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Abstract

We study the mean field equation on the flat torus Tσ :=C/(Z +Zσ)

�u + ρ

(
eu∫

Tσ
eu

− 1

|Tσ |

)
= 0,

where ρ is a real parameter. For a general flat torus, we obtain the existence of two-dimensional solutions 
bifurcating from the trivial solution at each eigenvalue (up to a multiplicative constant |Tσ |) of Laplace 
operator on the torus in the space of even symmetric functions. We further characterize the subset of all 
eigenvalues through which only one bifurcating curve passes. Finally local convexity near bifurcating points 
of the solution curves are obtained.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the mean field equation on the flat torus Tσ := C/(Z +Zσ)
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�u + ρ

(
eu∫

Tσ
eu

− 1

|Tσ |

)
= 0, (x, y) ∈ Tσ , (1)

where σ := α + iβ with α ≥ 0, β = |Tσ | > 0. Since the above equation is invariant by adding a 
constant to a solution, we introduce

Hσ =
{

u ∈ H 1(Tσ ) |
∫
Tσ

u = 0

}
.

Note that Hσ , equipped with the H 1(Tσ ) norm, is a Hilbert space.
The corresponding energy functional of (1) is

Jρ,σ (u) = 1

2

∫
Tσ

|∇u|2 − ρ log

(
1

|Tσ |
∫
Tσ

eu

)
. (2)

This kind equation is related to the prescribed Gauss curvature problem from the geometric 
point of view (see [3], [4], [11], [12], [13], [17], [26], [27], [31], [32], [35]). It also arises from 
vortex theory of two dimensional turbulence (see [2], [7], [8], [9], [10], [19], [23], [29]) and 
Chern-Simons-Higgs gauge field theory (see [6], [18], [20], [30], [39], [40]).

Mean field equations on tori have been studied by many researchers and there are also many 
known results. In [36], the authors proved that non-zero one-dimensional solutions to (1) on a 
square torus exist if and only if ρ > 4π2 and the solutions are evenly symmetric. Concerning the 
nontrivial two-dimensional solutions, the authors in [38] used the Min-Max scheme to establish 
the existence for ρ ∈ (8π, 4π2). Both their results could be extended to a rectangular torus by a 
simple scaling argument while the bound 4π2 is replaced by λ1(Tσ )|Tσ | where λ1(Tσ ) denotes 
the first eigenvalue of Laplace operator on Tσ . Recently it is found in [15] that two dimensional 
solutions exist for ρ > 8π but close to 8π on a rectangular torus. The authors in [1] generalized 
the result to any flat torus.

Based on the above stated results, a natural task is to understand the structures of solutions of 
(1) for various ranges of ρ. Now the structure of solutions has been completely understood for 
ρ ≤ 8π . In [5] the authors proved a one-dimensional symmetry result for ρ up to an upper bound 
which is smaller than 8π and can be written explicitly in terms of the maximum conformal radius 
of a rectangular torus. Later, it is proven in [33] that zero is the unique solution of (1) provided 
that ρ ≤ min{8π, 32 l2

|Tσ | } where l denotes the length of the shortest geodesic of an arbitrary torus. 

Note that their result is sharp if l2

|Tσ | ≥ π
4 . In [34] the one-dimensional symmetry of any global 

minimizer of Jρ,σ is proven for ρ ≤ 8π . It is also conjectured that u ≡ 0 is the unique solution 
of (1) on an arbitrary flat torus whenever ρ ≤ min{8π, λ1(Tσ )|Tσ |}. The conjecture is validated 
by the second author and Moradifam in [24] for the case of rectangular tori. Their proof relies on 
a “sphere covering inequality” developed in [25]. Precisely, they first show that the solutions are 
evenly symmetric about both axes if the origin is a critical point of the solution by applying the 
“sphere covering inequality”, then prove that symmetric solutions about two axes must be steiner-
symmetric on some “sub-torus” and then must be one-dimensional. Recently, the conjecture is 
proved by in [22] for the case of a general flat torus.

In this paper, we will try to find multiple two-dimensional solutions of (1) for large ρ. Dealing 
separately for the rectangular torus case and the generic flat torus case, we will use the bifurcation 
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method to obtain two-dimensional solutions, which are bifurcating from the trivial solution at 
each eigenvalue (up to a multiplicative constant β = |Tσ |) of Laplace operator on the torus in the 
spaces of functions with certain symmetries. We will further find out the subset of all eigenvalues, 
from which only one bifurcating curve emanates. Local convexity near bifurcating points of the 
solution curves will also be obtained. Multiple non-axially symmetric solutions of the mean field 
equation on unit sphere bifurcating from trivial solution can be found in [21].

First we consider the rectangular torus case, namely α = 0. We denote Tσ as Tβ . Let 	β be 
the lattice generated by 1 and β

√−1 in C, namely

	β = span{(1,0), (0, β)}.

We may suppose β ≥ 1. The dual lattice 	∗
β denotes the set

	∗
β := {ξ ∈ R2 : 〈ξ, (x, y)〉 ∈ Z, ∀(x, y) ∈ 	β},

where 〈·, ·〉 denotes the standard Euclidean inner product in R2. So

	∗
β = span{(1,0), (0, β−1)}.

It is well known that the function

fξ (x, y) = e2π
√−1〈ξ,(x,y)〉, ξ = (ξ1, ξ2) = (i, β−1j) ∈ 	∗

β, ∀ i, j ∈ Z

is an eigenfunction of the Laplace operator on Tβ with eigenvalue 4π2|ξ |2, namely

−�fξ = 4π2|ξ |2fξ .

Moreover, the family {fξ }ξ∈	∗
β

is a complete system of eigenfunctions. For given i, j ∈ Z, ξ =
(ξ1, ξ2) = (i, β−1j) associates with the following two independent eigenfunctions corresponding 
to the eigenvalue 4π2|ξ |2 = 4π2(i2 + β−2j2)

cos(2π(ξ1x + ξ2y)), sin(2π(ξ1x + ξ2y)).

Note that, if ij �= 0, the three symmetric elements (−ξ1, −ξ2), (−ξ1, ξ2), (ξ1, −ξ2) ∈ 	∗
β give 

the following other two independent eigenfunctions corresponding to the eigenvalue 4π2(i2 +
β−2j2)

cos(2π(ξ1x − ξ2y)), sin(2π(ξ1x − ξ2y)).

Hence there are four independent eigenfunctions to the eigenvalue 4π2|ξ |2 = 4π2(i2 + β−2j2), 
or equivalently the following four independent eigenfunctions

cos(2πξ1x) cos(2πξ2y), sin(2πξ1x) sin(2πξ2y),

cos(2πξ1x) sin(2πξ2y), sin(2πξ1x) cos(2πξ2y).
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If ij = 0, namely ξ1ξ2 = 0, say ξ2 = 0, there are only two independent eigenfunctions to the 
eigenvalue 4π2|ξ |2

cos(2πξ1x), sin(2πξ1x).

If we impose axial symmetry on functions

fξ (−x,−y) = fξ (x,−y) = fξ (−x, y),

then the eigenfunction space is 1-dimensional in either case, and its basis is

cos(2πξ1x) cos(2πξ2y).

Hence, in what follows, we may assume that the components i, j in ξ = (ξ1, ξ2) = (i, jβ−1) ∈ 	∗
β

satisfy i, j ≥ 0 ∈Z.
Denote

λi,j := 4π2(i2 + β−2j2), ∀ i, j ≥ 0 ∈Z,

then the set of all eigenvalues is

{4π2|ξ |2 : ξ ∈ 	∗
β} = {λi,j }i,j≥0,i2+j2 �=0 =: Sβ.

The reason for i2 + j2 �= 0 is that 
∫
Tβ

fξ = 0.

To make λm,n = λi,j , we require that β2(m2 − i2) = j2 − n2. Denote

�β :=
{
λi,j : ∃ m,n ≥ 0 ∈ Z, (m,n) �= (i, j) s.t. β2 = j2 − n2

m2 − i2

}
,

Kβ := Sβ\�β.

Further we define

βKβ := {βλi,j : λi,j ∈ Kβ}, βSβ := {βλi,j : λi,j ∈ Sβ}.

We denote the sets of all rational numbers and irrational numbers by Q and Q̄.
In this paper, we always denote a positive rational number as p

q
, where p, q ∈ N and their 

largest common factor (p, q) = 1.
Our results in the rectangular torus case are as follows.

Theorem 1.1. All elements in βSβ are bifurcation points for the curve of trivial solutions (ρ, 0).
In particular, for any ρi,j = βλi,j ∈ βKβ , there exists ε0 > 0, and for ε ∈ (−ε0, ε0), (1) admits 

a family of solutions (ρi,j (ε), uε), where ρi,j (ε) is an analytic curve and

{
ρi,j (0) = ρi,j ,

u (x, y) = ε cos(2iπx) cos(2jπβ−1y) + εZ (x, y).
(3)
ε ε
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Here Zε(x, y) satisfies that Zε(−x, −y) = Zε(x, −y) = Zε(−x, y) and Z0 = 0. Moreover, all 
the bifurcation curves can be extended globally, and are unbounded with either ρ or |u|H 1(Tσ )

tending to infinity.

Theorem 1.2. (i) For β2 ∈ Q̄, we have Kβ = Sβ ;
(ii) For β = 1, we have

Kβ = {λi,i}+∞
i=1 \{λki,ki : ∀k ∈ N,∃a, b ∈N, a > b, (a, b) = 1 s.t. i = a2 + b2};

(iii) For β = p
q

> 1, we have

Kβ = Sβ\[{λqi,pj }i �=j

∪ {λkqi,kpi : ∀k ∈ N,∃a, b ∈N, a > b, (a, b) = 1 s.t. i = a2 + b2}
∪ {λmq2−n,sp2+t : m,n, s, t ∈N,mq2 − n, sp2 − t ≥ 0,mn = st,

n

q
or

t

p
/∈ N}

∪ {λmq2−n
j

,
sp2+t

j

: m,n, s, t ∈N,mn = st,1 < j ≤ 2p2q2,

mq2 − n

j
,
mq2 + n

j
,
sp2 − t

j
,
sp2 + t

j
∈ N ∪ {0}}];

(iv) For β ∈ Q̄ and β2 = p
q

, we have

Kβ = Sβ\[{λmq−n,sp+t : m,n, s, t ∈N,mq − n, sp − t ≥ 0,mn = st}
∪ {λmq−n

j
,
sp+t

j
: m,n, s, t ∈ N,mn = st,1 < j ≤ 2pq,

mq − n

j
,
mq + n

j
,
sp − t

j
,
sp + t

j
∈ N ∪ {0}}].

For the generic flat torus case, namely the case α > 0, and we denote Tσ as Tα,β . Hence the 
corresponding lattice is

	α,β = span{(1,0), (α,β)}.

We may suppose α2 + β2 ≥ 1. The dual lattice 	∗
α,β is

	∗
α,β = span

{(
1,−α

β

)
, (0, β−1)

}
.

