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a b s t r a c t

We consider periodic solutions of the following nonlinear system associated with
the fractional Laplacian

(−∂xx)su(x) + ∇F (u(x)) = 0 in R,

where u(x) = (u(x), v(x)). The function F : R2 → R is a smooth double-well
potential. We prove the existence of periodic solutions with large period T by using
variational methods. Moreover, we draw a conclusion that the second component
of periodic solution is identical to zero if the origin is a saddle point of F , whereas
the second component is not identical to zero if the origin is a local maximum
point of F . A Hamiltonian identity for periodic solutions is also established.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following Allen–Cahn system involving the fractional Laplacian

(−∂xx)su(x) + ∇F (u(x)) = 0, u(x) = u(x+ T ) in R, (1)

where (−∂xx)s, s ∈ (0, 1), denotes the usual fractional Laplace operator, a Fourier multiplier of symbol |ξ|2s.
The function F is a smooth double-well potential with wells at b1 and b2. Without loss of generality we may
assume that b1 = −b2 = (1, 0). More precisely, we assume that F (w) grows rapidly to infinity as |w| → ∞
and satisfies {

F (bi) = 0 < F (w), ∀w ̸= bi, i = 1, 2,
∇F (w) · w ≥ 0 for |w| ≥ 1. (2)

For the simplicity of the exposition of the paper, we also assume throughout the paper that

Fu(u, 0) > 0, for all u ∈ (−1, 0); Fu(u, 0) < 0, for all u ∈ (0, 1). (3)

Note that conditions (2)–(3) mean that F (0, 0) = max−1≤u≤1 F (u, 0) > 0.
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The fractional Laplace operator (−∆)s can be defined as a Dirichlet-to-Neumann map for a so-called
s-harmonic extension problem (see [10]). Given a function ϕ, the solution Φ of the following problem{

div(ya∇Φ) = 0 in Rn+1
+ = {(x, y) : x ∈ Rn, y > 0},

Φ(x, 0) = ϕ(x) on Rn

is called the s-harmonic extension of ϕ. It is well-known that Φ has finite energy
∫
Rn+1

+
|∇Φ|2yadxdy < +∞.

The parameter a is related to the power s of the fractional Laplacian (−∆)s by the formula a = 1 − 2s ∈
(−1, 1). The authors in [10] proved that

(−∆)sϕ(x) = ds
∂Φ

∂νa
in Rn = ∂Rn+1

+ ,

where
∂Φ

∂νa
:= − lim

y↓0
ya ∂Φ

∂y
, ds = 22s−1 Γ (s)

Γ (1 − s) .

For the corresponding scalar problem of (1)

(−∂xx)su+G′(u) = 0, u(x+ T ) = u(x) in R, (4)

where G is a smooth double-well potential, the authors and Zhang in [17] obtain the existence of periodic
solution uT for a large period T . In [13] more general existence result is obtained, and an upper bound of the
least positive period is given. Moreover, a Hamiltonian identity, Modica-type inequalities and an estimate
of the energy functional for periodic solutions are also established. In [14], the authors generalize these
results to the corresponding non-autonomous Allen–Cahn Equations. Existence and multiplicity of periodic
solutions to the so-called pesudo-relativistic Schrödinger equations are also established in [1–3]. In [18], the
authors establish interior and boundary Harnack’s inequalities for nonnegative solutions to (−∆)su = 0
with periodic boundary conditions, and they also obtain regularity properties of the fractional Laplacian
with periodic boundary conditions and the pointwise integro-differential formula for the operator.

In this paper we shall prove the existence of periodic solutions to system (1), according to the cases
whether F (u, v) is even with respect to u and v respectively.

System (1) can be realized in a local manner through the nonlinear boundary value problem{
div(ya∇U) = 0 in R2

+ = {(x, y) : x ∈ R, y > 0},
∂U
∂νa = −∇F (U) on R. (5)

Problem (5) is related to (1) in the sense that, if U is a solution of (5), then a positive constant multiple of
u(x) := U(x, 0) satisfies (1).

In the rest of this article we always assume that F satisfies conditions (2)–(3).
We first obtain the existence result of solutions of (1) by finding a minimizer of the corresponding energy

functional.

Theorem 1.1. Let s ∈ (0, 1) and assume that F (u, v) is even with respect to u and v respectively. Then
there exists T1 > 0 such that for any T > T1, (1) admits a periodic solution uT with period T and |uT | ≤ 1,
and its two components uT and vT are odd function and even function respectively. Moreover, uT (x) ∈ (0, 1)
for all x ∈ (0, T

2 ).

