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Abstract
We study the mean field equation on the flat torus 7, := C/(Z + Zo)

Aut - ! 0
utp|—— == =0
nge” |75 |

where p is a real parameter. For a general flat torus, we obtain the existence of two-dimensional solutions
bifurcating from the trivial solution at each eigenvalue (up to a multiplicative constant |7 |) of Laplace
operator on the torus in the space of even symmetric functions. We further characterize the subset of all
eigenvalues through which only one bifurcating curve passes. Finally local convexity near bifurcating points
of the solution curves are obtained.
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1. Introduction

In this paper, we consider the mean field equation on the flat torus 7, := C/(Z + Zo)
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where 0 :=a +iff with o« >0, 8 =|T,| > 0. Since the above equation is invariant by adding a
constant to a solution, we introduce

Ho = {ueHl(TUH/u:O}.
T,

Note that #H,,, equipped with the H'(7,) norm, is a Hilbert space.
The corresponding energy functional of (1) is

1 2 1 u
Jpo(u) = 2 |Vul|” — plog T e ] (2
o
T, T

This kind equation is related to the prescribed Gauss curvature problem from the geometric
point of view (see [3], [4], [111, [12], [13], [17], [26], [27], [31], [32], [35]). It also arises from
vortex theory of two dimensional turbulence (see [2], [7], [8], [9], [10], [19], [23], [29]) and
Chern-Simons-Higgs gauge field theory (see [6], [18], [20], [30], [39], [40]).

Mean field equations on tori have been studied by many researchers and there are also many
known results. In [36], the authors proved that non-zero one-dimensional solutions to (1) on a
square torus exist if and only if p > 472 and the solutions are evenly symmetric. Concerning the
nontrivial two-dimensional solutions, the authors in [38] used the Min-Max scheme to establish
the existence for p € (87, 47?). Both their results could be extended to a rectangular torus by a
simple scaling argument while the bound 472 is replaced by A1(75)|T,| where 11 (T, ) denotes
the first eigenvalue of Laplace operator on T,. Recently it is found in [15] that two dimensional
solutions exist for p > 87 but close to 87 on a rectangular torus. The authors in [1] generalized
the result to any flat torus.

Based on the above stated results, a natural task is to understand the structures of solutions of
(1) for various ranges of p. Now the structure of solutions has been completely understood for
p < 8m.In [5] the authors proved a one-dimensional symmetry result for p up to an upper bound
which is smaller than 87 and can be written explicitly in terms of the maximum conformal radius
of a rectangular torus. Later, it is proven in [33] that zero is the unique solution of (1) provided

that p < min{8r, 32&—2‘} where [ denotes the length of the shortest geodesic of an arbitrary torus.

Note that their result is sharp if % > 7. In [34] the one-dimensional symmetry of any global
minimizer of J, , is proven for p < 8. It is also conjectured that u = 0 is the unique solution
of (1) on an arbitrary flat torus whenever p < min{8x, A1(7,)|T,|}. The conjecture is validated
by the second author and Moradifam in [24] for the case of rectangular tori. Their proof relies on
a “sphere covering inequality” developed in [25]. Precisely, they first show that the solutions are
evenly symmetric about both axes if the origin is a critical point of the solution by applying the
“sphere covering inequality”, then prove that symmetric solutions about two axes must be steiner-
symmetric on some ‘“sub-torus” and then must be one-dimensional. Recently, the conjecture is
proved by in [22] for the case of a general flat torus.

In this paper, we will try to find multiple two-dimensional solutions of (1) for large p. Dealing
separately for the rectangular torus case and the generic flat torus case, we will use the bifurcation
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method to obtain two-dimensional solutions, which are bifurcating from the trivial solution at
each eigenvalue (up to a multiplicative constant 8 = |7, |) of Laplace operator on the torus in the
spaces of functions with certain symmetries. We will further find out the subset of all eigenvalues,
from which only one bifurcating curve emanates. Local convexity near bifurcating points of the
solution curves will also be obtained. Multiple non-axially symmetric solutions of the mean field
equation on unit sphere bifurcating from trivial solution can be found in [21].

First we consider the rectangular torus case, namely o = 0. We denote T, as Tg. Let I'g be
the lattice generated by 1 and B+/—1 in C, namely

I'g = span{(1, 0), (0, B)}.
We may suppose 8 > 1. The dual lattice FZ denotes the set
Tp={£ €R*: (£, (x,y) € Z, V(x,y) €Ty},
where (-, -) denotes the standard Euclidean inner product in R2. So
I = span{(1. 0), (0, B~}

It is well known that the function

fele,y) =V TIEOD) e = () 6) = (1, p7 ) €T, Vi, j €L
is an eigenfunction of the Laplace operator on Tg with eigenvalue 472 (€%, namely

—Afe =45 f.

Moreover, the family { fg}gerz is a complete system of eigenfunctions. For given i, j € Z, & =

(£1,&) = (i, B! j) associates with the following two independent eigenfunctions corresponding
to the eigenvalue 42| |*> = 42 (i> + B~2j?)

cos(2m (§1x +&2y)),  sin(2m(51x +52y)).

Note that, if ij # 0, the three symmetric elements (—§&;, —&>), (—£&1,&2), (&1, —&) € I";; give

the following other two independent eigenfunctions corresponding to the eigenvalue 47 2(i% +

B2j%
cos2m(§1x — &2y)), sinm(§1x — &2y)).

Hence there are four independent eigenfunctions to the eigenvalue An2|E)?2 = 42 (i + B2,
or equivalently the following four independent eigenfunctions

cos(2mwé&1x) cos(2néry), sin(2réix)sin(2wéyy),
cos(2ré&x) sin(2w&ry), sin(2réix)cosméyy).
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If ij =0, namely &£ =0, say & = 0, there are only two independent eigenfunctions to the
eigenvalue 472 |& |2

cos(2mwé&ix), sin(2wéix).
If we impose axial symmetry on functions
fe(=x, =y) = fe(x, —y) = fe(=x, ),
then the eigenfunction space is 1-dimensional in either case, and its basis is
cos(2mé&1x)cos(mé&ry).
Hence, in what follows, we may assume that the components i, j in £ = (£1, &) = (7, B He F/’g

satisfy i, j >0 € Z.
Denote

Aiji=4nt@2+ B2, Vi, j=0€eZ,
then the set of all eigenvalues is
{4r21E7 & € Th) = (il jm0.24 20 = Sp-

The reason for i% 4 j2 # 0 is that fTﬁ fe =0.
To make A, = Aj, j, we require that /32(m2 — i2) = j2 — n?. Denote

j2_n2
Ag :={,\,-,j:5m,n3062, (m,n) # (i, j) s.t. ﬁ2=m},

Kp = Sg\Ag.
Further we define

BKp:={BAij: Xi,j € Kg}, BSg:={BAij: Ai,j €Sp}.

We denote the sets of all rational numbers and irrational numbers by Q and 0.

In this paper, we always denote a positive rational number as g, where p,q € N and their
largest common factor (p, q) = 1.

Our results in the rectangular torus case are as follows.

Theorem 1.1. All elements in BSg are bifurcation points for the curve of trivial solutions (p, 0).
In particular, for any p; j = B, j € BKpg, there exists &g > 0, and for ¢ € (—&q, €o), (1) admits
a family of solutions (p; j(€), ue), where p; j(e) is an analytic curve and

pi, i (0) = p; j, 3
ug(x,y) = ecos(Zinx)cos(Zjnﬁ_ly) +eZ(x,V).
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Here Z.(x,y) satisfies that Z,(—x,—y) = Z¢(x, —y) = Zs(—x,y) and Zy = 0. Moreover, all
the bifurcation curves can be extended globally, and are unbounded with either p or |u|g ()
tending to infinity.

Theorem 1.2. (i) For % € Q, we have Kg=Sg;
(ii) For B =1, we have

Kp =i\ kii 1Yk €N, 3a,beN,a > b, (a,b) = | s.t. i =a® +b*};
(iii) For B = g > 1, we have

Kg = Sp\[{Aqi.pjlij
U {Agikpi - Yk €N, Ja,beN,a > b, (a,b) = | s.t. i =a* +b?)

n t
U{)\qufnspzﬂ:m,n,s,teN,qu—n,spz—IZO,mn:st,—or—géN}
’ q

U{A 2 o2 :m,n,s,teN,mn:st,1<j§2p2q2,

mq-—n sp-+t
J T
2 2 2 2
mq-—n mg-+n sp-—t sp°+t
9 2T TR L T e Nuon:
J J J

(iv) For B € Q and B* = 5, we have

Kg = Sg\[{Amg—nsprt :m,n,s,t eN,mq —n,sp—t>0,mn =st}

U{Amg—n sprt :m,n,s,t € N,mn=st,1< j <2pgq,
Jod

mq —n

—t t
Jmatn splspEl gy qop.
J

J J J

For the generic flat torus case, namely the case a > 0, and we denote T, as T, g. Hence the
corresponding lattice is

Fa.p =span{(1, 0), (, £)}.

