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Abstract—Data reliability and availability, and serviceability (RAS) of erasure-coded data centers are highly affected by data repair
induced by node failures. In a traditional failure identification scheme, all chunks share the same identification time threshold, thus
losing opportunities to further improve the RAS. To solve this problem, we propose RAFI, a novel risk-aware failure identification
scheme. In RAFI, chunk failures in stripes experiencing different numbers of failed chunks are identified using different time thresholds.
For those chunks in a high-risk stripe, a shorter identification time is adopted, thus improving the overall data reliability and availability.
For those chunks in a low-risk stripe, a longer identification time is adopted, thus reducing the repair network traffic. Therefore, RAS
can be improved simultaneously. We also propose three optimization techniques to reduce the additional overhead that RAFI imposes
on management nodes and to ensure that RAFI can work properly under large-scale clusters. We use simulation, emulation, and
prototyping implementation to evaluate RAFI from multiple aspects. Simulation and prototype results prove the effectiveness and
correctness of RAFI, and the performance improvement of the optimization techniques on RAFI is demonstrated by running the
emulator.

Index Terms—Distributed Storage System, Erasure Coding, Failure Identification.
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1 INTRODUCTION

IN large-scale erasure-coded data centers, node failures are
the norm rather than the exception [1]. Those frequent

node failures can result in numerous chunk failures (a
chunk is a basic unit to organize data). The RAS (Reliability,
Availability, and Serviceability) of data centers are highly
affected by repairing those failed chunks, which is known as
data repair. Many solutions [2]–[19] are proposed to improve
the RAS, i.e., reduce data loss, unavailability, and repair
network traffic (a typical repair cost), through optimizing
the data repair. However, existing solutions typically focus
on the recovery phase, which is from the time when a chunk
failure is identified to the time when the failed chunk is
recovered. In contrast, the identification phase, which is from
the time when a chunk failure occurs to the time when
the chunk failure is identified, has not been explored yet.
Consequently, the potential to further improve the RAS is
not fully explored.

Traditionally, the failure identification of a chunk de-
pends on the failure identification of its host node. When
a node fails, its failure is not identified until a certain time
threshold. When the node failure is identified, the failures of
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all the chunks on that node are identified, and the states of
those chunks translate to lost. In summary, all chunks share
the same time threshold with nodes in a traditional failure
identification (TFI) scheme.

Under the TFI scheme, it is hard to simultaneously
improve the RAS by adjusting the time threshold. On
one hand, higher data reliability and availability could be
achieved by lowering the failure identification time thresh-
old, because of the shortened data repair time. On the other
hand, the data center might suffer from increasing repair
network traffic, because more transient node failures might
be identified. In contrast, by increasing the failure identi-
fication time threshold, the repair network traffic could be
reduced but the data reliability and availability might be
suffered.

In this paper, we posit that the RAS can be simultaneous-
ly improved through optimizing the failure identification
phase. This is rooted in the following dedicated observa-
tions on stripes. Each stripe consists of data chunks and
parity chunks generated from those data chunks. A stripe
is a basic unit for ensuring data reliability and availability.
According to the number of failed chunks in a stripe, failed
stripes can be classified into two types. One is a stripe that
has many failed chunks, e.g., by default two or more failed
chunks in a stripe with three parity chunks. This type of
failed stripes is referred to as a high-risk stripe. The other
is referred to as a low-risk stripe, which has fewer failed
chunks, e.g., by default one failed chunk in a stripe with
three parity chunks. The more failed chunks a stripe has,
the lower the data reliability and availability of the stripe
are. Hence, most of the data loss and unavailability occur
in high-risk stripes. On the other hand, low-risk stripes are
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much more common than high-risk stripes, and thus induce
most of the repair network traffic.

There already exist solutions that improve the RAS in
the failure recovery phase, which are rooted in being aware
of the risk of stripes, e.g., prioritizing the recovery of the
chunks in the stripes with multiple lost chunks [3], [7], or
canceling the recovery of the chunks in the stripes with
a few lost chunks [14]. Inspired by these approaches, we
propose a novel Risk-Aware Failure Identification scheme,
named RAFI, to improve the RAS of erasure-coded data
centers. More specifically, RAFI is aware of not only lost
chunks, which are focused on the traditional risk-aware
wisdom, but also unidentified failed chunks, whose failure
has not been identified yet. The key principle of RAFI is
that the more failed chunks a stripe has, the shorter failure
identification time threshold those chunks take. As a result,
the aforementioned conflict between the data reliability and
availability, and the repair network traffic is resolved, and
the RAS is improved simultaneously.

In addition, because RAFI performs fine-grained failure
identification, the process of failure identification is refined
from the node level to the stripe level, which introduces
a large amount of additional computational overhead. To
speed up the computational process of RAFI, which might
become the bottleneck of failure identifications under large
scale current node failures, e.g., more than 5% nodes fail
concurrently in a storage cluster, we propose three comple-
mentary techniques of RAFI. We speed up the execution
process by 1)sacrificing a small amount of reliability or fix-
ing network traffic; 2)sacrificing a small amount of memory
space; 3)exploiting the parallelism of the algorithm.

We make the following contributions in this paper.
(1) We propose a risk-aware failure identification scheme

RAFI to simultaneously improve the RAS of erasure-coded
data centers. By deploying RAFI, a chunk failure is iden-
tified through multiple independent identification thresh-
olds. Therefore, for chunks in high-risk stripes, their failure
identification is expedited, thus improving the data relia-
bility and availability. For chunks in low-risk stripes, their
failure identification is postponed, thus reducing the repair
network traffic. As a result, the RAS is improved simultane-
ously. We have made a tradeoff between the performance of
RAFI and other issues with the performance of RAFI, and
greatly improved the performance of RAFI.

(2) A simulator is developed to verify our RAFI. The
simulation results demonstrate that RAFI is very effective
and efficient. For example, cooperating with all types of the
state-of-the-art optimizations on the failure recovery phase,
RAFI can further improve the data reliability by a factor of
9.3, and reduce the data unavailability and repair network
traffic by 43% and 36%, respectively, at the cost of degraded
reads increased by 1.7%.

(3) A prototype of RAFI is implemented in HDFS to
verify the correctness and computational cost of our RAFI.
The experimental results demonstrate that, in the worst-case
scenario, the computational cost of RAFI is still negligible.

(4)An emulator is developed to verify the performance
improvement of RAFI with various optimization technolo-
gies. The experimental results show that our three opti-
mizations are very effective in reducing the running time

of RAFI, which is crucial for applying the RAFI algorithm
in large-scale clusters.

The rest of this paper is organized as follows: Section 2
presents a model to analyze the relevance among the data
reliability, repair network traffic, and failure identification.
In Section 3, we give the design of RAFI and performance
improvement ideas. The evaluation methodology is present-
ed in Section 4. The results of the three evaluation experi-
ments are illustrated in Section 5, 6 and 7, respectively.
Section 8 reviews related work on optimizing the failure
recovery phase, and Section 9 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section, we first define the terms used in this pa-
per. Then, we review the background materials of erasure-
coded data centers and summarize the existing methods to
improve the RAS. Finally, we illustrate our motivation to
propose RAFI.

2.1 Terms
Some terms to facilitate our discussion are summarized as
follows.

A failed node: a node whose heartbeats have been lost.
When a node fails, its heartbeat is lost immediately and
it becomes a failed node. In TFI, the failure of a node is
not identified until its heartbeats have been lost for over a
certain time threshold.

A failed chunk: a chunk whose host node fails. When a
node fails, all chunks on that node become failed. A failed
chunk can be further classified into an unidentified failed
chunk and a lost chunk as described below.