Under the conditions in Theorem 1.1, it is easy to see that (1) possesses a periodic solution (ûT , 0), where
ûT is a periodic solution to scalar problem (4) with G(u) := F (u, 0).

A natural question arises: whether must the second component vT of uT be identical to zero?
We will draw different conclusions for two cases of F . The first case is that the origin is a saddle point of

F , and the second case is that the origin is a local maximum point of F .
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Theorem 1.2. (i). Assume

F (u, 0) ≤ F (u, v) for any |u| ≤ 1 and v. (6)

Then vT ≡ 0;
(ii). Let s ∈ (1/2, 1). Assume

∃ λ > 0 s.t. D2F (0) ≤ −λI, and for any |u| < 1 : (7)
∃ δ(u) > 0 s.t. Fvv(u, v) < 0 for |v| < δ(u).

Then vT ̸≡ 0 for large T .

Remark. (1). From conditions (2) and (7) we know that lim|u|→1 δ(u) = 0 and Fvv(bi) = 0, i = 1, 2.
(2) Condition (7) and the fact ∇F (0, 0) = 0 imply that the origin is a local maximum point of F , and for

each |u| < 1, F (u, 0) > F (u, v) for any |v| ≤ δ(u).
(3) A typical example of F satisfying condition (6) is F (u) = |1−u2|2

4 , where we identify u with a complex
number u+ iv. Hence any minimizer solution (uT , vT ) of the following problem

(−∂xx)su + ∇

(
|1 − u2|2

4

)
= 0, u(x) = u(x+ T ), in R

must have vT ≡ 0, and uT is a periodic solution of the scalar problem

(−∂xx)su+ u(1 − u2) = 0.

(4) For the scalar Allen–Cahn equation with a fractional Laplacian, there exists a large literature, in
particular regarding the one dimensional symmetry and layered solutions. See for example, [4–9,11,12,15,16,
19,20,22], etc.

For the general case that F (u, v) is not necessary even in u or v, we have the following existence result
by finding mountain-pass solutions.

Theorem 1.3. Let s ∈ (0, 1). Then there exists T2 > 0 such that for any T > T2, (1) admits a periodic
solution uT with period T .

We also establish the so-called Hamiltonian identity.

Theorem 1.4 (Hamiltonian Identity). Assume U is the s-harmonic extension of a periodic solution u of (1).
Then for all x ∈ R we have

1
2

∫ ∞

0
[|Ux(x, y)|2 − |Uy(x, y)|2]yady − F (U(x, 0)) ≡ CT .

2. Proof of Theorem 1.1

For u = (u, v), we denote
|u| =

√
u2 + v2,

and for a matrix A = (aij), we denote

|A|2 = A : A =
∑
i,j

a2
ij .
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Proof of Theorem 1.1. Denote
ΩT := [−T

2 ,
T

2 ] × [0,+∞).

We consider the corresponding energy functional

J(U,ΩT ) := 1
2

∫
ΩT

ya|∇U(x, y)|2dxdy +
∫ T

2

− T
2

F (U(x, 0))dx. (8)

We denote the admissible set of the energy J as

ΛT := {U = (U, V ) : U ∈
(
H1(ΩT , y

a)
)2
, U(x+ T, y) = U(x, y),

U(−x, y) = −U(x, y), U ≥ 0 in [0, T2 ] × [0,+∞),

V (−x, y) = V (x, y), V (0, y) ≤ 0 ≤ V (T2 , y)}.

Here
H1(ΩT , y

a) := {W (x, y) : ya(W 2 + |∇W |2) ∈ L1(ΩT )}.

Note that J(U,ΩT ) ≥ 0. On the other hand, we have that (0, 0) ∈ ΛT and J(0,ΩT ) = F (0, 0)T < +∞.
Hence there exists a minimizing sequence {Uk} ⊆ ΛT of J , namely

lim
k→∞

J(Uk,ΩT ) = mT := inf
U∈ΛT

J(U,ΩT ).

By condition (2) we may assume that |Uk| ≤ 1. Since F ≥ 0, from the definition of J , we have∫
ΩT

ya|∇Uk(x, y)|2dxdy ≤ 2mT + 1. (9)

From this, weighted Poincaré inequality and the fact that Uk is bounded, we obtain∫
ΩT

ya|Uk(x, y)|2dxdy ≤ C < +∞, ∀ k. (10)

From (9)–(10) we deduce that there exists a subsequence of {Uk}, still denoted as {Uk}, converging weakly
in
(
H1(ΩT , y

a)
)2 to a function UT ∈

(
H1(ΩT , y

a)
)2. By weak lower-semi continuity of the norm, we obtain

that ∫
ΩT

ya|∇UT (x, y)|2dxdy ≤ lim inf
k→∞

∫
ΩT

ya|∇Uk(x, y)|2dxdy.