Similarly, the family functions

fξ (x, y) = e2π
√−1〈ξ,(x,y)〉, ξ = (ξ1, ξ2) = (i, β−1(j − αi)) ∈ 	∗

α,β, ∀ i, j ∈Z

is a complete system of eigenfunctions of the Laplace operator on Tα,β . For given i, j ∈ Z, ξ =
(ξ1, ξ2) = (i, β−1(j −αi)) gives the following two independent eigenfunctions corresponding to 
the eigenvalue 4π2|ξ |2 = 4π2(i2 + β−2(αi − j)2)
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cos 2π[ix + β−1(j − αi)y], sin 2π[ix + β−1(j − αi)y].

If we impose even symmetry on functions

fξ (−x,−y) = fξ (x, y),

then the eigenfunction space is 1-dimensional, and its basis is

cos 2π[ix + β−1(j − αi)y].

All eigenvalues of Laplace operator on Tα,β are

4π2[i2 + β−2(αi − j)2] := μi,j , ∀ i, j ∈Z.

Moreover i2 +j2 �= 0. For simplicity, during the computation in the whole section 4 we will omit 
the coefficient 4π2β−2 of μi,j , and its following two forms will be used

μi,j = β2i2 + (αi − j)2 = (α2 + β2)i2 + j2 − 2αij.

Note that both (i, j) and (−i, −j) deduce the same eigenvalue and eigenfunction, so we 
denote

�α,β := {
μi,j : ∃ m,n ∈Z, (m,n) �= (i, j), (−i,−j) s.t. μm,n = μi,j

}
.

Similarly we introduce the sets

Sα,β := {μi,j }i2+j2 �=0, Kα,β := Sα,β\�α,β.

Our main results in the generic flat torus case are as follows.

Theorem 1.3. All elements in βSα,β are bifurcation points for the curve of trivial solutions (ρ, 0).
In particular for any ρi,j = βμi,j ∈ βKα,β , there exists ε0 > 0, and for ε ∈ (−ε0, ε0), (1)

admits a family of solutions (ρi,j (ε), uε), where ρi,j (ε) is an analytic curve and

{
ρi,j (0) = ρi,j ,

uε(x, y) = ε cos 2π[ix + β−1(j − αi)y] + εZε(x, y).
(4)

Here Zε(x, y) satisfies that

Zε(−x,−y) = Zε(x, y) and Z0 = 0. (5)

Moreover the bifurcation is global and the Rabinowitz alternative holds true.

In the following, Theorems 1.4-1.11 give a detailed and complete classification of the bifur-
cations points according to the simplicity of the associated eigenvalues.
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Theorem 1.4. Assume α ∈ Q̄.
(i) If 

√
α2 + β2 ∈ Q̄ and α2 + β2 = p

q
, then Kα,β = Sα,β ;

(ii) If 
√

α2 + β2 = p
q

, then

Kα,β = Sα,β\
{
μi,j : ∃m,n ∈Z, (m,n) �= (i, j), (−i,−j) s.t.

{
pi = qn,

pm = qj

}
.

In particular, if α2 + β2 = 1, then Kα,β = {μi,i , μi,−i}i �=0.

Theorem 1.5. Suppose α ∈ Q̄ and α2 + β2 ∈ Q̄.

(i) If α
2+β2

α
∈ Q then

Kα,β = Sα,β\
{
μi,j : ∃m ∈Z, m �= i s.t.

j

i + m
= α2 + β2

α

}
;

(ii) If α2+β2

α
∈ Q̄, and further, either the following homogeneous linear algebraic equation 

does not admit non-zero integer solutions (e, f, g)

e(α2 + β2)

α
= f

α
+ g, (6)

or it admits non-zero integer solutions and each such solution (e, f, g) satisfies 
√

g2 + 4ef ∈ Q̄, 
then Kα,β = Sα,β ;

(iii) If α2+β2

α
∈ Q̄, and further, if (6) admits non-zero integer solutions (e, f, g) satisfying √

g2 + 4ef ∈ Q, then

Kα,β = Sα,β\{μi,j : ∃m,n ∈ Z, (m,n) �= (i, j), (−i,−j), (0,0) s.t.{
i = 2d1n+(d1d2−1)m

1+d1d2
,

j = 2d2m+(1−d1d2)n
1+d1d2

},

where

d1 = 2e

g +√
g2 + 4ef

, d2 = 2f

g +√
g2 + 4ef

. (7)

Theorem 1.6. Suppose α = p
q

and α2 + β2 = 1. Then

Kα,β = {μi,i ,μi,−i}i �=0\[{μi,i : ∃m,n ∈Z,mn �= i2, s.t.
m2 + n2 − 2i2

mn − i2 = 2p

q
}

∪ {μi,−i : ∃m,n ∈ Z,mn �= −i2, s.t.
m2 + n2 − 2i2

mn + i2 = 2p

q
}].

In particular, if α = 1 , then Kα,β = ∅.
2
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Theorem 1.7. Suppose α = p
q

, α2 + β2 > 1 and β2 ∈ Q̄. Then

Kα,β =
{

Sα,β\{μqk,j

}
k �=0∈Z,j �=pk

, if q is odd,

Sα,β\{μqk
2 ,j

}
k �=0∈Z,j �= pk

2
, if q is even.

We denote

bα := min{α − [α], [α] + 1 − α},
where [α] stands for the largest integer not exceeding α. Note that 0 ≤ bα ≤ 1

2 , and bα = 0 if 
α ∈N .

Theorem 1.8. Suppose α = p
q

, α2 + β2 > 1 and β2 ∈ Q.
(i) If β > 1, then ∅ �= Kα,β � Sα,β ;
(ii) If α ∈N and β = 1, then Kα,β = ∅;
(iii) If α ∈N and β < 1, then ∅ �= Kα,β � Sα,β ;
(iv) If α /∈N and 

√
1 − b2

α ≤ β ≤ 1, then ∅ �= Kα,β � Sα,β ;
(v) If α /∈N and β =√

1 − b2
α , then ∅ �= Kα,β � Sα,β for q > 2, Kα,β = ∅ for q = 2.

Theorem 1.9. Suppose α = p
q

/∈ N, β2 ∈ Q, α2 + β2 > 1 and β <
√

1 − b2
α . Furthermore, if 

q = 2, then

(i) Kα,β = ∅ for β =
√

3
6 or 1

2 ;

(ii) ∅ �= Kα,β � Sα,β for β ∈ (0, 
√

3
6 ) ∪ (

√
3

6 , 12 ) ∪ ( 1
2 , 

√
3

2 ).

Theorem 1.10. Suppose α = p
q

/∈ N, β2 ∈ Q, α2 + β2 > 1, β <
√

1 − b2
α and q > 2. Further-

more, if bα = 1
q

, then ∅ �= Kα,β � Sα,β .

Remark 1.1. For α = p
q

/∈N and q = 2, 3, 4, 6, the unique value of bα is 1
q

.

Theorem 1.11. Suppose α = p
q

/∈ N, β2 ∈ Q, α2 + β2 > 1, β <
√

1 − b2
α and bα ≥ 2

q
(so q = 5

or q ≥ 7). Then
(i) If 0 < β ≤ 1

q
√

q2−4
, then ∅ �= Kα,β � Sα,β ;

(ii) If 1
q
√

q2−4
< β <

√
1
3 (b2

α − 1
q2 ), and q is odd and bα = q−1

2q
, then ∅ �= Kα,β � Sα,β ;

(iii) If β =
√

1
3 (b2

α − 1
q2 ), then ∅ �= Kα,β � Sα,β for q ≥ 7; Kα,β = ∅ for q = 5;

(iv) If 
√

1
3 (b2

α − 1
q2 ) < β <

√
1 − b2

α , then ∅ �= Kα,β � Sα,β .

Finally we obtain local convexity near bifurcating points of bifurcating curves.

Theorem 1.12. The parameter function ρi,j (ε) in Theorem 1.1 satisfies ρ′
i,j (0) = 0 and

ρ′′
i,j (0) = −1

λi,j

(
λi,j + λi,j − 1

)
.

2 λ2i,0 − λi,j λ0,2j − λi,j 3
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Corollary 1.1. (i) If 
√

3
3 β−1j < i <

√
3β−1j , then ρ′′

i,j (0) < 0;

(ii) If 0 ≤ i <
√

3
3 β−1j or i >

√
3β−1j , then ρ′′

i,j (0) > 0.

Remark 1.2. For β = 1, from Theorem 1.2 we know that any element of βKβ admits the form 
ρi,i , namely i = j . Then Corollary 1.1 shows that for i ∈ N\{λki,ki : ∀k ∈ N, ∃a, b ∈ N, a >

b, (a, b) = 1 s.t. i = a2 + b2} the following inequality holds ρ′′
i,i(0) < 0.

Theorem 1.13. The parameter function ρi,j (ε) in Theorem 1.3 satisfies ρ′
i,j (0) = 0 and ρ′′

i,j (0) =
μi,j

3 > 0.

We would like to point out that the analyses for the rectangular torus case and the generic flat 
torus case are different in the sense that the latter is not a straightforward generalization of the 
former. Indeed, we have to consider the bifurcation solutions in functional spaces with different 
symmetry. In the rectangular flat torus case, we have to pose the axial symmetry, i.e., the even 
symmetry about both x-axis and y-axis; while in the generic flat torus case, such symmetry is too 
strong and only allows the trivial solution. So we only pose a weaker even symmetry, i.e., even 
symmetry about the origin. In both cases, equipped with the above suitable symmetric functional 
spaces, there are bifurcations points on the trivial solution curve (ρ, 0) where the kernels of 
the linearized operators are one dimensional, but are of different type, i.e., the eigenfunction in 
(3) can not be obtained by letting α = 0 in the eigenfunction in (4), while the former can not 
be generalized to obtain the latter. This is also the reason why the local convexity results are 
different for both cases as shown in Theorem 1.12, Corollary 1.1 and Theorem 1.13.

We also note that in this paper we only consider in some details the local bifurcation curves 
while the global bifurcation pictures are merely explained as unbounded. Indeed, according to 
the global theory of bifurcation (the Rabinowitz alternative), each bifurcation curve (ρ, u) from 
(ρi,j , 0) either meets the trivial solution curve at another bifurcation point (ρ∗, 0) or extends to 
infinity. The first scenario can be excluded by using the techniques developed in [22,24,25]. In 
the latter scenario, it can be shown, according to [31,24,22], that either ρ tends to infinity, or ρ
goes 8πN for some positive integer N when the solution blows up at exactly N points. In the 
special case when we consider only one dimensional solution, such bifurcation curves do not 
consist of blow-up solutions and hence ρ goes to infinity. In this one dimensional setting, there 
indeed exists a nontrivial one dimensional solution for ρ > max{8π, λ1(Tσ )|Tσ |} which may be 
regarded as bifurcating from the trivial solution (see [36,22]). However, it remains open whether 
or not ρ must go to infinity for other bifurcation curves. The full global bifurcation picture is 
being studied in an on-going project.

