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1. Introduction

We consider the following Allen—Cahn system involving the fractional Laplacian
(=0zz)’u(z) + VF(u(z)) =0, u(z)=u(z+7T) inR, (1)

where (—0,,)*%, s € (0,1), denotes the usual fractional Laplace operator, a Fourier multiplier of symbol |£ |2S.
The function F is a smooth double-well potential with wells at b; and bs. Without loss of generality we may
assume that by = —by = (1,0). More precisely, we assume that F(w) grows rapidly to infinity as |w| — oo
and satisfies

F(b;,))=0< F(w), VYw#Db;,i=1,2, @)
VFE(w)-w >0 for|w|>1.
For the simplicity of the exposition of the paper, we also assume throughout the paper that
Fu(u,0) >0, for all w € (—1,0); F,(u,0) <0, for all u € (0,1). (3)
Note that conditions (2)—(3) mean that F(0,0) = max_j<4<1 F(u,0) > 0.
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S

The fractional Laplace operator (—A)® can be defined as a Dirichlet-to-Neumann map for a so-called

s-harmonic extension problem (see [10]). Given a function ¢, the solution @ of the following problem

div(y?V®) =0 in R = {(z,y):z € R",y > 0},
O(x,0) =¢(zr) on R”

is called the s-harmonic extension of ¢. It is well-known that & has finite energy fR7L+1 |V¢|2yadmdy < 4o00.

The parameter a is related to the power s of the fractional Laplacian (—A)® by the formula a = 1 — 2s €
(=1,1). The authors in [10] proved that

(=4)¢(z) =dom? i R"=0ORYT,
where Y 96 I'(s)
=—limy*—, ds= g2e—1_~35)
e w0 By’ Ir(1-s)
For the corresponding scalar problem of (1)
(=0p)’u+ G (u) =0, u(lx+T)=u(z) inR, (4)

where G is a smooth double-well potential, the authors and Zhang in [17] obtain the existence of periodic
solution ur for a large period T'. In [13] more general existence result is obtained, and an upper bound of the
least positive period is given. Moreover, a Hamiltonian identity, Modica-type inequalities and an estimate
of the energy functional for periodic solutions are also established. In [14], the authors generalize these
results to the corresponding non-autonomous Allen—Cahn Equations. Existence and multiplicity of periodic
solutions to the so-called pesudo-relativistic Schrédinger equations are also established in [1-3]. In [18], the
authors establish interior and boundary Harnack’s inequalities for nonnegative solutions to (—A)*u = 0
with periodic boundary conditions, and they also obtain regularity properties of the fractional Laplacian
with periodic boundary conditions and the pointwise integro-differential formula for the operator.

In this paper we shall prove the existence of periodic solutions to system (1), according to the cases
whether F'(u,v) is even with respect to u and v respectively.

System (1) can be realized in a local manner through the nonlinear boundary value problem

div(y*VU) =0 in R} ={(z,y) : z € R,y > 0}, (5)
9U — _VF(U) onR.

ovae

Problem (5) is related to (1) in the sense that, if U is a solution of (5), then a positive constant multiple of
u(x) := U(z,0) satisfies (1).

In the rest of this article we always assume that F' satisfies conditions (2)—(3).

We first obtain the existence result of solutions of (1) by finding a minimizer of the corresponding energy
functional.

Theorem 1.1. Let s € (0,1) and assume that F(u,v) is even with respect to u and v respectively. Then
there exists Ty > 0 such that for any T > T, (1) admits a periodic solution ur with period T and |ur| < 1,
and its two components up and vy are odd function and even function respectively. Moreover, ur(z) € (0,1)
forallz € (0,%).

Under the conditions in Theorem 1.1, it is easy to see that (1) possesses a periodic solution (&, 0), where
@ is a periodic solution to scalar problem (4) with G(u) := F(u,0).

A natural question arises: whether must the second component vy of ur be identical to zero?

We will draw different conclusions for two cases of F'. The first case is that the origin is a saddle point of
F, and the second case is that the origin is a local maximum point of F'.
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Theorem 1.2. (7). Assume
F(u,0) < F(u,v) forany |ul<1 and wv. (6)

Then vy = 0;
(ii). Let s € (1/2,1). Assume

3 A>0 st D*F(0) < -\, and for any |u| <1: (7)
3 5(u) >0 st Fu(u,v) <0 for |v] <d(u).

Then vy #Z 0 for large T.

