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An exit (or target) is at an unknown location on the perimeter of a unit disk. A group of 
n + 1 robots (in our case, n = 1, 2, 3), initially located at the centre of the disk, are tasked 
with finding the exit. The robots have unique identities, share the same coordinate system, 
move at maximum speed 1 and are able to communicate wirelessly the position of the exit 
once found. Among them there is a distinguished robot called the queen and the remainder 
of the robots are referred to as servants. It is known that with two robots searching, the 
room can be evacuated (i.e., with both robots reaching the exit) in 1 + 2π

3 + √
3 ≈ 4.8264

time units and this is optimal [11]. Somewhat surprisingly, in this paper we show that if 
the goal is to have the queen reach the exit, not caring if her servants make it, there is a 
slightly better strategy for the case of one servant. We prove that this “priority” version of 
evacuation can be solved in time at most 4.81854. Furthermore, we show that any strategy 
for saving the queen with one servant requires time at least 3 + π/6 + √

3/2 ≈ 4.3896
in the worst case. If more servants are available, we show that the time bounds can be 
improved to 3.8327 for two servants, and 3.3738 for three servants which are better than 
the known lower bound for the corresponding problems of evacuating three or four robots. 
Finally, we show lower bounds for these cases of 3.6307 (two servants) and 3.2017 (three 
servants). The case of more than three servants uses substantially different techniques and 
is discussed in a separate paper [13].

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

In traditional search, a group of searchers (modelled as mobile autonomous agents or robots) may collaboratively search 
for an exit (or target) placed within a given search domain [1,2,18]. Although the searchers may have differing capabili-
ties (communication, perception, mobility, memory) search algorithms, previously employed, generally make no distinction 
between them as they usually play identical roles throughout the execution of the search algorithm and with respect to 
the termination time (with the exception of faulty robots, which may not contribute to searching or may even try to slow 
its progress). In this work we are motivated by real-life safeguarding-type situations where a number of agents have the 
exclusive role of facilitating the execution of the task by a distinguished agent. We introduce and study Priority Evacuation, 
a new form of search in which the search time of the algorithm is measured by the time it takes a special searcher, called 
the queen, to reach the exit. The remaining searchers in the group, called servants, are participating in the search but are 
not required to exit.

1.1. Problem definition of Priority Evacuation with n servants (PEn)

An exit (or target) is hidden at an unknown location on the boundary of a unit disk. The exit can be located by any of 
the n + 1 robots (searchers) when they walk over it. Robots have unique identities, share the same coordinate system, start 
from the centre of the circle, and have maximum speed 1. Among them there is a distinguished robot, called the queen, 
and the remaining n robots are referred to as servants. All servants are known to the queen by their identities. Robots may 
run asymmetric algorithms, and can communicate their findings wirelessly and instantaneously (each message contains the 
robots identity and location). Feasible solutions to this problem are evacuation algorithms, i.e., a set of robot trajectories that 
guarantee the finding of the hidden exit and the queen reaching it. The cost of an evacuation algorithm is the evacuation 
time of the queen, i.e., the worst case total time until the queen reaches the exit. None of the n servants needs to evacuate.

1.2. Related work

Much of the work related to ours started with the problem of linear search which refers to search on an infinite line. 
There have been several interesting studies attempting to optimize the search time which were initiated by the influential 
works of Bellman [7] and Beck [6]. A long list of results followed for numerous variants of the problem, citing all of which 
is outside the scope of this work. For a comprehensive study of seminal search-type problems see [2,3].

The problem of searching in the plane by one or more searchers, has been considered by [4,5]. The unit disk model 
considered in our present paper is a form of two-dimensional search that was initiated in the work of [11]. In that paper the 
authors obtained evacuation algorithms in the wireless and face-to-face communication models both for a small number of 
robots as well optimal asymptotic results for a large number of robots. Additional evacuation algorithms in the face-to-face 
communication model were subsequently analyzed for two robots in [14] and later in [8], while, recently, [9] considered 
worst-case average-case tradeoffs for the same problem. Other variations of the problem include the case of more than one 
exit, see [10] and [17], triangular and square domains in [15], robots with different moving speeds [16], and evacuation in 
the presence of crash or byzantine faulty robots [12].

Notably, all relevant previous work in search-type problems considered the objective of minimizing the time it takes 
either by the first or the last agent to reach the hidden exit or target. In contrast, this paper considers an evacuation 
(search-type) problem where the completion time is defined with respect to a distinguished mobile agent, the queen, while 
the remaining n servants are not required to reach the exit. Notably, the algorithms we propose significantly improve upon 
evacuation costs induced by naive trajectories, and in fact the trajectories we propose are surprisingly complex. Our main 
contribution concerns priority evacuation for each of the cases of n = 1, 2, 3 servants, all of which require special treatment. 
Moreover, all our algorithms are characterized by the fact that the queen contributes effectively to the search for the exit. In 
sharp contrast, the independent and concurrent work of [13] studies the same problem for n ≥ 4 servants where in the best 
known algorithms the queen does not contribute to the search. More importantly, the proposed algorithms of [13] admit a 
unified description and analysis that does not intersect with the current work.

1.3. Our results & paper organization

Section 2 introduces necessary notation and terminology and discusses preliminaries. Section 3 is devoted to upper 
bounds for PEn for n = 1, 2, 3 servants (see Subsections 3.1, 3.2, and 3.3, respectively). All our upper bounds are achieved by 
fixing optimal parameters for families of parameterized algorithms. In Section 4 we derive lower bounds for PEn , n = 1, 2, 3. 
An interesting corollary of our positive results is that priority evacuation with n = 1, 2, 3 servants (i.e., with n + 1 searchers) 
can be performed strictly faster than ordinary evacuation with n + 1 robots where all robots have to evacuate. Indeed, an 
argument found in [11] can be adjusted to show that the evacuation problem with n + 1 robots cannot be solved faster 
than 1 + 4π

3(n+1) + √
3. We show that when one needs to evacuate only one designated robot, the task can provably (due 

to our upper bounds) be executed faster. All our results, together with the comparison to the lower bounds of [11], are 
summarized in Table 1. We conclude the paper in Section 5 with a discussion of open problems.
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Table 1
Upper bounds (UB) and lower bounds (LB) for priority evacuation.
# of servants UB for PEn LB for PEn LB for ordinary evacuation

n = 1 4.8185 (Theorem 3.1) 4.3896 (Theorem 4.1) 4.826445 (see [11])
n = 2 3.8327 (Theorem 3.3) 3.6307 (Theorem 4.6) 4.128314 (see [11])
n = 3 3.3738 (Theorem 3.7) 3.2017 (Theorem 4.10) 3.779248 (see [11])

2. Notation and preliminaries

We use n to denote the number of servants, and we set [n] = {1, . . . , n}. Queen and servant i will be denoted by Q and 
Si , respectively, where i ∈ [n]. We assume that all robots start from the origin O  = (0, 0) of a unit circle in R2. As usual, 
points in A ∈ R2 will be treated, when it is convenient, as vectors from O to A, and ‖A‖ will denote the euclidean norm 
of that vector.

2.1. Problem reformulation & solutions’ description

Robots’ trajectories will be defined by parametric functions F(t) = ( f (t), g(t)), where f , g : R �→ R are continuous and 
piecewise differentiable. In particular, search algorithms for all robots will be given by trajectories

Sn := {
Q(t), {Si(t)}i∈[n]

}
,

where Q(t), Si(t) will denote the position of Q and Si , respectively, at time t ≥ 0.

Definition 2.1 (Feasible trajectories). We say that trajectories Sn are feasible for PEn if:

(a) Q(0) = Si(0) = O , for all i ∈ [n],
(b) Q(t), {Si(t)}i∈[n] induce speed-1 trajectories for Q, {Si}i∈[n] respectively, and
(c) there is some time t0 ≥ 1, such that each point of the unit circle is visited (searched) by at least one robot in the time 

window [0, t0]. We refer to the smallest such t0 as the search time of the circle.

Note that feasible trajectories do indeed correspond to robots’ movements for PEn in which, eventually the entire cir-
cle is searched, and hence the search time is bounded. We will describe all our search/evacuation algorithms as feasible 
trajectories, and we will assume that once the target is reported, Q will go directly to the location of the exit.

For feasible trajectories Sn with search time t0, and for any trajectory F(t) (either of the queen or of a servant), we 
denote by I(F) the subinterval of [0, t0] that contains all x ∈ [0, t0] such that ‖F(x)‖ = 1 (i.e., the robot is on the circle) 
and no other robot has been to F(x) before. Since robots start from the origin, it is immediate that I(F) ⊆ [1, t0]. With this 
notation in mind, note that the exit can be discovered by some robot F , say at time x, only if x ∈ I(F). In this case, the 
finding is instantaneously reported, so Q goes directly to the exit, moving along the corresponding line segment between 
her current position Q(x) and the reported position of the exit F(x). Hence, the total time that Q needs to evacuate equals

x+ ‖Q(x) −F(x)‖ .

Therefore, the evacuation time of feasible trajectories Sn to PEn is given by expression

max
F∈Sn

sup
x∈I(F)

{x+ ‖Q(x) −F(x)‖} .

Notice that for “non-degenerate” search algorithms for which the last point on the circle is not searched by Q alone, the 
previous maximum can be simply computed over the servants, i.e., the evacuation cost will be

max
i∈[n]

sup
x∈I(Si)

{x+ ‖Q(x) − Si(x)‖} . (1)

In other words, we can restate PEn as the problem of determining feasible trajectories Sn so as to minimize (1).

2.2. Useful trajectories’ components

Feasible trajectories induce, by definition, robots that are moving at (maximum) speed 1. The speed restriction will be 
ensured by the next condition.

