

Periodic solutions of Allen–Cahn system with the fractional Laplacian

Zhuoran Du^a, Changfeng Gui^{b,*}

^a School of Mathematics, Hunan University, Changsha 410082, PR China

^b Department of Mathematics, University of Texas at San Antonio, TX 78249, USA

ARTICLE INFO

Article history:

Received 4 March 2020

Accepted 14 July 2020

Communicated by Guozhen Lu

MSC:

35B10

35A01

Keywords:

Fractional laplacian

System

Periodic solutions

Mountain pass method

Hamiltonian identity

ABSTRACT

We consider periodic solutions of the following nonlinear system associated with the fractional Laplacian

$$(-\partial_{xx})^s \mathbf{u}(x) + \nabla F(\mathbf{u}(x)) = 0 \quad \text{in } \mathbb{R},$$

where $\mathbf{u}(x) = (u(x), v(x))$. The function $F : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a smooth double-well potential. We prove the existence of periodic solutions with large period T by using variational methods. Moreover, we draw a conclusion that the second component of periodic solution is identical to zero if the origin is a saddle point of F , whereas the second component is not identical to zero if the origin is a local maximum point of F . A Hamiltonian identity for periodic solutions is also established.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following Allen–Cahn system involving the fractional Laplacian

$$(-\partial_{xx})^s \mathbf{u}(x) + \nabla F(\mathbf{u}(x)) = 0, \quad \mathbf{u}(x) = \mathbf{u}(x + T) \quad \text{in } \mathbb{R}, \quad (1)$$

where $(-\partial_{xx})^s$, $s \in (0, 1)$, denotes the usual fractional Laplace operator, a Fourier multiplier of symbol $|\xi|^{2s}$. The function F is a smooth double-well potential with wells at \mathbf{b}_1 and \mathbf{b}_2 . Without loss of generality we may assume that $\mathbf{b}_1 = -\mathbf{b}_2 = (1, 0)$. More precisely, we assume that $F(\mathbf{w})$ grows rapidly to infinity as $|\mathbf{w}| \rightarrow \infty$ and satisfies

$$\begin{cases} F(\mathbf{b}_i) = 0 < F(\mathbf{w}), & \forall \mathbf{w} \neq \mathbf{b}_i, i = 1, 2, \\ \nabla F(\mathbf{w}) \cdot \mathbf{w} \geq 0 & \text{for } |\mathbf{w}| \geq 1. \end{cases} \quad (2)$$

For the simplicity of the exposition of the paper, we also assume throughout the paper that

$$F_u(u, 0) > 0, \quad \text{for all } u \in (-1, 0); \quad F_u(u, 0) < 0, \quad \text{for all } u \in (0, 1). \quad (3)$$

Note that conditions (2)–(3) mean that $F(0, 0) = \max_{-1 \leq u \leq 1} F(u, 0) > 0$.

* Corresponding author.

E-mail addresses: duzr@hnu.edu.cn (Z. Du), changfeng.gui@utsa.edu (C. Gui).

The fractional Laplace operator $(-\Delta)^s$ can be defined as a Dirichlet-to-Neumann map for a so-called s -harmonic extension problem (see [10]). Given a function ϕ , the solution Φ of the following problem

$$\begin{cases} \operatorname{div}(y^a \nabla \Phi) = 0 & \text{in } \mathbb{R}_+^{n+1} = \{(x, y) : x \in \mathbb{R}^n, y > 0\}, \\ \Phi(x, 0) = \phi(x) & \text{on } \mathbb{R}^n \end{cases}$$

is called the s -harmonic extension of ϕ . It is well-known that Φ has finite energy $\int_{\mathbb{R}_+^{n+1}} |\nabla \Phi|^2 y^a dx dy < +\infty$. The parameter a is related to the power s of the fractional Laplacian $(-\Delta)^s$ by the formula $a = 1 - 2s \in (-1, 1)$. The authors in [10] proved that

$$(-\Delta)^s \phi(x) = d_s \frac{\partial \Phi}{\partial \nu^a} \quad \text{in } \mathbb{R}^n = \partial \mathbb{R}_+^{n+1},$$

where

$$\frac{\partial \Phi}{\partial \nu^a} := -\lim_{y \downarrow 0} y^a \frac{\partial \Phi}{\partial y}, \quad d_s = 2^{2s-1} \frac{\Gamma(s)}{\Gamma(1-s)}.$$

For the corresponding scalar problem of (1)

$$(-\partial_{xx})^s u + G'(u) = 0, \quad u(x+T) = u(x) \quad \text{in } \mathbb{R}, \quad (4)$$

where G is a smooth double-well potential, the authors and Zhang in [17] obtain the existence of periodic solution u_T for a large period T . In [13] more general existence result is obtained, and an upper bound of the least positive period is given. Moreover, a Hamiltonian identity, Modica-type inequalities and an estimate of the energy functional for periodic solutions are also established. In [14], the authors generalize these results to the corresponding non-autonomous Allen–Cahn Equations. Existence and multiplicity of periodic solutions to the so-called pesudo-relativistic Schrödinger equations are also established in [1–3]. In [18], the authors establish interior and boundary Harnack’s inequalities for nonnegative solutions to $(-\Delta)^s u = 0$ with periodic boundary conditions, and they also obtain regularity properties of the fractional Laplacian with periodic boundary conditions and the pointwise integro-differential formula for the operator.

In this paper we shall prove the existence of periodic solutions to system (1), according to the cases whether $F(u, v)$ is even with respect to u and v respectively.