Remark. (1). From conditions (2) and (7) we know that lim,|—; 6(u) = 0 and F,,(b;) = 0,7 = 1, 2.

(2) Condition (7) and the fact VF(0,0) = 0 imply that the origin is a local maximum point of F', and for
each |u| < 1, F(u,0) > F(u,v) for any |v| < é(u).

(3) A typical example of F satisfying condition (6) is F'(u)

_ hu??
- 4
number u 4 7v. Hence any minimizer solution (ur,vr) of the following problem

, where we identify u with a complex

[1—u

2
(—=0iz)'u+V < 1 ) =0, u(z)=u(z+7T), R

must have vy = 0, and ur is a periodic solution of the scalar problem
(=0pe)*u + u(l —u?) = 0.

(4) For the scalar Allen—-Cahn equation with a fractional Laplacian, there exists a large literature, in
particular regarding the one dimensional symmetry and layered solutions. See for example, [4-9,11,12,15,16,
19,20,22], etc.

For the general case that F(u,v) is not necessary even in u or v, we have the following existence result
by finding mountain-pass solutions.

Theorem 1.3. Let s € (0,1). Then there exists To > 0 such that for any T > Ts, (1) admits a periodic
solution up with period T.

We also establish the so-called Hamiltonian identity.

Theorem 1.4 (Hamiltonian Identity). Assume U is the s-harmonic extension of a periodic solution u of (1).
Then for all x € R we have

1

3 /OOO[IUI(:c,y)2 — U, (z,y)*ly*dy — F(U(z,0)) = Cr.

2. Proof of Theorem 1.1

For u = (u,v), we denote
[u] = Vu?+ 02,

and for a matrix A = (a;;), we denote

2 A — 2
| Al :A.A_E ag;.
1,J
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Proof of Theorem 1.1. Denote

r = [, 2] % [0,+00).
We consider the corresponding energy functional
1 5
J(U, ) = /Q VU (e, y)[Pdady + / | F(U(,0)da. (8)
T -3

We denote the admissible set of the energy J as
A ={U = (U,V): Ue (H'(2r,y")", U@+T,y)=Ul,y),
T
U(_xay) = —U(l‘,y), U > 0in [07 5] X [07—1_00)’

Vicay) = V(ey), V(0.5) <0< V(g9

Here
H (2r,y") = {W(2,y)  y* (W + VW) € L} (2r)}.
Note that J(U, 2r) > 0. On the other hand, we have that (0,0) € Ar and J(0, £27) = F(0,0)T < +o0.

Hence there exists a minimizing sequence {Uy} C Ar of J, namely

kh_)ngo J(Uyg, 27) = myp = Uléle J(U, 7).

By condition (2) we may assume that |U| < 1. Since F' > 0, from the definition of J, we have
/ y*|VU(,y)Pdedy < 2mp + 1. 9)
Q7
From this, weighted Poincaré inequality and the fact that Uy is bounded, we obtain

/ y“|Uk(x,y)|2dxdy <C<+4+o0, VE. (10)
Q7

From (9)—(10) we deduce that there exists a subsequence of {U}}, still denoted as {Uy}, converging weakly
n (H'(02r, y"))2 to a function Ur € (H'(£2r, y“))2. By weak lower-semi continuity of the norm, we obtain
that

/ ya|VUT(x,y)\2da:dySliminf/ Y2 VU (2, )| dady.
‘QT k—oo ‘QT

By Fatou’s Lemma, we also have
%

/T F(Ur(z,0))dz < hmlnf/ F(Ug(z,0))dx.
-3

Hence J(Ur, 2r) < myp. Note that the set Ap is weakly closed, so Ur € Ap. Then J(Ur, 2r) = my,
namely Uy is a minimizer of J(U, £2r) in Ar.
Fix any n = (n1,1m2) € Ap. It is clear that for all small o > 0, Up 4 on € Ap. Thus if we set a real-valued
function
p(o) = J(Ur +on, 2r),
then
d