An unidentified failed chunk: a failed chunk whose failure
has not been identified yet. Between the chunk failure
occurs and that failure is identified, the chunk is treated
as unidentified failed.

A lost chunk: a failed chunk whose failure is identified.
After the failure of a chunk is identified, the chunk is treated
as lost.

Si and Si+: a stripe Si is a stripe with i lost chunks, and
a stripe Si+ is a stripe with i and more lost chunks.

2.2 Erasure-coded Data Centers
To tolerate node failures, data redundancy techniques are
usually deployed in data centers. Traditional data redun-
dancy techniques, e.g., replication, suffer from high spatial
costs. Hence, erasure coding techniques (e.g., Reed-Solomon
coding) which have a much lower spatial cost compared to
replication techniques, are widely used in data centers [7],
[12], [20], [21].

To apply the erasure coding in data centers, data is first
divided into fixed-size data chunks. Then, parity chunks
are generated from those data chunks. To prevent data
loss or unavailability from node failures, all those data and
parity chunks together form a stripe and are distributed to
different nodes.

Node failures are monitored through frequent heartbeat-
s, e.g., every 3 seconds [3]. However, a node failure is not
immediately identified when the heartbeats are lost, because
most node failures are transient and those failed nodes
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TABLE 1: Methods to Improve the RAS

Time Threshold ↓ Recovery Penalty Factor ↑ Network Bandwidth ↑ Queue Time ↓
Reliability/Availability ↑ ↑ ↑ ↑
Repair Network Traffic ↑ ↓ → →

can come back in a short period, e.g., 10 minutes [20]. In
order to reduce the repair network traffic, only when the
heartbeats have been lost over a certain time threshold, e.g.,
15 minutes [20] or 30 minutes [7], a node failure is identified
(a misidentification occurs if the node comes back).

Traditionally, when a node failure is identified, all the
chunk failures due to that node failure are treated as iden-
tified failures. Surviving data and parity chunks (on other
nodes) of the lost chunks would be fetched to repair those
lost chunks (data repair), thus ensuring the data availability
and reliability.

2.3 Methods to Improve the RAS
It is cost-effective to improve the RAS by optimizing the
data repair process. Many solutions are proposed following
this way which are explained below and also summarized
in Table 1.

(1) Decreasing the time threshold reduces the repair time,
and thus improves the reliability; however, it increases the
repair network traffic;

(2) In erasure-coded data centers, multiple available
chunks are transmitted over the network to recover lost
chunks in the stripe. The recovery penalty factor is a factor
that is between the amount data transmitted for recovering
a stripe Si and the size of a chunk. Decreasing the recovery
penalty factor [2], [4], [5], [7]–[13], [16], [17], [22], [23]
reduces the repair time, and thus improves the reliability;
in the meanwhile, it reduces the repair network traffic;

(3) Increasing the network bandwidth [6], [24]–[26] of
each storage node reduces the repair time, and thus im-
proves the reliability; in the meanwhile, the repair network
traffic stays almost the same.

(4) The queue time (waiting for recovery) of failed stripes
is affected by recovery schemes. Giving high priority to Si

(i > 1) [7], [27], the queue time of Si (i > 1) is decreased,
and thus the reliability is improved; in the meanwhile, this
method has little effect on the repair network traffic.

According to the above analysis and simulation results
demonstrated in Figure 6a in Section 5.3, the RAS cannot be
improved simultaneously by adjusting the failure identifi-
cation time threshold. Therefore, a novel risk-aware failure
identification scheme RAFI is proposed to explore the huge
potential of simultaneously improving the RAS within the
failure identification phase.

2.4 Motivation
When some nodes fail, many stripes are affected, i.e., failed
chunks. Due to the randomized chunk layout, only a small
fraction of those affected stripes have many failed chunks,
and the remaining affected stripes only have a few failed
chunks. Hence, most repair network traffic is induced by
repairing the latter type of stripes.

On the other hand, the failure identification time of an
arbitrary affected stripe having i failed chunks is equal to

timet1 t2 t4 t5

a1

b1

b2

unavaialble chunkavailable chunk lost chunk

t3

T

t6

T

(a) In TFI, a fixed threshold T is used to identify failures. The failure
of chunk a1 is not identified until t4, while two failures of chunks b1
and b2 are not identified until t4 and t5, respectively.
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(b) In RAFI, the failure of chunk a1 is identified through the thresh-
old T1 at t6, which is later than t4. On the other hand, the failures
of chunks b1 and b2 are identified through the threshold T2 at t3,
which is ahead of t4 and t5.

Fig. 1: Identification of chunk failures using TFI and RAFI. We
use three sample chunks, where a1 is a random chunk of a
stripe A while b1 and b2 are two random chunks of a stripe B.
Assume chunk a1 fails at time t1 while chunks b1 and b2 fail at
t1 and t2, respectively.

the failure identification time of its ith failed chunk, i.e.,
all the affected stripes share the same failure identification
time. The stripes with many lost chunks usually entitle
high recovery priority, i.e., a short queuing time. Hence,
the repair time of those stripes is usually dominated by the
failure identification time. In contrast, the stripes with a few
identified failed chunks usually have a long queuing time.
Hence, the repair time of those stripes is usually dominated
by the recovery time.

If the failure identification of those two types of stripes
can be handled separately, the RAS of data centers can be
improved simultaneously. More specifically, for the stripes
having many failed chunks, we tune down the failure iden-
tification time threshold of those failed chunks, and thus
improving the data availability and reliability at the cost
of slightly increasing repair network traffic. For the stripes
having a few failed chunks, we tune up the failure iden-
tification time threshold of those failed chunks, and thus
reducing the repair network traffic without significantly
reducing data reliability and availability. More importantly,
the benefit induced by the above two operations would be
dominant compared to the associated cost. Hence, the RAS
of data centers can be improved simultaneously.

3 RAFI: DESIGN AND ANALYSIS

In this section, we first present the design of RAFI; followed
by a discussion on the benefit and cost of deploying RAFI.
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3.1 Design of RAFI
As we discussed above, the key problem of the traditional
failure identification (TFI) scheme is that all chunks share
the same failure identification time threshold. To simultane-
ously improve the RAS, we propose RAFI to identify chunk
failures according to the risk level of their host stripes and
apply different time thresholds accordingly. More specifical-
ly, dedicated chunk failure identification time thresholds are
set for stripes in different risk levels, which are determined
by the total failed chunks in the stripes. For chunks in low-
risk stripes, long failure identification time thresholds are
adopted, thus reducing the repair cost. For chunks in high-
risk stripes, short failure identification time thresholds are
adopted, thus improving the data reliability and availability.
As a result, the RAS is simultaneously improved.

In summary, the key design principle of RAFI is that the
more failed chunks a stripe has, the shorter failure identifi-
cation threshold those chunks take. For a failed chunk in a
stripe with i failed chunks, there are at most i identification
thresholds to identify the failure of this chunk, and the jth
(0 < j ≤ i) identification threshold is described as follows.
If there are j failed chunks and the failure durations of these
j failed chunks are all longer than a preset time threshold
Tj , all these j chunk failures are identified and these chunks
are denoted as lost immediately. The state of an unidentified
failed chunk in these j chunks transitions to lost, and a
lost chunk in these j chunks remains lost. The states of the
remaining (i− j) chunks do not transition.

In RAFI, a chunk failure is identified by independent
identification thresholds, which is quite different from the
traditional single identification threshold described in Sec-
tion 1. For example, in a (6,3)-coded data center, stripe A
has one failed chunk and is a low-risk stripe, stripe B has
two failed chunks and is a high-risk stripe. A time threshold
T1 which is larger than the original time threshold T is set
to identify failures of chunks in the low-risk stripe; while
a time threshold T2, which is shorter than the T is set
to identify failures of chunks in the high-risk stripe. As
shown in Figure 1, using RAFI, the failure identification of
chunk a1 in the stripe A is postponed; in the meanwhile, the
failure identification of chunks b1 and b2 in the stripe B is
expedited.