The paper is organized as follows. In section 2 we prove Theorems 1.1 and 1.3 by verifying the 
hypotheses of Crandall-Rabinowitz’s bifurcation theory. We find out the single bifurcating curve 
set for rectangular torus case in section 3, and in section 4 we characterize the single bifurcating 
curve set for the generic flat torus case. The local convexity of bifurcating curves will be obtained 
in section 5.

2. Verification of the hypotheses of Crandall-Rabinowitz’s theory

In this section we first introduce two properties which will be used to prove Theorems 1.1, 
1.3, 1.12 and 1.13, and subsequently we finish the proof of Theorems 1.1, 1.3.

Let F(t, x) be an operator mapping from R × X to Y . Denote ∂xF and ∂tF as the Fréchet 
partial derivatives of F with respect to x and t respectively.
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Proposition 2.1. ([14]) Let X, Y be Bananch spaces, V ⊂ X a neighborhood of 0 and F :
R × V → Y a map with the following properties

(1) F(t, 0) = 0 for any t ∈ R,
(2) ∂tF , ∂xF and ∂2

t,xF exist and are continuous,
(3) ker(∂xF (t∗, 0)) = span{w0} and R(∂xF (t∗, 0))⊥ has dimension 1,
(4) ∂2

t,xF (t∗, 0)w0 /∈R(∂xF (t∗, 0)).
If Z is any complement of ker(∂xF (t∗, 0)) in X, then there exists ε0 > 0, a neighborhood U ⊂
R × X of (t∗, 0), and continuously differentiable maps η : (−ε0, ε0) → R and z : (−ε0, ε0) → Z

such that

⎧⎪⎪⎨
⎪⎪⎩

η(0) = t∗,

z(0) = 0,

F−1(0) ∩ U \ (R× {0}) = {(η(ε), εw0 + εz(ε)) | ε ∈ (−ε0, ε0)\{0}}.

Proposition 2.2. ([37] or [28] chapter I6) Assume all the hypotheses of Proposition 2.1 are 
satisfied. Select ψ �= 0 ∈ Y ∗, where Y ∗ is the dual space of Y , such that R(∂xF (t∗, 0)) = {y ∈
Y | 〈ψ, y〉 = 0}, then the derivative η′(0) of η(ε) at ε = 0 is given by

η′(0) = − 〈∂2
x,xF (t∗,0)[w0,w0],ψ〉

2‖w0‖〈∂2
t,xF (t∗,0)w0,ψ〉 .

Moreover, if η′(0) = 0 and F is of class C3, then we have

η′′(0)

= −〈∂3
x,x,xF (t∗,0)[w0]3 − 3∂2

x,xF (t∗,0)
[
w0, (∂xF (t∗,0))−1(I − Q)∂2

x,xF (t∗,0)[w0]2
]
,ψ〉

3‖w0‖2〈∂2
t,xF (t∗,0)w0,ψ〉 ,

where Q : y → 〈y,ψ〉
‖ψ‖2 ψ is the projection from Y to R(∂xF (t∗, 0))⊥ and (∂xF (t∗, 0))−1 :

R(∂xF (t∗, 0)) → ker(∂xF (t∗, 0))⊥ is the inverse of ∂xF (t∗, 0) restricted to the complementary 
of its kernel.

According to equation (1), we define an operator F : R ×Hσ → L2(Tσ ) as

F : (ρ,u) → �u + ρ

(
eu∫

Tσ
eu

− 1

|Tσ |

)
.

A direct computation shows that

∂uF (ρ,0)φ = �φ + ρ
φ = �φ + ρ

φ.
|Tσ | β
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We set

Lσ =

⎧⎪⎨
⎪⎩u ∈ L2(Tσ ) |

∫
Tσ

u = 0

⎫⎪⎬
⎪⎭ .

Clearly F maps R ×Hσ into Lσ .
Given any element λi,j ∈ �β , for any (m, n) �= (i, j) such that λm,n = λi,j , there are two 

possible cases. The first case is that all of i, j, m, n are not zero. From the formula of λi,j , we 
know that m

i
, n

j
∈ N ∪ {0} and i

m
, j

n
∈ N ∪ {0} cannot take place simultaneously. Without loss 

generality, we assume that m
i

/∈ N ∪ {0} or n
j

/∈ N ∪ {0}. Then we consider the smaller torus T ij
β

with the corresponding lattice

	
ij
β = span{(i−1,0), (0, j−1β)}.

The dual lattice of 	ij
β is

(	
ij
β )∗ = span{(i,0), (0, jβ−1)}.

The complete system of axial symmetric eigenfunctions of the Laplace operator on T ij
β is

{cos(2πξ1x) cos(2πξ2y)}
(ξ1,ξ2)∈(	

ij
β )∗ = {cos(2πrix) cos(2πβ−1sjy)}r,s≥0,r2+s2 �=0.

Clearly cos(2mπx) cos(2nβ−1πy) does not belong to this set, since m
i

or n
j

/∈ N ∪ {0}. More-
over, it is easy to verify that for any other λl,k satisfying that λl,k = λi,j = λm,n and (l, k) �=
(i, j), (m, n), its eigenfunction cos(2lπx) cos(2kβ−1πy) does not belong to the above set. All in 
all, the kernel corresponding to the eigenvalue λi,j in T ij

β is 1-dimensional, and its basis is

cos(2iπx) cos(2jπβ−1y).

The second case is that at least one of i, j, m, n is zero. Without loss of generality, we assume 
i = 0, then m �= 0. Then we consider the smaller torus T ij

β with the corresponding lattice

	
ij
β = span{((m + 1)−1,0), (0, j−1β)}.

The dual lattice of 	ij
β is

(	
ij
β )∗ = span{(m + 1,0), (0, jβ−1)}.

The complete system of axially symmetric eigenfunctions of the Laplace operator on T ij
β is

{cos(2πξ1x) cos(2πξ2y)}
(ξ ,ξ )∈(	

ij
)∗ = {cos(2πr(m + 1)x) cos(2πβ−1sjy)}r,s≥0,r2+s2 �=0.
1 2 β
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Clearly cos(2mπx) cos(2nβ−1πy) does not belong to this set, since m
m+1 /∈ N ∪ {0}. Now the 

kernel corresponding to the eigenvalue λi,j in T ij
β is 1-dimensional, and its basis is

cos(2jπβ−1y).

For λi,j ∈ Kβ , we define T ij
β = Tβ .

We introduce the following spaces

X ij
β := {φ ∈Hij

β | φ(−x,−y) = φ(x,−y) = φ(−x, y)},
Y ij

β := {ψ ∈ Lij
β | ψ(−x,−y) = ψ(x,−y) = ψ(−x, y)},

where

Hij
β := {u ∈ H 1(T

ij
β ) |

∫
T

ij
β

u = 0},

Lij
β := {u ∈ L2(T

ij
β ) |

∫
T

ij
β

u = 0}.

Similarly, for a generic flat torus and any given element μi,j ∈ �α,β , if there is some (m, n) �=
(i, j), (−i, −j) such that μm,n = μi,j , then we have also two cases. The first case is that all of 
i, j, m, n are not zero. From the formula of μi,j , we know that m

i
, n

j
∈ Z and i

m
, j

n
∈ Z also 

cannot take place simultaneously. If m
i

/∈ Z or n
j

/∈ Z. We consider the smaller torus T ij
α,β with 

the corresponding lattice

	
ij
α,β = span{(i−1,0), (j−1α, j−1β)}.

The dual lattice of 	ij
α,β is

(	
ij
α,β)∗ = span{(i,−iβ−1α), (0, jβ−1)}.

The complete system of evenly symmetric eigenfunctions of the Laplace operator on T ij
α,β is

{cos 2π(ξ1x + ξ2y)}
(ξ1,ξ2)∈(	

ij
α,β )∗ = {cos 2π[rix + β−1(sj − αri)y]}r2+s2 �=0.

Clearly cos 2π[mx + β−1(n − αm)y] does not belong to this set, so the kernel corresponding to 
the eigenvalue μi,j in T ij

α,β is 1-dimensional, and its basis is

cos 2π[ix + β−1(j − αi)y].

The second case is that at least one of i, j, m, n is zero. We assume i = 0, then m �= 0. We 
consider the smaller torus T ij with the corresponding lattice
α,β
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ij
α,β = span{((|m| + 1)−1,0), (j−1α, j−1β)}.

The dual lattice of 	ij
α,β is

(	
ij
α,β)∗ = span{(|m| + 1,−(|m| + 1)β−1α), (0, jβ−1)}.

The complete system of evenly symmetric eigenfunctions of the Laplace operator on T ij
α,β is

{cos 2π(ξ1x + ξ2y)}
(ξ1,ξ2)∈(	

ij
α,β )∗ = {cos 2π[r(|m| + 1)x + β−1(sj − αr(|m| + 1))y]}r2+s2 �=0.

Clearly cos 2π[mx + β−1(n − αm)y] does not belong to this set, since m
|m|+1 /∈ Z. So the kernel 

corresponding to the eigenvalue μi,j in T ij
α,β is 1-dimensional, and its basis is

cos(2πβ−1jy).

For μi,j ∈ Kα,β , we define T ij
α,β = Tα,β .

We introduce the following spaces

X ij
α,β := {φ ∈ Hij

α,β | φ(−x,−y) = φ(x, y)},
Y ij

α,β := {ψ ∈ Lij
α,β | ψ(−x,−y) = ψ(x, y)}.

We have the following lemmas.

Lemma 2.1. The restriction F := F |
R×X ij

β

(or F := F |
R×X ij

α,β

) maps its domain into Y ij
β (or 

Y ij
α,β ). Moreover, for ρ = βλi,j (or ρ = βμi,j ),

dim{ker(∂uF(ρ,0))} = 1,

and the basis is

cos(2πξ1x) cos(2πξ2y)(or cos 2π(ξ1x + ξ2y)),

where ξ := (ξ1, ξ2) := (i, β−1j) (or ξ := (i, −β−1(αi − j))).

Lemma 2.2. For ρ = βλi,j (or ρ = βμi,j ), the range of the operator ∂uF(ρ, 0) has co-
dimension one and is given by

R(∂uF(ρ,0)) =
{

φ ∈ L2(T
ij
β ) |

∫
T

ij
β

φ(x, y) cos(2πix) cos(2πβ−1jy) = 0

}

(or R(∂uF(ρ, 0)) =
{
φ ∈ L2(T

ij
α,β) | ∫

T
ij φ(x, y) cos 2π[ix + β−1(j − αi)y] = 0

}
).
α,β



10252 Z. Du, C. Gui / J. Differential Equations 269 (2020) 10239–10276
Proof. By the definition of the operator F and the well-known spectral properties of � on 
tori, the range of ∂uF(ρ, 0) coincides with the orthogonal of its kernel. This and the result of 
Lemma 2.1 yield the desired results of this lemma. �
Lemma 2.3. For ρ = βλi,j (or ρ = βμi,j ), we have

∂2
ρ,uF(ρ,0){cos(2πix) cos(2πβ−1jy)} /∈R(∂uF(ρ,0))

(or ∂2
ρ,uF(ρ, 0){cos 2π[ix + β−1(j − αi)y]} /∈ R(∂uF(ρ, 0))).