0< — o=
< = (0)loo

T
Pl

= / y*VUr(z,y) : Vn(z,y)dzdy + / . VFE(Ur(z,0)) - n(x,0)dx
fore -z
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T

z
= 7/ mdiv(y“VUT)dxder/ PUT
Q7 _ ove

2 {8VT

+ F,(Up(x, O))} 7 (z,0)dx

r

wﬂw

T | Ove

7/ ngdiv(y“VVT)dxder/ +FU(UT(££,O))] n2(z, 0)dx
o7

|

T T [9Ur
= -2 mdiv(y*VUr)dxdy + 2 e + F,(Urp(z,0))| n1(x,0)dzx
o Jo 0

Toe T rovy
9 / / nadiv(y* Vi )dady + 2 / O+ Fu(Ur(x,0)| ma(, 0)d
0 0 0

Hence, by the arbitrariness of 7, we obtain

{div(y“VVT) =0 in[0,Z] x [0,400),

O = —F,(Ur) onl0,7]
and
div(y*VUr) <0 in [0, %] x [0, +00),
oUr T (12)
Jva > _Fu(UT) on [07 5]'
We now prove that Ur # 0. Set p = min,¢[_1 1) F'(0,v), then one has that y > 0. We have
J((0,Vr), 2r) > uT. (13)

For o € (0, 1), we define the following continuous functions

JLTI, xe[a%7
h(]}) = ]-7 T e [%7€_%]7
P aclf -

and denote its odd extension to [—Z, Z] as h(z). Further we define

V(a.y) = exp { ~557 } hla),

where the parameter b will be determined later. Then (¢, 0) € Ar. We next compute the energy J((¢,0), 7).
From conditions (2)—(3) of F, we have

/Z F(x,0),0)dz = /Z F(h(z),0)dz < F(0,0)0T. (14)

2

For the other part of the energy, similar computation as in [17], we have

T
5 o0
/ / Y| Vep(z,y)|*dedy
_% 0

:/o y“exp{—zyb}dy/_z [m + (hl(ﬂf))2] dx

T 64
<r 1)20(a=1) | = 4 920 77 |
<TI'(a+1) 1 + e

Note that a—1 < 0, for the purpose that the term 2°(*~1 I"(a+1) is small, we can choose sufficiently large b.
For chosen b, the other term QQb% is also small provided that T is large enough. Hence there exists 77 > 0
such that for any T > T}, the following estimate holds true

/? /00 ya|V1/J(x,y)|2dwdy < F(0,0)0T. (15)
_% 0
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From (14)—(15), we have
J((,0), 2r) < 2F(0,0)0T.

From this and (13), if we choose o < min{m7 1}, then we have
J(UTa ‘QT) < J((’(/}> O)a ‘QT) < J((O7 VT)7 *QT)7

which shows that Up # 0.

From (12) and the condition that F'(u,v) is even in u, by using Hopf Lemma we obtain that Ur(x,y) > 0
for z € (0, %), y > 0. For general smooth functions 11,72 € C((0,2)x[0,+00))(m is not necessary non-
negative), we extend 7y, n, from (0, Z)x[0,+00) to (=%, 2)x[0,+00) oddly and evenly respectively. Then
if |o| is sufficiently small, one has Uy + on € Ap. Hence we have

d
0= —¢(0)lo=o

T T [9Ur
= -2 mdiv(y*VUr)dzdy + 2/ o + F,(Urp(x,0))| n1(x,0)dx
o Jo 0

~

T oo T [Vy
3 / / nadiv(y™V Vi) dady + 2 / [W + F,(Ur(z, 0))] (2, 0)da.
0 0 0

which yields (11) and
(16)

div(y*VUr) =0 in [0, 2] x [0, +00),
% — —F,(Ur) on0,L].

ov®
Now we extend Uy oddly and Vi evenly respectively (with respect to z) from Q27 to [-Z, Z] x [0, 400).
Further we extend it periodically (with respect to  again) from [—%, %] x [0, +00) to the whole half space
R?, and we still denote them as Uy and Vp. Similar argument as in the proof of Theorem 1.1 in [14] shows
that Ur = (Ur, Vr) is a weak solution of (5).
We set

ur(z) = Ur(z,0),
then ur = (ug, vr) is a periodic solution of (1), and its two components up,vr are odd and even functions

respectively. In view of Ur|o, <1 and Ur|g, # 1, a Hopf principle in [7] shows that Ur(z,0) = ur(z) < 1,
hence ur(z) € (0,1) for all z € (0, Z). O

3. Proof of Theorem 1.2

Proof of Theorem 1.2. (i). From condition (6), we deduce that J(U,0) < J(U,V) for any (U,V) € Ar.
Furthermore, if V' # 0, one has the strict inequality J(U,0) < J(U, V). Denote Ur(x,y) = (Ur, Vr) as the
s-harmonic extension of periodic solution ur(z). To the end that J(Ur) = infuea, J(U, £27), we obtain
that Vp = 0, which yields the desired result.