System (1) can be realized in a local manner through the nonlinear boundary value problem

$$\begin{cases} \operatorname{div}(y^a \nabla \mathbf{U}) = 0 & \text{in } \mathbb{R}_+^2 = \{(x, y) : x \in \mathbb{R}, y > 0\}, \\ \frac{\partial \mathbf{U}}{\partial \nu^a} = -\nabla F(\mathbf{U}) & \text{on } \mathbb{R}. \end{cases} \quad (5)$$

Problem (5) is related to (1) in the sense that, if \mathbf{U} is a solution of (5), then a positive constant multiple of $\mathbf{u}(x) := \mathbf{U}(x, 0)$ satisfies (1).

In the rest of this article we always assume that F satisfies conditions (2)–(3).

We first obtain the existence result of solutions of (1) by finding a minimizer of the corresponding energy functional.

Theorem 1.1. *Let $s \in (0, 1)$ and assume that $F(u, v)$ is even with respect to u and v respectively. Then there exists $T_1 > 0$ such that for any $T > T_1$, (1) admits a periodic solution \mathbf{u}_T with period T and $|\mathbf{u}_T| \leq 1$, and its two components u_T and v_T are odd function and even function respectively. Moreover, $u_T(x) \in (0, 1)$ for all $x \in (0, \frac{T}{2})$.*

Under the conditions in Theorem 1.1, it is easy to see that (1) possesses a periodic solution $(\hat{u}_T, 0)$, where \hat{u}_T is a periodic solution to scalar problem (4) with $G(u) := F(u, 0)$.

A natural question arises: whether must the second component v_T of \mathbf{u}_T be identical to zero?

We will draw different conclusions for two cases of F . The first case is that the origin is a saddle point of F , and the second case is that the origin is a local maximum point of F .

Theorem 1.2. (i). Assume

$$F(u, 0) \leq F(u, v) \text{ for any } |u| \leq 1 \text{ and } v. \quad (6)$$

Then $v_T \equiv 0$;

(ii). Let $s \in (1/2, 1)$. Assume

$$\begin{aligned} \exists \lambda > 0 \text{ s.t. } D^2F(0) \leq -\lambda I, \text{ and for any } |u| < 1 : \\ \exists \delta(u) > 0 \text{ s.t. } F_{vv}(u, v) < 0 \text{ for } |v| < \delta(u). \end{aligned} \quad (7)$$

Then $v_T \not\equiv 0$ for large T .

Remark. (1). From conditions (2) and (7) we know that $\lim_{|u| \rightarrow 1} \delta(u) = 0$ and $F_{vv}(\mathbf{b}_i) = 0, i = 1, 2$.

(2) Condition (7) and the fact $\nabla F(0, 0) = 0$ imply that the origin is a local maximum point of F , and for each $|u| < 1$, $F(u, 0) > F(u, v)$ for any $|v| \leq \delta(u)$.

(3) A typical example of F satisfying condition (6) is $F(\mathbf{u}) = \frac{|1-\mathbf{u}^2|^2}{4}$, where we identify \mathbf{u} with a complex number $u + iv$. Hence any minimizer solution (u_T, v_T) of the following problem

$$(-\partial_{xx})^s \mathbf{u} + \nabla \left(\frac{|1-\mathbf{u}^2|^2}{4} \right) = 0, \quad \mathbf{u}(x) = \mathbf{u}(x+T), \quad \text{in } \mathbb{R}$$

must have $v_T \equiv 0$, and u_T is a periodic solution of the scalar problem

$$(-\partial_{xx})^s u + u(1-u^2) = 0.$$

(4) For the scalar Allen–Cahn equation with a fractional Laplacian, there exists a large literature, in particular regarding the one dimensional symmetry and layered solutions. See for example, [4–9,11,12,15,16, 19,20,22], etc.

For the general case that $F(u, v)$ is not necessary even in u or v , we have the following existence result by finding mountain-pass solutions.

Theorem 1.3. Let $s \in (0, 1)$. Then there exists $T_2 > 0$ such that for any $T > T_2$, (1) admits a periodic solution \mathbf{u}_T with period T .

We also establish the so-called Hamiltonian identity.

Theorem 1.4 (Hamiltonian Identity). Assume \mathbf{U} is the s -harmonic extension of a periodic solution \mathbf{u} of (1). Then for all $x \in \mathbb{R}$ we have

$$\frac{1}{2} \int_0^\infty [|\mathbf{U}_x(x, y)|^2 - |\mathbf{U}_y(x, y)|^2] y^a dy - F(\mathbf{U}(x, 0)) \equiv C_T.$$

2. Proof of Theorem 1.1

For $\mathbf{u} = (u, v)$, we denote

$$|\mathbf{u}| = \sqrt{u^2 + v^2},$$

and for a matrix $A = (a_{ij})$, we denote

$$|A|^2 = A : A = \sum_{i,j} a_{ij}^2.$$

Proof of Theorem 1.1. Denote

$$\Omega_T := \left[-\frac{T}{2}, \frac{T}{2}\right] \times [0, +\infty).$$

We consider the corresponding energy functional

$$J(\mathbf{U}, \Omega_T) := \frac{1}{2} \int_{\Omega_T} y^a |\nabla \mathbf{U}(x, y)|^2 dx dy + \int_{-\frac{T}{2}}^{\frac{T}{2}} F(\mathbf{U}(x, 0)) dx. \quad (8)$$

We denote the admissible set of the energy J as

$$\begin{aligned} \Lambda_T := \{ & \mathbf{U} = (U, V) : \mathbf{U} \in (H^1(\Omega_T, y^a))^2, \quad \mathbf{U}(x + T, y) = \mathbf{U}(x, y), \\ & U(-x, y) = -U(x, y), \quad U \geq 0 \text{ in } [0, \frac{T}{2}] \times [0, +\infty), \\ & V(-x, y) = V(x, y), \quad V(0, y) \leq 0 \leq V(\frac{T}{2}, y) \}. \end{aligned}$$