Proof. Differentiating ∂uF with respect to ρ, we get

∂2
ρ,uF(ρ,0)φ = φ

β
.

Therefore, owing to ∫
T

ij
β

(
cos(2πix) cos(2πβ−1jy)

)2
dxdy �= 0

(or
∫

T
ij
α,β

(
cos 2π[ix + β−1(j − αi)y]

)2
dxdy �= 0),

the desired results follow, where the result in Lemma 2.2 is used. �
Proof of Theorem 1.1. We apply Proposition 2.1 with F : R × X ij

β → Y ij
β , Lemmas 2.1-2.3

show the existence of a continuously differentiable local branch. Namely there exists a branch of 
non-trivial solutions (ρi,j (ε), uε) nn the torus T ij

β , where ρi,j (0) = ρi,j and uε satisfies

uε(x, y) = ε cos(2πix) cos(2πβ−1jy) + εZε(x, y)

with Zε satisfying

Zε(−x,−y) = Zε(x,−y) = Zε(−x, y)

and Z0 = 0. In fact, since F is real analytic and Fu(ρ, 0) is a Fredholm operator, from [16] we 
know that ρi,j (ε) is an analytic curve.

In order to show that the bifurcation is global we use a degree argument. We introduce opera-
tors G and G as follows

G : (ρ,u) → u

ρ
− (−�)−1

⎛
⎝ eu∫

T
ij
β

eu
− 1

|T ij
β |

⎞
⎠=: u

ρ
− G(u).

Note that G = −(−�)−1F . Clearly 0 is the simple eigenvalue of the operator ∂uG|ρ=ρi,j ,u=0. 

Note that the operator G is a compact operator from Hij to itself. Hence classical results in the 
β
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bifurcation theory ensure the existence of a global continuum of solutions to (1) satisfying the 
Rabinowitz alternative. Furthermore, we can exclude the possibility that the bifurcation curve 
meet the trivial solution curve at another bifurcation point (ρ∗, 0) by using using the techniques 
developed in [22,24,25]. The global bifurcation curve then has to be unbounded. In this case, it 
can be shown, according to [31,24,22], that either ρ tends to infinity, or ρ goes 8πN for some 
positive integer N when the solution blows up at exactly N points.

We extend uε periodically in axes-x and y respectively from torus T ij
β to torus Tβ , and we 

still denote it as uε . Plainly uε is a solution in Tβ . �
Proof of Theorem 1.3. We apply Proposition 2.1 with F : R × X ij

α,β → Y ij
α,β , Lemmas 2.1-2.3

show the existence of a local branch. Namely there exists a branch of non-trivial solutions 
(ρi,j (ε), uε), where ρi,j (0) = ρi,j and uε satisfies

uε(x, y) = ε cos 2π[ix + β−1(j − αi)y] + εZε(x, y)

with Zε satisfying Zε(−x, −y) = Zε(x, y) and Z0 = 0.
The argument of the global bifurcation result is similar as that of Theorem 1.1, we omit it. �

3. Rectangular torus case

Lemma 3.1. If β2 ∈ Q̄, then �β = ∅.

Proof. Combining the formulas β2 = j2−n2

m2−i2 in the set �β and the assumption that β2 ∈ Q̄, we 
know that there does not exist (m, n) �= (i, j) such that λm,n = λi,j , so �β = ∅. �
Lemma 3.2. If β = 1, then

�β = {λi,j }i �=j ∪ {λki,ki : ∀k ∈N,∃a, b ∈ N, a > b, (a, b) = 1 s.t. i = a2 + b2}.

Proof. Clearly λi,j = λj,i , ∀i, j . For i �= j , one has (i, j) �= (j, i), so {λi,j }i �=j ⊆ �β . For i = j , 
to the end that λi,i = λm,n, it requires that

2i2 = m2 + n2.

All coprime positive integer solutions (i, m, n) of this equation are

i = a2 + b2, m = |a2 − b2 − 2ab|, n = a2 − b2 + 2ab,

where a, b ∈N, a > b, (a, b) = 1.
Note that if λi,j ∈ �β , then λki,kj ∈ �β, ∀k ∈ N . This is because that λi,j = λm,n gives 

λki,kj = λkm,kn. So the subset of the points with the form λi,i in �β is

{λki,ki : ∀k ∈N,∃a, b ∈ N, a > b, (a, b) = 1 s.t. i = a2 + b2}. �
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Lemma 3.3. If β = p
q

> 1, then

�β = {λqi,pj }i �=j

∪ {λkqi,kpi : ∀k ∈N,∃a, b ∈ N, a > b, (a, b) = 1 s.t. i = a2 + b2}
∪ {λmq2−n,sp2+t : m,n, s, t ∈ N,mq2 − n, sp2 − t ≥ 0,mn = st,

n

q
or

t

p
/∈ N}

∪ {λmq2−n
j

,
sp2+t

j

: m,n, s, t ∈ N,mn = st,1 < j ≤ 2p2q2,

mq2 − n

j
,
mq2 + n

j
,
sp2 − t

j
,
sp2 + t

j
∈N ∪ {0}}.

Proof. Clearly λqi,pj = λqj,pi, ∀i, j . For i �= j , one has (qi, pj) �= (qj, pi), so {λqi,pj }i �=j ⊆
�β . For i = j , to the end that λqi,pi = λqm,pn, it also requires that 2i2 = m2 + n2. So

{λkqi,kpi : ∀k ∈ N,∃a, b ∈N, a > b, (a, b) = 1 s.t. i = a2 + b2} ⊆ �β.

Other than the points {λqi,pj }, the set Sβ also includes some points which cannot be written 
in the form λqi,pj . It is easy to verify that for any λqj,pi there could not exist λl,k satisfying 
λl,k = λqj,pi for l

q
or k

p
/∈Z.

For any m, n, s, t ∈Z satisfying mn = st , we have that

λmq2−n,sp2+t = λmq2+n,sp2−t . (8)

We may suppose that mn = st ≥ 0, otherwise we replace n, t by −n, −t respectively. We claim 
that mn = st �= 0 if λmq2−n,sp2+t = λmq2+n,sp2−t ∈ �β . Indeed, if mn = st = 0, from (8) and 
the fact that mq2 − n, sp2 + t, mq2 + n, sp2 − t are all nonnegative integers, we deduce that 
(mq2 − n, sp2 + t) = (mq2 + n, sp2 − t). Hence we may assume that mn = st > 0. From this 
and the fact that sp2 + t, mq2 + n are both nonnegative, so actually m, n, s, t ∈ N . Therefore (8)
holds true for m, n, s, t ∈N, mq2 − n ≥ 0, sp2 − t ≥ 0, mn = st .

If at least one of n
q

and t
p

is not an integer, then the elements λmq2−n,sp2+t (= λmq2+n,sp2−t )

in (8) actually belong to the subset of the points in �β that cannot be written as the form λqi,pj .
Note that it is possible that there exists λc,d, λe,f , satisfying λc,d = λe,f , belong to the subset 

of the points in �β that cannot be written as the form λqi,pj , and cannot be written as the form 
(8). Namely at least one of the following two linear systems of unknown quantities (m, n) and 
(s, t)

{
mq2 − n = c,

mq2 + n = e,

{
sp2 + t = d,

sp2 − t = f,

does not admit positive integer solutions. However, observe that there exists some positive integer 
j not exceeding 2p2q2 such that both the following two systems

{
mq2 − n = cj,

mq2 + n = ej,

{
sp2 + t = dj,

sp2 − t = fj,
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necessarily admit positive integer solutions (m, n), (s, t).
Hence the subset of the points that cannot be written as the form λqi,pj in �β is

{λmq2−n,sp2+t : m,n, s, t ∈N,mq2 − n, sp2 − t ≥ 0,mn = st,
n

q
or

t

p
/∈N}

∪ {λmq2−n
j

,
sp2+t

j

: m,n, s, t ∈N,mn = st,1 < j ≤ 2p2q2,

mq2 − n

j
,
mq2 + n

j
,
sp2 − t

j
,
sp2 + t

j
∈ N ∪ {0}}. �

Remark 3.1. For β = 1 or β = p
q

> 1, any elements λi,j , λk,l ∈ �β satisfying λi,j = λk,l and 

(i, j) �= (k, l), neither k
i
, l

j
∈ N ∪ {0} nor i

k
, j

l
∈N ∪ {0} takes place.

Lemma 3.4. If β ∈ Q̄ and β2 = p
q

, then

�β = {λmq−n,sp+t : m,n, s, t ∈N,mq − n, sp − t ≥ 0,mn = st}
∪ {λmq−n

j
,
sp+t

j
: m,n, s, t ∈ N,mn = st,1 < j ≤ 2pq,

mq − n

j
,
mq + n

j
,
sp − t

j
,
sp + t

j
∈N ∪ {0}}.

Proof. For any m, n, s, t ∈Z satisfying mn = st , we have that

λmq−n,sp+t = λmq+n,sp−t . (9)

We also assume that mn = st ≥ 0. We claim that mn = st �= 0 if λmq−n,sp+t = λmq+n,sp−t ∈ �β . 
Indeed, if mn = st = 0, combining (9) and the fact that mq − n, sp + t, mq + n, sp − t are all 
nonnegative integers, we deduce that (mq−n, sp+ t) = (mq +n, sp− t). Hence we may assume 
that mn = st > 0. From this and the fact that sp+ t, mq+n are both nonnegative, we can actually 
derive that m, n, s, t ∈ N . So (9) holds true for m, n, s, t ∈N, mn = st, mq − n ≥ 0, sp − t ≥ 0.

Note that it is possible that there exists λc,d , λe,f ∈ �β satisfying λc,d = λe,f that cannot be 
written in the form (9). Namely at least one of the following two linear systems

{
mq − n = c,

mq + n = e,

{
sp + t = d,

sp − t = f,

does not admit positive integer solutions. However, there exists some positive integer j not ex-
ceeding 2pq such that both the following two systems

{
mq − n = cj,

mq + n = ej,

{
sp + t = dj,

sp − t = fj,

necessarily admit positive integer solutions (m, n), (s, t). �
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Remark 3.2. For β ∈ Q̄ and β2 = p
q

, it is possible there exist elements λi,j , λk,l ∈ �β satisfying 

λi,j = λk,l and (i, j) �= (k, l) such that k
i
, l

j
∈ N ∪ {0} or i

k
, j

l
∈ N ∪ {0}. An example is that 

p = 3, q = 2, λ5,0 = 25 = λ1,6.