(ii). Denote Mt := supg,, |Ur(z,y)|. We define

ET = min {1nf{5(u) : |U| < MT}) 1- M%} ’

where § is the value defined in (7). We note that e > 0 is only dependent on M.
Note that —1 < a < 0, since 1/2 < s < 1. We introduce the following continuous function

TET .’EE[—%,—%A—%]’
a a a
C = 4 T2 T, T2 _T2
C@)=Ner+ 7 g <x+4)’ vel-3+7 7]
° v €[50,
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Denote ¢ as the even extension of the function ¢ from (—Z,0) onto (f% L). We choose test function

T
2
n(z,y) = (Ur(z,y), eXp{ b+1} ),

where the parameter b will be determined later. Clearly n(z,y) € Ar.
‘We compute

2 2 00
ep T 16¢7 { y}
< |=LZ a —=Zd
_[22b4+T %] )y VP U
2

2 o]
b(a+1) Ep T 168T a,_—z
( {2% 1 + T 13 2% *dz

T 16
=I'(a+ 1) [217(“ D= +2”<“+1>a] (17)
T—-T2

T 32
]’v 1 2b(a 1) 2b(a+1)
(@+0ep [ Dy pern 2
where in the final inequality we used the relation that T — T3 > % provided that T > 2, since a < 0.
From condition (7), we know that there exists 8 > 0 such that F,,(u,0) < —3 for any |u| < 3. By the a
priori estimate of Proposition 2.9 in [21], we have that there exists a constant C' independent of T such that
ur||cramw) < C for any a < 2s — 1.

Note that the image of n lies in the rectangular region [—Myp, Mr] x [—ep,er| where Fy,(u,v) < 0 by
(7). Hence we have

[Z [F(ur(z),((z)) — F(ur(z),0)|ds

— /__ZT +/_TTj +/£ [F(ur(z),C(z) — Fur(z),0)]dz

< L;j[F(UT(.I),C(SC)) — F(ur(z),0)|dz

< _%ETT2 "

where the first inequality follows from the definitions of ep, {(x) and the fact that F'(up,0) > F(ur,v)

for any |v| < inf{é(u)7 lul < Mr}. The reason of the final inequality is that F,,(ur(z),0) < —% for any

x € (72, %), since |ur(z) — ur(0)| = [ur(z)| < B owing to [lur|crer) < C and T% is small enough,

provided that T is large enough. Choose b such that 20(@+1) = 71+ Then 20(¢—1) = Te=1 Substitute these
into (17), we obtain
zT [ 2 129
a Y 2 a
/—g/o y |V[exp{—2l)ﬁ}C(x)]| dzdy < Tf(a—i— 1)esT°.
From this and (18), it is easy to see that for large T" we have

J((UT7 0)7 QT) > J(T](l‘, y)7 ‘QT)J
which gives the desired result. [
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4. Proof of Theorem 1.3

Proof of Theorem 1.3. We introduce the Hilbert space

2
Hom (U U = [ VU Pdedy + [ [UG,0)Pds < oc),
Qr T
where 2p = [-Z, 2] x [0,+00). We consider the corresponding energy functional

1 2
I, ) = /Q Y VU (2, y) *dedy + / '
T -2

F(U(z,0))dx.

For simplicity we denote J(U, £2r) as J(U).
Plainly, J € C*(#,R), since F is smooth. Next we verify the Palais-Smale condition. Namely, for any

sequence Uy € ‘H with
J(Uy) bounded

and
J'(U) =0 inH,

it contains a convergent subsequence. Estimates similar to that (9) and (10) yield that there exists a
subsequence of {Uy}, still denoted as {U}}, converging weakly to a function U in (H'(27,y%))?. In view
of

oy o (L) oo (2 LD
o Ui (z,0) — U(z,0) in <L2(§, :;))2 . (19)
Note that
[, ¥ 19 Uste) — O,y
= (J'(Ug, 2r) — J'(U, 2r), Uy, — U)
- /gT [VE(Ug(z,0)) — VF(U(2,0))] - (Ug(x,0) — U(z,0))d,
where 2
(J'(W),m) = /rzT Y'VW(z,y) : Vn(z,y)dedy
+ /_gT VF(W(z,0)) - n(z,0)dz.
Clearly 2

(J'(Uy) = J'(U), U, —U) = 0.