Lemma 2.2. An object following trajectory F(t) = ( f (t), g(t)) has unit speed if and only if(
f ′(t)

)2 + (
g′(t)

)2 = 1, ∀t ≥ 0.
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Proof. For any t ≥ 0, the velocity of F is given by F ′(t) = (df (t)/dt, dg(t)/dt), and its speed is calculated as 
∥∥F ′(t)

∥∥. �
Robots’ trajectories will be composed by piecewise smooth parametric functions. In order to describe them, we introduce 

some further notation. For any θ ∈R, we introduce abbreviation Cθ for point {cos (θ) , sin (θ)}. Next we introduce parametric 
equations for moving along the perimeter of a unit circle (Lemma 2.3), and along a line segment (Lemma 2.4).

Lemma 2.3. Let b ∈ [0, 2π) and σ ∈ {−1, 1}. The trajectory of an object moving at speed 1 on the perimeter of a unit circle with initial 
location Cb is given by the parametric equation

C(b,σ t) := (cos (σ t + b) , sin (σ t + b)).

If σ = 1 the movement is counter-clockwise (ccw), and clockwise (cw) otherwise.

Proof. Clearly, C(b, 0) = Cb . Also, it is easy to see that ‖C(b, t)‖ = 1, i.e., the object is moving on the perimeter of the unit 
circle. Lastly,(

d

dt
cos (σ t + b)

)2

+
(

d

dt
sin (σ t + b)

)2

= σ 2 (− sin (σ t + b))2 + σ 2 (cos (σ t + b))2 = 1,

so the claim follows by Lemma 2.2. �
Lemma 2.4. Consider distinct points A = (a1, a2), B = (b1, b2) in R2 . The trajectory of a speed 1 object moving along the line passing 
through A, B and with initial position A is given by the parametric equation

L(A, B, t) :=
(

b1 − a1
‖A − B‖ t + a1,

b2 − a2
‖A − B‖ t + a2

)
.

Proof. It is immediate that the parametric equation corresponds to a line. Also, it is easy to see that L(A, B, 0) = A and 
L(A, B, ‖A − B‖) = B , i.e., the object starts from A, and eventually visits B . As for the object’s speed, we calculate(

d

dt

(
b1 − a1
‖A − B‖ t + a1

))2

+
(

d

dt

(
b2 − a2
‖A − B‖ t + a2

))2

=
(

b1 − a1
‖A − B‖

)2

+
(

b2 − a2
‖A − B‖

)2

= 1

so, by Lemma 2.2, the speed is indeed 1. �
Robots trajectories will be described in phases. In each phase, robot, say F , will be moving between two explicit points, 

and the corresponding trajectory F(t) will be implied by the previous description, using most of the times Lemma 2.3 and 
Lemma 2.4. We will summarize the details in tables of the following format.

Robot # Description Trajectory Duration

F 0 F(t) t0
1 F(t) t1
.
.
.

.

.

.

Phase 0 will usually correspond to the deployment of F from the origin to some point of the circle. Also, for each phase 
we will summarize its duration. With that in mind, trajectory F(t) during phase i, with duration ti , will be valid for all 
t ≥ 0 with |t − (t0 + t1 + . . . ti−1)| ≤ ti .

Lastly, the following abbreviation will be useful for the exposition of the trajectories. For any ρ ∈ [0, 1] and θ ∈ [0, 2π), 
we introduce notation

K (θ,ρ) := (1− ρ)Cπ−θ + ρC−θ .

In other words, K (θ, ρ) is a convex combination of antipodal points Cπ−θ , C−θ of the unit circle, i.e., it lies on the diameter 
of the unit circle passing through these two points. Moreover, it is easy to see that ‖Cπ−θ − K (θ,ρ)‖ = 2ρ , and hence

‖K (θ,ρ) − C−θ‖ = 2− 2ρ.

As it will be handy later, we also introduce abbreviation

AK (θ,ρ) := ‖Cπ − K (θ,ρ)‖ .

The choice of the abbreviation is clear, if the reader denotes Cπ = (−1, 0) by A.



J. Czyzowicz et al. / Theoretical Computer Science 806 (2020) 595–616 599
Fig. 1. An illustration of trajectories S(t),Q(t), and their critical angles at some fixed time τ , with S(τ ) = S,Q(τ ) = Q ,S ′(τ ) = u,Q′(τ ) = v .

2.3. Critical angles

The following definition introduces a key concept. In what follows, abstract trajectories will be assumed to be continuous 
and differentiable, which in particular implies that corresponding velocities are continuous.

Definition 2.5 (Critical angle). Let S(t) ∈ R2 denote the trajectory of a speed-1 object, where t ≥ 0. For some point Q ∈ R2, 
we define the (S, Q )-critical angle at time t = τ to be the angle between the velocity vector S ′(τ ) and vector 

−−−−→S(τ )Q , i.e. 
the vector from S(τ ) to Q .

We make the following critical observation, see also Fig. 1.

Theorem 2.6. Consider trajectories S(t), Q(t) of two speed-1 objects S, Q, where t ≥ 0. Let also φ, θ denote the (S, Q(t))-critical 
angle and the (Q, S(t))-critical angle at time t, respectively. Then t + ‖Q(t) − S(t)‖ is strictly increasing if cos (φ) + cos (θ) < 1, 
strictly decreasing if cos (φ) + cos (θ) > 1, and constant otherwise.

Theorem 2.6 is an immediate corollary of the following lemma.

Lemma 2.7. Consider trajectories S(t), Q(t) and their critical angles π, θ , as in the statement of Theorem 2.6. Then

d

dt
‖Q(t) − S(t)‖ = cos (φ) + cos (θ) .

Proof. For any fixed t , let d denote D(t), and S, Q denote points S(t), Q(t), respectively. Denote also by u, v the velocities 
of S, Q at time t , respectively, i.e. u = S ′(t), v = Q′(t). See also Fig. 1.

With that notation, observe that 
∥∥∥−→
SQ

∥∥∥ = d. Since ‖u‖ = ‖v‖ = 1, we see that

projSQ u = cos (φ)

d

−→
SQ

and

projSQ v = cos (θ)

d

−→
Q S.

Now consider two imaginary objects S, Q, with corresponding velocities S′
(t) = projSQ u and Q′

(t) = projSQ v . It is imme-

diate that ‖Q(t) − S(t)‖ =
∥∥∥Q(t) − S(t)

∥∥∥.
In particular, projSQ u − projSQ v is the projection of the relative velocities of S, Q on the line segment connecting 

S(t), Q(t). As such, the distance between S, Q changes at a rate determined by velocity

projSQ u − projSQ v = cos (φ) + cos (θ)

d

−→
SQ ,

where 
∥∥projSQ u − projSQ v

∥∥ = |cos (φ) + cos (θ)|. Moreover, projSQ u, projSQ v are antiparallel if and only if cos (φ) , cos (θ) >

0, in which case the two objects come closer to each other. �
3. Upper bounds

3.1. Evacuation algorithm for PE1

This subsection is devoted in proving the following.
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Fig. 2. Algorithm Search1(α, β) depicted for the optimal parameters of the algorithm. In all subsequent figures, as well as here, the orange points on the 
perimeter of the disc correspond to the worst adversarial placements of the treasure, which due to our optimality conditions induce the same evacuation 
cost. The orange points in Q’s trajectories correspond to the Q’s positioning when the treasures are reported, in the worst cost induced cases. The green 
dashed line depicts Q’s trajectory after Q abandons her trajectory and moves toward the reported exit following a straight line. (For interpretation of the 
colours in the figures, the reader is referred to the web version of this article.)

Theorem 3.1. Consider the real function f (x) = x + sin (x), and denote by α0 > 0 the solution to equation

f ( f (α − sin (α))) = sin (α) ,

with α0 ≈ 1.14193. Then PE1 can be solved in time 1 + π − α0 + 2 sin (α0) ≈ 4.81854.

The value of α0 is well defined in the statement of Theorem 3.1. Indeed, by letting g(x) = f ( f (x − sin (x))) − sin (x), 
we observe that g is continuous, while g(1) ≈ −0.213934 and g(π/2) ≈ 1.00729, hence there exists α0 ∈ (1, π/2) with 
g(α0) = 0.

In order to prove Theorem 3.1, and given parameters α, β , we introduce the family of trajectories Search1(α, β), see also 
Fig. 2.

Algorithm SEARCH1(α,β)

Robot # Description Trajectory Duration

Q 0 Move to point Cπ L(O ,Cπ , t) 1
1 Search circle ccw till point C−α C(π, t − 1) π − α
2 Move to point C−α+β , L(C−α,C−α+β, t − (1+ π − α)) 2sin (β/2)
3 Search circle cw till point C−α C(β − α,1+ π − α + 2sin (β/2) − t) β

S1 0 Move to point Cπ L(O ,Cπ , t) 1
1 Search circle cw till point Cβ−α C(π,−t + 1) π + α − β

Partitioning the circle clockwise, we see that the arc with endpoints Cπ , Cπ+α−β is searched by S1, while the remaining 
of the circle is searched by Q. Therefore, robots’ trajectories in Search1(α, β) are feasible, and it is also easy to see that 
they are continuous as well. The search time equals 1 + π +max{α − β, 2 sin (β/2) + β − α}, as well as

I(Q) = [1,1 + π − α] ∪ [1 + π − α + 2 sin (β/2) ,1 + π − α + 2 sin (β/2) + β], I(S1) = [1,1 + π + α − β].
An illustration of the above trajectories for certain values of α, β can be seen in Fig. 2.

First we make some observations pertaining to the monotonicity of the evacuation cost.

Lemma 3.2. Assuming that α > π/3 and that cos (α) + cos (α − β/2) > 1, the evacuation cost of Search1(α, β) is monotonically 
increasing if the exit is found by S1 during Q’s phase 1 and monotonically decreasing if the exit is found by S1 during Q’s phase 2.