We may suppose o> + A2 > 1. The dual lattice Fz’ﬂ is

I = span{(l, —%) : (0,,3‘)} .

Similarly, the family functions

fele,y) = @TVTIECD) e — () £y) = (1,87 (j — i) €T g Vi, j €L

is a complete system of eigenfunctions of the Laplace operator on Ty g. For given i, j € Z, § =
(€1,&) = (i, B~1(j — ai)) gives the following two independent eigenfunctions corresponding to
the eigenvalue 472|€|? = 4722 + B2 (ai — j)?)
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cos2n[ix + B (j —ai)yl, sin2xlix + B~ —ai)yl.
If we impose even symmetry on functions
fe(=x, —y) = fe(x,y),
then the eigenfunction space is 1-dimensional, and its basis is
cos2rix + B (j — ai)yl.
All eigenvalues of Laplace operator on Ty g are
A2+ B i — D =i, Vi, jeL.

Moreover i2+ j2 % 0. For simplicity, during the computation in the whole section 4 we will omit
the coefficient 472872 of i, j» and its following two forms will be used

i = B2+ (i — j)* = (@ + pHi* + j> = 2aij.

Note that both (i, j) and (—i, —j) deduce the same eigenvalue and eigenfunction, so we
denote

Ao, g = {,LLZ',J' :Am,neZ,(m,n)#0, j), (—i,—j) st hpn = Mi,j} .
Similarly we introduce the sets
Sa.p = {1 jli24 2205 Ko p:=Sa,8\Na,p-
Our main results in the generic flat torus case are as follows.
Theorem 1.3. All elements in Sy, g are bifurcation points for the curve of trivial solutions (p, 0).

In particular for any p; j = Bui j € BKa, g, there exists g9 > 0, and for € € (—&o, €0), (1)
admits a family of solutions (p;, j(¢), us), where p; j(€) is an analytic curve and

pi,j(0)=p; j,
. 1. . 4)
ug(x,y)=ccos2rlix+ B (j —ai)yl+eZ:(x,y).
Here Z.(x, y) satisfies that
Ze(—x,—y)=Z(x,y) and Zy = 0. (5

Moreover the bifurcation is global and the Rabinowitz alternative holds true.

In the following, Theorems 1.4-1.11 give a detailed and complete classification of the bifur-
cations points according to the simplicity of the associated eigenvalues.
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Theorem 1.4. Assume o € 0.
(i) If Vo2 + B2 € Q and o® + B2 = L. then Ko,p = Sap;
(ii) If /o + B2 = 5, then

.. . . pi =¢gn,
Kyp=S i icdm,nelZ, (m,n i, ), (=i,—]J) st .
a.p a,ﬂ\{m,J (m,n) # (0, ), ( J) {pmij }

In particular, ifoz2 + /32 =1, then Ky g = {iii, ti,—i}iz£0-
Theorem 1.5. Suppose o € Q and o* + p* € Q.

(i) If X2 € Q then

)

. 2 2

. J o+ p

Kyp=S irdmeZ, m#is.t =
a,B a,ﬂ\{ﬂt,] [N m O( }

2 2 -
(ii) If % € Q, and further, either the following homogeneous linear algebraic equation
does not admit non-zero integer solutions (e, f, g)

2 2
Mzi—}—g, (6)
o o

or it admits non-zero integer solutions and each such solution (e, f, g) satisfies /g2 + 4ef € Q,
then Ky g = Sa,;

2 2 -
(iii) If % € Q, and further, if (6) admits non-zero integer solutions (e, f, g) satisfying

Vgt +4def € Q, then

Ko p=Sap\i,j :Im,n € Z, (m,n) # (i, j), (—i, —j), (0,0) s.z.
i = 2d\n+(dydr—1)m

1+d1d> ’
. 2dym~+(—didy)n }’
J= I+did>
where
2e 2f
d=———+—, & @)

g+Ve2+def :g+\/g2+4ef'

Theorem 1.6. Suppose o = g and o + B> = 1. Then

2 2 +2
. m-+n-—2i 2p
Kyp= {1iis ,U«i,fi}i;é()\[{l/«i,i :dm,neZ,mn# 12, S.I. W = 7

m?+n?—-2i> 2p

U{pi—i:3Im,n e Z,mn # —i%, s.t. ——— =—1l
mn +1 q

In particular, if « = % then Ky g = 9.
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Theorem 1.7. Suppose « = g, o+ B% > 1and B* € Q. Then

Sa,p\ {qu,j }k;«éOeZ,j;épk , ifqisodd,

Ko p= o
o Sa,ﬂ\{u%’]}kaéoez’]#%k, l.fq LS even.

‘We denote
by ;= min{a — [a], [@] + 1 — a},

where [«] stands for the largest integer not exceeding «. Note that 0 < by, < 1 and by =0 if
aeN.

Theorem 1.8. Suppose o = g, o+ %> 1and g% <€ Q.
()IfB>1,then D # Ky g C Sa,;
(ii) Ifa € N and B =1, then Ky g = 0;
(iii) If o e N and B < 1, then D # Ky g C Sq, 8,

(iv)Ifa ¢ N and /1 —b% <B <1, then V # Ko 8 S Sap;
() Ifa ¢ Nand B=/1—0b% then P # Ko g C Sa.p for g >2, Ko g =¥ for g =2.

Theorem 1.9. Suppose o = g ¢N,p2e Q, o>+ B%> 1 and B < /1 — bL. Furthermore, if
q =2, then

(i) Ko =0 for B =2 or L;
()02 Ka © Sa for 8 € 0.5 UCE HU L ),

Theorem 1.10. Suppose o = g ¢N,B2eQ o>+ 2> 1, B <\/1—Db2 and q > 2. Further-
more, if by, = ql, then ) # Ko, g C Sap-

Remark 1.1. For a = g ¢ N and ¢ =2, 3, 4, 6, the unique value of by is %.

Theorem 1.11. Suppose o = & ¢ N,p2eQ a?+p2>1,B</1-0b2and by > g (soqg=>5
orq >17). Then
()If0<B< \/;then(/);«éKaﬁCSaﬁ,

(”)Ifﬁ<’3< /g(bg )andqzsoddandba—— then 3 #+ Ky g C Sa.p;
(iii) If B = /%(bg—qiz), then@;éKa,ﬁgSa,ﬂforqz% Kop=Wforqg=>5;
(iv) If %(bg—q%)<ﬁ<,/1—bg,zhen@;eKa,,ggSa,,g.

Finally we obtain local convexity near bifurcating points of bifurcating curves.

Theorem 1.12. The parameter function p; j(&) in Theorem 1.1 satisfies :0,{7 j(O) =0and

() = -2 ( Mj o M 1)
p - - - .
i Ao —Aij  hozj—Aij 3
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Corollary 1.1. (i) U@ﬂ—lj <i<A3B7j, then pi’;(0) <0;
(i) IfO<i <2~ jori >3], then p/;(0) > 0.

Remark 1.2. For 8 =1, from Theorem 1.2 we know that any element of 8Kg admits the form
pi.i, namely i = j. Then Corollary 1.1 shows that for i € N\{A;x; : Vk €e N,Ja,b e N,a >
b, (a,b) =1s.t.i =a® + b?} the following inequality holds ,olffi 0) <0.

Theorem 1.13. The parameter function p; j(¢) in Theorem 1.3 satisfies ,ol-” i (0) =0and ,ol” i 0) =
% > 0.

We would like to point out that the analyses for the rectangular torus case and the generic flat
torus case are different in the sense that the latter is not a straightforward generalization of the
former. Indeed, we have to consider the bifurcation solutions in functional spaces with different
symmetry. In the rectangular flat torus case, we have to pose the axial symmetry, i.e., the even
symmetry about both x-axis and y-axis; while in the generic flat torus case, such symmetry is too
strong and only allows the trivial solution. So we only pose a weaker even symmetry, i.e., even
symmetry about the origin. In both cases, equipped with the above suitable symmetric functional
spaces, there are bifurcations points on the trivial solution curve (p,0) where the kernels of
the linearized operators are one dimensional, but are of different type, i.e., the eigenfunction in
(3) can not be obtained by letting o = 0 in the eigenfunction in (4), while the former can not
be generalized to obtain the latter. This is also the reason why the local convexity results are
different for both cases as shown in Theorem 1.12, Corollary 1.1 and Theorem 1.13.

We also note that in this paper we only consider in some details the local bifurcation curves
while the global bifurcation pictures are merely explained as unbounded. Indeed, according to
the global theory of bifurcation (the Rabinowitz alternative), each bifurcation curve (p, u) from
(pi,j, 0) either meets the trivial solution curve at another bifurcation point (p*, 0) or extends to
infinity. The first scenario can be excluded by using the techniques developed in [22,24,25]. In
the latter scenario, it can be shown, according to [31,24,22], that either p tends to infinity, or p
goes 87 N for some positive integer N when the solution blows up at exactly N points. In the
special case when we consider only one dimensional solution, such bifurcation curves do not
consist of blow-up solutions and hence p goes to infinity. In this one dimensional setting, there
indeed exists a nontrivial one dimensional solution for p > max{8m, 1{(7y)|Ts |} which may be
regarded as bifurcating from the trivial solution (see [36,22]). Howeyver, it remains open whether
or not p must go to infinity for other bifurcation curves. The full global bifurcation picture is
being studied in an on-going project.