We also have

‘/QT[VF(Uk(x7O)) — VF(U(,0))] - (Ug(x,0) — U(z,0))dz

T
2 _
< c/ * [Uk(2.0) — U(e,0)dr 0.
-2
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where the convergence result follows from (19). Hence
- 2
| vV (ULGy) - O, y) Pdody — o
Qr

This and (19) give that

U, — [_] in H.
We have obtained the Palais—Smale condition.
Let
I':={geC(0,1];H) : g(0) = bay, g(1) = by }.
Note that

J(by)=J(by) =0< J(W), YVWEHW#£b;,i=12

Hence we have

dr = inf sup J(g(¢)) > 0.
9€T ¢e(0,1)

We set
J(Ur) = dp, where Up = g(ty) for some g € I' and some ¢, € (0,1).

Now we extend Uy periodically (with respect to x) from 21 to the whole half space @, and we still denote
it as Ur. An argument similar to that the proof of Theorem 1.1 in [14] shows that Ur is a weak solution of

(5).
Next we show that Ur % 0. Choose a test function (¢,0) € H, where

Y(z,y) = exp {*21%} h(z).

Here b is a parameter to be determined later and h is the odd function defined in Section 2. We construct a
path as

o fap+a-2)(-1), for0
g(t)_{(2—2t)w+(2t—1), for 1

Clearly (g,0) € I'. We have
/ Y| Vg dady < / YoV (z, )| dady.
Qp Qr
Note that

3(t) = 2t + (1 —2t)(—1) e [-1,¢], for 0<¢
Sl @20y + (2t —1) € [,1], for i<t

We denote g(t) as g:(z,y) to emphasize the dependence of g on (z,y). Then for 0 <t < %, we have

/

<

Sl

T
0 T

F(g¢(x,0),0)dx = / F(g¢(x,0),0)dz + / F(g¢(x,0),0)dx

T
-z 0

0 T
F(¢(x,0),0)dz + F(0, 0)5

—

Sl

Similarly, for % <t <1, we have

/

Sl

T
2

F(gt(az,o),o)dxg/o F(q/}(:c,O),O)d:c—i—F(0,0)%.

Nl
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Hence for any ¢ € [0, 1], one has

_ r o1 a
7(@,0) < FO.05 +5 [ y190(e.0)Pdady (20)
Qp

0 5
erax{/TF(w(x,O),O)dx,/o F(i/)(a:,O),O)da:}.

Then similar computation as in [17] shows that there exists T» > 0 such that for T' > T, we have
J(g:,0) < F(0,0)T = J(0,0), forVt¢el0,1].

Hence
J(Ur) =or < IH&X]J(§t70) <.J(0,0),

te[0,1

which gives that Up # 0. Then up(z) := Up(z,0) is the desired solution of system (1) with ur(z) 0. O

5. Hamiltonian estimates

Proof of Theorem 1.4. By Lemma 5.1 in [7], we have f(;LOO y*|VU(z,y)|*dy < oo. Hence lim,,_, ;o y*
We introduce the function

1

w(w) = 2/000[|Uw(967y)|2 — Uy (2, 9)"]y"dy.

A suitable regularity result (see Lemma 5.1 in [7]) allows us to differentiate within the integral in the above
equality to get

w'(x) = / YUy - Ugy — Uy - Uy |z, y)dy.
0

Note that
(yaUy)y + yaUx:L’ =0.

Using integration by parts, we have

w'(z) = =y Uy(a,y) - Ua(z,9)][;25 = lim y*U,(z,y)  Ualw,y).
y—0Tt

Since U is the s-harmonic extension of solution u of (1), we have

lim 47U, 2,9) - Us(e.9) = (~002)"u(e) -w(0) = - F(U(z.0)).

Hence

which gives the result of this lemma. O
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