Here

$$H^1(\Omega_T, y^a) := \{W(x, y) : y^a (W^2 + |\nabla W|^2) \in L^1(\Omega_T)\}.$$

Note that $J(\mathbf{U}, \Omega_T) \geq 0$. On the other hand, we have that $(0, 0) \in \Lambda_T$ and $J(0, \Omega_T) = F(0, 0)T < +\infty$. Hence there exists a minimizing sequence $\{\mathbf{U}_k\} \subseteq \Lambda_T$ of J , namely

$$\lim_{k \rightarrow \infty} J(\mathbf{U}_k, \Omega_T) = m_T := \inf_{\mathbf{U} \in \Lambda_T} J(\mathbf{U}, \Omega_T).$$

By condition (2) we may assume that $|\mathbf{U}_k| \leq 1$. Since $F \geq 0$, from the definition of J , we have

$$\int_{\Omega_T} y^a |\nabla \mathbf{U}_k(x, y)|^2 dx dy \leq 2m_T + 1. \quad (9)$$

From this, weighted Poincaré inequality and the fact that \mathbf{U}_k is bounded, we obtain

$$\int_{\Omega_T} y^a |\mathbf{U}_k(x, y)|^2 dx dy \leq C < +\infty, \quad \forall k. \quad (10)$$

From (9)–(10) we deduce that there exists a subsequence of $\{\mathbf{U}_k\}$, still denoted as $\{\mathbf{U}_k\}$, converging weakly in $(H^1(\Omega_T, y^a))^2$ to a function $\mathbf{U}_T \in (H^1(\Omega_T, y^a))^2$. By weak lower-semi continuity of the norm, we obtain that

$$\int_{\Omega_T} y^a |\nabla \mathbf{U}_T(x, y)|^2 dx dy \leq \liminf_{k \rightarrow \infty} \int_{\Omega_T} y^a |\nabla \mathbf{U}_k(x, y)|^2 dx dy.$$

By Fatou's Lemma, we also have

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} F(\mathbf{U}_T(x, 0)) dx \leq \liminf_{k \rightarrow \infty} \int_{-\frac{T}{2}}^{\frac{T}{2}} F(\mathbf{U}_k(x, 0)) dx.$$

Hence $J(\mathbf{U}_T, \Omega_T) \leq m_T$. Note that the set Λ_T is weakly closed, so $\mathbf{U}_T \in \Lambda_T$. Then $J(\mathbf{U}_T, \Omega_T) = m_T$, namely \mathbf{U}_T is a minimizer of $J(\mathbf{U}, \Omega_T)$ in Λ_T .

Fix any $\eta = (\eta_1, \eta_2) \in \Lambda_T$. It is clear that for all small $\sigma > 0$, $\mathbf{U}_T + \sigma\eta \in \Lambda_T$. Thus if we set a real-valued function

$$\varphi(\sigma) := J(\mathbf{U}_T + \sigma\eta, \Omega_T),$$

then

$$\begin{aligned} 0 & \leq \frac{d}{d\sigma} \varphi(\sigma) \Big|_{\sigma=0} \\ & = \int_{\Omega_T} y^a \nabla \mathbf{U}_T(x, y) : \nabla \eta(x, y) dx dy + \int_{-\frac{T}{2}}^{\frac{T}{2}} \nabla F(\mathbf{U}_T(x, 0)) \cdot \eta(x, 0) dx \end{aligned}$$

$$\begin{aligned}
 &= - \int_{\Omega_T} \eta_1 \operatorname{div}(y^a \nabla U_T) dx dy + \int_{-\frac{T}{2}}^{\frac{T}{2}} \left[\frac{\partial U_T}{\partial \nu^a} + F_u(\mathbf{U}_T(x, 0)) \right] \eta_1(x, 0) dx \\
 &\quad - \int_{\Omega_T} \eta_2 \operatorname{div}(y^a \nabla V_T) dx dy + \int_{-\frac{T}{2}}^{\frac{T}{2}} \left[\frac{\partial V_T}{\partial \nu^a} + F_v(\mathbf{U}_T(x, 0)) \right] \eta_2(x, 0) dx \\
 &= -2 \int_0^{\frac{T}{2}} \int_0^\infty \eta_1 \operatorname{div}(y^a \nabla U_T) dx dy + 2 \int_0^{\frac{T}{2}} \left[\frac{\partial U_T}{\partial \nu^a} + F_u(\mathbf{U}_T(x, 0)) \right] \eta_1(x, 0) dx \\
 &\quad -2 \int_0^{\frac{T}{2}} \int_0^\infty \eta_2 \operatorname{div}(y^a \nabla V_T) dx dy + 2 \int_0^{\frac{T}{2}} \left[\frac{\partial V_T}{\partial \nu^a} + F_v(\mathbf{U}_T(x, 0)) \right] \eta_2(x, 0) dx.
 \end{aligned}$$

Hence, by the arbitrariness of η , we obtain

$$\begin{cases} \operatorname{div}(y^a \nabla V_T) = 0 & \text{in } [0, \frac{T}{2}] \times [0, +\infty), \\ \frac{\partial V_T}{\partial \nu^a} = -F_v(\mathbf{U}_T) & \text{on } [0, \frac{T}{2}] \end{cases} \quad (11)$$

and

$$\begin{cases} \operatorname{div}(y^a \nabla U_T) \leq 0 & \text{in } [0, \frac{T}{2}] \times [0, +\infty), \\ \frac{\partial U_T}{\partial \nu^a} \geq -F_u(\mathbf{U}_T) & \text{on } [0, \frac{T}{2}]. \end{cases} \quad (12)$$