The paper is organized as follows. In section 2 we prove Theorems 1.1 and 1.3 by verifying the
hypotheses of Crandall-Rabinowitz’s bifurcation theory. We find out the single bifurcating curve
set for rectangular torus case in section 3, and in section 4 we characterize the single bifurcating
curve set for the generic flat torus case. The local convexity of bifurcating curves will be obtained
in section 5.

2. Verification of the hypotheses of Crandall-Rabinowitz’s theory

In this section we first introduce two properties which will be used to prove Theorems 1.1,
1.3, 1.12 and 1.13, and subsequently we finish the proof of Theorems 1.1, 1.3.

Let F (¢, x) be an operator mapping from R x X to Y. Denote d F and o, F as the Fréchet
partial derivatives of F' with respect to x and ¢ respectively.
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Proposition 2.1. ([/4]) Let X, Y be Bananch spaces, V C X a neighborhood of 0 and F :
R x V — Y a map with the following properties

(1) F(t,0) =0 forany t € R,

(2) 0;F, 0, F and 8£XF exist and are continuous,

(3) ker(d, F (t*, 0)) = span{wo} and R(3, F(t*,0))* has dimension 1,

(4) 02 F(t*,0)wp ¢ R(3, F(t*,0)).
If Z is any complement of ker(0, F (t*,0)) in X, then there exists ey > 0, a neighborhood U C
R x X of (t*,0), and continuously differentiable maps n : (—&g, &9) = R and 7 : (—&g, 89) > Z
such that

n(0) =1,

z(0) =0,

F7HO)N U\ (R x {0}) = {(n(e). swo + £2(8)) | & € (—&0. £0)\ {0}
Proposition 2.2. ([37] or [28] chapter 16) Assume all the hypotheses of Proposition 2.1 are

satisfied. Select  # 0 € Y*, where Y* is the dual space of Y, such that R(3,F(¢t*,0)) = {y €
Y | (¢, y) =0}, then the derivative n'(0) of n(¢) at ¢ =0 is given by

(02  F(t*,0)[wo, wol, ¥)

'(0)=— .
1 2woll (82, F (r*, O)wo. )

Moreover, if n'(0) = 0 and F is of class C3, then we have

n"(0)

(03 « (F(t*, 0)[wol® — 302 F(t*,0) [wo, 0 F(t*,0)) "1 (I — Q)32  F(t*, 0)[wol*], ¥)
3lwoll2(92 F (1%, 0)w, ¥)

k]

where Q 1y — jﬁw‘ﬁgw is the projection from Y to R(3,F(t*,0)" and (3, F(t*,0)"" :

R(3, F(1*,0)) — ker(d, F(t*, 0))* is the inverse of 3, F(t*,0) restricted to the complementary
of its kernel.

According to equation (1), we define an operator F : R x H, — L*(T,) as

et 1
F:(p,u)—> Au+p f e”_m .
T, o

A direct computation shows that

p p
3 F(p,0)p=Ap+ ——¢=Ap+ 6.
(p,0)p =Ap + ITGI¢ ¢+ﬁ¢
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We set
Lo = ueLz(Tg)|/u=0 )
1,

Clearly F maps R x H, into L.
Given any element A; ; € Ag, for any (m,n) # (i, j) such that A, , = A; ;, there are two
possible cases. The first case is that all of i, j, m,n are not zero. From the formula of A; ;, we

know that 7, ? e N U {0} and r%, ﬁ € N U {0} cannot take place simultaneously. Without loss

generality, we assume that ? ¢ N U {0} or ? ¢ N U {0}. Then we consider the smaller torus Téj
with the corresponding lattice

I =span(( 1,01, 0, 7' B)).

The dual lattice of ngj is

(I'))* = span{(i, 0), (0, jB~ ")}

The complete system of axial symmetric eigenfunctions of the Laplace operator on Téj is
{cos(2m&1x) cos2m&ay)} ) wiy = {cos(2mrix) cosRmB ™ i)} 50,2452 20-
Clearly cos(2mmx)cos(2nf~'y) does not belong to this set, since = or = ¢ N U {0}. More-
over, it is easy to verify that for any other A; ; satisfying that A; x = A; j = Ap,, and (I, k) #
@, j), (m,n), its eigenfunction cos(2/m x) cos(2kB Iz y_)‘does not belong to the above set. All in
all, the kernel corresponding to the eigenvalue A; ; in Tf;] is 1-dimensional, and its basis is

cos(2ix)cos(2jmB ' y).

The second case is that at least one of i, j, m, n is zero. Without loss of generality, we assume
i =0, then m # 0. Then we consider the smaller torus T;}] with the corresponding lattice

I = span{((m + 17", 0), (0. ;7' B)}.
The dual lattice of Ffsj is
(T)* = span{(m + 1,0), 0, jf ™).
The complete system of axially symmetric eigenfunctions of the Laplace operator on Téj is

(oS 1) cOSATEN) 4, ) 4)ye = 1COSTT(m + 1)) cOSQTB™ 550,242 0
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Clearly cos(2mmx)cos(2n8~'y) does not belong to this set, since mLH ¢ N U {0}. Now the

kernel corresponding to the eigenvalue A; ; in T/;J is 1-dimensional, and its basis is

cos(2jrr,3_1y).

For A; ; € Kg, we define Téj =Tp.
We introduce the following spaces

X = {p e H 1p(—x.—y) =p(x. —y) = (—x, )},
Vi ={y e L] 19 (—x, =) =¥ (x. —y) = ¥ (—x. )},
where

Hy = {ueH'(T))| /u:O},

ij
T

L =t{ue L2(Tgf) | / u=0}.
Ty
Similarly, for a generic flat torus and any given element u; ; € Ay g, if there is some (m,n) #

(@, j), (=i, —j) such that w,, , = u; ;j, then we have also two cases. The first case is that all of
i, j,m,n are not zero. From the formula of u; j, we know that ’l"— ’]1 € 7Z and é ﬁ € 7 also

cannot take place simultaneously. If % ¢ Z or ? ¢ 7. We consider the smaller torus Tol;j 8 with
the corresponding lattice

re p =span{(i~".0), G ~'e. /7' ).
The dual lattice of foj g 18
(T ) = span{(i, —if '), (0, j ).
The complete system of evenly symmetric eigenfunctions of the Laplace operator on Tol/ 8 is
{cos2m (&1x + ézy)}@l’&)e(rzﬂ)* ={cos2m[rix + ,Bfl(sj —ari)yl}24 540

Clearly cos 2w [mx + 8 _1 (n — am)y] does not belong to this set, so the kernel corresponding to
the eigenvalue (; ; in Tol/ 8 is 1-dimensional, and its basis is

cos2r[ix + B (j —ai)yl.

The second case is that at least one of i, j, m,n is zero. We assume i = 0, then m # 0. We
consider the smaller torus TOI/ 8 with the corresponding lattice
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Ty 5 =span{((jm| + 1)~ 0), (G 'ee. ;7' B}

The dual lattice of '/ 0 p i

(g p)* = span{(jm| + 1, =(jm| + DB ~'@), (0, jB~1)}.
The complete system of evenly symmetric eigenfunctions of the Laplace operator on T i . p is
U —legi
(00827 €13+ E29)) g )0+ = le0 2l (hm| + D+ 7" (5 = ar(ml + D)y N2 20

Clearly cos 2 [mx + B! (n — am)y] does not belong to this set, since ¢ 7. So the kernel

_m__
|m|+1
corresponding to the eigenvalue p; ; in T;’ 8 is 1-dimensional, and its basis is

cos(ZJTﬁ_]jy).

For p; ; eKaﬁ,wedeﬁneT ap=Top
We introduce the followmg spaces

Xl =1p e My g1 o(—x,—y) = (x,y)},
= e L g 1Y (—x, =) =¥ (x, ).
We have the following lemmas.
Léfnma 2.1. The restriction F := F |]R><X;;j (or F:=F |RxXti'fﬂ) maps its domain into ygf (or
ij{ﬁ). Moreover, for p = BA; j (or p =B j)
dim{ker(d, F(p,0))} =1,
and the basis is
cos(2r&rx) cos(Qméyy)(or cos2m (§1x +£2y)),
where & := (§1.&) 1= (0. p~1)) (or & := (i, =B~ (ati — ))).

Lemma 2.2. For p = BA; j (or p = B, ), the range of the operator 9,F(p,0) has co-
dimension one and is given by

R(@.F(p,0)) = {«p e L (Ty)]| / ¢ (x, y) cos(2mix) cos(2mp~! jy) = 0}

ij
T

(or R(3uF(p,0)) = {qbeLz(T”ﬁ)lfTu ¢(x,y)cos2rfix + B~ (j —ai)y] = })
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Proof. By the definition of the operator F and the well-known spectral properties of A on
tori, the range of 9,F(p, 0) coincides with the orthogonal of its kernel. This and the result of
Lemma 2.1 yield the desired results of this lemma. 0O

Lemma 2.3. For p = BA; j (or p = Bu; j), we have

a5, u]-'(p 0){cos(2ix)cos(2mp 1 jy)} ¢ R(3,F(p,0))

(or 82, F(p,0){cos2x[ix + B~'(j — ai)y]} ¢ R(AuF(p.0))).