By Fatou’s Lemma, we also have∫ T
2

− T
2

F (UT (x, 0))dx ≤ lim inf
k→∞

∫ T
2

− T
2

F (Uk(x, 0))dx.

Hence J(UT ,ΩT ) ≤ mT . Note that the set ΛT is weakly closed, so UT ∈ ΛT . Then J(UT ,ΩT ) = mT ,
namely UT is a minimizer of J(U,ΩT ) in ΛT .

Fix any η = (η1, η2) ∈ ΛT . It is clear that for all small σ > 0, UT +ση ∈ ΛT . Thus if we set a real-valued
function

φ(σ) := J(UT + ση,ΩT ),

then

0 ≤ d

dσ
φ(σ)|σ=0

=
∫
ΩT

ya∇UT (x, y) : ∇η(x, y)dxdy +
∫ T

2

− T
2

∇F (UT (x, 0)) · η(x, 0)dx
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= −
∫
ΩT

η1div(ya∇UT )dxdy +
∫ T

2

− T
2

[
∂UT

∂νa
+ Fu(UT (x, 0))

]
η1(x, 0)dx

−
∫
ΩT

η2div(ya∇VT )dxdy +
∫ T

2

− T
2

[
∂VT

∂νa
+ Fv(UT (x, 0))

]
η2(x, 0)dx

= −2
∫ T

2

0

∫ ∞

0
η1div(ya∇UT )dxdy + 2

∫ T
2

0

[
∂UT

∂νa
+ Fu(UT (x, 0))

]
η1(x, 0)dx

−2
∫ T

2

0

∫ ∞

0
η2div(ya∇VT )dxdy + 2

∫ T
2

0

[
∂VT

∂νa
+ Fv(UT (x, 0))

]
η2(x, 0)dx.

Hence, by the arbitrariness of η, we obtain{
div(ya∇VT ) = 0 in [0, T

2 ] × [0,+∞),
∂VT
∂νa = −Fv(UT ) on [0, T

2 ]
(11)

and {
div(ya∇UT ) ≤ 0 in [0, T

2 ] × [0,+∞),
∂UT
∂νa ≥ −Fu(UT ) on [0, T

2 ].
(12)

We now prove that UT ̸≡ 0. Set µ := minv∈[−1,1] F (0, v), then one has that µ > 0. We have

J((0, VT ),ΩT ) ≥ µT. (13)

For σ ∈ (0, 1), we define the following continuous functions

ĥ(x) :=

⎧⎪⎨⎪⎩
4

σT x, x ∈ [0, σT
4 ],

1, x ∈ [ σT
4 ,

T
2 − σT

4 ],
2
σ − 4

σT x, x ∈ [ T
2 − σT

4 ,
T
2 ],

and denote its odd extension to [− T
2 ,

T
2 ] as h(x). Further we define

ψ(x, y) = exp
{

− y

2b+1

}
h(x),

where the parameter b will be determined later. Then (ψ, 0) ∈ ΛT . We next compute the energy J((ψ, 0),ΩT ).
From conditions (2)–(3) of F , we have∫ T

2

− T
2

F (ψ(x, 0), 0)dx =
∫ T

2

− T
2

F (h(x), 0)dx < F (0, 0)σT. (14)

For the other part of the energy, similar computation as in [17], we have∫ T
2

− T
2

∫ ∞

0
ya|∇ψ(x, y)|2dxdy

=
∫ ∞

0
yaexp

{
− y

2b

}
dy

∫ T
2

− T
2

[
h2(x)
22b+2 + (h′(x))2

]
dx

≤ Γ (a+ 1)2b(a−1)
[
T

4 + 22b 64
σT

]
.

Note that a−1 < 0, for the purpose that the term 2b(a−1)Γ (a+1) is small, we can choose sufficiently large b.
For chosen b, the other term 22b 64

σT is also small provided that T is large enough. Hence there exists T1 > 0
such that for any T > T1, the following estimate holds true∫ T

2

− T
2

∫ ∞

0
ya|∇ψ(x, y)|2dxdy < F (0, 0)σT. (15)
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From (14)–(15), we have
J((ψ, 0),ΩT ) ≤ 2F (0, 0)σT.