Proof. Suppose that the exit is found by S1 during Q’s phase 1, i.e., at time x after robots start searching for the first 
time, where 0 ≤ x ≤ π − α. It is easy to see that the critical angles between Q, S1 are both equal to π − x. But then 
2 cos (π − x) ≥ 2 cos (α) > 2 cos (π/3) = 1. Hence, by Theorem 2.6, the evacuation cost is decreasing in this case.

Now suppose that the exit is found by S1 during Q’s phase 2, i.e., at time x after Q starts moving along the chord 
with endpoints C−α, C−α+β , where 0 ≤ x ≤ 2 sin (β/2). If φx, θx denote the S1, Q critical angles, then it is easy to see that 
φ0 = cos (α) and that θ0 = α − β/2. Since cos (φ0) + cos (θ0) > 1, Theorem 2.6 implies that the evacuation cost is initially 
decreasing in this phase. For the remaining of Q’s phase 2, it is easy to see that both φx, θx are decreasing in x, hence 
cos (φx) + cos (θx) is increasing in x, hence, the evacuation cost will remain decreasing in this phase. �
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Now we can prove Theorem 3.1 by fixing certain values for parameters α, β of Search1(α, β). In particular, we set α0 as 
in the statement of Theorem 3.1, and β0 = 2 f (α0 − sin (α0)) ≈ 0.925793. The trajectories of the robots, for the exact same 
values of the parameters, can be seen in Fig. 2.

Proof. Let f , α0 be as in the statement of Theorem, and set β0 = 2 f (α0 − sin (α0)) ≈ 0.925793. We argue that the worst 
evacuation time of Search1(α0, β0) is 1 +π −α0 +2 sin (α0). Note that for the given values of the parameters, we have that 
α0 > π/3, that α0 − sin (β0/2) ≤ β0, and that cos (α0) + cos (α0 − β0/2) > 1.

First we observe that if the exit is found by Q, then the worst case evacuation time E0(α0, β0) is incurred when the exit 
is found just before Q stops searching, that is

E0(α0, β0) = 1+ π − α0 + 2 sin (β0/2) + β0.

Next we examine some cases as to when the exit is found by S1. If the exit is found by S1 during the 1st phase of Q, 
then the evacuation time is, due to Lemma 3.2, given as

E1(α0, β0) = sup
1≤x≤1+π−α0

{x+ ‖Q(x) − S1(x)‖} = 1+ π − α0 + 2 sin (α0) .

Recall that cos (α0) + cos (α0 − β0/2) > 1, and so, again by Lemma 3.2 we may omit the case that the exit is found 
by S1 while Q is in phase 2. The end of Q’s phase 2 happens at time τ := 1 + π − α0 + 2 sin (β0/2), when have that 
Q(τ ) = C−α+β , and S1(τ ) = Cα−2 sin(β0/2) , and both robots are intending to search ccw. Condition α0 − sin (β0/2) ≤ β0 says 
that S1 will finish searching prior to Q, and this happens when S1 reaches point C−α+β . During this phase, the distance 
between Q, S1 stays invariant and equal to 2α0 − β0 − 2 sin (β0/2). We conclude that the cost in this case would be

E2(α0, β0) = 1+ π + α0 − β0 + 2 sin (α0 − β0/2− sin (β0/2)) .

Then, we argue that the choice of α0, β0 guarantees that E0(α0, β0) = E1(α0, β0) = E2(α0, β0), as wanted.
Indeed, E0(α0, β0) = E1(α0, β0) implies that sin (β0/2) + β0/2 = sin (α0). But then, we can rewrite E2(α0, β0) as

E2(α0, β0) = 1+ π + α0 − β0 + 2 sin (α0 − sin (α0)) .

Equating the last expression with E1(α0, β0) implies that

β0/2 = α0 − sin (α0) + sin (α0 − sin (α0)) = f (α0 − sin (α0)).

Substituting twice β0/2 in the already derived condition sin (β0/2) + β0/2 = sin (α0) implies that

f ( f (α − sin (α0))) = sin (α0) .

Fig. 2 depicts the worst placements of the exit, along with the trajectories of the queen (in dashed green lines) after the 
exit is reported. �

It should be stressed that Q’s Phases 2, 3 are essential for achieving the promised bound. Indeed, had we chosen 
α = β = 0, the worst case evacuation time would have been

sup
1≤x≤1+π

{x+ ‖Q(x) − S1(x)‖} = sup
0≤x≤π

{1+ x+ 2 sin (x)} .

The maximum is attained at x0 = 2π/3 (and indeed, both critical angles in this case are π/3 and in particular 
2 cos (π/3) = 1), inducing a cost of 1 + 2π/3 + √

3 ≈ 4.82645. The latter is the cost of the evacuation algorithm for two 
robots without priority of [11].

3.2. Evacuation algorithm for PE2

In this subsection we prove the following theorem.

Theorem 3.3. PE2 can be solved in time 3.8327.

Given parameters α, ρ , we introduce the family of trajectories Search2(α, ρ), see also Fig. 3.
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Fig. 3. Algorithm Search2(α,β) depicted for the optimal parameters of the algorithm.

Algorithm SEARCH2(α,ρ)

Robot # Description Trajectory Duration

Q 0 Move to point Cπ−α L(O ,Cπ−α, t) 1
1 Search the circle ccw till point Cπ C(π − α, t − 1) α
2 Move to point K (α/2,ρ) L(Cπ , K (α/2,ρ), t − (1 + α)) AK (α/2,ρ)

3 Move to point C−α/2 L(K (α/2,ρ),C−α/2) 2− 2ρ

S1 0 Move to point Cπ−α L(O ,Cπ−α) 1
1 Search the circle cw till point C−α/2 C(π − α,−t + 1) π − α/2

S2 0 Move to point Cπ L(O ,Cπ ) 1
1 Search the circle ccw till point C−α/2 C(π, t − 1) π − α/2

Notice that, by definition of Search2(α, ρ), robots’ trajectories are continuous and feasible, meaning that the entire circle 
is eventually searched. Indeed, partitioning the circle clockwise, we see that: the arc with endpoints Cπ , Cπ−α is searched 
by Q, the arc with endpoints Cπ−α, C−α/2 is searched by S1, and the arc with endpoints C−α/2, Cπ is searched by S2.

It is immediate from the description of the trajectories that the search time is 1 + π − α/2. Moreover

I(Q) = [1,1 + α], I(S1) = I(S2) = [1,1 + π − α/2].
An illustration of the above trajectories for certain values of α, ρ can be seen in Fig. 3. Now we make some observations, in 
order to calculate the worst case evacuation time.

Lemma 3.4. Suppose that π − α/2 ≥ α + AK (α/2, ρ) + 2 − 2ρ . Then ‖Q(x) − S1(t)‖ is continuous and differentiable in the time 
intervals I1, I2, I3 of Q’s phases 1, 2, 3, respectively. Moreover, the worst case evacuation time of Search2(α, ρ) can be computed as

max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1+ α + 2 sin (α) ,

supt∈I2 {t + ‖Q(t) − S1(t)‖}
supt∈I3 {t + ‖Q(t) − S1(t)‖}
1+ π − α/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where

I2 = [1+ α,1 + α + AK (α/2,ρ)], I3 = [1 + α + AK (α/2,ρ),3 − 2ρ + α + AK (α/2,ρ)].
Proof. Note that the line passing through O and C−α/2, call it ε , has the property that each point of it, including K (α/2, ρ)

is equidistant from S1, S2. Moreover, in the time window [1 + α, 1 + α + AK (α/2, ρ)] that only S1, S2 are searching, 
Q stays below line ε . At time 1 + α + AK (α/2, ρ), Q is, by construction, equidistant from S1, S2, a property that is 
preserved for the remaining of the execution of the algorithm. As a result, the evacuation time of Search2(α, ρ) is given by 
sup1≤t≤1+π−α/2{t + ‖Q(t) − S1(t)‖}.

Now note that condition π − α/2 ≥ α + AK (α/2, ρ) + 2 − 2ρ guarantees that Q reaches point C−α/2 no later than S1. 
Moreover, in each time interval I1, I2, I3, Q’s trajectory is differentiable (and so is S1’s trajectory). �

Now Theorem 3.3 can be proven by fixing parameters α, ρ for Search2(α, ρ), in particular, α = 0.6361, ρ = 0.7944.

Proof. We choose α = 0.6361, ρ = 0.7944. The trajectories of Fig. 3 correspond exactly to those values. The time that Q
needs to reach C−α/2 equals 1 + α + AK (α/2, ρ) + 2 − 2ρ = 3.6174, while the time that S1, S2 reach the same point is 
1 + π − α/2 = 3.82354. Hence, Lemma 3.4 applies.
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Fig. 4. Algorithm Search3(α,β,ρ) depicted for the optimal parameters of the algorithm.

The worst case evacuation time during phase 1 is 1 + α + 2 sin (α) = 2.82423. The worst case evacuation time after Q
reaches C−α/2, equals 1 + π − α/2 = 3.82354. Hence, it remains to compute the maxima of t + ‖Q(t) − S1(t)‖ in the two 
intervals I2, I3, which can be done numerically using the trajectories of Search2(α, ρ), since the expression is differentiable 
in each of the intervals.