Proof of Theorem 1.2. Theorem 1.2 follows from Lemmas 3.1-3.4. �
4. Generic flat torus case

4.1. Case α ∈ Q̄

Proof of Theorem 1.4. (i) From μi,j = μm,n, due to α ∈ Q̄ and α2 + β2 ∈ Q, one has

ij = mn,
p

q
i2 + j2 = p

q
m2 + n2,

which lead to 
√

p
q
i + j = ±(

√
p
q
m + n). Then (m, n) = (i, j) or (−i, −j), because 

√
p
q

is an 

irrational number. So �α,β = ∅, which gives Kα,β = Sα,β .
(ii) From μi,j = μm,n, we deduce that ij = mn and

p

q
i + j = ±

(
p

q
m + n

)
, (10)

p

q
i − j = ±

(
p

q
m − n

)
. (11)

For (10) we first consider the case p
q
i + j = p

q
m + n, which holds true if and only if m − i =

kq, j −n = kp, k �= 0 ∈Z. Substituting m = i+kq, j = n +kp into ij = mn, we obtain pi = qn. 
Multiplying j on two sides of this equality, we have qj = pm. In fact (m, n) �= (i, j) corresponds 
to k �= 0.

Similarly for (11) we consider the case p
q
i − j = − 

(
p
q
m − n

)
, which holds true if and only if 

m + i = kq, j + n = kp. Substituting m = kq − i, j = kp − n into ij = mn, we obtain pi = qn. 
Multiplying j on both sides of this equality, we have qj = pm. Note that (m, n) �= (−i, −j)

corresponds to k �= 0.
For the other case in (10) and (11), similar argument yields pi = −qn, qj = −pm. How-

ever this is equivalent to the result in the above case, since (i, j) and (−i, −j) yield the same 
eigenvalue and eigenfunction.

Hence

�α,β =
{
μi,j : ∃m,n ∈ Z, (m,n) �= (i, j), (−i,−j) s.t.

{
pi = qn,

pm = qj

}
.

In particular, if α2 + β2 = p
q

= 1, namely p = q = 1, then the equalities in the above set 
become m = j, n = i, namely (m, n) = (j, i). Therefore

{
μi,j : ∃(m,n) �= (i, j), (−i,−j) s.t. (m,n) = (j, i)

}= {μi,j }i �=j,i �=−j ,

which yields
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Kα,β = Sα,β\�α,β = {μi,j }i2+j2 �=0\{μi,j }i �=j,i �=−j = {μi,i ,μi,−i}i �=0. �
Proof of Theorem 1.5. (i). Since α

2+β2

α
∈ Q, from the relation μi,j

α
= μm,n

α
, we deduce that j2 =

n2. If j = n, the equality μi,j = μm,n yields α2+β2

2α
= j

i+m
(i �= m). If j = −n, the equality 

μi,j = μm,n yields α2+β2

2α
= j

i−m
(i �= −m), which is equivalent to the result in the case j = n, 

since (i, j) and (−i, −j) yield the same eigenvalue and eigenfunction.
(ii) An elementary computation shows that

μm,n − μi,j

α
= α2 + β2

α
(m2 − i2) − 1

α
(j2 − n2) − 2(mn − ij).

If (6) does not admit non-zero integer solutions, then from μm,n = μi,j we deduce that (m, n) =
(i, j) or (−i, −j), so �α,β = ∅.

It is easy to compute that

√
4(mn − ij)2 + 4(m2 − i2)(j2 − n2) = 2|mj − in|, (12)

which contradicts with the assumption that any non-zero solution (e, f, g) of (6) satisfying √
g2 + 4ef ∈ Q̄. Therefore μm,n − μi,j �= 0 for any (m, n) �= (i, j), (−i, −j), which shows 

�α,β = ∅.
(iii) Given non-zero integer solution (e, f, g) of (5) satisfying 

√
g2 + 4ef ∈ Q. If the follow-

ing system admits integer solutions (i, j, m, n, k)(k �= 0)

⎧⎨
⎩

m2 − i2 = ek,

j2 − n2 = f k,

2(mn − ij) = gk,

(13)

then μi,j − μm,n = 0. From (12) we deduce

2(mj − in) = k

√
g2 + 4ef ,

where we assume mj − in, k ≥ 0. This equation and the third equation in (13) lead to

2(m − i)(j + n) = k(g +
√

g2 + 4ef ).

Combining this with the first and second equation in (13) respectively, we obtain

{
m + i = d1(j + n), i �= m,

j − n = d2(m − i), j �= −n,

where d1, d2 are defined in (7). From this system we obtain (m, n) �= (i, j), (−i, −j) and

{
i = 2d1n+(d1d2−1)m

1+d1d2
,

j = 2d2m+(1−d1d2)n .
�

1+d1d2
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Remark 4.1. Under the assumptions that α ∈ Q̄, α2 + β2 ∈ Q̄ and α
2+β2

α
∈ Q̄, any integer solu-

tion (e, f, g) of (6) satisfies either e = f = g = 0 or e �= 0, f �= 0, g �= 0. Moreover, for non-zero 
solution (e, f, g), the components e and f necessarily possess the same sign, so d1d2 > 0.

4.2. Case α = p
q

4.2.1. Subcase α2 + β2 = 1

Proof of Theorem 1.6. Clearly μi,j = μj,i , ∀i, j . From μi,i = μm,n, we have

2(q − p)

q
i2 = m2 + n2 − 2p

q
mn.

If i2 = mn, then m2 + n2 = 2i2, and we deduce that m = n = i or m = n = −i. If i2 �= mn, then

m2 + n2 − 2i2

mn − i2 = 2p

q
. (14)

Similarly, from μi,−i = μm,n, we have 2(q+p)
q

i2 = m2 + n2 − 2p
q

mn. If i2 = −mn, then m2 +
n2 = 2i2, and we deduce that m = −n = i or m = −n = −i. If i2 �= −mn, then

m2 + n2 − 2i2

mn + i2 = 2p

q
. (15)

So

�α,β = {μi,j }i �=j ∪
{
μi,i : ∃m,n ∈Z,mn �= i2, s.t.

m2 + n2 − 2i2

mn − i2 = 2p

q

}

∪
{
μi,−i : ∃m,n ∈Z,mn �= −i2, s.t.

m2 + n2 − 2i2

mn + i2 = 2p

q

}
.

In (14), if we take m = i, then (14) become n
i

= 2p−q
q

. Furthermore, if q is odd then we 
take i = q , and if q is even then we take i = q

2 . Then we obtain n = 2p − q and n = p − q
2

respectively. Namely we obtain

{
μq,q = μq,2p−q, if q is odd,

μq
2 ,

q
2

= μq
2 ,p− q

2
, if q is even.

(16)

Similarly, in (15), if we take m = i, then (15) become n
i

= 2p+q
q

. If q is odd then we take i = q , 
and if q is even then we take i = q

2 , and we obtain n = 2p + q and n = p + q
2 respectively. 

Namely we have

{
μq,−q = μq,2p+q, if q is odd,

μq q = μq q , if q is even.
(17)
2 ,− 2 2 ,p+ 2
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If α = 1
2 , namely q = 2, then (16) and (17) give that

μ1,1 = μ1,0 = μ0,1, μ1,−1 = μ1,2 = μ2,1,

so

μi,i = μi,0 = μ0,i , μi,−i = μi,2i = μ2i,i , ∀ i ∈Z.

Hence �α,β = Sα,β . �
4.2.2. Subcase α2 + β2 > 1

Recall that α = p
q

. To make μi,j = μi,n and n �= j, n �= −j , we deduce j + n = 2αi = 2p
q

i. 
From n �= −j we have i �= 0. If q is odd, then i = qk, j + n = 2pk, and if q is even, then 
i = q

2 k, j + n = pk for some k ∈ Z, since i �= 0, so k �= 0. Note that from μi,j = μ−i,n and 
(−i, n) �= (i, j), (−i, −j), we deduce j − n = 2αi = 2p

q
i(j �= −n, i �= 0), which is equivalent 

to the above case μi,j = μi,n, since (i, j) and (−i, −j) associate with the same eigenvalue and 
eigenfunction. Hence

�α,β ⊇
{ {

μqk,j

}
k �=0,j �=pk

, if q is odd,{
μq

2 k,j

}
k �=0,j �= p

2 k
, if q is even.

(18)

Proof of Theorem 1.7. Since α ∈ Q, β2 ∈ Q̄, then α2 + β2 ∈ Q̄. So the equation μi,j = μm,n

yields i2 = m2. The above analysis gives the desired result of this theorem. �
If β2 ∈ Q, to have μi,j = μm,j and m �= i, m �= −i, we require j

i+m
= α2+β2

2α
(i �= m, j �= 0). 

This means that other than the elements in (18), �α,β includes also the points satisfying that 

μi,j = μm,j , 
j

i+m
= α2+β2

2α
(i �= m, j �= 0). Hence �α,β �= ∅, namely Kα,β � Sα,β .

Proof of Theorem 1.8. (i) We claim that μ0,1 /∈ �α,β . Indeed it is clear that for any |j | ≥ 2, one 
has μ0,j > μ0,1. For i �= 0, we have

μi,j = (αi − j)2 + β2i2 ≥ β2i2 > i2 ≥ 1 = μ0,1, ∀ j.

Hence the claim is true. So �α,β � Sα,β , namely Kα,β �= ∅.
(ii) Note that for any i ∈ Z, we have

{
μi,j = μi,2αi−j , ∀j �= αi,

μi,αi = μ0,i ,

hence �α,β = Sα,β and Kα,β = ∅.
(iii) We claim that μ1,α = β2 /∈ �α,β . Indeed, since β2 < 1, it is clear that μ0,j > μ1,α, ∀j �=

0. For any j �= α, we have

μ−1,−j = μ1,j = (α − j)2 + β2 > β2 = μ1,α.

For any |i| ≥ 2 and j , we have
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μi,j = (αi − j)2 + β2i2 ≥ 4β2 > β2 = μ1,α.

Hence the claim is true.
(iv) We claim that μ0,1 /∈ �α,β . It is clear that μ0,j > μ0,1, ∀|j | > 1. Since α /∈ N , if β = 1, 

then for any i �= 0, we have

μi,j = (αi − j)2 + i2 > i2 ≥ 1 = μ0,1, ∀j.

Hence μ0,1 /∈ �α,β .
If 

√
1 − b2

α < β < 1, namely b2
α + β2 > 1, since b2

α ≤ 1
4 , we have β2 > 3

4 . Note that 
minj μ1,j = b2

α + β2. So the assumption b2
α + β2 > 1 gives μ1,j = μ−1,−j > μ0,1, ∀j . For any 

|i| ≥ 2 and j , we have μi,j ≥ 4β2 > 3 > μ0,1. So μ0,1 /∈ �α,β .
(v) We first consider the case β =√

1 − b2
α and q > 2. Since q > 2, then α−[α] �= [α] +1 −α. 