Proof. Differentiating 9, F with respect to p, we get

Mf@ow—%

Therefore, owing to

/ <cos(2nix) cos(2r ! jy))zdxdy £0

ij
T

2
(or/ (cosZn[ix+ﬂ_l(j—oti)y]) dxdy +0),
Tgﬂ

the desired results follow, where the result in Lemma 2.2 isused. O

Proof of Theorem 1.1. We apply Proposition 2.1 with F : R x X/;j — y”' Lemmas 2.1-2.3
show the existence of a continuously differentiable local branch. Namely there exists a branch of

non-trivial solutions (p; (), u¢) nn the torus T, ij , where p; j(0) = p;,j and u, satisfies

us(x,y) =¢ecosmix) cos(2rr/371jy) +eZo(x,y)

with Z, satisfying

Z&‘(_x’ —J’) = ZS(-x9 —)’) = ZS(—X, Y)

and Zp = 0. In fact, since JF is real analytic and F,(p, 0) is a Fredholm operator, from [16] we
know that p; ;(¢) is an analytic curve.

In order to show that the bifurcation is global we use a degree argument. We introduce opera-
tors G and G as follows

< Lo _gw.

u ~1
G:(p,u) > ——(—=A) ——F | =
P et ) e

Note that G = —(—A)~LF. Clearly 0 is the simple eigenvalue of the operator 9, G|,=p; o u=0-

Note that the operator G is a compact operator from H ﬂ] to itself. Hence classical results in the
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bifurcation theory ensure the existence of a global continuum of solutions to (1) satisfying the
Rabinowitz alternative. Furthermore, we can exclude the possibility that the bifurcation curve
meet the trivial solution curve at another bifurcation point (p*, 0) by using using the techniques
developed in [22,24,25]. The global bifurcation curve then has to be unbounded. In this case, it
can be shown, according to [31,24,22], that either p tends to infinity, or p goes 87 N for some
positive integer N when the solution blows up at exactly N points.

We extend u, periodically in axes-x and y respectively from torus T/;/ to torus T, and we
still denote it as u,. Plainly u, is a solution in 7g. O

Proof of Theorem 1.3. We apply Proposition 2.1 with F : R x X 0’/ e ygj g Lemmas 2.1-2.3
show the existence of a local branch. Namely there exists a branch of non-trivial solutions
(pi,j(€),ue), where p; j(0) = p; ; and u, satisfies

up(x, y) = ecos2xfix + p(j — i)yl +eZs(x, y)

with Z, satisfying Z.(—x, —y) = Z.(x,y) and Zg = 0.
The argument of the global bifurcation result is similar as that of Theorem 1.1, we omitit. O

3. Rectangular torus case
Lemma 3.1. If 8% € Q, then Ag = 0.

22 . _
Proof. Combining the formulas 8% = L—7 in the set Ag and the assumption that B%e 0, we

know that there does not exist (m,n) # (i, j) such that A, , =4, j,s0 Ag=90. O

Lemma 3.2. If 8 = 1, then

Ag={Nij}izj Ulhiki :YkeN,Ja,beN,a>b,(a,b)=1s.t1 =a’ +b2}.

Proof. Clearly A; j =X;;,Vi, j.Fori # j,onehas (i, j) # (j,i),s0 {A; j}izj € Ag.Fori = j,
to the end that A; ; = A, it requires that

2i2 =m? +n’.
All coprime positive integer solutions (i, m, n) of this equation are
i=a’+b* m=l|a®—b*—2ab|, n=a*>—b*>+2ab,

where a,b e N,a > b, (a,b) = 1.
Note that if A; ; € Ag, then Ay xj € Ag,Vk € N. This is because that A; j = A, gives
Aki,kj = Mm,kn- SO the subset of the points with the form A; ; in Ag is

{Miki:VkeN,Ja,beN,a>b,(a,b)=1st.i=a>+b*. O
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Lemma 3.3. [f 8 = g > 1, then

Ap = {Aqgipjlizj
U {Agikpi Yk €N, Ja,beN,a> b, (a,b) =1 s.t.i =a*+b*}

U{A

n t
mg—n,sp>41 MM, 8,1 €N, mq* —n,sp? —t >0, mn = st, gor; ¢ N}

U{A 2 g2 imon, s, t €eNymn=st,1 < j < 2p2q2,

J J

qu—n mq2+n spz—t sp2+t
; , ; T -

e N U{0}}.

Proof. Clearly Ay pj = Agj pi, Vi, j. For i # j, one has (qi, pj) # (qj, pi), s0 {Agi pjli=j C
Ag.Fori = j,tothe end that Ay pi = Agm, pn, it also requires that 2i2=m?+n?% So

(Mgiipi :Vk €N, Ja,beN,a>b, (a,b)=1st.i =a*+b*} C Ag.
qi,kp B

Other than the points {A4; ;}, the set Sg also includes some points which cannot be written
in the form Ag; p;. It is easy to verify that for any A,; p; there could not exist A; satisfying
Ak = Agj, pi Tor é or % ¢ 7.

For any m, n, s, t € Z satisfying mn = st, we have that

)"mq2—n,sp2+t = )‘mq2+n,sp2—t' ®)

We may suppose that mn = st > 0, otherwise we replace n, t by —n, —t respectively. We claim
that mn =st F01f A, 0, 20y = A2y, p2—y € Ap. Indeed, if mn = st =0, from (8) and
the fact that mg? — n, sp> + t,mq> + n, sp> — t are all nonnegative integers, we deduce that
(mg® —n, sp> +1) = (mg®> + n, sp> — t). Hence we may assume that mn = st > 0. From this
and the fact that sp2 +1t, qu + n are both nonnegative, so actually m, n, s, t € N. Therefore (8)
holds true for m,n, s, t € N, mq2 —n>0, sp2 —t>0,mn = st.

If at least one of g and % is not an integer, then the elements A, .2, 21 (= A2 p2—)
in (8) actually belong to the subset of the points in Ag that cannot be written as the form A p;.

Note that it is possible that there exists A¢ 4, A, 7, satisfying Ac 4 = A, 7, belong to the subset
of the points in Ag that cannot be written as the form A, ,;, and cannot be written as the form
(8). Namely at least one of the following two linear systems of unknown quantities (m, n) and

(s,1)

mg*—n=c, sp*+1=d,
mq2+n:e, spz—t:f,

does not admit positive integer solutions. However, observe that there exists some positive integer
j not exceeding 2 p?g? such that both the following two systems

{qu—n:cj, {sp2+t:dj,

mq2+n=ej, spz—tzfj,
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necessarily admit positive integer solutions (m, n), (s, t).
Hence the subset of the points that cannot be written as the form A4; ,; in Ag is

n t
{Amg2—n sprar m n, s, 1 eN,mg> —n,sp* —1t>0,mn=st, — or — ¢ N}
' q9 P

U{A g2y g2 imyn, s, t €eNymn=st,1 < j < 2p2q2,

J o
qu—n mq2+n sp2—t sp2+t
j 9 j b j k .

eNU{0}}. O

Remark 3.1.For =1or = g > 1, any elements A; j, Ay € Ag satisfying A; ; = Ar; and
(i, j) # (k, 1), neither %, § e NU {0} nor &, I € N U {0} takes place.

Lemma 3.4.If 8 € O and p° = L, then

Ag ={hmg—nsptt :m,n,s,t eN,mgq —n,sp—1t>0,mn = st}
U{Amg=—n sp+e :m,n,s,t e N,mn=st,1<j<2pq,
Jo
mq—n mq-+n sp—t sp+t
j b j 9 j 9 .

e N U{0}}.
Proof. For any m,n, s, t € Z satisfying mn = st, we have that

)\mq—n,sp—ﬁ—t = Amq+n,sp—t~ 9

We also assume that mn = st > 0. We claim that mn = st # 0if Ay —n spt = Amg4n,sp—t € Ag.
Indeed, if mn = st = 0, combining (9) and the fact that mq — n, sp +t,mq + n,sp — t are all
nonnegative integers, we deduce that (mqg —n, sp+t) = (mq +n, sp —t). Hence we may assume
that mn = st > 0. From this and the fact that sp 4-¢, mg + n are both nonnegative, we can actually
derive that m, n, s, t € N. So (9) holds true for m,n, s, t e N,mn=st,mg —n>0,sp —t > 0.