To that end, when t ∈ I2 = [1.6361, 3.2062] we have that

Q(t) = (0.9931t − 2.62481,0.191866 − 0.11727t)

S1(t) = (cos (3.50549 − t) , sin (3.50549 − t)) ,

so that t + ‖Q(t) − S1(t)‖ becomes

t +
√

(− sin (3.50549 − t) − 0.11727t + 0.191866)2 + (− cos (3.50549 − t) + 0.9931t − 2.62481)2

When t ∈ I3 = [3.2062, 3.6174] we have that

Q(t) = (0.949847t − 2.48613,0.818501 − 0.312715t)

while S1’s trajectory equation remains unchanged, so that t + ‖Q(t) − S1(t)‖ becomes

t +
√

(− sin (3.50549 − t) − 0.312715t + 0.818501)2 + (− cos (3.50549 − t) + 0.949847t − 2.48613)2

In particular, it follows that

sup
t∈I2

{t + ‖Q(t) − S1(t)‖} ≈ sup
t∈I3

{t + ‖Q(t) − S1(t)‖}

≈ 3.8327

with corresponding maximizers (with approximate values) τ2 = 3.10066 and τ3 = 3.32114, respectively. Fig. 3 also depicts 
the locations of the optimizers, i.e., the worst case locations on the circle for the exit to be found, along with the corre-
sponding evacuation trajectory in dashed green colour. �
3.3. Evacuation algorithm for PE3

3.3.1. A simple algorithm
In this section we prove the following preliminary theorem (to be improved in Section 3.3.2).

Theorem 3.5. PE3 can be solved in time 3.37882.

Given parameters α, β, ρ , we introduce the family of trajectories Search3(α, β, ρ), corresponding to robots Q, S1, S2, S3, 
see also Fig. 4.
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Algorithm SEARCH3(α,β,ρ)

Robot # Description Trajectory Duration

Q 0 Move to point Cπ−α L(O ,Cπ−α, t) 1
1 Search the circle ccw till point Cπ C(π − α, t − 1) α

2 Move to point K (
α+β
2 ,ρ) L(Cπ , K (

α+β
2 ,ρ), t − (1+ α)) AK (

α+β
2 ,ρ)

3 Move to point C− α+β
2

L(K (
α+β
2 ,ρ),C− α+β

2
) 2− 2ρ

S1 0 Move to point Cπ−α−β L(O ,Cπ−α−β) 1
1 Search the circle cw till point C− α+β

2
C(π − α − β,−t + 1) π − α+β

2

S2 0 Move to point Cπ L(O ,Cπ ) 1
1 Search the circle ccw till point C− α+β

2
C(π, t − 1) π − α+β

2

S3 0 Move to point Cπ−α−β L(O ,Cπ−α−β) 1
1 Search the circle ccw till point C−α C(π − α − β,−t + 1) β

As before, it is immediate that, in Search3(α, β, ρ), robots’ trajectories are continuous and feasible, meaning that the 
entire circle is eventually searched. In particular, the arc with endpoints Cπ , Cπ−α is searched by Q, the arc with endpoints 
Cπ−α−β, C− α+β

2
is searched by S1, the arc with endpoints C−π , C− α+β

2
is searched by S2, and the arc with endpoints 

Cπ−α, Cπ−α−β is searched by S3. Also, the search time is 1 + π − α+β
2 , and

I(Q) = [1,1 + α], I(S1) = I(S2) = [1,1 + π − α + β

2
], I(S3) = [1,1 + β].

An illustration of the above trajectories for certain values of α, β, ρ can be seen in Fig. 4.
Before we prove Theorem 3.5, we need to make some observation, in order to calculate the worst case evacuation time.

Lemma 3.6. Suppose that α ≤ β , α + AK (
α+β
2 , ρ) ≥ β , and π − α+β

2 ≥ α + AK (
α+β
2 , ρ) + 2 − 2ρ . Then the following functions 

are continuous and differentiable in each associated time intervals: ‖Q(x) − S3(t)‖ in I1 = {t ≥ 0 : α ≤ t − 1 ≤ β}, ‖Q(x) − S1(t)‖
in I2 = {t ≥ 0 : |t − 1 − α| ≤ AK (

α+β
2 , ρ)} and in I3 = {t ≥ 0 : |t − 1 − α − AK (

α+β
2 , ρ)| ≤ 2 − 2ρ}. Moreover, the worst case 

evacuation time of Search3(α, β, ρ) can be computed as

max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

supt∈I1 {t + ‖Q(t) − S3(t)‖}
supt∈I2 {t + ‖Q(t) − S1(t)‖}
supt∈I3 {t + ‖Q(t) − S1(t)‖}
1+ π − α+β

2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Proof. Conditions α ≤ β and α + AK (
α+β
2 , ρ) ≥ β mean that Q stops searching no later than S3, and that when S3 stops 

searching Q is still in her phase 2, respectively.
The line passing through O and C−(α+β)/2, call it ε , has the property that each point of it, including K (

α+β
2 , ρ) is 

equidistant from S1, S2. Moreover, while S1, S2 are searching, Q never goes above line ε . At time 1 + α + AK (
α+β
2 , ρ), 

Q is, by construction, equidistant from S1, S2, a property that is preserved for the remaining of the execution of the 
algorithm. As a result, S2 can be ignored in the performance analysis, and when it comes to the case that S1 finds the exit, 
the evacuation cost is given by the supremum of t + ‖Q(t) − S1(t)‖ in the time interval I2 or in the interval I3. Note that 
in both intervals, the evacuation cost is continuous and differentiable, by construction.

If the exit is reported by S3 then the evacuation cost is t + ‖Q(t) − S3(t)‖ for t ∈ [1, 1 + β]. However, it is easy to see 
that the cost is strictly increasing for all t ∈ [1, 1 + α] (in fact it is linear). Since the evacuation cost is also continuous, we 
may restrict the analysis in interval I1.

Lastly, observe that π − α+β
2 ≥ α + AK (

α+β
2 , ρ) + 2 − 2ρ implies that S1, S2 reach point C−(α+β)/2 no earlier than Q. 

Hence Q waits at C−(α+β)/2 until the search of the circle is over, which can be easily seen to induce the worse evacuation 
time after Q reaches C−(α+β)/2. �

Next, we prove Theorem 3.5 by fixing parameters α, β, ρ for Search3(α, β, ρ).

Proof. We choose α = 0.26738, β = 1.2949, ρ = 0.70685. The trajectories of Fig. 4 correspond exactly to those values. The 
time that Q needs to reach C− α+β

2
equals 1 + α + AK (

α+β
2 , ρ) + 2 − 2ρ = 3.17984, while the time that S1, S2 reach the 

same point is 1 + π − α+β
2 = 3.36045. Hence, Lemma 3.6 applies.

From the above, it is immediate that the worst evacuation time after Q reaches C−(α+β)/2 equals 1 +π − α+β
2 = 3.36045. 

Hence, it remains to compute the maxima of t + ‖Q(t) − S3(t)‖ in interval I1, and of t + ‖Q(t) − S1(t)‖ in intervals I2, I3.
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To that end, when t ∈ I1 = [1.26738, 2.2949] we have that

Q(t) = (−2.23643+ 0.97558t,0.278372− 0.219643t)

S3(t) = (cos(t + 0.579313), sin(t + 0.579313)) ,

so that t + ‖Q(t) − S3(t)‖ becomes

t +
√

(−0.219643t − sin(t + 0.579313) + 0.278372)2 + (0.97558t − cos(t + 0.579313) − 2.23643)2

in which case

sup
t∈I1

{t + ‖Q(t) − S3(t)‖} = 1+ β + ‖Q(1+ β) − S3(1+ β)‖ ≈ 3.37882

When t ∈ I2 = [1.26738, 2.59354], Q’s trajectory is the same as in I1 and

S1(t) = (cos(2.57931 − t), sin(2.57931 − t)) ,

so that t + ‖Q(t) − S1(t)‖ becomes

t +
√

(− sin(2.57931 − t) − 0.219643t + 0.278372)2 + (− cos(2.57931 − t) + 0.97558t − 2.23643)2.

When t ∈ I3 = [2.59354, 3.17984], S1’s trajectory is the same as in I2 and

Q(t) = (−1.54793+ 0.710111t,1.5348− 0.704089t) ,

so that t + ‖Q(t) − S1(t)‖ becomes

t +
√

(sin(2.57931 − t) + 0.704089t − 1.5348)2 + (cos(2.57931 − t) − 0.710111t + 1.54793)2.

Numerically

sup
t∈I2

{t + ‖Q(t) − S1(t)‖} = τ2 + ‖Q(τ2) − S1(τ2)‖ ≈ 3.37882

sup
t∈I3

{t + ‖Q(t) − S1(t)‖} = τ3 + ‖Q(τ3) − S1(τ3)‖ ≈ 3.37882

where τ2 ≈ 2.34029 and τ3 ≈ 2.84758. �
3.3.2. Improved search algorithm

In this section we improve the upper bound of Theorem 3.5 by 0.00495 additive term.

Theorem 3.7. PE3 can be solved in time 3.37387.

The main idea can be described, at a high level, as a cost preservation technique. By the analysis of Algorithm 
Search3(α, β, ρ) for the value of parameters of α, β, ρ as in the proof of Theorem 3.5, we know that there is a critical 
time window [τ2, τ3] so that the total evacuation time is the same if the exit is found by S1 either at time τ2 or τ3, and 
strictly less for time moments strictly in-between. In fact, during time [τ2, 1 + α + AK (

α+β
2 , ρ)] Q is executing phase 2, 

and in the time window [1 + α + AK (
α+β
2 , ρ), τ3] Q is executing phase 3 of Search3(α, β, ρ).

From the above, it is immediate that we can lower Q’s speed in the time window [τ2, τ3] so that the evacuation time 
remains unchanged no matter when S1 finds the exit in the same time interval (notably, S3 has finished searching prior 
to τ2 and ‖Q(t) − S1‖ ≥ ‖Q(t) − S2‖). But this also implies that we must be able to maintain the evacuation time even 
if we preserve speed 1 for Q, that will in turn allow us to twist parameters α, β, ρ , hopefully improving the worst case 
evacuation time. We show this improvement is possible by using the following technical observation:

Theorem 3.8. Consider point Q = (q1, q2) ∈R2 . Let S(t) be the trajectory of an object S moving at speed 1, where t ≥ 0, and denote 
by φ the (S, Q )-critical angle at time t = 0. Assuming that cos (φ) ≥ 0, then there is some τ > 0, and a trajectory Q(t) = ( f (t), g(t))
of a speed-1 object, where t ≥ 0, so that t + ‖Q(t) − S(t)‖ remains constant, for all t ∈ [0, τ ]. Moreover, Q(t) can be determined by 
solving the system of differential equations
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Fig. 5. Algorithm Search3(α,β,ρ) depicted for the optimal parameters of the algorithm.