We now prove that $U_T \not\equiv 0$. Set $\mu := \min_{v \in [-1, 1]} F(0, v)$, then one has that $\mu > 0$. We have

$$J((0, V_T), \Omega_T) \geq \mu T. \quad (13)$$

For $\sigma \in (0, 1)$, we define the following continuous functions

$$\hat{h}(x) := \begin{cases} \frac{4}{\sigma T} x, & x \in [0, \frac{\sigma T}{4}], \\ 1, & x \in [\frac{\sigma T}{4}, \frac{T}{2} - \frac{\sigma T}{4}], \\ \frac{2}{\sigma} - \frac{4}{\sigma T} x, & x \in [\frac{T}{2} - \frac{\sigma T}{4}, \frac{T}{2}], \end{cases}$$

and denote its odd extension to $[-\frac{T}{2}, \frac{T}{2}]$ as $h(x)$. Further we define

$$\psi(x, y) = \exp \left\{ -\frac{y}{2^{b+1}} \right\} h(x),$$

where the parameter b will be determined later. Then $(\psi, 0) \in \Lambda_T$. We next compute the energy $J((\psi, 0), \Omega_T)$. From conditions (2)–(3) of F , we have

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} F(\psi(x, 0), 0) dx = \int_{-\frac{T}{2}}^{\frac{T}{2}} F(h(x), 0) dx < F(0, 0) \sigma T. \quad (14)$$

For the other part of the energy, similar computation as in [17], we have

$$\begin{aligned}
 &\int_{-\frac{T}{2}}^{\frac{T}{2}} \int_0^\infty y^a |\nabla \psi(x, y)|^2 dx dy \\
 &= \int_0^\infty y^a \exp \left\{ -\frac{y}{2^b} \right\} dy \int_{-\frac{T}{2}}^{\frac{T}{2}} \left[\frac{h^2(x)}{2^{2b+2}} + (h'(x))^2 \right] dx \\
 &\leq \Gamma(a+1) 2^{b(a-1)} \left[\frac{T}{4} + 2^{2b} \frac{64}{\sigma T} \right].
 \end{aligned}$$

Note that $a-1 < 0$, for the purpose that the term $2^{b(a-1)} \Gamma(a+1)$ is small, we can choose sufficiently large b . For chosen b , the other term $2^{2b} \frac{64}{\sigma T}$ is also small provided that T is large enough. Hence there exists $T_1 > 0$ such that for any $T > T_1$, the following estimate holds true

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} \int_0^\infty y^a |\nabla \psi(x, y)|^2 dx dy < F(0, 0) \sigma T. \quad (15)$$

From (14)–(15), we have

$$J((\psi, 0), \Omega_T) \leq 2F(0, 0)\sigma T.$$

From this and (13), if we choose $\sigma < \min\{\frac{\mu}{2F(0, 0)}, 1\}$, then we have

$$J(\mathbf{U}_T, \Omega_T) \leq J((\psi, 0), \Omega_T) < J((0, V_T), \Omega_T),$$

which shows that $U_T \not\equiv 0$.

From (12) and the condition that $F(u, v)$ is even in u , by using Hopf Lemma we obtain that $U_T(x, y) > 0$ for $x \in (0, \frac{T}{2})$, $y \geq 0$. For general smooth functions $\eta_1, \eta_2 \in C_c^\infty((0, \frac{T}{2}) \times [0, +\infty))$ (η_1 is not necessary non-negative), we extend η_1, η_2 from $(0, \frac{T}{2}) \times [0, +\infty)$ to $(-\frac{T}{2}, \frac{T}{2}) \times [0, +\infty)$ oddly and evenly respectively. Then if $|\sigma|$ is sufficiently small, one has $\mathbf{U}_T + \sigma\eta \in \Lambda_T$. Hence we have

$$\begin{aligned} 0 &= \frac{d}{d\sigma} \varphi(\sigma)|_{\sigma=0} \\ &= -2 \int_0^{\frac{T}{2}} \int_0^\infty \eta_1 \operatorname{div}(y^a \nabla U_T) dx dy + 2 \int_0^{\frac{T}{2}} \left[\frac{\partial U_T}{\partial \nu^a} + F_u(\mathbf{U}_T(x, 0)) \right] \eta_1(x, 0) dx \\ &\quad - 2 \int_0^{\frac{T}{2}} \int_0^\infty \eta_2 \operatorname{div}(y^a \nabla V_T) dx dy + 2 \int_0^{\frac{T}{2}} \left[\frac{\partial V_T}{\partial \nu^a} + F_v(\mathbf{U}_T(x, 0)) \right] \eta_2(x, 0) dx. \end{aligned}$$

which yields (11) and

$$\begin{cases} \operatorname{div}(y^a \nabla U_T) = 0 & \text{in } [0, \frac{T}{2}] \times [0, +\infty), \\ \frac{\partial U_T}{\partial \nu^a} = -F_u(\mathbf{U}_T) & \text{on } [0, \frac{T}{2}]. \end{cases} \quad (16)$$

Now we extend U_T oddly and V_T evenly respectively (with respect to x) from Ω_T to $[-\frac{T}{2}, \frac{T}{2}] \times [0, +\infty)$. Further we extend it periodically (with respect to x again) from $[-\frac{T}{2}, \frac{T}{2}] \times [0, +\infty)$ to the whole half space $\overline{\mathbb{R}_+^2}$, and we still denote them as U_T and V_T . Similar argument as in the proof of Theorem 1.1 in [14] shows that $\mathbf{U}_T = (U_T, V_T)$ is a weak solution of (5).