Note that it is possible that there exists Ac g, Ae, f € Ag satisfying Ac g = A, that cannot be
written in the form (9). Namely at least one of the following two linear systems

{mq—n:c, {sp+t=d,

mq+n=e, sp—t=f,

does not admit positive integer solutions. However, there exists some positive integer j not ex-
ceeding 2 pq such that both the following two systems

mqg —n=cj, sp+t=dj,
mq +n=ej, sp—t=fj,

necessarily admit positive integer solutions (m, n), (s,t). O
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Remark 3.2. For 8 € Q and 8> = g, it is possible there exist elements A; ;, Ak ; € Ag satisfying

Aij = Ay and (i, j) # (k1) such that &, § e N U{0} or £,4 € N U {0}. An example is that
p=3,9=2,A50=25=2%A16.

Proof of Theorem 1.2. Theorem 1.2 follows from Lemmas 3.1-3.4. O
4. Generic flat torus case
4.1. Caseo € Q

Proof of Theorem 1.4. (i) From p; j =t n, dueto a € Q and o® + B% € Q, one has

£i2~|—j2=£m2+n2,

ij =mn,
which lead to \/gi +j= :I:(\/gm + n). Then (m,n) = (i, j) or (—i, —j), because \/g is an

irrational number. So Ay g =¥, which gives Ky g = So g.
(ii) From p; j = tm,n, we deduce that ij = mn and

£i+j=:|:<£m+n>, (10)
q q
5i—j=i<£m—n). (11)
q q
For (10) we first consider the case £i 4+ j = £m + n, which holds true if and only if m —i =

kq,j—n=kp,k+#0 e Z.Substitutingm =i +kq, j =n-+kp intoij = mn, we obtain pi = gn.
Multiplying j on two sides of this equality, we have gj = pm. In fact (m, n) # (i, j) corresponds
to k #0.

Similarly for (11) we consider the case gi —j=— (gm — n), which holds true if and only if
m+i=kq, j+n=kp. Substituting m = kg — i, j = kp — n into ij = mn, we obtain pi = gn.
Multiplying j on both sides of this equality, we have gj = pm. Note that (m,n) # (—i, —j)
corresponds to k # 0.

For the other case in (10) and (11), similar argument yields pi = —gn, qj = —pm. How-
ever this is equivalent to the result in the above case, since (i, j) and (—i, —j) yield the same
eigenvalue and eigenfunction.

Hence
N N pi=qn,
Aa,ﬁ—{m,Jﬂm,neZ, (m,n) # @, j), (=i, —j) s.t. {pm:qj }
In particular, if a? + /32 = g =1, namely p = g = 1, then the equalities in the above set

become m = j,n =i, namely (m,n) = (j, i). Therefore

{iij :30m,n) # G, ), (=i, —j) st (m,n) = (i)} = {pijYizjin—j

which yields
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Ko p = Sa,p\Na,p = {lti j}i2 g jrzo\ Wi jYistjit—j = {isis i, —itizo. O
Proof of Theorem 1.5. (i). Since &£ + e 0, from the relatlon M Bal — m

n2. If J =n, the equality w; j = tm,, yields g ;;‘3

a+/3

, we deduce that j>

= l+m @ ;é m). If j = —n, the equality

Wi,j = m,n yields ]m | # —m), which is equivalent to the result in the case j = n,
since (i, j) and (—i, — J) yleld the same eigenvalue and eigenfunction.
(i1) An elementary computation shows that

Mm,n — Hi,j o? +/32
o

(m* —i%) — 1(12 —n%) —2(mn — ij).
o (07

If (6) does not admit non-zero integer solutions, then from (,, , = p;, j we deduce that (m,n) =
(@, j)or (=i, —j),s0 Ay g =1.
It is easy to compute that

\/4(mn—ij)2+4(m2—i2)(j2—n2)=2|mj—in|, (12)

which contradicts with the assumption that any non-zero solution (e, f, g) of (6) satisfying

Vg% +def e Q Therefore ., — i j # 0 for any (m,n) # (i, j), (=i, —j), which shows
Ao, g =9.

(iii) Given non-zero integer solution (e, f, g) of (5) satisfying /g2 + 4ef € Q. If the follow-
ing system admits integer solutions (i, j, m, n, k) (k # 0)

m? —i% = ek,
Jj*—n* = fk, (13)
2(mn —ij) = gk,

then 1 j — pm,n = 0. From (12) we deduce

2(mj —in) =ky/ g% + def,

where we assume mj — in, k > 0. This equation and the third equation in (13) lead to

2(m —i)(j +n) =k(g +4/g* +4def).

Combining this with the first and second equation in (13) respectively, we obtain
m+i=di(j+n), i#m,
j—n=dy(m—1i), j# —n,
where dy, d; are defined in (7). From this system we obtain (m, n) # (i, j), (—i, —j) and
1+d d> ’ 0

_ 2dym+(—dida)n

{iz 2dint(dydy—m
- 1+d1d>
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Remark 4.1. Under the assumptions that o € Q, a* + % € Q and “:ﬁ € 0, any integer solu-
tion (e, f, g) of (0) satisfies eithere = f = g=0o0re #0, f #0, g # 0. Moreover, for non-zero
solution (e, f, g), the components e and f necessarily possess the same sign, so djd> > 0.

4.2. Case o = g

4.2.1. Subcase a* + p> =1

Proof of Theorem 1.6. Clearly u; j =t} ;, Vi, j. From p;; = ttm,», we have

2(qg — 2
2@=pPa_ o 2= Lo
q q
If i2 = mn, then m? 4+ n? = 2i2, and we deduce that m =n =i orm =n = —i. If i2 # mn, then

m? +n* — 2i? _2p

S—=— (14)
mn — i q
Similarly, from w; —; = fm.n, We have z(q:p)ﬂ =m? +n?— %pmn. If i2 = —mn, then m? +
n?=2i?, and we deduce that m = —n =i orm = —n = —i. If i% # —mn, then
2 2 )
m°+n-—2i 2
— = _p' (15)
mn +1 q
So
2 2 +2
m°+n- —2i 2p
Ao g ={mi iti=; U iicdm,neZ,mn i2,s.t.—=—
a,B {M!,]}l#/ {Mz,l # mn — i2 4 }
2 2 2
m-+n- —2i 2
U {/«Li,i :3dm,ne€Z,mn # —i2, st —————= _p} .
mn +1 q

In (14), if we take m = i, then (14) become % = 2”4—_61. Furthermore, if ¢ is odd then we

take i = ¢, and if ¢ is even then we take i = £. Then we obtain n =2p —g andn=p — %
respectively. Namely we obtain

Mg.q = Mg 2p—q, if g is odd, 16)
g g =Hg pgs if g is even.
Similarly, in (15), if we take m =i, then (15) become ? = ZP%. If g is odd then we take i = ¢,
and if ¢ is even then we take i = %, and we obtain n =2p +¢g and n = p + % respectively.
Namely we have

{Mq,_q = lg2p+q, if g is odd, an
Mg g =Hg g, if g is even.
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Ifa= %, namely g = 2, then (16) and (17) give that

K11 = 11,0 = H0,1, M1,—1 = K12 = U2,1,

SO

Mii = i0 = M0,is  Mi,—i = Mi2i = M2ii, Vi €L
Hence Ay g = So,5. O

4.2.2. Subcase a* + B2 > 1

Recall that o = £. To make w; j = ftin and n # j,n # —j, we deduce j +n =2ai =
From n # —j we have i # 0. If ¢ is odd, then i = gk, j +n = 2pk, and if g is even, tﬁen
i = %k,j + n = pk for some k € Z, since i # 0, so k # 0. Note that from u; ; = —; , and

2,

(—=i,n) #(,Jj), (—i,—j), we deduce j —n =2ui = 27”1’(] # —n,i # 0), which is equivalent
to the above case w; j = i, since (i, j) and (—i, —j) associate with the same eigenvalue and
eigenfunction. Hence

if ¢ is odd,

if g is even.

Kk, j ; )
Aa,ﬁ S ! { q I}k;éo,./;épk (18)

“%k,/’}k;&o,#%’k’

Proof of Theorem 1.7. Since o € 0, 82 € 0, then & + 2 € Q. So the equation ; j = fim.n
yields i> = m?. The above analysis gives the desired result of this theorem. O

2 2
If B2 € Q, to have w; j = jim,j and m # i, m # —i, we require = %(i #m, j #0).

This means that other than the elements in (18), Ay g includes also the points satisfying that

: 2 2
Wi j = Mm,j ijm = %(i #m, j #0). Hence Ay g # ¥, namely Ky g C S 8.

Proof of Theorem 1.8. (i) We claim that 1o 1 ¢ A, g. Indeed it is clear that for any |j| > 2, one
has 110, j > po,1. Fori # 0, we have

pij=(ai— >+ g% = i*>i* = 1=po,1, V.

Hence the claim is true. So Ay g € Sy, g, namely Ky g # 0.
(ii) Note that for any i € Z, we have

Wi j = Mi2ai—j, YJF#ai,
Miyai =I"l’0,ia

hence Ay g = Su,p and Ky g =1.
(iii) We claim that p1 o = ,32 ¢ Ao, - Indeed, since ﬂ2 < 1, itis clear that po,j > p1,q,Vj #
0. For any j # «, we have

fot—j=p1j = (@— )+ B> B =t

For any |i| > 2 and j, we have
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wij =i — )+ g% =482 > B2 = pi 4.