(
f ′(t)

)2 + (
g′(t)

)2 = 1 (2)

t + ‖Q(t) − S(t)‖ = ‖S(0) − Q ‖ (3)

( f (0), g(0)) = (q1,q2). (4)

Proof. An object with trajectory ( f (t), g(t)) satisfying (2) and (4) has speed 1 (by Lemma 2.2), and starts from point 
Q = (q1, q2). We need to examine whether we can choose f , g so as to satisfy (3).

By Lemma 2.7, such a trajectory Q(t) exists exactly when we can guarantee that cos (φ) + cos (θ) = 1 over time t . When 
t = 0 we are given that cos (φ) > 0, hence there exists θ satisfying cos (φ) + cos (θ) = 1. This uniquely determines the 
velocity of Q at t = 0.

By continuity of the velocities, there must exist a τ > 0 such that cos (φ) + cos (θ) = 1 admits a solution for θ also as 
φ changes over time t ∈ [0, τ ], in which time window the cosine of the (S, Q(t))-critical angle at time t remains non-
negative. �

Note that condition cos (φ) ≥ 0 of Theorem 3.8 translates to ‖S(t) − Q ‖ is not increasing at t = τ , i.e., that S does not 
move away from point Q .

Now fix parameters α, β , ρ together with the trajectories of S1, S2, S3 as in the description of Algorithm 
Search3(α, β, ρ). The description of our new algorithm N-Search3(α, β, ρ) will be complete once we fix a new trajec-
tory for Q. Naming specific values for parameters α, β, ρ will eventually prove Theorem 3.7. In order to do so, we introduce 
some further notation and conditions, denoted below by (Conditions i-iv), that we later make sure are satisfied.

Consider Q’s trajectory as in Search3(α, β, ρ). Let τ0 denote a local maximum of

t + ‖Q(t) − S1(t)‖
as it reads for t ≥ 0 with |t − 1 − α| ≤ AK (

α+β
2 , ρ) (recall that in this time window, the expression is differentiable by 

Lemma 3.6), i.e.,

|τ0 − 1− α| ≤ AK (
α + β

2
,ρ). (Condition i)

Set Q =Q(τ0), and assume that

“The cosine of the (S, Q )-critical angle at time τ0 is non-negative.” (Condition ii)

Then obtain from Theorem 3.8 trajectory ( f (t), g(t)) that has the property that it preserves τ0 + ‖Q(τ0) − S1(τ0)‖ in the 
time window [τ0, τ ′]. Assume also that

“There is time τ1 ≤ τ ′ such that point K1 := ( f (τ1), g(τ1)) is equidistant from S1(τ1),S2(τ1),” (Condition iii)

for the first time after time τ0, such that

τ1 ≤ 1+ π − α + β

2
. (Condition iv)

Then consider the following modification of Search3(α, β, ρ), where the trajectories of S1, S2, S3 remain unchanged, see 
also Fig. 5.
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Algorithm N-SEARCH3(α,β,ρ)

Robot # Description Trajectory Duration

Q 0 Move to point Cπ−α L(O ,Cπ−α, t) 1
1 Search the circle ccw till point Cπ C(π − α, t − 1) α

2 Move toward point K (
α+β
2 ,ρ) L(Cπ , K (

α+β
2 ,ρ), t − (1+ α)) τ0 − 1− α

3 Preserve τ0 + ‖Q(τ0) − S1(τ0)‖ ( f (t), g(t)) τ1 − τ0

4 Move to point C− α+β
2

L(K1,C− α+β
2

)

∥∥∥K1 − C− α+β
2

∥∥∥
Note that in phase 2, Q is not reaching (necessarily) point K rather it moves toward it for a certain duration. The search 

time is still 1 + π − α+β
2 . Trajectories of S1, S2, S3 are continuous as before, and

I(S1) = I(S2) = [1,1 + π − α + β

2
], I(S3) = [1,1 + β],

as well as I(Q) = [1, 1 + α].
Condition i makes sure that while Q is in phase 2, and before it reaches K (

α+β
2 , ρ), there is a time moment τ0 when 

the rate of change of t + ‖Q(t) − S1(t)‖ is 0. Together with condition ii, this implies that Theorem 3.8 applies. In fact, for 
the corresponding critical angles φ, θ between S1, Q at time τ0, we have that cos (φ) + cos (θ) = 1 by construction. Hence 
the trajectory ( f (t), g(t)) of phase 3 is well defined, and indeed, Q jumps from phase 2 to phase 3 while Q is still moving 
toward point K . Notably, Q’s trajectory is even differentiable at t = τ0 (but not necessarily at t = τ1). Then, Condition iii says 
that Q eventually will enter phase 4, and that this will happen before S1, S2 finish the exploration of the circle. Overall, we 
conclude that in N-Search3(α, ρ), robots’ trajectories are continuous and feasible. An illustration of the above trajectories 
for certain values of α, β, ρ can be seen in Fig. 5.

Now we make some observations, in order to calculate the worst case evacuation time.

Lemma 3.9. Suppose that α ≤ β , 1 + β ≤ τ0 , and 1 + π − α+β
2 ≥ τ1 +

∥∥∥K1 − C− α+β
2

∥∥∥ as well as Conditions i-iv are satisfied. Then 
the following functions are continuous and differentiable in each associated time intervals: ‖Q(x) − S3(t)‖ in I1 = {t ≥ 0 : α ≤
t − 1 ≤ β}, ‖Q(x) − S1(t)‖ in I2 = {t ≥ 0 : 1 + α ≤ t ≤ τ0} and in I3 =

{
t ≥ 0 : |t − τ1| ≤

∥∥∥K1 − C− α+β
2

∥∥∥}
. Moreover, the worst 

case evacuation time of N-Search3(α, β, ρ) can be computed as

max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

supt∈I1 {t + ‖Q(t) − S3(t)‖}
supt∈I2 {t + ‖Q(t) − S1(t)‖}
supt∈I3 {t + ‖Q(t) − S1(t)‖}
1+ π − α+β

2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Proof. Conditions α ≤ β and 1 + β ≤ τ0 mean that Q stops searching no later than S3, and that when Q enters phase 3 
after S3 is done searching, respectively.

The line passing through O and C−(α+β)/2, call it ε , has the property that each point of it, including K (
α+β
2 , ρ) is 

equidistant from S1, S2. Moreover, while S1, S2 are searching, Q never goes above line ε . Also, while Q is executing phase 
3, Q remains equidistant from S1, S2 and this is preserved for the remainder of the execution of the algorithm. As a result, 
S2 can be ignored in the performance analysis, and when it comes to the case that S1 finds the exit, the evacuation cost is 
given by the supremum of t + ‖Q(t) − S1(t)‖ in the time interval I2 or in the interval I3. Note that in both intervals, the 
evacuation cost is continuous and differentiable, by construction.

If the exit is reported by S3 then the evacuation cost is t + ‖Q(t) − S3(t)‖ for t ∈ [1, 1 + β]. However, it is easy to see 
that the cost is strictly increasing for all t ∈ [1, 1 + α] (in fact it is linear). Since the evacuation cost is also continuous, we 
may restrict the analysis in interval I1.

Lastly, observe that 1 + π − α+β
2 ≥ τ1 +

∥∥∥K1 − C− α+β
2

∥∥∥ implies that S1, S2 reach point C−(α+β)/2 no earlier than Q. 
Hence Q waits at C−(α+β)/2 till the search of the circle is over, which can be easily seen to induce the worse evacuation 
time after Q reaches C−(α+β)/2. �

Next we prove Theorem 3.7 by fixing parameters α, β, ρ for N-Search3(α, β, ρ).

Proof. We choose α = 0.27764, β = 1.29839, ρ = 0.68648. The trajectories of Fig. 4 correspond exactly to those values. For 
these values we see that AK (

α+β
2 , ρ) = 1.29041, while τ0 − α − 1 = 1.04877. Hence the transition between phase 1 and 

phase 2 of Q is well defined.
The time that Q needs to reach C− α+β

2
equals 1 + τ1 +

∥∥∥K1 − C− α+β
2

∥∥∥ = 3.18073, while the time that S1, S2 reach 

the same point is 1 + π − α+β = 3.35358. Therefore we may attempt to solve numerically the differential equation of 
2
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Theorem 3.8. It turns out that for the resulting trajectory ( f (t), g(t), and for τ1 = 2.89288, point ( f (τ1), g(τ1) is equidistant 
from S1, S2. Moreover, Q enters phase 4 at time τ1 = 2.89288, prior to 1 + π − α+β

2 . Hence, Conditions i-iv are all met, as 
well as Lemma 3.9 applies.

From the above, it is immediate that the worst evacuation time after Q reaches C−(α+β)/2 equals 1 +π − α+β
2 = 3.35358. 

Hence, it remains to compute the maxima of t + ‖Q(t) − S3(t)‖ in interval I1, and of t + ‖Q(t) − S1(t)‖ in intervals I2, I3.
To that end, when t ∈ I1 = [1.27764, 2.29839] we have that

Q(t) = (0.978782t − 2.25053,0.261795 − 0.204905t)

S3(t) = (cos(t + 0.565563), sin(t + 0.565563)) ,

so that t + ‖Q(t) − S3(t)‖ becomes

t +
√

(−0.204905t − sin(t + 0.565563) + 0.261795)2 + (0.978782t − cos(t + 0.565563) − 2.25053)2

in which case

sup
t∈I1

{t + ‖Q(t) − S3(t)‖} = 1+ β + ‖Q(1+ β) − S3(1+ β)‖ ≈ 3.37387

When t ∈ I2 = [1.27764, 2.32641], Q’s trajectory is the same as in I1 and

S1(t) = (cos(2.56556 − t), sin(2.56556 − t)) ,

so that t + ‖Q(t) − S1(t)‖ becomes

t +
√

(− sin(2.56556 − t) − 0.204905t + 0.261795)2 + (− cos(2.56556 − t) + 0.978782t − 2.25053)2.