We set

$$\mathbf{u}_T(x) := \mathbf{U}_T(x, 0),$$

then $\mathbf{u}_T = (u_T, v_T)$ is a periodic solution of (1), and its two components u_T, v_T are odd and even functions respectively. In view of $U_T|_{\Omega_T} \leq 1$ and $U_T|_{\Omega_T} \not\equiv 1$, a Hopf principle in [7] shows that $U_T(x, 0) = u_T(x) < 1$, hence $u_T(x) \in (0, 1)$ for all $x \in (0, \frac{T}{2})$. \square

3. Proof of Theorem 1.2

Proof of Theorem 1.2. (i). From condition (6), we deduce that $J(U, 0) \leq J(U, V)$ for any $(U, V) \in \Lambda_T$. Furthermore, if $V \not\equiv 0$, one has the strict inequality $J(U, 0) < J(U, V)$. Denote $\mathbf{U}_T(x, y) = (U_T, V_T)$ as the s -harmonic extension of periodic solution $\mathbf{u}_T(x)$. To the end that $J(\mathbf{U}_T) = \inf_{\mathbf{U} \in \Lambda_T} J(\mathbf{U}, \Omega_T)$, we obtain that $V_T \equiv 0$, which yields the desired result.

(ii). Denote $M_T := \sup_{\Omega_T} |U_T(x, y)|$. We define

$$\varepsilon_T := \min \left\{ \inf \{ \delta(u) : |u| \leq M_T \}, \sqrt{1 - M_T^2} \right\},$$

where δ is the value defined in (7). We note that $\varepsilon_T > 0$ is only dependent on M_T .

Note that $-1 < a < 0$, since $1/2 < s < 1$. We introduce the following continuous function

$$\hat{\zeta}(x) := \begin{cases} -\varepsilon_T, & x \in [-\frac{T}{2}, -\frac{T}{2} + \frac{T^{\frac{a}{2}}}{4}], \\ \varepsilon_T + \frac{4\varepsilon_T}{T - T^{\frac{a}{2}}} \left(x + \frac{T^{\frac{a}{2}}}{4} \right), & x \in [-\frac{T}{2} + \frac{T^{\frac{a}{2}}}{4}, -\frac{T^{\frac{a}{2}}}{4}], \\ \varepsilon_T, & x \in [-\frac{T^{\frac{a}{2}}}{4}, 0]. \end{cases}$$

Denote ζ as the even extension of the function $\hat{\zeta}$ from $(-\frac{T}{2}, 0)$ onto $(-\frac{T}{2}, \frac{T}{2})$. We choose test function

$$\eta(x, y) := (U_T(x, y), \exp \left\{ -\frac{y}{2^{b+1}} \right\} \zeta(x)),$$

where the parameter b will be determined later. Clearly $\eta(x, y) \in \Lambda_T$.

We compute

$$\begin{aligned} & \int_{-\frac{T}{2}}^{\frac{T}{2}} \int_0^\infty y^a |\nabla[\exp \left\{ -\frac{y}{2^{b+1}} \right\} \zeta(x)]|^2 dx dy \\ &= \int_0^\infty y^a \exp \left\{ -\frac{y}{2^b} \right\} dy \int_{-\frac{T}{2}}^{\frac{T}{2}} \left[\frac{\zeta^2(x)}{2^{2b+2}} + (\zeta'(x))^2 \right] dx \\ &\leq \left[\frac{\varepsilon_T^2}{2^{2b}} \frac{T}{4} + \frac{16\varepsilon_T^2}{T - T^{\frac{a}{2}}} \right] \int_0^\infty y^a \exp \left\{ -\frac{y}{2^b} \right\} dy \\ &= 2^{b(a+1)} \left[\frac{\varepsilon_T^2}{2^{2b}} \frac{T}{4} + \frac{16\varepsilon_T^2}{T - T^{\frac{a}{2}}} \right] \int_0^\infty z^a e^{-z} dz \\ &= \Gamma(a+1) \varepsilon_T^2 \left[2^{b(a-1)} \frac{T}{4} + 2^{b(a+1)} \frac{16}{T - T^{\frac{a}{2}}} \right] \\ &\leq \Gamma(a+1) \varepsilon_T^2 \left[2^{b(a-1)} \frac{T}{4} + 2^{b(a+1)} \frac{32}{T} \right], \end{aligned} \tag{17}$$

where in the final inequality we used the relation that $T - T^{\frac{a}{2}} > \frac{T}{2}$ provided that $T \geq 2$, since $a < 0$. From condition (7), we know that there exists $\beta > 0$ such that $F_{vv}(u, 0) \leq -\frac{\lambda}{2}$ for any $|u| \leq \beta$. By the a priori estimate of Proposition 2.9 in [21], we have that there exists a constant C independent of T such that $\|u_T\|_{C^{1,\alpha}(\mathbb{R})} \leq C$ for any $\alpha < 2s - 1$.