Hence the claim is true.
(iv) We claim that 0,1 ¢ A, g. Itis clear that o ;j > o1, V|j| > 1. Since @ ¢ N, if g =1,
then for any i # 0, we have

wij=(ai— ) +i*?>i’>1=puo1, Vj.

Hence po,1 ¢ Ag,p-
1—5b2 < B < 1, namely b2 + B2 > 1, since b2 < 4, we have B2 > %. Note that
min; 1, ; = b2 + B2. So the assumption b2 + % > 1 gives uy j = pu—_1,—; > po,1, ¥j. For any
i > 2 and j, we have ; j > 4B% >3 > 110,1. S0 10,1 & Aa,p-
(v) We first consider the case 8 = /1 — b2 and g > 2. Since ¢ > 2, then o — [or] # [e] + 1 —
We claim that if by, = o — [«] then 1 [o]+1 & Ag, g, and if by = [a] + 1 — « then p1 o] ¢ Aaﬁ
Let by = o — [e]. It is easy to see that

Bt o) = [l = b + B =1 < p1 fa1e1 = (1 = be)* + B < 2.

For any j # [a], [@] + 1, we have u_1 _j = w1, j > f1,[o]+1- For |i| > 2, we have

i >i2* >3 > ui a1, YV,

where we used the fact that 8% > 4, since b2 + B2 = 1. Clearly Ho,j 7 K1 fal+1, ¥ -

To sum up, f1,[o]+1 & A«,g. The argument of this claim for by = [a] + 1 — « is similar, we
omit it.

Now we consider the case ¢ = 2. One has b, = % ﬂ2 = %. From the derivation of (18), we
have p; j = i pi—j, Vi, j. Note that p is odd. So for odd i, we have j # pi — j. For non-zero

even i, we have j # pi — j as j # %i. Observe that pp , =3 = Wy pi3. Hence for any non-zero
)
2 . .
even i, we have u; pi = % =i +»i.On the other hand, the relation p10,1 = 1=, ps1 gives
2 2:7 4 2
Mo, j = j2 =u; 2R Vj#0.
To sum up, Ay g = Su,8,50 Kep=9. O

Next we consider the case that 82 € Q, a = g ¢ N (sog >2)and B < /1 —bZ. We discuss
it by dividing into ¢ =2 and g > 3. For ¢ =2 we have b, = % and B < 4

Proof of Theorem 1.9. (i) We claim that 1 , ¢ Ay .
We first consider the case 8 < ?, namely % + B2 > 482, Note that 482 = w2, p. Clearly
W_2,—j=M2j> 2 p,Yj#p.Notethatmin; pu; j = %+,32,hence M1,j=H—1,—j > [2,p,V].

We have
Wi > 42B% > 4B = o p, Vi, il =2k, k> 2 (19)

and
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1
pijZ g+t > 9B = 4% = o p. Vi li] =2k — Lk >2. (20)
We also have

1 )
Mz,p=4ﬁ2<z+ﬁ2<1suo,]~,w #0.

Hence uz,p ¢ Ag,p-

We consider the other case 8 € (%5’ %) U(%, @), namely ‘l—t—l—ﬂz <4p%and B> # }T. Note that
pa.p =4B% <3 and wa, , # 1. Hence po p # 110.j, ¥j # 0. It is easy to see that s , = 482 <
% + 2. Combining this and the fact that minj uy,; = % + p? <4p? = W2, p, we obtain that
w2,p # m1,j =m-1,—j,Vj.Clearly uz j > uz p,Vj# p. Combining this analysis and (19)-(20),
we deduce that us , ¢ Ay .

(ii) We first consider the case B = % From (18), for any i and j # %, Wi,j € Ay p. If 7 is odd,
owing to p is odd, then % ¢ Z.1f i is even, note that

=g i, YiFO.
Hence Ay g = Su, -

Now we consider the case f = %, namely the case that i + B2 =4pB2. For any given (i, j),
to find (m, n) # (i, j), (—i, — j) such that p,, , = u; ;, we need to solve

1
[pG+m) =20 +m)]lpli —m) =2(j —n)] = g(m +i)(m —i).
Set m — i = 3k, then

[p(Q2i 4 3k) —2(j +n)1[—3kp — 2(j —n)] = (2i + 3k)k.

Let
n4j= (p+1)(22i+3k)’
. GBp-Dk
n—j= ( p2 ) i
we obtain j = w + k and
1 .
n:E[(p+1)l+(3p+1)k]. 2D

Substituting k = j — 3V into m = i + 3k and (21), we obtain

m=3j — Grebi

_ GBp+Dj _ (p+DHBp—-Di (22)
) 4 .

n
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Note that p is odd, so both the values of m, n obtained in (22) are necessarily integers. To the
end that (m, n) # (i, j), we deduce k # 0, so j # w. For j = w, we have

l'2

M i = = = i pi Vi #0.

An elementary computation shows that m +i =2i 43k =3 ( Jj— @) and

. (p+DQ@i+3k) 3(p+D (. GBp-1i
nti= 2 -~ 2 U 7% )

To have that (m, n) # (—i, —j), one requires that j # w. Note that (3”6# € Z if and only
if i = 3s for some s € Z. Observe that when i = 3s,

i2

M; Gp-bi = = == Ho,s, Vi #O.
S 9

Tosumup, Ay g =3Sus. O

Proof of Theorem 1.10. Note that § < /T — b2 = V‘f;*‘ since by = 1.

_ 1 2 2 2.2
7 rzil,namely by + B~ > B=q~, we have gy p ¢ Ao .
Clearly g, j = itq.j > ig.p. Vj # p. We have

Claim 1: For the case 8 <

Ik j = k2B > ¢ B* = g p.Vi.i = qk, k| > 2. (23)

Since by, = ql, we have

Wi = b2+ 2% > b2 + B2 > ¢*B% = ug.p. Vi, 1 < il # qlkl. (24)

We also have

lap =B <b:+q> <1< p0;.Vj#O0.

Hence g, p ¢ Mg p.

1 q2—1

T , namely bg[ + B% < B%q?, if by = a — [«] then

avq*—
1] & N g, and if by =[] + 1 — o then pg [¢141 & Aa, -
Let by, = o — [«]. It is easy to see that

Claim 2: For the case < B <
el = b2+ B =minp ;< w1 =p_1,—j, j#lal.
J
Fori =kq,k #0 € Z, we have

kg, = K2q*B% = ¢*B* > bZ + B* = 111, [, V.
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For 2 < |i| # |k|q, due to by = [ll we have

Wi j > bi +i’g% > b§ +p%= Ml Y I

The assumption b2 + B2 < 1 yields wo,j > M1l ¥ J #0.Hence u1, (o] € Aw,p. The argument
of this claim for b, = [a] + 1 — « is similar, we omit it.

Claim 3: For the case 8 = ﬁ, namely bg[ + B% = B%¢?%, if by = a — [«] then
Hg—1,(g=Dlal+1 & Ae,p, and if by = [a] +1 —a then g1, (g—1)(a)+1)—1 ¢ Aq,p. We only prove
the case of by = o — [«].

Let by = @ — [«]. Note that bé + ,82 = ,32 2= f+1' Plainly we have

Hg—1,g—Dlal+l < Mg—1,j =Hh—g—1),—j> Y] # (@ — Dla] + 1.

We have

2 1
)
qglg+1) qg=-1

Hg-1.q-Dlait1 =Dy + (g — B> = = by + B° = 11 ] = Bl —fa)-
From this and the relation p, , = B2q* = b2 + B% = 11 [a], We have

Hg—1,(g=Dlal+1 = Hg,p = M—g,—p-

For any j # [«], we have

Hg—1,(g-Dlal+l — K1, < Hg—1,(g=Dlal+1 — K1 [a]+1 (25)
=——— — (B + (1 —ba)?)
q(g+1) ¢
2 1 (q—1)>
qg+1)  q*@>-1 q?

__q3—2q2—2q +4
q(g+1(g—1)

SO fg—1,(g—Dlal+1 < M1,j = U—1,—j, Y] # [a]. From

2 4
<
qig+1) q°—

Hg=1.q-Dlal+1 = [ =405+ B,

we deduce that
Mg—1,(g—Dlal+1 < Mij» Y j, Y2<li|<q—2.
We also have

Ig—1,(g—Dlal+1 =b2+(q — DB <b2+¢*B* < 1+ ¢*B2 < g j=t—g—j» Vi# P

For g < |i| # |k|q, an elementary computation shows that
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Ig—1.g-Dial+1 = b2 +(q — D?B* < b2 +i*B* < pij, V j.
Fori =kq(|k| > 2), we have

k* 4
32 202 3242 N
Mg kp =k"q"B" =k (ba+ﬁ)—q2_1z—q2_l

> Hg—1,(g—Dlal+1;
which yields that

Mg—1,(g—Dlal+1 < Mkg,j» Y J-

Finally it is clear that

Mg—1,(g=Dlal+1 < Ho,j, Y j#O0.