When t ∈ I3 = [2.89288, 3.18073], S1’s trajectory is the same as in I2 and

Q(t) = (0.705254t − 1.53797,1.54604 − 0.708955t0.706399t − 1.53762,1.5407 − 0.707814t) ,

so that t + ‖Q(t) − S1(t)‖ becomes

t +
√

(− sin(2.56556 − t) − 0.708955t + 1.54604)2 + (− cos(2.56556 − t) + 0.705254t − 1.53797)2.

Numerically,

sup
t∈I2

{t + ‖Q(t) − S1(t)‖} = τ0 + ‖Q(τ0) − S1(τ0)‖ = τ1 + ‖Q(τ1) − S1(τ1)‖

= sup
t∈I3

{t + ‖Q(t) − S1(t)‖} ≈ 3.37387.

The reader may also consult Fig. 5. �
4. Lower bounds

In this section we derive lower bounds for evacuation. In Section 4.1 we treat the case of n = 1 (see Theorem 4.1) and in 
Section 4.2 we treat the case of n = 2 and 3 (see Theorem 4.3).

4.1. Lower bound for PE1

We will derive the lower bound using an adversarial argument placing the exit at an unknown vertex of a regular 
hexagon.

Theorem 4.1. The worst-case evacuation time for PE1 is at least 3 + π/6 + √
3/2 ≈ 4.3896.

Proof. At time 1 +π/6, at most π/3 of the perimeter of the circle can have been explored by the queen and servant. Thus, 
there is a regular hexagon, none of whose vertices have been explored. If the exit is at one of these vertices, by Theorem 4.2, 
it takes 2 + √

3/2 for the queen to evacuate. The total time is 1 + π/6 + 2 + √
3/2. �

Next we proceed to provide a lower bound on a unit-side hexagon. Label the vertices of the hexagon V as A, . . . , F as 
shown in Fig. 6. Fix an evacuation algorithm A. For any vertex v of the hexagon, we call f (v) the time of first visit of the 
vertex v by either the servant or the queen, according to algorithm A. We call q(v) the time that the queen gets to the 
vertex v . Clearly, q(v) ≥ f (v), and if the queen arrives at the vertex no later than the servant, q(v) = f (v).
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Fig. 6. The queen must be in region R at time f (s3). Here s3 = E and q3 = F .

Theorem 4.2. For any algorithm A, the evacuation time for the queen when the exit is at one of the vertices of the hexagon is 
maxv∈V {q(v)} ≥ 2 + √

3/2.

Proof. Suppose there is an algorithm in which the queen can always evacuate in time < 2 +√
3/2. Consider the trajectories 

of the servant and the queen. If either the queen or the servant are the first to visit 4 vertices, then for the fourth such 
vertex v , we have f (v) ≥ 3, a contradiction. Therefore, the queen is the first to visit three vertices, and the servant is the 
first to visit three vertices. We denote the three vertices visited first by the servant as s1, s2, s3 (in the order they are visited) 
and the three vertices visited first by the queen as q1, q2, q3, and note that they are all distinct.

Notice that neither s3 nor q3 can be visited before time 2, that is, f (s3), f (q3) ≥ 2. If f (q3) ≤ f (s3), then we place the 
exit at s3, and the queen needs time at least 1 to get to s3, which implies that T ≥ q(s3) ≥ f (q3) + 1 ≥ 3, a contradiction. 
We conclude that at time f (s3), the queen is yet to visit q3. Since the exit can be at either s3 or q3, at time f (s3), the 
queen must be at distance < 2 + √

3/2 − f (s3) ≤
√
3/2 from both s3 and q3.

Assume without loss of generality that s3 = E (see Fig. 6). Since A, B, D are all at distance at least 
√
3 from E , we 

conclude that q3 is either C or F . Assume without loss of generality that q3 = F . Let R denote the lens-shaped region that 
is at distance < 2 + √

3/2 − f (s3) from both E and F . Recall that at time f (s3), the queen must be inside the region R . 
Notice that if f (s3) ≥ 1.5 +√

3/2, the region R is empty, yielding a contradiction. So it must be that 2 ≤ f (s3) < 1.5 +√
3/2.

We now work backwards to deduce the trajectories of the servant and the queen. Clearly s2 �= F since q3 = F . If s2 �= C , 
then f (s3) ≥

√
3 + 1 > 1.5 + √

3/2, a contradiction. Therefore, s2 = C . By the same reasoning, s1 = A. Therefore, the queen 
is the first to visit D and B . If q1 = D and q2 = B , we place the exit at E; since f (q2) ≥ 1 and dist(B, E) = 2, we have 
T ≥ q(E) ≥ 3, a contradiction. Thus, q2 = D and q1 = B .

Consider the location of the queen at time 1. If she is at distance ≥ 1 + √
3/2 from C at time 1, then if the exit is at 

C , q(C) ≥ 2 + √
3/2. So at time 1, the queen must be at distance < 1 + √

3/2 from C and consequently she is at distance 
≥ 1 − √

3/2 from vertex D . Therefore f (q2) = f (D) ≥ 2 − √
3/2. Also, f (D) < 1.5 since if the queen reaches D at or after 

time 1.5, she cannot reach the region R before time 1.5 + √
3/2 > f (s3). So f (D) ≤ f (s3). If the exit is at E = s3, the queen 

cannot reach the exit before time f (D) + dist(D, E) ≥ 2 − √
3/2 + √

3 = 2 + √
3, concluding the proof by contradiction. �

We remark that the above bound is optimal, and is achieved by the algorithm depicted in Fig. 7.

4.2. Lower bounds for PE2 and PE3 - proof outline

In the case of n = 2 and n = 3 the proof is rather technical. Next we present a high level outline as to why the lower 
bounds hold.

Theorem 4.3. The worst-case evacuation time for PE2 is at least 3.6307 and for PE3 at least 3.2017.

Throughout this section we will use T to refer to the evacuation time of an arbitrary algorithm and use U to refer to 
the unit circle which must be evacuated.

The main thrust of the proof relies on a simple idea – the queen should aid in the exploration of U . This is immediately 
evident for the particular case of n = 2 since, if the queen does not explore, it will take time at least 1 + π for the servants 
to search all of U and we already have an upper bound smaller than this (Theorem 3.3). Thus, a general overview of the 
proof is as follows: we show that in order to evacuate in time T the queen must explore some minimum length of the 
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Fig. 7. Blue trajectory: servant and red trajectory: queen. At point H , if the queen hears of an exit at E , she goes there, otherwise she goes to F .

perimeter of U . We will then demonstrate that the queen is not able to explore this minimum amount in any algorithm 
with evacuation time smaller than what is given in Theorem 4.3.

To be concrete, consider the case of n = 2 and assume that we have an algorithm with evacuation time T < 1 +π . Then, 
in order for the robots to have explored all of U in time T , the queen must explore a subset of the perimeter of total length 
at least 2(1 + π − T ). Intuitively, this minimum length of perimeter will increase in size as T decreases.

Now consider that it is not possible for the queen to always remain on the perimeter (indeed, in each of the algorithms 
presented, the queen leaves the perimeter). To see why this is consider that, in any algorithm with evacuation time T , it 
must be the case that all unexplored points of U are located a distance no more than T − t from the queen at all times 
t ≤ T . If the queen is on the perimeter at any time t satisfying T − t ≤ 2, then, there will be some arc θ(t, T ) ⊂ U (see 
Lemma 4.4) such that all points of θ(t, T ) are at a distance at least T − t from the queen. Thus, if the queen is to be on 
the perimeter at the time t we can conclude that all of the arc θ(t, T ) must have already been discovered. However, we 
will find (see Lemma 4.5) that θ(t, T ) will often grow at a rate much larger than the robots can collectively explore and 
at some point the queen will have to leave the perimeter. In fact, there will be an interval of time during which it is not 
possible for the queen to be exploring and this in turn implies that there is a maximum amount of perimeter that can be 
explored by the queen. Intuitively, the maximum length of perimeter that can be explored by the queen will decrease as T
decreases. The lower bound will result by balancing the minimum amount of perimeter the queen needs to search and the 
maximum amount of perimeter that the queen is able to search.

The above argument will need a slight modification in the case of n = 3. In this case we will show that there is some 
critical time t∗ before which the queen must have explored some minimum amount of perimeter. Again, the lower bound 
follows by balancing the maximum amount of perimeter the queen can explore by the time t∗ and the minimum amount 
of perimeter the queen needs to explore before the time t∗ .

4.3. Lower bounds for PE2 and PE3 - proof details

In this section we present the complete details of the proofs for the lower bounds in the cases n = 2 and n = 3. Through-
out this section we will use T to refer to the evacuation time of an arbitrary algorithm and use U to refer to the unit circle 
which must be evacuated.

The idea of the proofs is to bound the amount of perimeter the queen can search for a given evacuation time T and 
then show that the queen must search a minimum amount of the perimeter in order to achieve the evacuation time T . The 
lower bounds result by balancing the minimum amount of perimeter the queen must search with the maximum amount of 
perimeter the queen can search.

We begin with two lemmas which will be used for both the n = 2 and n = 3 bounds. Their necessity will become 
apparent shortly.