Note that the image of η lies in the rectangular region $[-M_T, M_T] \times [-\varepsilon_T, \varepsilon_T]$ where $F_{vv}(u, v) \leq 0$ by (7). Hence we have

$$\begin{aligned} & \int_{-\frac{T}{2}}^{\frac{T}{2}} [F(u_T(x), \zeta(x)) - F(u_T(x), 0)] dx \\ &= \left\{ \int_{-\frac{T}{2}}^{-\frac{T^{\frac{a}{2}}}{4}} + \int_{-\frac{T^{\frac{a}{2}}}{4}}^{\frac{T^{\frac{a}{2}}}{4}} + \int_{\frac{T^{\frac{a}{2}}}{4}}^{\frac{T}{2}} \right\} [F(u_T(x), \zeta(x)) - F(u_T(x), 0)] dx \\ &\leq \int_{-\frac{T^{\frac{a}{2}}}{4}}^{\frac{T^{\frac{a}{2}}}{4}} [F(u_T(x), \zeta(x)) - F(u_T(x), 0)] dx \\ &\leq -\frac{\lambda}{4} \varepsilon_T^2 T^{\frac{a}{2}}, \end{aligned} \tag{18}$$

where the first inequality follows from the definitions of ε_T , $\zeta(x)$ and the fact that $F(u_T, 0) > F(u_T, v)$ for any $|v| \leq \inf\{\delta(u), |u| \leq M_T\}$. The reason of the final inequality is that $F_{vv}(u_T(x), 0) \leq -\frac{\lambda}{2}$ for any $x \in (-\frac{T^{\frac{a}{2}}}{4}, \frac{T^{\frac{a}{2}}}{4})$, since $|u_T(x) - u_T(0)| = |u_T(x)| \leq \beta$ owing to $\|u_T\|_{C^{1,\alpha}(\mathbb{R})} \leq C$ and $T^{\frac{a}{2}}$ is small enough, provided that T is large enough. Choose b such that $2^{b(a+1)} = T^{1+a}$. Then $2^{b(a-1)} = T^{a-1}$. Substitute these into (17), we obtain

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} \int_0^\infty y^a |\nabla[\exp \left\{ -\frac{y}{2^{b+1}} \right\} \zeta(x)]|^2 dx dy \leq \frac{129}{4} \Gamma(a+1) \varepsilon_T^2 T^a.$$

From this and (18), it is easy to see that for large T we have

$$J((U_T, 0), \Omega_T) > J(\eta(x, y), \Omega_T),$$

which gives the desired result. \square

4. Proof of Theorem 1.3

Proof of Theorem 1.3. We introduce the Hilbert space

$$\mathcal{H} := \{\mathbf{U} : \|\mathbf{U}\|_{\mathcal{H}}^2 := \int_{\Omega_T} y^a |\nabla \mathbf{U}(x, y)|^2 dx dy + \int_{-\frac{T}{2}}^{\frac{T}{2}} |\mathbf{U}(x, 0)|^2 dx < \infty\},$$

where $\Omega_T = [-\frac{T}{2}, \frac{T}{2}] \times [0, +\infty)$. We consider the corresponding energy functional

$$J(\mathbf{U}, \Omega_T) = \frac{1}{2} \int_{\Omega_T} y^a |\nabla \mathbf{U}(x, y)|^2 dx dy + \int_{-\frac{T}{2}}^{\frac{T}{2}} F(\mathbf{U}(x, 0)) dx.$$

For simplicity we denote $J(\mathbf{U}, \Omega_T)$ as $J(\mathbf{U})$.

Plainly, $J \in C^1(\mathcal{H}, \mathbb{R})$, since F is smooth. Next we verify the Palais–Smale condition. Namely, for any sequence $\mathbf{U}_k \in \mathcal{H}$ with

$$J(\mathbf{U}_k) \text{ bounded}$$

and

$$J'(\mathbf{U}_k) \rightarrow 0 \quad \text{in } \mathcal{H},$$

it contains a convergent subsequence. Estimates similar to that (9) and (10) yield that there exists a subsequence of $\{\mathbf{U}_k\}$, still denoted as $\{\mathbf{U}_k\}$, converging weakly to a function $\bar{\mathbf{U}}$ in $(H^1(\Omega_T, y^a))^2$. In view of

$$(H^1(\Omega_T, y^a))^2 \hookrightarrow \left(H^s(-\frac{T}{2}, \frac{T}{2}) \right)^2 \hookrightarrow \left(L^2(-\frac{T}{2}, \frac{T}{2}) \right)^2,$$

we have

$$\mathbf{U}_k(x, 0) \rightarrow \bar{\mathbf{U}}(x, 0) \text{ in } \left(L^2(-\frac{T}{2}, \frac{T}{2}) \right)^2. \quad (19)$$

Note that

$$\begin{aligned} & \int_{\Omega_T} y^a |\nabla(\mathbf{U}_k(x, y) - \bar{\mathbf{U}}(x, y))|^2 dx dy \\ &= \langle J'(\mathbf{U}_k, \Omega_T) - J'(\bar{\mathbf{U}}, \Omega_T), \mathbf{U}_k - \bar{\mathbf{U}} \rangle \\ & \quad - \int_{-\frac{T}{2}}^{\frac{T}{2}} [\nabla F(\mathbf{U}_k(x, 0)) - \nabla F(\bar{\mathbf{U}}(x, 0))] \cdot (\mathbf{U}_k(x, 0) - \bar{\mathbf{U}}(x, 0)) dx, \end{aligned}$$

where

$$\begin{aligned} \langle J'(\mathbf{W}), \boldsymbol{\eta} \rangle &= \int_{\Omega_T} y^a \nabla \mathbf{W}(x, y) : \nabla \boldsymbol{\eta}(x, y) dx dy \\ & \quad + \int_{-\frac{T}{2}}^{\frac{T}{2}} \nabla F(\mathbf{W}(x, 0)) \cdot \boldsymbol{\eta}(x, 0) dx. \end{aligned}$$

Clearly

$$\langle J'(\mathbf{U}_k) - J'(\bar{\mathbf{U}}), \mathbf{U}_k - \bar{\mathbf{U}} \rangle \rightarrow 0.$$