RAFI is flexible. First, all the time thresholds can be set
independently to get proper trade-offs between the data re-
liability and availability, and the repair network traffic for a
certain type of stripes. Second, the identification thresholds
can be merged to get proper trade-offs between the RAS and
the computation cost of RAFI. When the time thresholds
in all identification thresholds are set to the same T , RAFI
becomes TFI.

3.2 Benefit and Cost
Improving the RAS: Using RAFI, we can independently set
different time thresholds to identify failures. First, short
thresholds are used to expedite the identification of failed
chunks in high-risk stripes, thus improving the data reli-
ability and availability. At the same time, long thresholds
are used to postpone the failure identification of chunks in
low-risk stripes, thus reducing the repair network traffic
and improve the serviceability. Because the identification

time is dominant in the repair time of chunks in high-risk
stripes, the expedition is effective in improving the data
reliability and availability thus compensates the negative
impacts induced by the postponement. Because most repair
network traffic is induced by recovering chunks in low-risk
stripes, the repair network traffic is significantly reduced,
even under the consideration of the extra repair network
traffic induced by the expedition, thus improving the ser-
viceability.

Compatibility: Because RAFI focuses on the failure identi-
fication phase, it can work together with existing optimiza-
tions which focus on the failure recovery phase.

Increasing Degraded Reads: Degraded read is an operation
to read unavailable but recoverable chunks in a stripe.
Because we postpone the failure identification of chunks
in low-risk stripes, more failed chunks might be generated,
thus increasing degraded reads. However, the simulation
results in Section 5 show that degraded reads increase by
less than 1.7% due to RAFI. Because degraded reads are
much fewer than normal reads, the overhead is very small.

Fine-grained Failure Identification: Because RAFI perform-
s fine-grained failure identification, the process of failure
identification is refined from node level to stripe level,
which introduces a large amount of additional computa-
tional overhead. When both the cluster size and the failure
size are large, this computational overhead may even cause
task blocking on the Namenode. For example, in the case
of 1000 nodes, each node has one million data blocks,
the running time of the algorithm may reach ten or even
twenty minutes. In this way, the result of the previous round
will affect the running results of subsequent programs and
reduce the availability of data. Therefore, some performance
improvements are made for the specific detection process in
RAFI to make it more comprehensive and practical.

3.3 Performance Improvement

To reduce the overhead on management nodes and allow
RAFI to be deployed in large scale clusters effectively, in
this section, we introduce three optimization techniques for
performance improvement.

Path Merging: In the RS(k,m) coding scheme, m parity
chunks are generated from the original k data chunks, and
the k + m data chunks belong to the same stripe and are
distributed to different nodes for storage. In theory, as long
as there are k available data chunks in a stripe, all the
data blocks on the stripe are recoverable, so each stripe can
tolerate up to m data chunk failures. Since the stripe is in
an unrecoverable state when more than m data chunks fail,
there are at most m paths. Suppose there are fi nodes in
the node list Ci. For each node, there are d data chunks that
need traversal checking, and each stripe contains k+m data
chunks, so the total number of checks is fi × d × (k +m).
The RS (k, m) coding scheme is still taken as an example. In
the case of n paths, the total number of checks of RAFI R is
as follows:

R =
n∑

i=1

fid(k +m)

We can significantly reduce the computational overhead
of multiple paths by sacrificing a small amount of reliability
or repairing traffic. The specific method is path merging.
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If path merging can be used for optimization, the total
number of checks of RAFI can be greatly reduced, and
the running time of the algorithm can be greatly reduced.
However, simply merging the paths and risk levels will
cause the problem of data availability reduction because this
is equivalent to setting the Tm time threshold to T2, which
is to extend the time threshold for failure confirmation for
high-risk stripes at the cost of reducing data availability.
Conversely, if T2 is uniformly set to Tm (or other smaller
value), this will add a portion of the repairing network
traffic but at the same time data centers’ RAS have also
improved. Therefore, the next path merging work requires
an analysis of the time threshold setting of the second path,
and a trade-off between repairing network traffic and data
availability.

Search Optimization: In RAFI, the method used to deter-
mine whether the node of the other chunk in the same stripe
exceeds the failure identification time threshold is traversing
the failed node list to find out whether the node id exists
in the failed node list. The time complexity, in this case is
O(n). After implementing the hash lookup, the ideal time
complexity is O(1), and the worst-case time complexity is
O(n).

Parallelism of RAFI: In the original detection method, only
one single thread is used to check all the data chunks on the
failed node. Since the detection process of each failed node
does not interfere with each other, in fact, we can use multi-
threading technology to check the data chunks of the failed
nodes. For all the chunks on the node, we can create a thread
pool. The nodes in the list are taken out and processed in
turn. All threads share a global variable to confirm the node
number to be processed.

4 EVALUATION METHODOLOGY

In this section, we present our hybrid methodology based on
simulations, prototyping, and emulator to evaluate RAFI.

It is hard to evaluate a technique aimed at the RAS
of data centers because the data loss and unavailability
events are very rare and not evenly distributed. The ac-
curacy problem induced by the uneven distribution can
be mitigated via high accurate simulation, which is run
thousands to millions of iterations, although the simulator
itself might be not that accurate. However, pure simulation
cannot verify the correctness of the design details and might
cover fatal defects of the technique. Experiments relying
only on prototyping cannot capture different configurations
in large scale clusters.

Therefore, we propose our hybrid methodology to com-
prehensively evaluate RAFI. Specifically, the effectiveness
and efficiency of RAFI on the RAS are evaluated through
high accurate Monte-Carlo simulation. The design details
and computational cost of RAFI are verified through pro-
totyping running on a real distributed storage system. In
order to verify the computation cost of the Namenode under
large-scale clusters, and evaluate the impact of RAFI com-
putation overhead on Namenode in more typical configura-
tions, and so as to ensure that RAFI can remain practical in
various types of large-scale clusters, we implement an emu-
lator that emulates the execution of RAFI. We demonstrate

the effectiveness of our optimization techniques for RAFI
via emulation.

Event-driven simulators are widely used to study the
RAS of the data centers [14], [20], [28]. However, those simu-
lators cannot be used in our simulations due to the following
two reasons. First, some simulators are not open source,
e.g., Google’s Cell Simulator [20]. Second, the RAS cannot
be all simulated by some simulators. For example, limited
by performance, the data reliability cannot be studied by
the ds-sim [14]. As a result, we develop our own simulator,
named DR-SIM, to study the effect of the data repair on the
RAS in erasure-coded data centers.

We summarize important features of DR-SIM as follows.
(1) The trade-off between the performance and accuracy of
DR-SIM is carefully tuned. A simulation iteration (typically
represents five years) can be finished in tens of seconds.
Therefore, we run hundreds of thousands of iterations for
each simulation configuration, to accurately measure the
RAS. (2) Many state-of-the-art optimizations on the data
repair are integrated into DR-SIM, and important param-
eters of the data repair are considered as variants in DR-
SIM. Through modifying the configuration of DR-SIM, we
study the effectiveness and efficiency of RAFI upon various
combinations of the state-of-the-art optimizations under
various typical environments of the data centers.

Besides the simulation, we also implement a prototype
to further verify the correctness of the design and measure
the computation cost of RAFI in real-world environments.
Our prototype named RAFI-HDFS is implemented upon
HDFS [27], a representative distributed file system widely
deployed in the data centers. For the emulator, we imple-
ment a simple RAFI algorithm for multi-path detection of
high-risk stripes to understand how RAFI performs under
different settings in large scale clusters.