Lemma 4.4. Consider any r < 2 and a point P ∈ U . Define the circle DP as the disk centred on P with radius r. Then the subset of the 
perimeter of U which is not contained in DP has length θ = 4 cos−1

( r
2

)
.

Proof. Without loss of generality assume that the point P is located at (−1, 0). Since r < 2 the disks U and DP will 
intersect at two boundary points A and B between which the distance along the perimeter of U is θ . This situation is 
depicted in Fig. 8. Referring to this figure, one can easily observe that r = 2 sin

(
π
2 − θ

4

) = 2 cos
(

θ
4

)
. Rearranging for θ we 

find that θ = 4 cos−1
( r ). �
2
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Fig. 8. Setup for the proof of Lemma 4.4. The boundary of the disk DP is indicated in blue. The arc of U which is excluded from DP is highlighted in red 
and has length θ .

Lemma 4.5. Consider the function θ(t, T ) = 4 cos−1
(
T −t
2

)
with T > 0. Then dθdt > 2 for all t satisfying T − 2 < t < T and dθdt > 3

for t satisfying T − 2 < t < T − 2
3

√
5. Furthermore, dθdT < −2 for all T − 2 < t < T .

Proof. The rate of change of θ(t, T ) with t is given by

dθ

dt
= 4√

4− (T − t)2
.

From this relation it is simple to confirm that dθ
dt > 2 for T − 2 < t < T and that dθ(r)

dr > 3 for T − 2 < t < T − 2
3

√
5. It 

should also be obvious by the symmetry of T and t in the function θ(t, T ) that dθ
dT < −2 for all T − 2 < t < T . �

4.3.1. Lower bound for n = 2
We begin with the main result of the section.

Theorem 4.6. For n = 2 and any algorithm the queen cannot be evacuated in time less than T2 which is the solution to the equations

τ = T2 − 2cos

(
τ − 1

2

)

t∗ = 1

2
(T2 + 1)

T2 = t∗ + 2cos

(
2t∗ + τ

4
− 3

4

)
.

Solving these equations numerically gives τ ≈ 1.7815, t∗ ≈ 2.3154, and T2 ≈ 3.6307.

We will see that the queen cannot be located on the perimeter of the circle during the interval of time (τ , t∗) and thus 
τ − 1 represents the maximum amount of perimeter that can be explored by the queen before the time t∗. The time t∗ is 
chosen such that for all T < T2 a solution to the equations in Theorem 4.6 does not exist, and, as such, τ − 1 will represent 
the maximum length of the perimeter that can be explored by the queen. In the following lemma we show that the queen 
must explore a length of the perimeter greater than τ − 1 in order to evacuate in time less than T2.

Lemma 4.7. For n = 2 and any evacuation algorithm with T < 1 + π , the queen must explore a subset of the perimeter of length 
y ≥ 2(1 + π − T ). In particular, if T < T2 , we need y > 2(1 + π − T2) ≈ 1.0217.

Proof. If the queen explores a subset of the perimeter of length y then the robots will take time 1 + 2π−y
2 to explore 

the circle. The robots need to at least explore the entire circle in time T and therefore 1 + 2π−y
2 ≤ T , or, equivalently, 

y ≥ 2(1 + π − T2). For T < T2 ≈ 3.6307 we need y > 1.0217. �
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We will now show that the maximum length of perimeter the queen can explore is less than τ − 1 if T < T2. This will 
be the goal of the next two lemmas.

Lemma 4.8. Consider the equation T = t + 2 cos
( 1
2 (t − 1) + 1

2α
)
with T > 0, α satisfying 0 < α ≤ t and t satisfying 1 < t ≤ T . 

Then dt
dT ≥ 1

2 , and, if 0 < t < 1 + 2π − α
2 then dtdα > 0.

Proof. Implicitly differentiating the equation T = t + 2 cos
( 1
2 (t − 1) + 1

4α
)
with respect to T gives us

dt

dT
= 1

1− sin
( 1
2 (t − 1) + 1

4α
) .

Since the sine function ranges from −1 to 1 we can easily see that dt
dT ≥ 1

2 .
Implicitly differentiating the equation T = t + 2 cos

( 1
2 (t − 1) + 1

4α
)
with respect to α gives us

dt

dα
= 1

2
· sin

( 1
2 (t − 1) + 1

4α
)

1− sin
( 1
2 (t − 1) + 1

4α
) .

We can easily see that the denominator of dt
dα will never be negative and thus dt

dα > 0 provided that the numerator is 
positive. This clearly occurs for 12 (t − 1) + 1

4α < π or t < 1 + 2π − α
2 . �

Lemma 4.9. Define τ as in Theorem 4.6. Then, for n = 2 and any evacuation algorithm with T < T2 , the queen cannot explore a subset 
of the perimeter with length y > τ − 1.

Proof. We start with an observation: if the queen is to evacuate in time T , then, at any time t < T , all points of U that are 
a distance greater than T − t from the queen must be explored by a robot. If the queen is located on the perimeter at the 
time t > T − 2 then by Lemma 4.4 there is an arc of length

θ(t,T ) = 4cos−1
(
T − t

2

)

all points of which lie a distance greater than T − t from the queen (as an abuse of notation we will refer to the arc 
with length θ(t, T ) as θ(t, T )). Thus, in order for the queen to be on the perimeter at the time t , the arc θ(t, T ) must 
be explored. As we have 3 robots in total the maximum length of θ(t, T ) that can be explored at any time t is 3(t − 1). 
However, we claim that the queen cannot have explored any of θ(t, T ) if the time t satisfies t < 1

2 (T + 1). Indeed, observe 
that the endpoints of θ(t, T ) lie a distance T − t away from the queen (by definition) and the queen – who took a unit 
of time to reach the perimeter – could have explored a point on the perimeter at most a distance t − 1 from her current 
position. Thus, if t − 1 < T − t , or, alternatively, t < 1

2 (T + 1), the queen cannot have explored any of the arc θ(t, T ). We 
must therefore have θ(t, T ) ≤ 2(t − 1) for times t that satisfy t < 1

2 (T + 1).
We note that there is a trivial lower bound of 1 + 2π

3 > 3 and thus we can assume that T > 3. We make the following 
claim: if T < T2 then the smallest time t0 > 0 solving θ(t0, T ) = 2(t0 − 1) satisfies dθ

dt

∣∣∣
t=t0

> 2 and t0 < 1
2 (T + 1). We note 

that, if this is the case, the queen will have to leave the perimeter at the time t0 (since she has not explored any of the arc 
θ(t, T ) and, immediately after the time t0, θ(t, T ) will be too large to have been explored by the servants alone).

We first show that t0 < 1
2 (T + 1). To this end we rearrange the equation θ(t0) = 2(t0 − 1) to get

t0 = T − 2cos

(
t0 − 1

2

)

which is the definition of τ in Theorem 4.6 (in the case that T = T2). One can easily confirm that in the case of T = T2 we 
have dθ

dt

∣∣∣
t=τ

≈ 5.2511 > 2 and τ < 1
2 (T + 1). Now observe that θ(t, T ) is a decreasing function of T and this implies that 

for T < T2 we have θ(τ , T ) > θ(τ , T2). We can therefore conclude that the time t0 must occur earlier than the time τ . We 
note that τ < 2 and, since T ≥ 3, we have τ < 1

2 (T + 1). Since t0 < τ we can conclude that t0 < 1
2 (T + 1).

The second part of the claim follows directly from Lemma 4.5 where we show that dθ
dt > 2 for all t satisfying T − 2 <

t < T .
As the queen must leave the perimeter at the time t0 < τ , by Lemma 4.7, we can say that the queen must be able to 

return to the perimeter and explore before the algorithm terminates. Thus, consider the smallest time t1 > t0 at which the 
queen may return to the perimeter. In order for the queen to be on the perimeter we will still need the arc θ(t, T ) to be 
completely explored. However, in this case it may be possible that t1 ≥ 1

2 (T +1) and as such the queen could have explored 
at most a length t0 − 1 of θ(t, T ) at the time t1. We can therefore conclude that t1 will satisfy θ(t1) = 2(t1 − 1) + y with 
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y = 0 if t1 < 1
2 (T + 1), and y ≤ t0 − 1 if t1 ≥ 1

2 (T + 1). Writing the equation θ(t1) = 2(t1 − 1) + y in full and rearranging 
we find that

t1 = T − 2cos

(
1

2
(t1 − 1) + 1

4
y

)
.

We will now consider the cases t1 < 1
2 (T + 1) and t1 ≥ 1

2 (T + 1) separately.

Case 1: t1 < 1
2 (T + 1)

In this case t1 can be observed to satisfy the same equation as t0. We claim that this is not possible if t1 > t0. Indeed, by 
Lemma 4.5 we have dθdt > 2 and the arc θ(t, T ) will always grow at a rate larger than the servants alone can explore. Thus, 
a solution to the equation θ(t1) = 2(t1 − 1) with t1 > t0 does not exist. This implies that the queen can explore a maximum 
subset of the perimeter of total length t0 − 1 < τ − 1 if t1 < 1

2 (T + 1).

Case 2: t1 ≥ 1
2 (T + 1)

In this case t1 satisfies

t1 = T − 2cos

(
1

2
(t1 − 1) + 1

4
y

)
.

Although it can be confirmed that dt1
dy > 0 (see Lemma 4.8) we will show that, even when t1 is as large as possible (i.e. 

y = t0 − 1), we cannot have t1 ≥ 1
2 (T + 1). Thus we assume that t1 satisfies

t1 = T − 2cos

(
1

2
(t1 − 1) + 1

4
(t0 − 1)

)
.