We also have

$$\begin{aligned} & \left| \int_{-\frac{T}{2}}^{\frac{T}{2}} [\nabla F(\mathbf{U}_k(x, 0)) - \nabla F(\bar{\mathbf{U}}(x, 0))] \cdot (\mathbf{U}_k(x, 0) - \bar{\mathbf{U}}(x, 0)) dx \right| \\ & \leq C \int_{-\frac{T}{2}}^{\frac{T}{2}} |\mathbf{U}_k(x, 0) - \bar{\mathbf{U}}(x, 0)|^2 dx \rightarrow 0, \end{aligned}$$

where the convergence result follows from (19). Hence

$$\int_{\Omega_T} y^a |\nabla(\mathbf{U}_k(x, y) - \bar{\mathbf{U}}(x, y))|^2 dx dy \rightarrow 0.$$

This and (19) give that

$$\mathbf{U}_k \rightarrow \bar{\mathbf{U}} \text{ in } \mathcal{H}.$$

We have obtained the Palais–Smale condition.

Let

$$\Gamma := \{g \in C([0, 1]; \mathcal{H}) : g(0) = \mathbf{b}_2, g(1) = \mathbf{b}_1\}.$$

Note that

$$J(\mathbf{b}_1) = J(\mathbf{b}_2) = 0 < J(\mathbf{W}), \quad \forall \mathbf{W} \in \mathcal{H}, \mathbf{W} \neq \mathbf{b}_i, i = 1, 2.$$

Hence we have

$$\delta_T := \inf_{g \in \Gamma} \sup_{t \in [0, 1]} J(g(t)) > 0.$$

We set

$$J(\mathbf{U}_T) = \delta_T, \quad \text{where } \mathbf{U}_T = g(t_0) \text{ for some } g \in \Gamma \text{ and some } t_0 \in (0, 1).$$

Now we extend \mathbf{U}_T periodically (with respect to x) from Ω_T to the whole half space $\overline{\mathbb{R}_+^2}$, and we still denote it as \mathbf{U}_T . An argument similar to that the proof of Theorem 1.1 in [14] shows that \mathbf{U}_T is a weak solution of (5).

Next we show that $\mathbf{U}_T \not\equiv 0$. Choose a test function $(\psi, 0) \in \mathcal{H}$, where

$$\psi(x, y) = \exp \left\{ -\frac{y}{2^{b+1}} \right\} h(x).$$

Here b is a parameter to be determined later and h is the odd function defined in Section 2. We construct a path as

$$\bar{g}(t) = \begin{cases} 2t\psi + (1-2t)(-1), & \text{for } 0 \leq t \leq \frac{1}{2}, \\ (2-2t)\psi + (2t-1), & \text{for } \frac{1}{2} \leq t \leq 1. \end{cases}$$

Clearly $(\bar{g}, 0) \in \Gamma$. We have

$$\int_{\Omega_T} y^a |\nabla \bar{g}|^2 dx dy \leq \int_{\Omega_T} y^a |\nabla \psi(x, y)|^2 dx dy.$$

Note that

$$\bar{g}(t) = \begin{cases} 2t\psi + (1-2t)(-1) \in [-1, \psi], & \text{for } 0 \leq t \leq \frac{1}{2}, \\ (2-2t)\psi + (2t-1) \in [\psi, 1], & \text{for } \frac{1}{2} \leq t \leq 1. \end{cases}$$

We denote $\bar{g}(t)$ as $\bar{g}_t(x, y)$ to emphasize the dependence of \bar{g} on (x, y) . Then for $0 \leq t \leq \frac{1}{2}$, we have

$$\begin{aligned} \int_{-\frac{T}{2}}^{\frac{T}{2}} F(\bar{g}_t(x, 0), 0) dx &= \int_{-\frac{T}{2}}^0 F(\bar{g}_t(x, 0), 0) dx + \int_0^{\frac{T}{2}} F(\bar{g}_t(x, 0), 0) dx \\ &\leq \int_{-\frac{T}{2}}^0 F(\psi(x, 0), 0) dx + F(0, 0) \frac{T}{2}. \end{aligned}$$

Similarly, for $\frac{1}{2} \leq t \leq 1$, we have

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} F(\bar{g}_t(x, 0), 0) dx \leq \int_0^{\frac{T}{2}} F(\psi(x, 0), 0) dx + F(0, 0) \frac{T}{2}.$$

Hence for any $t \in [0, 1]$, one has

$$\begin{aligned} J(\bar{g}_t, 0) &\leq F(0, 0) \frac{T}{2} + \frac{1}{2} \int_{\Omega_T} y^a |\nabla \psi(x, y)|^2 dx dy \\ &\quad + \max \left\{ \int_{-\frac{T}{2}}^0 F(\psi(x, 0), 0) dx, \int_0^{\frac{T}{2}} F(\psi(x, 0), 0) dx \right\}. \end{aligned} \quad (20)$$

Then similar computation as in [17] shows that there exists $T_2 > 0$ such that for $T > T_2$ we have

$$J(\bar{g}_t, 0) < F(0, 0)T = J(0, 0), \quad \text{for } \forall t \in [0, 1].$$

Hence

$$J(\mathbf{U}_T) = \delta_T \leq \max_{t \in [0, 1]} J(\bar{g}_t, 0) < J(0, 0),$$

which gives that $\mathbf{U}_T \not\equiv 0$. Then $\mathbf{u}_T(x) := \mathbf{U}_T(x, 0)$ is the desired solution of system (1) with $\mathbf{u}_T(x) \not\equiv 0$. \square

5. Hamiltonian estimates

Proof of Theorem 1.4. By Lemma 5.1 in [7], we have $\int_0^{+\infty} y^a |\nabla \mathbf{U}(x, y)|^2 dy < \infty$. Hence $\lim_{y \rightarrow +\infty} y^a \mathbf{U}_y(x, y) \cdot \mathbf{U}_x(x, y) = 0$.