We claim that if bα = α − [α] then μ1,[α]+1 /∈ �α,β , and if bα = [α] + 1 − α then μ1,[α] /∈ �α,β .
Let bα = α − [α]. It is easy to see that

μ−1,−[α] = μ1,[α] = b2
α + β2 = 1 < μ1,[α]+1 = (1 − bα)2 + β2 < 2.

For any j �= [α], [α] + 1, we have μ−1,−j = μ1,j > μ1,[α]+1. For |i| ≥ 2, we have

μi,j ≥ i2β2 ≥ 3 > μ1,[α]+1, ∀ j,

where we used the fact that β2 ≥ 3
4 , since b2

α + β2 = 1. Clearly μ0,j �= μ1,[α]+1, ∀ j .
To sum up, μ1,[α]+1 /∈ �α,β . The argument of this claim for bα = [α] + 1 − α is similar, we 

omit it.
Now we consider the case q = 2. One has bα = 1

2 , β2 = 3
4 . From the derivation of (18), we 

have μi,j = μi,pi−j , ∀i, j . Note that p is odd. So for odd i, we have j �= pi − j . For non-zero 
even i, we have j �= pi − j as j �= pi

2 . Observe that μ2,p = 3 = μ1,
p+3

2
. Hence for any non-zero 

even i, we have μ
i,

pi
2

= 3i2

4 = μ i
2 ,

(p+3)i
4

. On the other hand, the relation μ0,1 = 1 = μ1,
p+1

2
gives 

μ0,j = j2 = μ
j,

(p+1)j
2

, ∀j �= 0.

To sum up, �α,β = Sα,β , so Kα,β = ∅. �
Next we consider the case that β2 ∈ Q, α = p

q
/∈ N (so q ≥ 2) and β <

√
1 − b2

α . We discuss 

it by dividing into q = 2 and q ≥ 3. For q = 2 we have bα = 1
2 and β <

√
3

2 .

Proof of Theorem 1.9. (i) We claim that μ2,p /∈ �α,β .

We first consider the case β <
√

3
6 , namely 1

4 + β2 > 4β2. Note that 4β2 = μ2,p . Clearly 
μ−2,−j = μ2,j > μ2,p, ∀j �= p. Note that minj μ1,j = 1

4 +β2, hence μ1,j = μ−1,−j > μ2,p, ∀j . 
We have

μi,j ≥ 4k2β2 > 4β2 = μ2,p,∀j, |i| = 2k, k ≥ 2 (19)

and
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μi,j ≥ 1

4
+ i2β2 > 9β2 > 4β2 = μ2,p,∀j, |i| = 2k − 1, k ≥ 2. (20)

We also have

μ2,p = 4β2 <
1

4
+ β2 < 1 ≤ μ0,j ,∀j �= 0.

Hence μ2,p /∈ �α,β .

We consider the other case β ∈ (
√

3
6 , 12 ) ∪( 1

2 , 
√

3
2 ), namely 1

4 +β2 < 4β2 and β2 �= 1
4 . Note that 

μ2,p = 4β2 < 3 and μ2,p �= 1. Hence μ2,p �= μ0,j , ∀j �= 0. It is easy to see that μ2,p = 4β2 <
9
4 + β2. Combining this and the fact that minj μ1,j = 1

4 + β2 < 4β2 = μ2,p , we obtain that 
μ2,p �= μ1,j = μ−1,−j , ∀j . Clearly μ2,j > μ2,p, ∀j �= p. Combining this analysis and (19)-(20), 
we deduce that μ2,p /∈ �α,β .

(ii) We first consider the case β = 1
2 . From (18), for any i and j �= pi

2 , μi,j ∈ �α,β . If i is odd, 
owing to p is odd, then pi

2 /∈ Z. If i is even, note that

μ
i,

pi
2

= i2

4
= μ0, i

2
, ∀ i �= 0.

Hence �α,β = Sα,β .

Now we consider the case β =
√

3
6 , namely the case that 1

4 + β2 = 4β2. For any given (i, j), 
to find (m, n) �= (i, j), (−i, −j) such that μm,n = μi,j , we need to solve

[p(i + m) − 2(j + n)][p(i − m) − 2(j − n)] = 1

3
(m + i)(m − i).

Set m − i = 3k, then

[p(2i + 3k) − 2(j + n)][−3kp − 2(j − n)] = (2i + 3k)k.

Let

{
n + j = (p+1)(2i+3k)

2 ,

n − j = (3p−1)k
2 ,

we obtain j = (p+1)i
2 + k and

n = 1

2
[(p + 1)i + (3p + 1)k]. (21)

Substituting k = j − (p+1)i
2 into m = i + 3k and (21), we obtain

{
m = 3j − (3p+1)i

2 ,

n = (3p+1)j − (p+1)(3p−1)i
.

(22)

2 4



10262 Z. Du, C. Gui / J. Differential Equations 269 (2020) 10239–10276
Note that p is odd, so both the values of m, n obtained in (22) are necessarily integers. To the 
end that (m, n) �= (i, j), we deduce k �= 0, so j �= (p+1)i

2 . For j = (p+1)i
2 , we have

μ
i,

(p+1)i
2

= i2

3
= μ2i,pi , ∀i �= 0.

An elementary computation shows that m + i = 2i + 3k = 3 
(
j − (3p−1)i

6

)
and

n + j = (p + 1)(2i + 3k)

2
= 3(p + 1)

2

(
j − (3p − 1)i

6

)
.

To have that (m, n) �= (−i, −j), one requires that j �= (3p−1)i
6 . Note that (3p−1)i

6 ∈Z if and only 
if i = 3s for some s ∈ Z. Observe that when i = 3s,

μ
i,

(3p−1)i
6

= i2

9
= s2 = μ0,s , ∀i �= 0.

To sum up, �α,β = Sα,β . �
Proof of Theorem 1.10. Note that β <

√
1 − b2

α =
√

q2−1
q

, since bα = 1
q

.

Claim 1: For the case β < 1
q
√

q2−1
, namely b2

α + β2 > β2q2, we have μq,p /∈ �α,β .

Clearly μ−q,−j = μq,j > μq,p, ∀j �= p. We have

μqk,j ≥ q2k2β2 > q2β2 = μq,p,∀j, i = qk, |k| ≥ 2. (23)

Since bα = 1
q

, we have

μi,j ≥ b2
α + i2β2 ≥ b2

α + β2 > q2β2 = μq,p,∀j,1 ≤ |i| �= q|k|. (24)

We also have

μq,p = q2β2 < b2
α + q2 < 1 ≤ μ0,j ,∀j �= 0.

Hence μq,p /∈ �α,β .

Claim 2: For the case 1
q
√

q2−1
< β <

√
q2−1
q

, namely b2
α + β2 < β2q2, if bα = α − [α] then 

μ1,[α] /∈ �α,β , and if bα = [α] + 1 − α then μ1,[α]+1 /∈ �α,β .
Let bα = α − [α]. It is easy to see that

μ1,[α] = b2
α + β2 = min

j
μ1,j < μ1,j = μ−1,−j , j �= [α].

For i = kq, k �= 0 ∈Z, we have

μkq,j ≥ k2q2β2 ≥ q2β2 > b2 + β2 = μ1,[α],∀j.
α
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For 2 ≤ |i| �= |k|q , due to bα = 1
q

, we have

μi,j ≥ b2
α + i2β2 > b2

α + β2 = μ1,[α], ∀ j.

The assumption b2
α + β2 < 1 yields μ0,j > μ1,[α], ∀ j �= 0. Hence μ1,[α] /∈ �α,β . The argument 

of this claim for bα = [α] + 1 − α is similar, we omit it.
Claim 3: For the case β = 1

q
√

q2−1
, namely b2

α + β2 = β2q2, if bα = α − [α] then 

μq−1,(q−1)[α]+1 /∈ �α,β , and if bα = [α] +1 −α then μq−1,(q−1)([α]+1)−1 /∈ �α,β . We only prove 
the case of bα = α − [α].

Let bα = α − [α]. Note that b2
α + β2 = β2q2 = 1

q2−1
. Plainly we have

μq−1,(q−1)[α]+1 < μq−1,j = μ−(q−1),−j , ∀j �= (q − 1)[α] + 1.

We have

μq−1,(q−1)[α]+1 = b2
α + (q − 1)2β2 = 2

q(q + 1)
>

1

q2 − 1
= b2

α + β2 = μ1,[α] = μ−1,−[α].

From this and the relation μq,p = β2q2 = b2
α + β2 = μ1,[α], we have

μq−1,(q−1)[α]+1 > μq,p = μ−q,−p.

For any j �= [α], we have

μq−1,(q−1)[α]+1 − μ1,j ≤ μq−1,(q−1)[α]+1 − μ1,[α]+1 (25)

= 2

q(q + 1)
− (β2 + (1 − bα)2)

= 2

q(q + 1)
− 1

q2(q2 − 1)
− (q − 1)2

q2

= −q3 − 2q2 − 2q + 4

q(q + 1)(q − 1)
< 0.

So μq−1,(q−1)[α]+1 < μ1,j = μ−1,−j , ∀j �= [α]. From

μq−1,(q−1)[α]+1 = 2

q(q + 1)
<

4

q2 − 1
= 4(b2

α + β2),

we deduce that

μq−1,(q−1)[α]+1 < μi,j , ∀ j, ∀ 2 ≤ |i| ≤ q − 2.

We also have

μq−1,(q−1)[α]+1 = b2
α + (q − 1)2β2 < b2

α + q2β2 < 1 + q2β2 ≤ μq,j = μ−q,−j , ∀ j �= p.

For q < |i| �= |k|q , an elementary computation shows that
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μq−1,(q−1)[α]+1 = b2
α + (q − 1)2β2 < b2

α + i2β2 ≤ μi,j , ∀ j.

For i = kq(|k| ≥ 2), we have

μkq,kp = k2q2β2 = k2(b2
α + β2) = k2

q2 − 1
≥ 4

q2 − 1
> μq−1,(q−1)[α]+1,

which yields that

μq−1,(q−1)[α]+1 < μkq,j , ∀ j.

Finally it is clear that

μq−1,(q−1)[α]+1 < μ0,j , ∀ j �= 0.

To sum up, we have μq−1,(q−1)[α]+1 /∈ �α,β .
Claims 1-3 give the desired result of this theorem. �
Finally we need to deal with the case that bα ≥ 2

q
(so q = 5 or q ≥ 7). An elementary compu-

tation shows that

1

q2(q2 − 4)
<

b2
α

q2 − 1
<

1

3
(b2

α − 1

q2 ). (26)

Moreover it is easy to verify that the following relation does not hold true

q2β2 = b2
α + β2 ≤ 1

q2 + 4β2,

since bα ≥ 2
q

and q ≥ 5.

Proof of Theorem 1.11. (i) We first consider the case β < 1
q
√

q2−4
, namely the case

q2β2 < min

{
b2
α + β2,

1

q2 + 4β2
}

. (27)

We claim that μq,p = q2β2 /∈ �α,β . Indeed, from (27) we know that for any 1 ≤ |i| �= q|k|
and any j , μq,p < μi,j . Clearly μq,p < μq,j = μ−q,−j , j �= p, μq,p < μkq,j , ∀|k| > 1, ∀j and 
μq,p < μ0,j , ∀j �= 0. Hence μq,p /∈ �α,β .