5 SIMULATIONS AND RESULTS ANALYSIS

In this section, we discuss our simulator and simulation
results to evaluate the effectiveness and efficiency of RAFI
on the RAS.

5.1 DR-SIM

We develop a simulator called DR-SIM which is written in
the R language because it easily runs in parallel. The source
code is approximately 1400 lines [29].

A typical simulation process consists of a sufficient
number (hundreds of thousands in typical) of iterations
to obtain results with high condence. Each iteration sim-
ulates the node failures and the data repair processes in
the erasure-coded data center during the simulation dura-
tion. Optimizations considered in our DR-SIM include MDS
codes with optimal recovery penalty ratios, non-MDS codes,
high-speed network, parallel recovery, risk-aware recovery
scheduling, and so on.

Figure 2 shows the architecture of DR-SIM which in-
cludes four modules: a configuration manager, a failure
generator, a repair calculator, and an event collector.

The configuration manager loads parameters used in
the simulations. The parameters are explained as follows.
(1) System parameters: The target erasure-coded data center
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Fig. 2: Architecture of DR-SIM

consists of N independent storage nodes. Each node has
d chunks. The chunk size is s. (2) Coding parameters: Data
are coded with (k, m) erasure codes, i.e., k data chunks
and m parity chunks are in a stripe. The k + m chunks
in the same stripe are distributed to k + m distinct nodes.
A random placement policy is used because it is usual-
ly adopted in practice. The recovery penalty factor of Si

(1 ≤ i ≤ m) is ri which is between the amount data
transmitted for recovery of Si and s. The recovery network
bandwidth is b on each node. (3) Failure parameters: Assume
node failure arrivals are independent. Let f(x) and F (x)
be the probability and cumulative distribution functions of
the failure arrivals, respectively. Assume failure durations
are independent. Let g(x) and G(x) be the probability and
cumulative distribution functions of the failure durations,
respectively. ρ is the ratio of permanent node failures to
all node failures. τ denotes the additional proportion of
correlated node failures. (4) Identification parameters: Storage
nodes periodically send heartbeats to dedicated manager
nodes, e.g. the NameNode [27], [30] or the metadata man-
ager [31]. The manager nodes check states of all nodes
at regular time intervals of Th. The time thresholds for
identifying chunk failures are Ti (1 ≤ i ≤ m). (5) Simulation
runtime parameters: Ni denotes the number of iterations. Td
is the simulation duration for each iteration.

The failure generator is responsible for generating fail-
ure arrivals and failure durations of node failures at the
beginning of a simulation iteration. The failure arrivals
are generated according to the distribution function f(x).
Permanent failures and transient failures are generated by
their durations. For the transient failures, their durations
are generated according to the distribution function g(x).
For permanent failures, they are generated according to
the parameter ρ. Technically, failure durations of the per-
manent failures are set to zero (only for handling but not
calculating). In DR-SIM, additional correlated failures are
explicitly generated by adding a random value between 0
to 120 seconds [20] to existing failure arrivals according to
the parameter τ . It is worth noting that the comeback of
transient failed nodes has been already considered in DR-
SIM.

The repair calculator simulates the data repair process
for lost chunks when failures occur. The repair calculator
identifies the chunk failures according to the Th and Ti
(1 ≤ i ≤ m) and calculates the repair time for lost chunks
based on the recovery network bandwidth, the recovery
penalty factors and the recovery priority. The recovery
processes of lost chunks are scheduled depending on the
number of lost chunks in their stripes. For stripes that
have the same number of lost chunks, the repair calculator
uses first come first scheduled rule to manage the recovery
of those chunks. Moreover, lost chunks are recovered in

parallel by utilizing all available nodes [32], [33].
The event collector is responsible for collecting data

loss events, data unavailability events, chunk unavailability
events, and data repair events. At the end of each iteration,
DR-SIM calculates metrics according to the collected events.
The mean time to data loss in the whole data center (referred
to as MTTDL) is the metric to evaluate the data reliability.
All the data loss events are recorded to calculate the MTTDL.
The cumulative unavailable time of all stripes (referred to
as Tus) is the metric to evaluate the data availability. All
the data unavailability events are recorded to calculate the
Tus. The total repair network traffic (referred to as RNT) is
the metric to evaluate the serviceability. All the data repair
events are recorded to calculate the RNT. The cumulative
unavailable time of all chunks (referred to as Tuc) is the
metric to evaluate the degraded reads. All the chunk un-
availability events are recorded to calculate the Tuc. The
former three metrics are widely used in the evaluation of
the RAS in the data centers [6], [7], [12], [14], [15], [20],
[28], [34], [35]. The latter one is roughly in proportion to the
number of degraded reads. It is worth noting that chunks
and stripes are actually not simulated in DR-SIM under
the consideration of computation complexity. In fact, the
cumulative unavailability time of stripes and cumulative
unavailability time of chunks are estimated from the gen-
erated node failures and data repair events.

5.2 Simulation Testbed

Comparisons between RAFI and TFI are made upon the
testbed described as follows.

The following three strategies are considered in the
testbed. (1) The network adopts CLOS topologies [24]–
[26]. (2) All lost chunks are recovered in parallel via using
available recovery network bandwidth on all nodes. (3) The
stripes with more lost chunks have a higher priority to be
recovered.

Three kinds of erasure codes are chosen in the simula-
tions to understand the sensitivity to different erasure codes.
RS codes are a set of popular erasure codes that are widely
used in real-world distributed storage systems [12], [20],
[21]. Zigzag codes [10] represent MDS (Maximum Distance
Separable) codes with optimal recovery penalty factors. LRC
codes [7] are representative non-MDS codes deployed in
Windows Azure Storage.

The 1 Gbps network is chosen as the baseline in the
testbed under the consideration of the cost-effectiveness in
the erasure-coded data center, although we have found that
RAFI is more efficient in reducing the RNT under the 40
Gbps network during studying the sensitivity of RAFI to
the recovery network bandwidth.

Because chunks in low-risk stripes are the optimization
objects of both RAFI and Lazy [14], Lazy is considered in
the testbed when we made dedicated comparisons between
these two techniques in Section 5.3.4.

The default values of most parameters used in the
simulations are listed in Table 2. The failure arrivals are
assumed to be independent and exponentially distributed
with the mean time to failure (MTTF = 7.1 days) [12], [20].
The failure durations are assumed to be independent and
Weibull distributed. We get sample values from [20] and
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TABLE 2: Symbols and Their Definitions

Symbol Definition Default Value
N # of storage nodes in a data center 1000
d # of chunks on a node 125,000
s Chunk size 128 MB
Th Check interval of node states 5 minutes

b
Recovery network bandwidth 0.1 Gbps

on each node
Td Duration of each iterations 5 years
Ni # of iterations 500,000

model the failure durations with Weibull(113 seconds, 0.54),
which is shown in Figure 3. The model fits well starting
from 0.5 minutes.

In our simulations, we apply the second optimization
method path merging as described in section 3.3. The iden-
tification threshold i (i > 1) for the number of failed chunks
in one stripe are merged to one path by sharing the same
threshold value. The features of the erasure codes, and two
time threshold values (one for T1, and the other for Ti
(i > 1)) are represented by an abbreviation, e.g., RS(6,3)-
15-2 denotes a data center employed RS(6,3) with T1 = 15
minutes and T2 = T3 = 2 minutes. r1, r2 and r3 of an RS(6,3)-
coded stripe are 6, 7, and 8, respectively.Three parity chunks
are generated from the original data chunks, and since RS
codes are MDS codes, up to three failures can be tolerated in
this case. Accordingly, in the original RAFI algorithm, there
are three paths – single error, double error, and triple error
– to determine the risk level of stripes.