From this and (13), if we choose σ < min{ µ
2F (0,0) , 1}, then we have

J(UT ,ΩT ) ≤ J((ψ, 0),ΩT ) < J((0, VT ),ΩT ),

which shows that UT ̸≡ 0.
From (12) and the condition that F (u, v) is even in u, by using Hopf Lemma we obtain that UT (x, y) > 0

for x ∈ (0, T
2 ), y ≥ 0. For general smooth functions η1, η2 ∈ C∞

c ((0, T
2 )×[0,+∞))(η1 is not necessary non-

negative), we extend η1, η2 from (0, T
2 )×[0,+∞) to (− T

2 ,
T
2 )×[0,+∞) oddly and evenly respectively. Then

if |σ| is sufficiently small, one has UT + ση ∈ ΛT . Hence we have

0 = d

dσ
φ(σ)|σ=0

= −2
∫ T

2

0

∫ ∞

0
η1div(ya∇UT )dxdy + 2

∫ T
2

0

[
∂UT

∂νa
+ Fu(UT (x, 0))

]
η1(x, 0)dx

−2
∫ T

2

0

∫ ∞

0
η2div(ya∇VT )dxdy + 2

∫ T
2

0

[
∂VT

∂νa
+ Fv(UT (x, 0))

]
η2(x, 0)dx.

which yields (11) and {
div(ya∇UT ) = 0 in [0, T

2 ] × [0,+∞),
∂UT
∂νa = −Fu(UT ) on [0, T

2 ].
(16)

Now we extend UT oddly and VT evenly respectively (with respect to x) from ΩT to [− T
2 ,

T
2 ] × [0,+∞).

Further we extend it periodically (with respect to x again) from [− T
2 ,

T
2 ] × [0,+∞) to the whole half space

R2
+, and we still denote them as UT and VT . Similar argument as in the proof of Theorem 1.1 in [14] shows

that UT = (UT , VT ) is a weak solution of (5).
We set

uT (x) := UT (x, 0),

then uT = (uT , vT ) is a periodic solution of (1), and its two components uT , vT are odd and even functions
respectively. In view of UT |ΩT

≤ 1 and UT |ΩT
̸≡ 1, a Hopf principle in [7] shows that UT (x, 0) = uT (x) < 1,

hence uT (x) ∈ (0, 1) for all x ∈ (0, T
2 ). □

3. Proof of Theorem 1.2

Proof of Theorem 1.2. (i). From condition (6), we deduce that J(U, 0) ≤ J(U, V ) for any (U, V ) ∈ ΛT .
Furthermore, if V ̸≡ 0, one has the strict inequality J(U, 0) < J(U, V ). Denote UT (x, y) = (UT , VT ) as the
s-harmonic extension of periodic solution uT (x). To the end that J(UT ) = infU∈ΛT

J(U,ΩT ), we obtain
that VT ≡ 0, which yields the desired result.

(ii). Denote MT := supΩT
|UT (x, y)|. We define

εT := min
{

inf{δ(u) : |u| ≤ MT },
√

1 −M2
T

}
,

where δ is the value defined in (7). We note that εT > 0 is only dependent on MT .
Note that −1 < a < 0, since 1/2 < s < 1. We introduce the following continuous function

ζ̂(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−εT , x ∈ [− T

2 ,−
T
2 + T

a
2

4 ],

εT + 4εT

T −T
a
2

(
x+ T

a
2

4

)
, x ∈ [− T

2 + T
a
2

4 ,− T
a
2

4 ],

εT , x ∈ [− T
a
2

4 , 0].
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Denote ζ as the even extension of the function ζ̂ from (− T
2 , 0) onto (− T

2 ,
T
2 ). We choose test function

η(x, y) := (UT (x, y), exp
{

− y

2b+1

}
ζ(x)),

where the parameter b will be determined later. Clearly η(x, y) ∈ ΛT .
We compute ∫ T

2

− T
2

∫ ∞

0
ya|∇[exp

{
− y

2b+1

}
ζ(x)]|

2
dxdy

=
∫ ∞

0
yaexp

{
− y

2b

}
dy

∫ T
2

− T
2

[
ζ2(x)
22b+2 + (ζ ′(x))2

]
dx

≤
[
ε2

T

22b

T

4 + 16ε2
T

T − T
a
2

] ∫ ∞

0
yaexp

{
− y

2b

}
dy

= 2b(a+1)
[
ε2

T

22b

T

4 + 16ε2
T

T − T
a
2

] ∫ ∞

0
zae−zdz

= Γ (a+ 1)ε2
T

[
2b(a−1)T

4 + 2b(a+1) 16
T − T

a
2

]
(17)

≤ Γ (a+ 1)ε2
T

[
2b(a−1)T

4 + 2b(a+1) 32
T

]
,

where in the final inequality we used the relation that T − T
a
2 > T

2 provided that T ≥ 2, since a < 0.
From condition (7), we know that there exists β > 0 such that Fvv(u, 0) ≤ − λ

2 for any |u| ≤ β. By the a
priori estimate of Proposition 2.9 in [21], we have that there exists a constant C independent of T such that
∥uT ∥C1,α(R) ≤ C for any α < 2s− 1.