To sum up, we have g1 (g—1)[al+1 & Aa,p-
Claims 1-3 give the desired result of this theorem. O

Finally we need to deal with the case that b, > % (so g =5 or g > 7). An elementary compu-

tation shows that

1 b2
2.2 <
q*(gc—4) q*—1

1, 1
Moreover it is easy to verify that the following relation does not hold true
202 2 2 1 2
q° B =b,+p Sq—2+4,3 )
since by > % and g > 5.

Proof of Theorem 1.11. (i) We first consider the case 8 < L —, namely the case

qVq*—4

) 1
qzﬂz < mln{bfl + B2, q_2 +4ﬁ2} .

(26)

27)

We claim that pg , = q*B* ¢ Ag,pg. Indeed, from (27) we know that for any 1 < [i| # g|k]
and any j, pg,p < pi,j. Clearly pg p < pg,j =t—g,—j, J # Ps Uq,p < Hikq,j, Y1kl > 1,V and

Mg, p < Mo,j,Vj#0.Hence uy p & Ao g.
Now we consider the case § = L —, namely the case

avq*—4
1

4B = — +4p> < by + B2
q

Claim 1: If either g is even or ¢ is odd and b, # %, then g, p & Ag.g-

(28)
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If g is even, then uy ; > ;—2 + 4,32, Vj. Combining this and (28), we obtain ug,, < u2,; =
m—2,—j,Vj. From (28) we also know that 1, , < u1,;,Vj, and for any 3 < |i| # gk and j,

Hq.p < pij- Cleatly g, p < tq,j = t—g,—js ] # P> Kq.p < Ho,j and Ug p < tkp,js VIK| >
1,Vj.Hence g, p & Aa,g-

If g is odd and b,, # %, then po j > ;—2 +4p2,Vj. The rest argument is the same as that of

the case g is even, we omit it.
=1 _

Claim 2: If g is odd and by = 5~ = o — [«], then

= «,8- Note that

4-2.(q-D)lal+%5> ¢ A

1 22
Mq_z’(q_z)[a]+‘1*3 = ? + (‘Z - 2) ﬁ . (29)

C— o — 9-3 2 __1
S;) 'L.Lq—Z,(q—Z)[a]-&-% < MUg-2,j = H—(q-2),—j> ] # (q 2)[a] + 7 - By ﬁ — 42(q2—4)’ we
obtain

1 4
(g =276 < 5 +16p> =4g°p",
q q
which means that
’uq—Z,(q—Z)[ot]—&-# < Hkq,j> v |k| >2,V ja
and
/’Lq_zv(q_z)[a]_;’_# < Mi,j, V4 =< |l| =q - 1, |l| #q -2 ,V .]

It is easy to verify that

1
= + (g —228% < b2+ B,

1 —3)2
?+(q—2)2ﬂ2<%+9ﬂ2,
(g —1)?

1
@ =2%8 < ——5— +4p,
q q
and
1
2T <1
The above four inequalities respectively leads to

Hg2,g-lal+532 < H1j = H=1-j> ¥ J;
Hy2,(g-lal+532 < 3.5 =H=3-j> ¥ J,

Mq_z’(q_z)[a]+q—3 < M2, =M-2—j, V.] 75 2[(1] + 1a
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and

'u'qZ(q “2)[a]+ 3<l/«q]—ﬂ quvvj#p

From (28) and (29) we know that

K2, (g-2)al+ 152 = H2.2lel+] = H=2,-Qlal+1D)>

g2, g-21+ 152 = Ha.p = H=q.—p-

Finally, it is clear that

M(I*2>(Q*2)[a]+% < Mi,j, Vq < |l| # |k|Q7 Vk, js

My 2 (g-Dat+ i3> < HO.j» ¥ J-

To sum up, we have Ky (q-Dia =] 3 € Aog-
Claim 3: If ¢ is odd and b, = z—ql [¢] + 1 — «, then I,
ment is s1m11ar as that of Claim 2, we omit it.

1 1
(ii) For \/7 <B<,30b—- q—z), namely

2.(g-Dlal+ 45 ¢ Ay p. The argu-

1
47 <min [0} + 2.4, (30)

we claim that 17 2[¢141 € Ag,p. Note that s 2(g141 = qiz + 4,82, since ¢ is odd and by = %.
Combining this and (30), we have

M22[a)+1 < M1,j = M-1,—j, ¥ ],
W22(al+1 < Mi,j, Yi=kq, Vk#0, j.
Clearly
M2 20al+1 < Wi j, V3<I|i| #kq, Yk, j,

M220al+1 < M2, =p—2,—j, ¥V j#2la] +1,

H2.2[al+1 < Mo,j, ¥ j#O.

In another word, (2 2[a+1 ¢ Aa, 8-

(iii) The case 8 = /%(bg[ — qlz) corresponds to the case

1
p +4p2=b + 1 <q* B G1)
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Claim A: if either g is even or ¢ is odd and b, # %, then

Pia] & Aag, T by =a —[al,
M1, [e]+1 ¢ Aa,ﬂ, if ba = [a] + 1 —a.

Assume g is even. Note that o j > — 44+ 4B%,Vj. If by = a — [a], then Ml[a] = b2 + p2.
Combining these and (31), we obtain m,[ | < M2,j=pm-2—j,Vj. From (31) we also know that
M1,[a] < Mkp,j» Yk #0,Vj, and for any 3 < |i| # glk| and j, p1[a] < mi,j. Clearly pq o) <
M1,j =M-1,—j,Vj#la] and w1 [e] < to,;j,Vj. Hence uy (o] ¢ Aw,pg. For the case by = [a] +
1 — &, note that jt1 [41+1 = b2 + B%. The rest argument of this claim in this case is similar as that
of by = o — [«], we omit it.

Assume ¢ is odd and by 75 . Then p ; > 2 +4p2,Vj. The rest argument is the same as
that of the case ¢ is even, we omlt it.
Claim B: If ¢ > 7 is odd and by = Z_ql =o — [a], then (1 [q]+1 ¢ Ag,p- Note that
(g +1)? (g —1)? 1
Hljarl = ———— + 2> ——— + B2 =b + 7= — +4p7, (32)
4q 4q? q*
o)
M1, —[a] = M1,[a] < K1[a)+1 < M1, = 1-1,—j, ] #la], [@]+1,
and

M1 [al+1 > M2 2[a]+] = M—2,—Q2[a]+]1)-

1)(g—=3 .
By B2 =12 — qiz) = (q+1§;q2 ) we obtain

(q—1)?

+1)2
(g+1) + B < : + 482,

4q° q
SO

Milal+l < M2 =p—2—j, ¥V j#2la]+1.

It is easy to verify that

(g +1)?
4_ T 4.2

(q+1)?

i +8° <4’ +87 <1,

which mean that

Kl fal+1 < Mkq,j» Yhk#0, ¥ j, and i1 o141 < po,j, ¥ j #0.

‘We have
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+1)? 1 —5)(5¢ +3
(q4qz) +ﬁ2_<q_2+9ﬂ2>:_(6] 1)2((];1 ) <o,

which means that
Wial+1 < Wi j, Y3IZ|i|F#qlk|, Yk, j.

All in all, My 2. (g-D)lal+ 45 ¢ Ao.g-

Claim C: If ¢ > 7 is odd and b, = qz—q [a] +1 — «, then [ ¢ Ay, g. The argument is
similar as that of Claim B, we omit 11t

Claim D: If ¢ =5 and by = %= = £, then Aq,p = So.p. Indeed, B =12 — q‘—z) = 5.
Recall that

For any i # 0, we have

. . )
Msij = Wsi2pi—js ¥ J 7 Pl Usipi =17 = [o,i-

On the other hand, for any i satisfying ’3 ¢ 7, we have

(pi —5))? :
Hij= E + 25 = H i, @20 0 pj’ Vi

2
Note that Z 5+1 € 7Z, since by = 5 Moreover, it is easy to verify that (pi — 5, b H)’ —pj) #

(i, j), (—i, —j). Observe that

.2 .
mo,j =Jj°=msjpj, ¥ j#O0.

To sumup, Ay g = Sup.
(iv) For /%(bgl — q%) < B < /1 —DbZ, namely
1
b2 + B% < min { — +4p%, q2ﬁ2} , (33)
q

we claim that if by = o — [o] then pu1,[o] ¢ Ag,g, and if by =[] + 1 — o then p1 [¢]+1 € Aa,s-
Assume by =« — [a]. Note that (] = bg[ + ,32. Combining this and (33), we have

Kl fa] < Mij, Y2 <Ii| #|klg, Yk, j,
W) < Mi,j, Yi=kqg, Vk#O, j.

Moreover

Wifa) < M1,j = M—1,—j, ¥V J# o]
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K] < Ho,j, ¥V ] #0.
Hence p1,[¢] ¢ A, - The argument of this claim for by = [a] + 1 — « is similar, we omitit. O
5. Local convexity of bifurcating curves

We first consider local convexity of bifurcating curves for rectangular torus case. To this end
we need to establish the following lemma.