Now write t1 = t1(T ) as a function of T and note that, by Lemma 4.8, we have dt1
dT > 1

2 . Using this we can say that 
t1(T2) − t1(T ) > 1

2 (T2 −T ). By definition of T2 we have t1(T2) = 1
2 (T2 + 1) and we can therefore write 12 (T2 + 1) − t1(T ) >

1
2 (T2 −T ). Rearranging this inequality gives us t1(T ) < 1

2 (T +1) which contradicts with our assumption that t1 ≥ 1
2 (T +1)

and we must conclude that t1 < 1
2 (T + 1). This concludes the proof. �

At this point the proof of Theorem 4.6 is rather trivial.

Proof. Assume that we have an algorithm with evacuation time T < T2. Then, by Lemma 4.7, the queen must explore a 
subset of the perimeter of length at least y > 1.0217. However, by Lemma 4.9, the queen can only explore a subset of 
the perimeter of length y < τ − 1 ≈ 0.7815 if T < T2. It is therefore not possible for the queen to evacuate in time less 
than T2. �
4.3.2. Lower bound for n = 3

The main result of this section is given below:

Theorem 4.10. For n = 3 and any algorithm the queen cannot be evacuated in time less than T3 which is the solution to the equations

τ = T3 − 2cos

(
3

4
(τ − 1)

)

t∗ = 1+ 2

3
cos−1

(−2

3

)
− (τ − 1)

3

T3 = t∗ + sin

(
3(t∗ − 1) + (τ − 1)

2

)
.

Solving these equations numerically gives τ ≈ 1.2319, t∗ ≈ 2.4564, and T3 ≈ 3.2017.

As before, τ represents the beginning of an interval of time during which the queen cannot be located on the perimeter. 
In this case, however, t∗ is not the first time at which it is possible for the queen to return to the perimeter. Instead it 
represents a particularly critical time of any algorithm with n = 3 at which the evacuation time is maximized (although 
it will happen that t∗ occurs before the queen can return to the perimeter). We will show that the queen must explore a 
subset of the perimeter with total length more than τ − 1 before the time t∗ in order to evacuate in time less than T2.

We begin with a lemma that was first introduced in [11]:

Lemma 4.11. Consider a perimeter of a disk whose subset of total length u +ε > 0 has not been explored for some ε > 0 and π ≥ u > 0. 
Then there exist two unexplored boundary points between which the distance along the perimeter is at least u.
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This next lemma is used to determine the critical time t∗ .

Lemma 4.12. Consider an evacuation algorithm with n servants and assume that at the time t the queen has explored a total subset 
of the perimeter of length y. Then, for x and y satisfying 1 + π−y

n ≤ t ≤ 1 + 2π−y
n , it takes time at least T = t + sin

(
n(t−1)+y

2

)
to 

evacuate the queen.

Proof. Consider an algorithm with evacuation time T and with n servants. Then, at the time t , the total length of perimeter 
that the robots have explored is at most n(t − 1) + y ≥ π (since each robot may search at a maximum speed of one, 
the queen has explored a subset of length y, and the robots need at least a unit of time to reach the perimeter). Thus, 
by Lemma 4.11, there exist two unexplored boundary points between which the distance along the perimeter is at least 
2π − n(t − 1) − y − ε for any ε > 0. The chord connecting these points has length at least 2 sin

(
π − n(t−1)+y

2 − ε
2

)
and an 

adversary may place the exit at either endpoint of this chord. The queen will therefore take at least sin
(
π − n(t−1)+y

2 − ε
2

)
more time to evacuate and the total evacuation time will be at least t + sin

(
π − n(t−1)+y

2 − ε
2

)
. As this is true for any ε > 0

taking the limit ε → 0 we obtain

T ≥ t + sin

(
π − n(t − 1) + y

2

)
= t + sin

(
n(t − 1) + y

2

)
. �

In the next two lemmas we show that in order to evacuate in time T < T2 the queen must explore a length of the 
perimeter greater than τ − 1 and then demonstrate that this is not possible.

Lemma 4.13. Define τ and t∗ as in Theorem 4.10. Then, for n = 3 and any evacuation algorithm with T < T3 , the queen must explore 
a subset of U with total length y > τ − 1 before the time t∗.

Proof. Consider an algorithm with evacuation time T < T3. We make the assumption that the queen has only explored a 
subset of total length y < τ − 1 at the time t∗ and show that this leads to a contradiction.

Observe that t∗ satisfies 1 + π−y
3 ≤ t∗ ≤ 1 + 2π−y

3 for all y satisfying 0 ≤ y ≤ τ − 1 and thus, by Lemma 4.12, we can 
write

T ≥ t∗ + sin

(
3(t∗ − 1) + y

2

)
.

Since T < T3 we also have

T3 > t∗ + sin

(
3(t∗ − 1) + y

2

)
.

Since T3 = t∗ + sin
(
3(t∗−1)+(τ−1)

2

)
we further have

sin

(
3(t∗ − 1) + (τ − 1)

2

)
> sin

(
3(t∗ − 1) + y

2

)
.

Finally, since t∗ ≥ 1 + π−y
3 we know that sin

(
3(t∗−1)+y

2

)
is a decreasing function of its argument and thus we get

3(t∗ − 1) + (τ − 1)

2
<

3(t∗ − 1) + y

2

which implies that y > τ − 1 which contradicts with our assumption that y < τ − 1. �
Lemma 4.14. Define τ and t∗ as in Theorem 4.10. Then, for n = 3 and any evacuation algorithm with T < T3 , the queen cannot explore 
a subset of the perimeter with length y > τ − 1 before the time t∗.

Proof. As was the case for n = 2, if the queen is to be on the perimeter at the time t then all of the arc θ(t, T ) =
4 cos−1

(
T −t
2

)
must be explored. Since we have 4 robots in total, the maximum length of arc that can be explored at any 

time t is 4(t − 1). However, we can again say that the queen cannot search any of the arc θ(t) if t ≤ 1
2 (T + 1). We must 

therefore have θ(t, T ) ≤ 3(t − 1) for times t that satisfy t < 1
2 (T + 1).

Assume first that T ≥ 3. We make the following claim: if 3 ≤ T < T3 then the smallest time t0 > 0 solving θ(t0, T ) =
3(t0 −1) satisfies dθ

dt

∣∣∣ > 3 and t0 < 1
2 (T +1). If this is the case the queen will have to leave the perimeter at the time t0.
t=t0



J. Czyzowicz et al. / Theoretical Computer Science 806 (2020) 595–616 615
We first demonstrate that t0 < 1
2 (T + 1). Let us rearrange the equation θ(t0, T ) = 3(t0 − 1) to get

t0 = T − 2cos

(
3

4
(t0 − 1)

)

which is the definition of τ in Theorem 4.10 (in the case that T = T3). One can easily confirm that in the case of T = T3, 
both dθ

dt

∣∣∣
t=τ

> 3 and τ < 1
2 (T + 1). Now observe that θ(t, T ) is a decreasing function of T and this implies that for T < T3

we have θ(τ , T ) > θ(τ , T3). The time t0 must therefore occur earlier than the time τ . We note that τ < 2 and, since we are 
assuming that T ≥ 3, we have τ < 1

2 (T + 1). Since t0 < τ we can finally conclude that t0 < 1
2 (T + 1).

The second part of the claim follows from Lemma 4.5 if we can show that t0 < T − 2
3

√
5. We note that T ≥ 3 and thus 

T − 2
3

√
5 ≥ 1.5093. Since τ ≈ 1.2319 and t0 < τ we can clearly see that t0 < T − 2

3

√
5.

If T < 3 then it should be obvious that the queen cannot even be at the perimeter at the time t = 1. Thus, in this case, 
we take t0 = 1.

Since the queen must leave the perimeter at the time t0 < τ , by Lemma 4.13, we know that the queen must be able to 
return to the perimeter and explore before the time t∗ . We claim that this is not possible. Indeed, observe that the queen 
cannot return to the perimeter until the earliest time t > t0 at which θ(t) = 3(t − 1) + y (where we have set y < τ − 1 as 
the length of the arc θ(t) explored by the queen). Thus, in order for the queen to have returned to the perimeter before the 
time t∗ we must have θ(t∗) ≤ 3(t − 1) + y. However, since T < T3 we have

θ(t∗) = 4cos−1
(
T − t∗

2

)
> 4cos−1

(
T3 − t∗

2

)
.

We note that

T3 − t∗ = sin

(
3(t∗ − 1) + (τ − 1)

2

)
= sin

(
cos−1

(−2

3

))
=

√
5

9

and thus

θ(t∗) > 4cos−1

(√
5

6

)
≈ 4.7556.

Since τ ≈ 1.2319, and t∗ ≈ 2.4564 we have

3(t∗ − 1) + y ≤ 3(t∗ − 1) + (τ − 1) ≈ 4.6010.

We can therefore see that it is not the case that θ(t∗) ≤ 3(t − 1) + y and thus the queen cannot have returned to the 
perimeter before the time t∗. We can finally conclude that the queen can only explore a subset of the perimeter of length 
t0 − 1 < τ − 1 before the time t∗ . �

At this point the proof of Theorem 4.10 is trivial.

Proof. Assume we have an algorithm with evacuation time T < T3. Then, by Lemma 4.13, the queen must explore a subset 
of the perimeter of length at least τ − 1 by the time t∗ . However, by Lemma 4.14, the queen can only explore a subset of 
the perimeter of length y < τ − 1 if T < T3. We must therefore conclude that it is not possible for the queen to evacuate 
in time less than T3. �
5. Conclusion

We considered an evacuation problem concerning priority searching on the perimeter of a unit disk where only one 
robot (the queen) needs to reach the exit. In addition to the queen, there are n ≤ 3 other robots (servants) aiding the queen 
by contributing to the exploration of the disk but which do not need to evacuate. We proposed evacuation algorithms 
and studied non-trivial tradeoffs on the queen’s evacuation time depending on the number n of servants. In addition to 
analyzing tradeoffs and improving the bounds obtained for the wireless communication model, an interesting open problem 
would be to investigate other communication models, e.g., the face-to-face model studied in [11] and elsewhere.
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