In our setting for simulator preliminary test, RAFI is
configured as a 3-path algorithm. Now we compare the 3-
path algorithm with the 2-path algorithm. In the previous
analysis, the total number of inspections was expressed
in the formula in section 3.3. According to this formula,
the total number of inspections in R3 under the 3-path
algorithm is shown as follows:

R =
3∑

i=1

fid(k +m)

Similarly, the total number of checks R2 under the opti-
mized 2-path algorithm is shown as follows:

R2 = f1d(k +m) + f2d(k +m)

Since the time threshold value of path 2 is set to the
time threshold value of original path 3 when path merging
optimization is performed, the number of nodes in path 2
under 2-path algorithm is the same as that of path 3 under
3-path algorithm, that is:

R2 = f1d(k +m) + f3d(k +m)

When the algorithm is optimized from 3-path to 2-path,
the number of checks and the overall running time of the
algorithm in theory will be greatly reduced. The ratio of R2
to R3 should be shown as follows:

R2

R3
=

f1 + f3
f1 + f2 + f3

All measured metrics including the MTTDL, Tus, RNT and
Tuc, are normalized to that of the RS(6,3)-15-15 (it denotes a
TFI configuration when the latter two values are the same).
The MTTDL, Tus, and RNT are the metrics to evaluate the
RAS.
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Fig. 6: Impacts of T1 and T2. The erasure coding scheme is
RS(6,3), and the results are normalized to RS(6,3)-15-15.

5.3 Simulation Results

5.3.1 RAS as Functions of Ti
We first run simulations to find the proper two threshold
values for RAFI. Let T3 = T2 = T1. Figure 6a illustrates
that the data reliability and availability get worse while the
repair network traffic is improved when T1 increase. The
RNT reduces slowly when T1 is larger than 60 minutes.
Thus, T1 of RAFI is set to 60 minutes in the rest simulations.

Next, we study the impact of T2, let T3 = T2. T2 ranges
from 0.5 to 8 minutes. The results in Figure 6b demonstrate
that RAFI simultaneously improves the RAS in most con-
figurations. More specifically, the MTTDL is improved by a
factor of up to 11. The Tus is reduced by up to 45%. The
RNT is reduced by up to 27%. The RNT increases with the
reduction of T2 because reducing T2 increases the number
of S2+, and results in unnecessary repair network traffic to
repair those S2+. Only when T2 is 8 minutes, which is close
to the original T of 15 minutes, RAFI does not take effect on
the data availability.

From the results, we find that the data reliability and
availability are sensitive to the decrease of T2 but the repair
network traffic is not. As a result, both T2 and T3 are set to 0.5
minutes in the rest simulations.

5.3.2 RAS as Functions of Erasure Coding Schemes
In this section, we examine the effectiveness and efficiency
of RAFI under five typical erasure coding schemes, RS(6,3),
RS(9,3), RS(12,3), Zigzag(6,3) [10], and LRC(12,2,2) [7]. These
erasure coding schemes represent various recovery penalty
factors. T1, T2 and T3 are 60 minutes, 0.5 minutes and 0.5
minutes, respectively. All results are normalized to RS(6,3)-
15-15 and presented in Figure 4. In general, RAFI can
cooperate with all the five kinds of erasure coding schemes,
and simultaneously further improve the RAS at the cost of
the slightly increased degraded reads.
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Fig. 5: Impacts of constrained recovery network bandwidth on the RAS. RS(6,3) and Zigzag(6,3) are considered in the simulations.
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Improving Reliability: Figure 4a shows that RAFI im-
proves the MTTDL of Zigzag(6,3), RS(6,3), LRC(12,2,2),
RS(9,3), and RS(12,3) by a factor of 9.3, 11, 7.7, 9.8, and
7.7, respectively. When the recovery penalty factor increases,
the improvements diminish slightly. The reason is that the
higher recovery penalty factor lengthens the recovery time,
this weakens the effect of the reduction of the identification
time.

Improving Availability: Figure 4b illustrates that RAFI
improves the data availability under various erasure cod-
ing schemes. The Tus of Zigzag(6,3), RS(6,3), LRC(12,2,2),
RS(9,3), and RS(12,3) is reduced by 43%, 45%, 24%,37%, and
30%, respectively.

Improving Serviceability: Figure 4c shows that RAFI re-
duces the RNT under various erasure coding schemes. The
Perm represents the RNT induced only by permanent node
failures. Figure 4e shows the composition of the RNT. In
TFI, over 99% of the RNT is induced by the repair of S1. In
RAFI, about 15%-30% of the RNT is induced by the repair
of S2+.

Degraded Reads: When RAFI postpones the recovery of
S1, the amount of unidentified failed chunks increases.
Figure 4d shows that the degraded reads increase by 1.7%
at most, which is very slight.

5.3.3 RAS as Functions of Recovery Network Bandwidth
Network bandwidth is very valuable in the data centers. In
this section, simulations are performed to understand the
effect of RAFI under a limited recovery network bandwidth
b. Both RS(6,3) and Zigzag(6,3) codes are considered in the
simulations. T1, T2 and T3 are 60 minutes, 0.5 minutes
and 0.5 minutes, respectively. The simulation results are
normalized to RS(6,3)-15-15 and presented in Figure 5.

Figure 5 shows that the RAS is still improved even when
b is 40 Mbps. However, at the same time, the Tuc increases by
22%, because a small b significantly extends the repair time
of the lost chunks, thus leads to longer chunk unavailability
time. When b reduces, the reduction of RNT increases a little.

40 Gbps network: Nowadays, some data centers are e-
quipped with a 40 Gbps network for each node [26], [36].
In such a scenario, the recovery network bandwidth b is 4
Gbps for each node. Table 3 shows that RAFI still improves
the RAS when b is 4 Gbps. When b increases from 100 Mbps
to 4 Gbps, the recovery time reduces. Because the ratio
between the recovery time and the repair time decreases,
the improvement of MTTDL decreases. However, when the
repair rate increases, there will be more unnecessary repair
network traffic. Therefore, RAFI is very effective in reducing
the repair network traffic.

5.3.4 Comparisons with Lazy
To comprehensively compare RAFI with Lazy, the compar-
isons are made in the form of TFI + Lazy v.s. RAFI + Lazy
v.s. RAFI. RS(6,3) and Zigzag(6,3) codes are considered in
the simulations. Lazy [14] recovers lost chunks if their host
stripes have at least two lost chunks. In TFI + Lazy, we use
the parameters: T1 = T2 = T3 = 15 minutes. In RAFI + Lazy,
T1 = T2 = 15 minutes, T3 = 1 minutes. In RAFI, T1 = 60
minutes and T2 = T3 = 15 minutes. The comparison results
are shown in Figure 7.

Cooperating with Lazy, compared to TFI, RAFI improves
the MTTDL by a factor of 5.1, at the cost of increasing the
RNT by 2.5%. Because Lazy even does not recover some
permanently failed chunks, RAFI cannot further reduce the
RNT.

Compared to TFI + Lazy, RAFI without Lazy increases
the MTTDL by over two orders of magnitude at a higher
RNT cost. An interesting observation is that RAFI suffers
a much lower increase of the RNT when cooperating with

TABLE 3: The RAS improvements under 40 Gbps network

Erasure Coding Schemes RS(6,3) Zigzag(6,3)
Improvement of MTTDL 3.4 3.7

Reduction of Tus 54% 56%
Reduction of RNT 79% 86%
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the Zigzag codes. The reason is that the recovery penalty
factor of a Zigzag(6,3)-coded S1 is only 63% of that of an
RS(6,3)-coded S1. In fact, as mentioned in Section 8, many
codes [6], [7] are proposed to reduce the recovery penalty
factor of stripes with one lost chunk.