Lemma 5.1. Assume p; j = BA; j € BKg. For any ¢ € R(9,F(p;,j,0)), the only solution ¢ €
ker(u F (pi.j, 0))* of

0uF(pij,0)p=Ad+1ijp=¢

is given by

¢(x,y)=Co+ > A5 cos(2rrx) cos(2mp sy),
r,s€eNU{0},r2 4520

where

Co= 0 Ay=0. An=— G #G ).
Aij ' i A
Here A~”, Co are the Fourier coefficients of ¢
L(x,y) = C'o + Z Am cos(2mrx) Cos(2n,371sy).

r,seNU{0},r2 45240

Proof. Substituting the Fourier expansions of ¢ and ¢ into the equation A¢ + A; j¢ =, we
obtain

Corij+ Y. Arslhij—4m2(* + 257 ] cos2mrx) cos2mB ™ sy)
r2 4520

=éo+ Z A,’scos(27rrx)cos(2n,8_lsy),
r2452£0

which gives

Cori.j=Co, Ars(hij—hrs) =Arg, (r,5) # G, J).

In fact A; j =0, since ¢ € ker(3, F(0; j,0)*. O
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Proof of Theorem 1.12. A simple computation shows that

o5 Jo Ji sdxdy
p g2 ‘

O F(p.0)g, c1=p (

Take ¥ = wo = cos(2wix)cos(27B~!jy). Due to fol foﬁ wodxdy = fol foﬂ widxdy = 0, we
have

/32
1 B 1 B 1B
[ [ o] [
= —_—— 0 w,
B B 0
0 0 0 0 0 0
=0.

So pl.’,J.(O) =0and
033 T (pi,j» 0)[wo, wol =
Then
@ F (1.7, 0) 1T — Q) , F(pi. ;. 0)[wo, wol = (3 F (01, 0)) '8y, F (pi. . 0)[wo, wol,
and we denote this term as ¢. Correspondingly we denote

2 L g 2
w w
¢ =32, F(pij, 0)[wo, wol = pij [ =2 _b f02 0],
B B
then

)\’. .
= %(cos(4m’x) + cos(@mB ™! jy) + cos(dmix) cos(dn ! jy)).
From Lemma 5.1 we have

¢ = Agiocos(@dmix) + Ao cos(4n,371jy) + Agjzjcos(4mix) cos(47r,371jy),

where
Aij Aij 1

————, Aoj=——, Agj=——.
4(% j—Mi0) / 4(Aij — Aro,25) b

A
2i,0 12

So
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(02, F (pi.j. O [ wo, 0 F (o1, 00 ™' = ©)02 . F (pi.j. O)lwo, wol |, )

1B 1 B
= (35 , F (0i.j» O)[wo, ¢1, ¥ //wop,, wod _ //w—oz"’
0 0 0 0
1
Al]/
0

o\m
E

B
/ wé[Azi,o cos(4mix) + Ag2;j cos(4nﬂ_1jy) + Agipjcos(4mix) cos(4nﬁ_ljy)]

Il

o

\
o _

0
1
Ao+ Aoj — o (34)

It is not difficult to compute that

( uuuF(p, i» O lwo, wo, wol, ¥)

! 1 |
—//w .A<w_8_3w0fofoﬂw(2)_fofoﬂw(3)>
= 00i, j B

0

B B2
0
1 B 1 B 2
[ et [ ]
0 0 0 0
3pi,j
= 35
64 (35)
Finally, we have
1 P r B
lwoll(33 , F(pi,j, O)wo, ¥) = ||wo||25f/w§=g- (36)
0 0

Combining the formula of second-order derivative in Proposition 2.2 and (34)-(36), we obtain
the desired result of Theorem 1.12. O

Proof of Corollary 1.1. We denote

" 0) = 1)\ Aij + Aij 1 _. l)» 1+1 1
Pt = o —hiy  honj— iy 3) 27\ T T3)

Note that Ay; 0 + Ao2j =4Ai j, 508 +0 =2.
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DI LB~1j <i <+/37!j, namely

(h2i0 — Mi. ) (Mo — Mij) = —(Bi* — B2 D2 =372 > 0, (37)

2
T

then both § and o are positive. Hence the mean value inequality n < ‘HT” and the fact 6 +o0 =
5

o

2 yield % + é > 2, and the desired result ,ol” ; (0) < 0 follows.
) Ifi < ?,B’Ij ori > +/387!j, then the sign in (37) is in opposite direction. So the desired
result ,olf”j (0) > 0 follows. O

Next we consider the local convexity for the generic flat torus case. Similarly, we establish
the following lemma.

Lemma 5.2. Assume p; j = B, j € BKqy p. For any { € R(0,F (p;,j,0)), the only solution ¢ €
ker(d, F (pi,j, O)* of

0 F(pi,j,0)p=Ad+ i jp=¢

is given by

¢(x.y)=Co+ Y Apgcos2rlrx+p " (s —ar)yl,
r,s€Z,r24+5240

where

Co Ars .
C(): s Ai,j:09 Ar,szé? (V,S)?é(l,‘]).
Mi, j Mi,j — Mrs

Here Ar, s, Co are the Fourier coefficients of

;(x,y):éo—i— Z AmcosZn[rx—i—ﬂ*](s—ar)y].
r,seZ,r2 4520

Proof. Substituting the Fourier expansions of ¢ and ¢ into the equation A¢ + w; j¢ = ¢, we
obtain

Cottij+ Y Ans(tij— thrs)cos2m[rx + B~ (s —ar)y]
r2452£0

= C‘o + Z Ar,s cos2m[rx + ﬂ_l(s —ar)yl,
r2+s2£0

which gives

Copij=Cos  Ars(ij— lhrs) = Ars, (1, 8)# G, j).

In fact A; ; =0, since ¢ € ker(d, F (p; ;,0)*. O
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We set
. o
X=x— Ey,
TP ey
y= T)’-
A simple computation shows that
dx.y) B

0E. 5 Jaltp?
Set wy = cos2m[ix + ,8’1 (j — ai)y]. We claim that

/wodxdyz / dexdy:O
To,p Tu,p

and

3
/ widxdy = g, / wgdxdy = ?ﬂ

Tu,p To.p
Indeed, by (38) we have
| VoI , 8
/ wodxdy = / / cos2m | ix + J ¥ ()f’ )j) dxdy
Ja2 1B ) 9GE.)
Top 0 0
5 1 Vo242 i
L~ Yy ~ g~
= — cos(2mwix)cos | —— | dxdy
w/a2+,320/ 0/ <‘/a2+,32)
. TN 7]y < g~
_ sin(2wix) sin | ——— | dxdy
\/az—i-ﬂzo/ 0/ (vaz—i—ﬂz)
=0.

Similar computation can give the other three equalities in this claim.
Proof of Theorem 1.13. For

oc fTa.ﬂ wgdxdy)

32 F(p,0)p, ¢cl=
(P, 0)[e, ¢l p(ﬂ 5

taking ¥ = wg, we have
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5 2
wg fTa,lg wo)

(07 . F (pi.j, 0)[wo, wol, ¥) = / Wopi,j (

B B>
To.p
_ Pi, j 3 Pi,j f wo / w()
B
To,p To,p To,p
=0.

So ,ol.’yj(O) =0and QaiuT(,oi,j, 0)[wg, wo] = 0. Then

@ F(pi,j. 0) I — Q)dy , F(pi,j. 0)wo, wol = (8, F(pi,j. 0) "85, F (i, 0)[wo, wol,

and we denote this term as ¢. Correspondingly we denote

2 2
wO fTaHg wo)

¢ =05, F(pi.j O)wo, wol = pi,j ( B 82

then

¢ = %cosZn[Zix 71 2) — 2ai)yl.

From Lemma 5.2 we have
1 . n .
qb:—gcosZn[le—i—,B 2j —2ai)y],

where we used the relation (2 2; =4 j. So

(O2  F (pi.j> 0) [wo, 0 F (o1, )™ = Q82 , F(pij, O)lwo, wol |, )

=<35,MF<pi,j,0>[wo,¢],w>=/wom wod fWO‘f’

Ta.ﬁ T‘Yﬂ
= Wi j / wéfﬁ
Ta,ﬁ
- 1 27 [2i “12j —2ai
=_%/ +cos 2| ”“Lzﬂ (2] =2005) arix + BN @) — 2ai)yldxdy
Toc.ﬁ
_Pij (39)

24
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We also have

(3 4w F (i, 0)[wo, wo, wol, )

2 3
wy Wo fTa”B Wo fTw; Wo
wopi, j - -

B B2 B2
Tu,p
2
Pi,j 4 3pij / 2
=— | wyg— —+ w
B L 0
Ta,ﬂ Ta’ﬂ
—30pi
=" 40
2 (40)
and
2,42 21 2B
lwoll“(d; , F (pi,j, O)wo, ¥) = llwoll B wy =7 (41)
Ta,/S

Combining the formula of second-order derivative in Proposition 2.2 and (39)-(41), we obtain
the desired result in Theorem 1.13. O
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