Now we consider the case β = 1
q
√

q2−4
, namely the case

q2β2 = 1

q2 + 4β2 < b2
α + β2. (28)

Claim 1: If either q is even or q is odd and bα �= q−1 , then μq,p /∈ �α,β .
2q



Z. Du, C. Gui / J. Differential Equations 269 (2020) 10239–10276 10265
If q is even, then μ2,j ≥ 4
q2 + 4β2, ∀j . Combining this and (28), we obtain μq,p < μ2,j =

μ−2,−j , ∀j . From (28) we also know that μq,p < μ1,j , ∀j , and for any 3 ≤ |i| �= qk and j , 
μq,p < μi,j . Clearly μq,p < μq,j = μ−q,−j , j �= p, μq,p < μ0,j and μq,p < μkp,j , ∀|k| >
1, ∀j . Hence μq,p /∈ �α,β .

If q is odd and bα �= q−1
2q

, then μ2,j ≥ 4
q2 + 4β2, ∀j . The rest argument is the same as that of 

the case q is even, we omit it.
Claim 2: If q is odd and bα = q−1

2q
= α − [α], then μ

q−2,(q−2)[α]+ q−3
2

/∈ �α,β . Note that

μ
q−2,(q−2)[α]+ q−3

2
= 1

q2 + (q − 2)2β2. (29)

So μ
q−2,(q−2)[α]+ q−3

2
< μq−2,j = μ−(q−2),−j , j �= (q − 2)[α] + q−3

2 . By β2 = 1
q2(q2−4)

, we 
obtain

1

q2 + (q − 2)2β2 <
4

q2 + 16β2 = 4q2β2,

which means that

μ
q−2,(q−2)[α]+ q−3

2
< μkq,j , ∀ |k| ≥ 2, ∀ j,

and

μ
q−2,(q−2)[α]+ q−3

2
< μi,j , ∀ 4 ≤ |i| ≤ q − 1, |i| �= q − 2 ,∀ j.

It is easy to verify that

1

q2 + (q − 2)2β2 < b2
α + β2,

1

q2 + (q − 2)2β2 <
(q − 3)2

4q2 + 9β2,

1

q2 + (q − 2)2β2 <
(q − 1)2

q2 + 4β2,

and

1

q2 + (q − 2)2β2 < 1 + q2β2.

The above four inequalities respectively leads to

μ
q−2,(q−2)[α]+ q−3

2
< μ1,j = μ−1,−j , ∀ j,

μ
q−2,(q−2)[α]+ q−3

2
< μ3,j = μ−3,−j , ∀ j,

μ q−3 < μ2,j = μ−2,−j , ∀ j �= 2[α] + 1,

q−2,(q−2)[α]+ 2
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and

μ
q−2,(q−2)[α]+ q−3

2
< μq,j = μ−q,−j , ∀ j �= p.

From (28) and (29) we know that

μ
q−2,(q−2)[α]+ q−3

2
> μ2,2[α]+1 = μ−2,−(2[α]+1),

μ
q−2,(q−2)[α]+ q−3

2
> μq,p = μ−q,−p.

Finally, it is clear that

μ
q−2,(q−2)[α]+ q−3

2
< μi,j , ∀ q < |i| �= |k|q, ∀ k, j,

μ
q−2,(q−2)[α]+ q−3

2
< μ0,j , ∀ j.

To sum up, we have μ
q−2,(q−2)[α]+ q−3

2
/∈ �α,β .

Claim 3: If q is odd and bα = q−1
2q

= [α] + 1 − α, then μ
q−2,(q−2)[α]+ q−1

2
/∈ �α,β . The argu-

ment is similar as that of Claim 2, we omit it.
(ii) For 1

q
√

q2−4
< β <

√
1
3 (b2

α − 1
q2 ), namely

1

q2 + 4β2 < min
{
b2
α + β2, q2β2

}
, (30)

we claim that μ2,2[α]+1 /∈ �α,β . Note that μ2,2[α]+1 = 1
q2 + 4β2, since q is odd and bα = q−1

2q
. 

Combining this and (30), we have

μ2,2[α]+1 < μ1,j = μ−1,−j , ∀ j,

μ2,2[α]+1 < μi,j , ∀ i = kq, ∀ k �= 0, j.

Clearly

μ2,2[α]+1 < μi,j , ∀ 3 ≤ |i| �= kq, ∀ k, j,

μ2,2[α]+1 < μ2,j = μ−2,−j , ∀ j �= 2[α] + 1,

μ2,2[α]+1 < μ0,j , ∀ j �= 0.

In another word, μ2,2[α]+1 /∈ �α,β .

(iii) The case β =
√

1
3 (b2

α − 1
q2 ) corresponds to the case

1
2 + 4β2 = b2

α + β2 < q2β2. (31)

q
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Claim A: if either q is even or q is odd and bα �= q−1
2q

, then

{
μ1,[α] /∈ �α,β, if bα = α − [α],
μ1,[α]+1 /∈ �α,β, if bα = [α] + 1 − α.

Assume q is even. Note that μ2,j ≥ 4
q2 + 4β2, ∀j . If bα = α − [α], then μ1,[α] = b2

α + β2. 
Combining these and (31), we obtain μ1,[α] < μ2,j = μ−2,−j , ∀j . From (31) we also know that 
μ1,[α] < μkp,j , ∀k �= 0, ∀j , and for any 3 ≤ |i| �= q|k| and j , μ1,[α] < μi,j . Clearly μ1,[α] <

μ1,j = μ−1,−j , ∀j �= [α] and μ1,[α] < μ0,j , ∀j . Hence μ1,[α] /∈ �α,β . For the case bα = [α] +
1 − α, note that μ1,[α]+1 = b2

α + β2. The rest argument of this claim in this case is similar as that 
of bα = α − [α], we omit it.

Assume q is odd and bα �= q−1
2q

. Then μ2,j ≥ 4
q2 + 4β2, ∀j . The rest argument is the same as 

that of the case q is even, we omit it.
Claim B: If q ≥ 7 is odd and bα = q−1

2q
= α − [α], then μ1,[α]+1 /∈ �α,β . Note that

μ1,[α]+1 = (q + 1)2

4q2 + β2 >
(q − 1)2

4q2 + β2 = b2
α + β2 = 1

q2 + 4β2, (32)

so

μ−1,−[α] = μ1,[α] < μ1,[α]+1 < μ1,j = μ−1,−j , j �= [α], [α] + 1,

and

μ1,[α]+1 > μ2,2[α]+1 = μ−2,−(2[α]+1).

By β2 = 1
3 (b2

α − 1
q2 ) = (q+1)(q−3)

12q2 , we obtain

(q + 1)2

4q2 + β2 <
(q − 1)2

q2 + 4β2,

so

μ1,[α]+1 < μ2,j = μ−2,−j , ∀ j �= 2[α] + 1.

It is easy to verify that

(q + 1)2

4q2 + β2 < q2β2,
(q + 1)2

4q2 + β2 < 1,

which mean that

μ1,[α]+1 < μkq,j , ∀ k �= 0, ∀ j, and μ1,[α]+1 < μ0,j , ∀ j �= 0.

We have
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(q + 1)2

4q2 + β2 −
(

1

q2 + 9β2
)

= − (q − 5)(5q + 3)

12q2 < 0,

which means that

μ1,[α]+1 < μi,j , ∀ 3 ≤ |i| �= q|k|, ∀ k, j.

All in all, μ
q−2,(q−2)[α]+ q−3

2
/∈ �α,β .

Claim C: If q ≥ 7 is odd and bα = q−1
2q

= [α] + 1 − α, then μ1,[α] /∈ �α,β . The argument is 
similar as that of Claim B, we omit it.

Claim D: If q = 5 and bα = q−1
2q

= 2
5 , then �α,β = Sα,β . Indeed, β2 = 1

3 (b2
α − 1

q2 ) = 1
25 . 

Recall that

μi,j = 1

25
i2 +

(
pi

5
− j

)2

.

For any i �= 0, we have

μ5i,j = μ5i,2pi−j , ∀ j �= pi, μ5i,pi = i2 = μ0,i .

On the other hand, for any i satisfying i
5 /∈ Z, we have

μi,j = i2

25
+ (pi − 5j)2

25
= μ

pi−5j,
(p2+1)i

5 −pj
, ∀ j.

Note that p2+1
5 ∈ Z, since bα = 2

5 . Moreover, it is easy to verify that (pi − 5j, (p
2+1)i
5 − pj) �=

(i, j), (−i, −j). Observe that

μ0,j = j2 = μ5j,pj , ∀ j �= 0.

To sum up, �α,β = Sα,β .

(iv) For 
√

1
3 (b2

α − 1
q2 ) < β <

√
1 − b2

α , namely

b2
α + β2 < min

{
1

q2 + 4β2, q2β2
}

, (33)

we claim that if bα = α − [α] then μ1,[α] /∈ �α,β , and if bα = [α] + 1 − α then μ1,[α]+1 /∈ �α,β . 
Assume bα = α − [α]. Note that μ1,[α] = b2

α + β2. Combining this and (33), we have

μ1,[α] < μi,j , ∀ 2 ≤ |i| �= |k|q, ∀ k, j,

μ1,[α] < μi,j , ∀ i = kq, ∀ k �= 0, j.

Moreover

μ1,[α] < μ1,j = μ−1,−j , ∀ j �= [α],
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μ1,[α] < μ0,j , ∀ j �= 0.

Hence μ1,[α] /∈ �α,β . The argument of this claim for bα = [α] + 1 − α is similar, we omit it. �
5. Local convexity of bifurcating curves

We first consider local convexity of bifurcating curves for rectangular torus case. To this end 
we need to establish the following lemma.

Lemma 5.1. Assume ρi,j = βλi,j ∈ βKβ . For any ζ ∈ R(∂uF (ρi,j , 0)), the only solution φ ∈
ker(∂uF (ρi,j , 0))⊥ of

∂uF (ρi,j ,0)φ = �φ + λi,jφ = ζ

is given by

φ(x, y) = C0 +
∑

r,s∈N∪{0},r2+s2 �=0

Ar,s cos(2πrx) cos(2πβ−1sy),

where

C0 = C̃0

λi,j

, Ai,j = 0, Ar,s = Ãr,s

λi,j − λr,s

, (r, s) �= (i, j).

Here Ãr,s , C̃0 are the Fourier coefficients of ζ

ζ(x, y) = C̃0 +
∑

r,s∈N∪{0},r2+s2 �=0

Ãr,s cos(2πrx) cos(2πβ−1sy).