5.3.5 Availability under Correlated Failures
Because transient failures may happen concurrently [20], we
desire to see how data availability is affected by correlated
failures. From Figure 8, we can see that, as the proportion of
additional correlated failures increases, RAFI still reduces
about 40% of the Tus, demonstrating that RAFI is very
resilient to correlated failures.

6 PROTOTYPING EVALUATION

To further evaluate the effectiveness of RAFI, we imple-
ment a prototype named RAFI-HDFS on the popular HDFS.
RAFI-HDFS runs on a cluster consisting of one name node
and nine storage nodes connected by Gigabit Ethernet.
Node failures in our prototyping-based experiments are
generated manually.

6.1 RAFI-HDFS
Because erasure coding is supported by HDFS in version
3.0.0, our implementation is based on HDFS 3.0.0-alpha2.
The implementation of RAFI-HDFS follows the design in
Section 3. We only add about 200 lines of codes to HDFS.

Figure 9 demonstrates the overall architecture of RAFI-
HDFS consisting of two modules: one is a classification
module and the other is an identification module.

The classification module is responsible for converting
the node failures into appropriate input for the identifica-
tion thresholds. More specifically, the classification module
receives a node list that contains all failed nodes and their
failure durations from the node monitor module. Only those
nodes whose failure durations are larger than Ti (1 ≤ i ≤ m)

Node Monitor Module

Classification Module

Identification Module

Recovery Module

(node id, failure  duration) 

Stripes with new 
lost chunk(s)

IT 1

key value

nid1 cid11 cid12 …

nid2 cid21 cid22 …

… … … …

key value

sid1 cid11 cid12 …

sid2 cid21 cid22 …

… … … …

key value

cid1 sid1

cid2 sid2

… …

key value

cid1 nid1

cid2 nid2

… …

node->chunks

chunk->stripe chunk->node

stripe->chunks

IT 2 IT m…

RAFI

query

Existing data structures

node list L1 node list Lm

Fig. 9: Architecture of RAFI-HDFS. The right side is existing da-
ta structures which are used in RAFI. The node monitor module
reports failed nodes and their failure durations. The classifica-
tion module inserts nodes to different identification thresholds
in the identification module according to their failure durations.
The identification thresholds (IT) in the identification module
are used to identify chunk failures.

are inserted into the node hash list Li for the identification
threshold (IT) i, thus reducing the computation cost of that
identification threshold. It is worth noting that the classifi-
cation module replaces failed chunk lists with failed node
lists. In such a manner, the memory usage of maintaining
the numerous failed chunks is saved.

The identification module is a universal set of all the
identification thresholds in RAFI. When IT i receives its
node list Li, it begins to calculate the count of failed chunks
in stripes. First, the identification threshold calculates the
count of unidentified failed chunks in stripes through query-
ing the node-chunk mapping table and the chunk-stripe
mapping table, which typically reside in the main memory
of the manager nodes of the data centers. Second, through
querying the stripe-chunk mapping table and chunk-node
mapping table, the count of lost chunks is obtained. If the
count of failed chunks (unidentified failed chunks and lost
chunks) is larger than or equal to i, those failed chunks
which belong to nodes in Li, translate to lost.

After working through all identification thresholds, if
new chunk failures are identified, the recovery module
is called to recover stripes containing those lost chunks.
Particularly, for nodes that enter IT 1, the failures of these
nodes are identified and these nodes are removed from the
system at the end of the IT 1.

Complexity. RAFI-HDFS only checks chunks on failed
nodes which newly enter Li to reduce the computation cost.
Assume there are j nodes in Li (2 ≤ i ≤ m) and there is an
average of d chunks to be checked on the node. Each stripe
has k + m chunks. Because we use a hash list to track the
failed nodes, the total comparison time is about (k+m)×d.
The time complexity of identifying chunk failures is O(d).

6.2 Results of Prototyping Experiments
Experimental Setups. The experimental system consists of
ninety-seven servers running on the Alibaba Cloud [37].



1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3010048, IEEE
Transactions on Parallel and Distributed Systems

Fig. 10: Time spent to identify chunk failures when a DataNode
fails. The number of DataNodes in the cluster changes from 12
to 96. E.g., the NameNode takes 87 ms to identify 68,000 chunk
failures in a cluster of 24 DataNodes.

One server served as a NameNode contains an Intel Xeon
E5-2682v4 @ 2.5 GHZ CPU (4 vCPU), 16 GB DDR4 memory,
1.5 Gbps network and 40 GB SSD. The remaining 96 servers
are used as DataNodes, each of which has an Intel Xeon E5-
2680v3 @ 2.5 GHZ CPU (1 vCPU), 1 GB DDR4 memory,
1 Gbps network and 40 GB SSD. The operating system
running on all these servers is Ubuntu 14.04. Each DataNode
sends heartbeats to the NameNode every 3 seconds and
the NameNode checks the states of all DataNodes every 5
minutes. As default in HDFS, the time threshold T = 10.5
minutes and the erasure coding scheme RS(6,3) is used.

Identification Time of Chunks: The identification time of a
chunk is the period from the time when a chunk becomes
failed to the time when the chunk is identified as a lost
chunk. In order to evaluate the real identification time,
we collect the identification times by randomly killing two
DataNodes. In order to evaluate the real identification time
of chunks, we collect the identification times by randomly
killing DataNodes in 0, 5, 10, and 20 minutes. Each experi-
ment is conducted 20 times. In RAFI, T2 is set to 1 minute
and T1 is set to 60 minutes. The results are consistent with
our analysis in Section 3.2. The results demonstrate that TI2
is expedited and TI1 is postponed. When we simultaneous-
ly kill two storage nodes, TI1 and TI2 under TFI are 13.1
minutes; however, TI2 under RAFI is 3.6 minutes, while TI1
under RAFI is 62.6 minutes. Moreover, TI1 and TI2 are not
relevant to the time between the failure arrivals.

Burden on the NameNode: Because the computations run
on the NameNode, we record the time spent to identify
chunk failures when nodes fail to further estimate the im-
pact on the NameNode. The chunk size is shrunk to 1KB
in our cluster to generate enough number of chunks. In the
experiments, each DataNode stores about 68,000 chunks.
In the experiments, there is no I/O workloads because
the time spent to identify chunk failures under no I/O
workloads is sufficient to indicate the overhead caused by
RAFI on the NameNode. For each result, we concurrently
kill DataNodes. Each experiment is conducted 10 times and
we calculate the average results.

We evaluate the time spent to identify chunk failures
from two aspects: the number of DataNodes in the cluster
and the number of concurrent node failures.

First, as shown in Figure 10, the time spent to identify
all 68,000 chunk failures on one failed DataNode increases
from 74 to 137 milliseconds when the number of DataNodes
increases from 12 to 96. Compared to time thresholds and
check intervals (by default 10.5 and 5 minutes, respectively),
the time spent to identify chunk failures can be negligible in

Fig. 11: Time spent to identify chunk failures when multiple
DataNodes fail. The cluster consists of 96 DataNodes. E.g., the
NameNode spends 889 ms to identify 544,000 chunk failures
when eight DataNodes fail concurrently .

the identification time.
Second, as illustrated in Figure 11, the time spent to

identify chunk failures increases linearly as concurrent node
failures increase. The experiment results are consistent with
the analysis in Section 6.1. It is worth noting that there are
no failed nodes in most check time. Thus, our method has
minimal impact on the NameNode.

Moreover, in our evaluation, only one single thread is
used to check all chunks on failed nodes. In fact, we can
use multi-threading technologies to check all chunks on
failed nodes, e.g., each thread is responsible for checking
all chunks on one failed node. Therefore, the time spent
to identify all chunks on failed nodes can be significantly
reduced when multiple nodes fail concurrently.

