots have explored is at most n(t — 1) + y > m (since each robot may search at a maximum speed of one,
the queen has explored a subset of length y, and the robots need at least a unit of time to reach the perimeter). Thus,
by Lemma 4.11, there exist two unexplored boundary points between which the distance along the perimeter is at least

2m —n(t —1) — y — € for any € > 0. The chord connecting these points has length at least 2sin (n — w - %) and an
adversary may place the exit at either endpoint of this chord. The queen will therefore take at least sin (71 — W - %)

more time to evacuate and the total evacuation time will be at least t + sin (71 — W - %) As this is true for any € >0
taking the limit € — 0 we obtain

th—i—sin(:r—@):t—i—sin(@). O

In the next two lemmas we show that in order to evacuate in time 7 < 7, the queen must explore a length of the
perimeter greater than 7 — 1 and then demonstrate that this is not possible.

Lemma 4.13. Define 7 and t, as in Theorem 4.10. Then, for n = 3 and any evacuation algorithm with T < T3, the queen must explore
a subset of U with total length y > T — 1 before the time t,.

Proof. Consider an algorithm with evacuation time 7 < 73. We make the assumption that the queen has only explored a
subset of total length y < t — 1 at the time t, and show that this leads to a contradiction.

Observe that t, satisfies 1+ 5% <t, <1+ 2”3’3’ for all y satisfying 0 <y <7 — 1 and thus, by Lemma 4.12, we can
write

Tzuwm(M)

2

Since 7 < 73 we also have

3(tx—1) +y)

’T3>t*+sir1< 5

Since T3 =t, + sin <w> we further have

. <3(t*—1)+(‘[—1)) . (3(t*—1)+y>
sin 5 >sin{ ———).

Finally, since t, > 1+ "5¥ we know that sin (M) is a decreasing function of its argument and thus we get

3t —D+(T-1) - 3t«—1D+y
2 2
which implies that y > v — 1 which contradicts with our assumption that y <7t —1. O

Lemma 4.14. Define T and t, as in Theorem 4.10. Then, for n = 3 and any evacuation algorithm with T < T3, the queen cannot explore
a subset of the perimeter with length y > © — 1 before the time t,.

Proof. As was the case for n = 2, if the queen is to be on the perimeter at the time t then all of the arc 6(t,7) =
4cos! (%) must be explored. Since we have 4 robots in total, the maximum length of arc that can be explored at any

time t is 4(t — 1). However, we can again say that the queen cannot search any of the arc 6(t) if t < %(7’4— 1). We must

therefore have 6(t, 7) <3(t — 1) for times t that satisfy t < %(T—k 1).
Assume first that 7 > 3. We make the following claim: if 3 <7 < 73 then the smallest time ty > 0 solving 0(ty, 7) =

3(tg — 1) satisfies ‘fj—f’ >3 and tg < %(7’4— 1). If this is the case the queen will have to leave the perimeter at the time tg.
t=tp
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We first demonstrate that to < %(7’—1— 1). Let us rearrange the equation 6(tg, 7) = 3(to — 1) to get

to=7T — 2cos (Z(t0—1)>

which is the definition of 7 in Theorem 4.10 (in the case that 7 = 73). One can easily confirm that in the case of 7 =73,
both 2’—‘3 . >3and T < %(T—i— 1). Now observe that 6(t, 7) is a decreasing function of 7 and this implies that for 7 < 73
we have 0_{1: T) > 0(t,7T3). The time ty must therefore occur earlier than the time 7. We note that T < 2 and, since we are
assuming that 7 > 3, we have 7 < %(T+ 1). Since ty < T we can finally conclude that tg < %(T—k 1).

The second part of the claim follows from Lemma 4.5 if we can show that to <7 — %\/5 We note that 7 > 3 and thus
T-— % 5> 1.5093. Since T ~ 1.2319 and tg < T we can clearly see that tp <7 — %ﬁ

If 7 < 3 then it should be obvious that the queen cannot even be at the perimeter at the time t = 1. Thus, in this case,
we take tg =1.

Since the queen must leave the perimeter at the time ty < 7, by Lemma 4.13, we know that the queen must be able to
return to the perimeter and explore before the time t,. We claim that this is not possible. Indeed, observe that the queen
cannot return to the perimeter until the earliest time t > to at which 6(t) =3(t — 1) + y (where we have set y <7 —1 as
the length of the arc 6(t) explored by the queen). Thus, in order for the queen to have returned to the perimeter before the
time t, we must have 0(t,) < 3(t — 1) + y. However, since 7 < 73 we have

— by _ —ty
O(ty) =4cos™! (TT) > 4cos™! <7§T>

We note that

(3t =D+ -1\ S22\ /5
7'3—t*_sm< 5 >_sm<cos <3)>_ 9

and thus

5
9(ty) > 4cos™ ! (%) ~ 4.7556.

Since T ~ 1.2319, and t, ~ 2.4564 we have

3(ty — 1)+ y <3(t, — 1) + (r — 1) ~ 4.6010.

We can therefore see that it is not the case that 6(t,) <3(t — 1) + y and thus the queen cannot have returned to the
perimeter before the time t.. We can finally conclude that the queen can only explore a subset of the perimeter of length
to— 1 < t — 1 before the time t,. O

At this point the proof of Theorem 4.10 is trivial.

Proof. Assume we have an algorithm with evacuation time 7 < 73. Then, by Lemma 4.13, the queen must explore a subset
of the perimeter of length at least T — 1 by the time t,. However, by Lemma 4.14, the queen can only explore a subset of
the perimeter of length y <7 — 1 if 7 < 73. We must therefore conclude that it is not possible for the queen to evacuate
in time less than 73. O

5. Conclusion

We considered an evacuation problem concerning priority searching on the perimeter of a unit disk where only one
robot (the queen) needs to reach the exit. In addition to the queen, there are n < 3 other robots (servants) aiding the queen
by contributing to the exploration of the disk but which do not need to evacuate. We proposed evacuation algorithms
and studied non-trivial tradeoffs on the queen’s evacuation time depending on the number n of servants. In addition to
analyzing tradeoffs and improving the bounds obtained for the wireless communication model, an interesting open problem
would be to investigate other communication models, e.g., the face-to-face model studied in [11] and elsewhere.
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