Proof. Substituting the Fourier expansions of φ and ζ into the equation �φ + λi,jφ = ζ , we 
obtain

C0λi,j +
∑

r2+s2 �=0

Ar,s[λi,j − 4π2(r2 + β−2s2)] cos(2πrx) cos(2πβ−1sy)

= C̃0 +
∑

r2+s2 �=0

Ãr,s cos(2πrx) cos(2πβ−1sy),

which gives

C0λi,j = C̃0, Ar,s(λi,j − λr,s) = Ãr,s , (r, s) �= (i, j).

In fact Ai,j = 0, since φ ∈ ker(∂uF (ρi,j , 0))⊥. �
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Proof of Theorem 1.12. A simple computation shows that

∂2
u,uF (ρ,0)[ϕ,ς] = ρ

(
ϕς

β
−

∫ 1
0

∫ β

0 ϕςdxdy

β2

)
.

Take ψ = w0 = cos(2πix) cos(2πβ−1jy). Due to 
∫ 1

0

∫ β

0 w0dxdy = ∫ 1
0

∫ β

0 w3
0dxdy = 0, we 

have

〈∂2
u,uF (ρi,j ,0)[w0,w0],ψ〉 =

1∫
0

β∫
0

w0ρi,j

(
w2

0

β
−

∫ 1
0

∫ β

0 w2
0

β2

)

= ρi,j

β

1∫
0

β∫
0

w3
0 − ρi,j

β2

1∫
0

β∫
0

w0

1∫
0

β∫
0

w2
0

= 0.

So ρ′
i,j (0) = 0 and

Q∂2
u,uT (ρi,j ,0)[w0,w0] = 0.

Then

(∂uF (ρi,j ,0))−1(I − Q)∂2
u,uF (ρi,j ,0)[w0,w0] = (∂uF (ρi,j ,0))−1∂2

u,uF (ρi,j ,0)[w0,w0],

and we denote this term as φ. Correspondingly we denote

ζ := ∂2
u,uF (ρi,j ,0)[w0,w0] = ρi,j

(
w2

0

β
−

∫ 1
0

∫ β

0 w2
0

β2

)
,

then

ζ = λi,j

4
(cos(4πix) + cos(4πβ−1jy) + cos(4πix) cos(4πβ−1jy)).

From Lemma 5.1 we have

φ = A2i,0 cos(4πix) + A0,2j cos(4πβ−1jy) + A2i,2j cos(4πix) cos(4πβ−1jy),

where

A2i,0 = λi,j

4(λi,j − λ2i,0)
, A0,2j = λi,j

4(λi,j − λ0,2j )
, A2i,2j = − 1

12
.

So
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〈∂2
u,uF (ρi,j ,0)

[
w0, (∂uF (ρi,j ,0))−1(I − Q)∂2

u,uF (ρi,j ,0)[w0,w0]
]
,ψ〉

= 〈∂2
u,uF (ρi,j ,0)[w0, φ],ψ〉 =

1∫
0

β∫
0

w0ρi,j

⎛
⎝w0φ

β
−

1∫
0

β∫
0

w0φ

β2

⎞
⎠

= λi,j

1∫
0

β∫
0

w2
0φ

= λi,j

1∫
0

β∫
0

w2
0[A2i,0 cos(4πix) + A0,2j cos(4πβ−1jy) + A2i,2j cos(4πix) cos(4πβ−1jy)]

= βλi,j

8

(
A2i,0 + A0,2j − 1

24

)
. (34)

It is not difficult to compute that

〈∂3
u,u,uF (ρi,j ,0)[w0,w0,w0],ψ〉

=
1∫

0

β∫
0

w0ρi,j

(
w3

0

β
− 3

w0
∫ 1

0

∫ β

0 w2
0

β2 −
∫ 1

0

∫ β

0 w3
0

β2

)

= ρi,j

β

1∫
0

β∫
0

w4
0 − 3ρi,j

β2

⎛
⎝ 1∫

0

β∫
0

w2
0

⎞
⎠

2

= −3ρi,j

64
. (35)

Finally, we have

‖w0‖2〈∂2
ρ,uF (ρi,j ,0)w0,ψ〉 = ‖w0‖2 1

β

1∫
0

β∫
0

w2
0 = β

16
. (36)

Combining the formula of second-order derivative in Proposition 2.2 and (34)-(36), we obtain 
the desired result of Theorem 1.12. �
Proof of Corollary 1.1. We denote

ρ′′
i,j (0) = −1

2
λi,j

(
λi,j

λ2i,0 − λi,j

+ λi,j

λ0,2j − λi,j

− 1

3

)
=: −1

2
λi,j

(
1

δ
+ 1

σ
− 1

3

)
.

Note that λ2i,0 + λ0,2j = 4λi,j , so δ + σ = 2.
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(i) If 
√

3
3 β−1j < i <

√
3β−1j , namely

(λ2i,0 − λi,j )(λ0,2j − λi,j ) = −(3i2 − β−2j2)(i2 − 3β−2j2) > 0, (37)

then both δ and σ are positive. Hence the mean value inequality 2
1
δ
+ 1

σ

≤ δ+σ
2 and the fact δ+σ =

2 yield 1
δ

+ 1
σ

≥ 2, and the desired result ρ′′
i,j (0) < 0 follows.

(ii) If i <
√

3
3 β−1j or i >

√
3β−1j , then the sign in (37) is in opposite direction. So the desired 

result ρ′′
i,j (0) > 0 follows. �

Next we consider the local convexity for the generic flat torus case. Similarly, we establish 
the following lemma.

Lemma 5.2. Assume ρi,j = βμi,j ∈ βKα,β . For any ζ ∈ R(∂uF (ρi,j , 0)), the only solution φ ∈
ker(∂uF (ρi,j , 0))⊥ of

∂uF (ρi,j ,0)φ = �φ + μi,jφ = ζ

is given by

φ(x, y) = C0 +
∑

r,s∈Z,r2+s2 �=0

Ar,s cos 2π[rx + β−1(s − αr)y],

where

C0 = C̃0

μi,j

, Ai,j = 0, Ar,s = Ãr,s

μi,j − μr,s

, (r, s) �= (i, j).

Here Ãr,s , C̃0 are the Fourier coefficients of ζ

ζ(x, y) = C̃0 +
∑

r,s∈Z,r2+s2 �=0

Ãr,s cos 2π[rx + β−1(s − αr)y].

Proof. Substituting the Fourier expansions of φ and ζ into the equation �φ + μi,jφ = ζ , we 
obtain

C0μi,j +
∑

r2+s2 �=0

Ar,s(μi,j − μr,s) cos 2π[rx + β−1(s − αr)y]

= C̃0 +
∑

r2+s2 �=0

Ãr,s cos 2π[rx + β−1(s − αr)y],

which gives

C0μi,j = C̃0, Ar,s(μi,j − μr,s) = Ãr,s , (r, s) �= (i, j).

In fact Ai,j = 0, since φ ∈ ker(∂uF (ρi,j , 0))⊥. �
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We set

⎧⎪⎪⎨
⎪⎪⎩

x̃ = x − α

β
y,

ỹ =
√

α2 + β2

β
y.

(38)

A simple computation shows that

∂(x, y)

∂(x̃, ỹ)
= β√

α2 + β2
.

Set w0 = cos 2π[ix + β−1(j − αi)y]. We claim that∫
Tα,β

w0dxdy =
∫

Tα,β

w3
0dxdy = 0

and ∫
Tα,β

w2
0dxdy = β

2
,

∫
Tα,β

w4
0dxdy = 3β

8
.

Indeed, by (38) we have

∫
Tα,β

w0dxdy =
1∫

0

√
α2+β2∫
0

cos 2π

(
ix̃ + j√

α2 + β2
ỹ

)
∂(x, y)

∂(x̃, ỹ)
dx̃dỹ

= β√
α2 + β2

1∫
0

√
α2+β2∫
0

cos(2πix̃) cos

(
2πjỹ√
α2 + β2

)
dx̃dỹ

− β√
α2 + β2

1∫
0

√
α2+β2∫
0

sin(2πix̃) sin

(
2πjỹ√
α2 + β2

)
dx̃dỹ

= 0.

Similar computation can give the other three equalities in this claim.

Proof of Theorem 1.13. For

∂2
u,uF (ρ,0)[ϕ,ς] = ρ

(
ϕς

β
−

∫
Tα,β

ϕςdxdy

β2

)
,

taking ψ = w0, we have
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〈∂2
u,uF (ρi,j ,0)[w0,w0],ψ〉 =

∫
Tα,β

w0ρi,j

(
w2

0

β
−

∫
Tα,β

w2
0

β2

)

= ρi,j

β

∫
Tα,β

w3
0 − ρi,j

β2

∫
Tα,β

w0

∫
Tα,β

w2
0

= 0.

So ρ′
i,j (0) = 0 and Q∂2

u,uT (ρi,j , 0)[w0, w0] = 0. Then

(∂uF (ρi,j ,0))−1(I − Q)∂2
u,uF (ρi,j ,0)[w0,w0] = (∂uF (ρi,j ,0))−1∂2

u,uF (ρi,j ,0)[w0,w0],

and we denote this term as φ. Correspondingly we denote

ζ := ∂2
u,uF (ρi,j ,0)[w0,w0] = ρi,j

(
w2

0

β
−

∫
Tα,β

w2
0

β2

)
,

then

ζ = μi,j

2
cos 2π[2ix + β−1(2j − 2αi)y].

From Lemma 5.2 we have

φ = −1

6
cos 2π[2ix + β−1(2j − 2αi)y],

where we used the relation μ2i,2j = 4μi,j . So

〈∂2
u,uF (ρi,j ,0)

[
w0, (∂uF (ρi,j ,0))−1(I − Q)∂2

u,uF (ρi,j ,0)[w0,w0]
]
,ψ〉

= 〈∂2
u,uF (ρi,j ,0)[w0, φ],ψ〉 =

∫
Tα,β

w0ρi,j

⎛
⎜⎝w0φ

β
−

∫
Tα,β

w0φ

β2

⎞
⎟⎠

= μi,j

∫
Tα,β

w2
0φ

= −μi,j

6

∫
Tα,β

1 + cos 2π[2ix + β−1(2j − 2αi)y]
2

cos 2π[2ix + β−1(2j − 2αi)y]dxdy

= −ρi,j

24
. (39)
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We also have

〈∂3
u,u,uF (ρi,j ,0)[w0,w0,w0],ψ〉

=
∫

Tα,β

w0ρi,j

(
w3

0

β
− 3

w0
∫
Tα,β

w2
0

β2 −
∫
Tα,β

w3
0

β2

)

= ρi,j

β

∫
Tα,β

w4
0 − 3ρi,j

β2

⎛
⎜⎝ ∫

Tα,β

w2
0

⎞
⎟⎠

2

= −3ρi,j

8
, (40)

and

‖w0‖2〈∂2
ρ,uF (ρi,j ,0)w0,ψ〉 = ‖w0‖2 1

β

∫
Tα,β

w2
0 = β

4
. (41)

Combining the formula of second-order derivative in Proposition 2.2 and (39)-(41), we obtain 
the desired result in Theorem 1.13. �
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