7 EMULATION RESULTS

In this section, we evaluate how RAFI performs with the
three optimization techniques described in Section 3.3 in
large scale systems via emulation. We first describe our
emulator, which is available via open source [38], and then
present the emulation results of the optimization techniques
in different settings.

7.1 Emulator Architecture
In order to better compare the performance of different
algorithms and achieve large-scale cluster testing, we have
accomplished an emulator using C++. This emulator emu-
lates the determination process of a high-risk stripe in one
detection interval of HDFS.

The emulator is composed of three major components
- an initialization module, a random failure module, and
a detection module. The initialization module randomly
assigns all chunks in all stripes that are initially set to
different nodes, and the random function ensures that the
stripe distribution on each node is roughly average, and the
fluctuation range does not exceed 1%; the random failure
module is based on the relevant configuration ratio of the
failed node and sets different failure time for each node;
The detection module sequentially performs risk level de-
termination for the stripes associated with the failed nodes
of different paths. The statistical detection time is tested
from the running time of the detection module. The timer
starts timing before the node starts detecting in path 1,
and stops counting after the node detection is completed
in the last path. The code of the initialization module and
the random failure module part is not changed during the
performance improvement, and only the detection module
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TABLE 4: Comparison of Emulator and Prototype’s Detec-
tion Time Under the Same Scale

Path 1
Time Prototype Emulator Ratio

9% 1.02 0.25 4.08
32% 3.96 1.04 3.808
64% 7.60 2.32 3.276

chunk 1

chunk 2

chunk 3

chunk 4

chunk 5

chunk 6

chunk 7

chunk 8

chunk 9

stripe 1

failed time: t1

node 1

failed time: t2

node2

long term failure chunk

short term failure chunk

Fig. 12: An Example of Node Failures.

is improved. When RAFI applied the optimization method
of path merging, the original m-paths are merged into 2-
paths, and the appropriate time threshold is set to ensure
that the merge operation does not affect the RAFI’s improve-
ment effect on the data centers’ RAS. When RAFI applied
the optimization method of parallelism, a parallelization
processing operation is added so that multiple threads take
the nodes out of the list of failed nodes in turn to perform
the determination operation, and the algorithm execution
time shortening effect is different according to the number
of threads.

Because the relevant data structure and query mode in
the emulator are different from the workflow in prototyping,
and considering the efficiency of the C++ language used
by the emulator and the Java language used by the HDFS
source code, the efficiency is also very different. The test
time under the same node cluster scale is tested and com-
pared. The test results are shown in Table 4.

7.2 Tradeoff with RAS and Repair Network Traffic

It can be seen from Figure 6a and Figure 6b that the repairing
network traffic increases with the decrease of T2 because
reducing T2 increases the number of double-fault stripes,
which results in unnecessary repair network traffic. How-
ever, from the simulation results, we find that the reliability
and availability of data are very sensitive to the reduction
of T2, but repairing network traffic is not. Therefore, T2 can
be set to a minimum within a reasonable range, which can
greatly improve the reliability and availability of data while
the increase of repairing network traffic is not obvious.
Therefore, in the following emulation, T2 and T3 can be
set to the same smaller value, which is equivalent to the
combination of the detecting path of the double-fault stripe
and the three-fault stripe so that the running time of RAFI
can be shortened and the data reliability and availability can
be improved at the same time. In the case of a node failure
as shown in Figure 12, the original multi-path algorithm is
compared with the merged 2-path algorithm as shown in
Figure 13.

3-path classification module

chunk 2

↓
high-risk

chunk 2(count++)

↓(find stripe 1)

chunk 5(count++)

↓
chunk 8(count++)

↓
count >= 3

↓
high-risk

chunk 2(count++)

↓(find stripe 1)

chunk 5(count++)

↓
count >= 2

↓
high-risk

node list L1 node list L2 node list L3

path 1 path 2 path 3

2-path classification module

chunk 2

↓
high-risk

chunk 2(count++)

↓(find stripe 1)

chunk 5(count++)

↓
chunk 8(count++)

↓
count >= 2

↓
high-risk

node list L1 node list L2

path 2path 1

Fig. 13: Comparison of 3-path and 2-path RAFI Algorithm
Execution Processes.

Figure 13 shows the risk level determination procedure
for stripe 1 under different path amount algorithms. Data
chunk 2 exceeds the time threshold T1, while data chunk 5
and data chunk 8 exceed the time threshold T2, so among
path 1, when the detection module traverses to the data
chunk 2, it is found that the failure time of the data chunk
2 exceeds T1, and the stripe 1 is directly determined as a
high-risk stripe; and in the path 2 and path 3, the detection
module will count the number of failed data chunks in the
stripe. Finally, it is found that the failure time of the three
data chunks exceeds the time threshold T2 (T2 > T3), then
the stripe 1 in path 2 and path 3 is also determined to be
a high-risk stripe. After the path merging optimization, the
cumulative number of checks for the module is significantly
reduced.
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In the 3-path setting experiment, the proportion of failed
nodes in all nodes is set to 5%, 10%, and 20%, respectively.
Among all the failed nodes, the nodes in the path 1, 2, and 3
account for 10%, 45%, and 60%, respectively. T1 = 60, T2 = 5,
T3 = 2. The detection time of 3-path RAFI and 2-path RAFI
algorithm changes with the proportion of failed nodes, as
shown in Figure 14. It can be observed that the detection
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time of the 2-path RAFI is always only 50%-60% of the 3-
path RAFI detection time, and the more the number of failed
nodes, the more effective the path merging optimization is.

7.3 Tradeoff with Memory Space
We implement a hash table in the emulator with a table
size, which can be adjusted according to the size of the
data center and the performance requirements. As a rule of
thumb, in subsequent experiments, we set this hash table
size to 29. The hash algorithm we use is the remainder
method, and for conflict processing, we use the chain ad-
dress method. We can also use the balanced tree structure.
However because our list of failed nodes is relatively small,
thus the probability of conflict is relatively small, and the
linked list can be used to conduct operations such as adding,
deleting, changing, and checking more quickly. If we use a
red-black tree, then we have to rotate it, which makes it even
more complicated.
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The experimental results of RAFI with the hash lookup
method are shown in Figure 15. It can be seen that when
the proportion of failed nodes is larger, the performance
improvement of the RAFI algorithm with hash lookup is
more obvious. This is due to the more failed nodes, the o-
riginal algorithm contains more traversal operations, which
are replaced by quick hash lookups.

7.4 Exploit Parallelism
When using the multi-thread method for high-risk stripe
determination, multiple threads (which can be set to the
most appropriate number of threads based on the number
of the nodes) take the node that needs to be processed from
the list of failed nodes in turn. If the number of nodes
in the current list is 0, then the current access thread is
temporarily dormant. If all nodes in the current list are
processed, the thread exits. Each round of detection of the
main thread must wait until all child threads exit before
ending. For data sharing, the critical section method is used
in the source code, and the critical section of the variable
operation related to the number of failed nodes and the
current pending node sequence number has been set. Only
one thread can access and modify related variables at the
same time.

Multiple threads can improve the performance, In gen-
eral, the greater the number of threads, the higher the
performance improvement ratio, but the rate of performance

improvement slows down as the number of threads increas-
es.

The RAFI algorithm performance improvement exper-
iment results after adding multi-threading technology are
shown in Figure 16. It can be seen that the running time of
the algorithm after parallel processing is greatly shortened.
When using two threads, the average speedup ratio is 1.50.
When using three threads, the average speedup ratio is 2.29.
The average speedup ratio with five threads is 3.70. This
is consistent with the previous conclusion: the larger the
proportion of failed nodes, the greater the speedup ratio,
the more obvious the performance improvement effect.