We introduce the function

$$w(x) := \frac{1}{2} \int_0^\infty [|\mathbf{U}_x(x, y)|^2 - |\mathbf{U}_y(x, y)|^2] y^a dy.$$

A suitable regularity result (see Lemma 5.1 in [7]) allows us to differentiate within the integral in the above equality to get

$$w'(x) = \int_0^\infty y^a [\mathbf{U}_x \cdot \mathbf{U}_{xx} - \mathbf{U}_y \cdot \mathbf{U}_{xy}](x, y) dy.$$

Note that

$$(y^a \mathbf{U}_y)_y + y^a \mathbf{U}_{xx} = 0.$$

Using integration by parts, we have

$$w'(x) = -[y^a \mathbf{U}_y(x, y) \cdot \mathbf{U}_x(x, y)]|_{y=0}^{+\infty} = \lim_{y \rightarrow 0^+} y^a \mathbf{U}_y(x, y) \cdot \mathbf{U}_x(x, y).$$

Since \mathbf{U} is the s -harmonic extension of solution \mathbf{u} of (1), we have

$$\lim_{y \rightarrow 0^+} y^a \mathbf{U}_y(x, y) \cdot \mathbf{U}_x(x, y) = (-\partial_{xx})^s \mathbf{u}(x) \cdot \mathbf{u}'(x) = \frac{d}{dx} F(\mathbf{U}(x, 0)).$$

Hence

$$w'(x) = \frac{d}{dx} F(\mathbf{U}(x, 0)),$$

which gives the result of this lemma. \square

Acknowledgements

The first author is supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2016JJ2018). The second author is supported by US National Science Foundation grants DMS-1601885 and DMS-1901914.

References

- [1] V. Ambrosio, Periodic solutions for a pseudo-relativistic Schrödinger equation, *Nonlinear Anal.* 120 (2015) 262–284.
- [2] V. Ambrosio, Periodic solutions for the non-local operator $(-\Delta + m^2)^s - m^{2s}$ with $m \geq 0$, *Topol. Methods Nonlinear Anal.* 49 (1) (2017) 75–103.
- [3] V. Ambrosio, G.M. Bisci, Periodic solutions for nonlocal fractional equations, *Commun. Pure Appl. Anal.* 16 (1) (2017) 331–344.
- [4] X. Cabré, E. Cinti, Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian, *Discrete Contin. Dyn. Syst.* 28 (3) (2010) 1179–1206, MR2644786.
- [5] X. Cabré, E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations, *Calc. Var. Partial Differential Equations* 49 (1–2) (2014) 233–269, MR3148114.
- [6] X. Cabré, E. Cinti, J. Serra, Stable nonlocal phase transitions, preprint.
- [7] X. Cabré, Y. Sire, Nonlinear equations for fractional laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, *Ann. Inst. H. Poincaré Anal. Non Linéaire* 31 (1) (2014) 23–53.
- [8] X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions, *Trans. Amer. Math. Soc.* 367 (2) (2015) 911–941.
- [9] X. Cabré, J. Solà-Morales, Layer solutions in a half-space for boundary reactions, *Comm. Pure Appl. Math.* 58 (12) (2005) 1678–1732, MR2177165.
- [10] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, *Comm. Partial Differential Equations* 32 (2007) 1245–1260.
- [11] S. Dipierro, A. Farina, E. Valdinoci, A three-dimensional symmetry result for a phase transition equation in the genuinely nonlocal regime, *Calc. Var. Partial Differential Equations* 57 (1) (2018) 57:15. MR3740395.
- [12] S. Dipierro, J. Serra, E. Valdinoci, Improvement of flatness for nonlocal phase transitions, ArXiv e-prints, 2016, available at 1611.10105.
- [13] Z. Du, C. Gui, Further study on periodic solutions of elliptic equations with a fractional Laplacian, *Nonlinear Anal.* 193 (2020) 111417.
- [14] Z. Feng, Z. Du, Periodic solutions of non-autonomous Allen–Cahn equations involving fractional Laplacian, *Adv. Nonlinear Stud.* <https://doi.org/10.1515/ans-2020-2075>.
- [15] A. Figalli, J. Serra, On stable solutions for boundary reactions: a De Giorgi type result in dimension $4 + 1$, ArXiv e-prints, 2017, available at 1705.02781.
- [16] C. Gui, Q. Li, Some energy estimates for stable solutions to fractional Allen–Cahn equations, *Calc. Var. Partial Differential Equations* 59 (2) (2020) <http://dx.doi.org/10.1007/s00526-020-1701-2>, Article number: 49.
- [17] C. Gui, J. Zhang, Z. Du, Periodic solutions of a semilinear elliptic equation with fractional Laplacian, *J. Fixed Point Theory Appl.* 19 (1) (2017) 363–373.
- [18] L. Roncal, P.R. Stinga, Fractional Laplacian on the torus, *Commun. Contemp. Math.* 18 (3) (2016) 26, 1550033.
- [19] O. Savin, Rigidity of minimizers in nonlocal phase transitions, ArXiv e-prints, 2016, available at 1610.09295.
- [20] O. Savin, Rigidity of minimizers in nonlocal phase transitions II, ArXiv e-prints, 2018, available at 1802.01710.
- [21] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, *Comm. Pure Appl. Math.* 60 (1) (2007) 67–112.
- [22] Y. Sire, E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, *J. Funct. Anal.* 256 (6) (2009) 1842–1864, MR2498561.