7.5 Put All Together
So far our experiments reveal how each optimization tech-
nique improves the performance individually, next we con-
duct some experiments to understand how these three tech-
niques can be applied together.
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Figure 17 shows the running time of RAFI’s detection
module after three optimization techniques are successively
applied. We fix the number of nodes in path 1 to 10%, and
the failed nodes account for 5%, 10%, and 20% respectively.
The results show that, the running time of the 2-path
RAFI of five threads with hash (RAFI2p hash(5thread))
is 96.08% shorter than that of the original 3-path (RAFI3p)
when the failed nodes account for 5%. In the case of 10%
node failure, the running time is shortened by 98.69%; In the
case of 20% node failure, 99.56% is shortened. It can be seen
that the more failed nodes, the more obvious performance
improvement of the improved RAFI, and the more threads
used, the shorter the running time of RAFI. We can set the
appropriate amount of threads based on the cluster size to
balance computing resources and runtime.
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Our next experiment is to understand the impact of the
node capacity in terms of the number of data chunks on the
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Fig. 16: Performance speedup of RAFI under multi-threads over single-thread.

efficiency of the optimization techniques. Figure 18 shows
that our techniques are consistently effective to improve the
performance under different node capacities.

8 RELATED WORK

Existing solutions which are proposed to improve the RAS
focus on optimizing the failure recovery phase, such as
reducing recovery penalty factors [2], [4], [5], [7]–[13], [16],
[17], [22], [23], improving recovery rates [6], [18], [19], and
risk-aware recovery scheduling [3], [7], [14].

Reducing recovery penalty factors: Both the recovery time
and repair network traffic are improved through reducing
the recovery penalty factors of erasure codes. Two types of
techniques are proposed. One is to design MDS and non-
MDS erasure codes with low recovery penalty factors [2],
[6]–[12], [15]–[17], [39]. The other is to design recovery
algorithms to reduce recovery penalty factors of existing
erasure codes [4], [5], [13].

Regenerating Codes [22], [23], [39], [40] are a family of
MDS codes. The recovery penalty factors of the Regener-
ating Codes are much lower than that of the traditional
RS (Reed-Solomon) codes [41]. However, the Regenerating
Codes are not systematic codes, thus suffer from high read
costs. To maintain low recovery penalty factors and read
cost, systematic MDS codes, such as Zigzag and Butterfly
codes [10], [17] are proposed. Zigzag codes [10] are proved
to be with optimal recovery penalty factors in all systematic
MDS codes. One significant drawback of Zigzag codes is
that the implementation depends on non-binary algebra.

A lot of research has pointed out that most of the
repaired network traffic is caused by repairing stripes that
are missing a block of data. For example, research [12] found
that in Facebook’s clusters using erasure codes, 98% of the
stripes that need to be fixed contain only A lost block of
data. Therefore, a large amount of existing research mainly
focuses on repairing a stripe containing a missing data
block.

New trade-off points between storage overheads and
recovery penalty factors are found through non-MDS codes,
such as LRC [7], [11], [16], which is a typical non-MDS
encoding, and effectively reduces the network traffic caused
by data repair by adding local parity data blocks. For exam-
ple, the recovery overhead of LRC (6, 2, 2) encoding is half
that of RS (6, 3). Compared to MDS codes, non-MDS codes
dramatically reduce the recovery penalty factors. However,
the cost of non-MDS codes cannot be ignored, particularly
when the scale of the data center is very large, i.e., even

1% extra storage overhead usually means millions of dol-
lars [42], [43].

Recovery algorithms, such as [4], [5], [13], are proposed
to reduce recovery penalty factors of existing erasure codes.
The biggest drawback of those recovery algorithms is that
their efficiency in reducing recovery penalty factors are
much lower than that of designing novel codes.

Improving the recovery rate: Another approach to shorten
the recovery time is improving the recovery rate.

It is common to improve the recovery rate by deploying
high-speed networks, i.e., increasing the recovery network
bandwidth. For example, CLOS networks [24]–[26] are de-
ployed in FDS [6] to provide non-oversubscribed full bisec-
tion bandwidth networks at the scale of a data center. As a
result, recovery is dramatically accelerated.

The recovery rate is also improved through increasing
the recovery parallelism. Mitra et al. propose a parallel
chunk recovery method PPR [18] to improve the recovery
parallelism. Li et al. propose a pipelined chunk recovery
method ECPipe [19] to further improve that recovery par-
allelism. However, both PPR and ECPipe take effect when
there are only a few chunks be recovered. Based on the idea
of repair pipeline, they also proposed openEC [44] which
can realize the reduction of cross-rack traffic by automati-
cally customizing and optimizing ECDAG for hierarchical
topology, thus increasing the repair throughput.

Some studies have noticed a situation in FSS [45]. Al-
though FSS applied erasure coding, its consistency protocol
Paxos caused an additional four times of network cost.
Wang et al. proposed CRaft [46], which could save storage
and network costs while maintaining the same liveness as
Raft.

Risk-aware recovery scheduling: Besides accelerating the
recovery of all chunks, high data reliability and availability
can also be achieved through scheduling the recovery of
chunks according to the number of lost chunks in their host
stripes, which indicates the data reliability and availability
risk of those stripes.

The recovery of the chunks in high-risk stripes is
prioritized in HDFS [3] and WAS [7]. In such a manner,
the repair time of high-risk stripes is dramatically reduced.
Meanwhile, the increase of the repair time is relatively small.
Therefore, data reliability and availability are improved.
It is worth noting that, after being scheduled, the failure
identification time becomes dominant in the repair time of
high-risk stripes, because those chunks in high-risk stripes
are usually very few. As a result, the reduction in the
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identification time of high-risk stripes is very effective in
improving data reliability and availability.

Silberstein et al. propose a technique Lazy [14] to re-
duce the repair network traffic. Because chunks in low-risk
stripes, e.g., S1, are dominant in all chunks to be recovered,
most of the repair network traffic is generated by recovering
those chunks. Canceling the recovery of chunks in low-risk
stripes reduces the repair network traffic. However, data
reliability and availability dramatically decrease.

At the same time, some studies have optimized the
failure identification stage. Wang et al. proposed a SafeTimer
[47] mechanism to enhance the existing timeout detection
protocols, which can tolerate long delays in the OS and
applications. Thus, existing protocols can use a shorter time-
out interval for faster failure detection. For the optimization
of the failure detection process, Protector [48] has made an
important contribution in reliably distinguishing permanent
failures from transient failures. The algorithm implements
an effective replication strategy by estimating the number
of remaining copies of each object (including those are
temporarily unavailable due to transient failures).

9 CONCLUSIONS

In this paper, we present a risk-aware failure identification
scheme, named RAFI, to simultaneously improve the data
reliability, availability, and serviceability (RAS) of erasure-
coded data centers. The basic idea of RAFI is identifying
a chunk failure not only according to its failure duration
but also based on the data reliability and availability of its
host stripe. The benefits of RAFI are: (1) the identification
of failed chunks in high-risk stripes is expedited to improve
the data reliability and availability; and (2) the identification
of failed chunks in low-risk stripes is postponed to reduce
the repair network traffic, thus improving the serviceability.
Our results based on both simulations and prototyping
have demonstrated the effectiveness and efficiency of RAFI
in terms of reduced data loss, unavailability, and repair
network traffic. In addition, we found that there are certain
performance bottlenecks in RAFI. Therefore, in order to
ensure that the RAFI can operate correctly under large-
scale clusters, we propose three performance improvement
schemes and implement an emulator to obtain the per-
formance improvement effect under these three schemes.
A preliminary version of this work was presented at the
USENIX Annual Technical Conference in 2018 [49] and the
authors have made substantial changes in this manuscript.
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