Note that the image of η lies in the rectangular region [−MT ,MT ] × [−εT , εT ] where Fvv(u, v) ≤ 0 by
(7). Hence we have ∫ T

2

− T
2

[F (uT (x), ζ(x)) − F (uT (x), 0)]dx

=

⎧⎨⎩
∫ − T

a
2

4

− T
2

+
∫ T

a
2

4

− T
a
2

4

+
∫ T

2

T
a
2

4

⎫⎬⎭ [F (uT (x), ζ(x)) − F (uT (x), 0)]dx

≤
∫ T

a
2

4

− T
a
2

4

[F (uT (x), ζ(x)) − F (uT (x), 0)]dx

≤ −λ

4 ε
2
TT

a
2 , (18)

where the first inequality follows from the definitions of εT , ζ(x) and the fact that F (uT , 0) > F (uT , v)
for any |v| ≤ inf{δ(u), |u| ≤ MT }. The reason of the final inequality is that Fvv(uT (x), 0) ≤ − λ

2 for any
x ∈ (− T

a
2

4 , T
a
2

4 ), since |uT (x) − uT (0)| = |uT (x)| ≤ β owing to ∥uT ∥C1,α(R) ≤ C and T
a
2 is small enough,

provided that T is large enough. Choose b such that 2b(a+1) = T 1+a. Then 2b(a−1) = T a−1. Substitute these
into (17), we obtain ∫ T

2

− T
2

∫ ∞

0
ya|∇[exp

{
− y

2b+1

}
ζ(x)]|

2
dxdy ≤ 129

4 Γ (a+ 1)ε2
TT

a.

From this and (18), it is easy to see that for large T we have

J((UT , 0),ΩT ) > J(η(x, y),ΩT ),

which gives the desired result. □
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4. Proof of Theorem 1.3

Proof of Theorem 1.3. We introduce the Hilbert space

H := {U : ∥U∥2
H :=

∫
ΩT

ya|∇U(x, y)|2dxdy +
∫ T

2

− T
2

|U(x, 0)|2dx < ∞},

where ΩT = [− T
2 ,

T
2 ] × [0,+∞). We consider the corresponding energy functional

J(U,ΩT ) = 1
2

∫
ΩT

ya|∇U(x, y)|2dxdy +
∫ T

2

− T
2

F (U(x, 0))dx.

For simplicity we denote J(U,ΩT ) as J(U).
Plainly, J ∈ C1(H,R), since F is smooth. Next we verify the Palais–Smale condition. Namely, for any

sequence Uk ∈ H with
J(Uk) bounded

and
J ′(Uk) → 0 in H,

it contains a convergent subsequence. Estimates similar to that (9) and (10) yield that there exists a
subsequence of {Uk}, still denoted as {Uk}, converging weakly to a function Ū in (H1(ΩT , y

a))2. In view
of

(H1(ΩT , y
a))2 ↪→

(
Hs(−T

2 ,
T

2 )
)2

↪→↪→
(
L2(−T

2 ,
T

2 )
)2

,

we have
Uk(x, 0) → Ū(x, 0) in

(
L2(−T

2 ,
T

2 )
)2

. (19)

Note that ∫
ΩT

ya|∇(Uk(x, y) − Ū(x, y))|2dxdy

= ⟨J ′(Uk,ΩT ) − J ′(Ū,ΩT ),Uk − Ū⟩

−
∫ T

2

− T
2

[∇F (Uk(x, 0)) − ∇F (Ū(x, 0))] · (Uk(x, 0) − Ū(x, 0))dx,

where

⟨J ′(W),η⟩ =
∫
ΩT

ya∇W(x, y) : ∇η(x, y)dxdy

+
∫ T

2

− T
2

∇F (W(x, 0)) · η(x, 0)dx.

Clearly
⟨J ′(Uk) − J ′(Ū),Uk − Ū⟩ → 0.

We also have ⏐⏐⏐⏐⏐
∫ T

2

− T
2

[∇F (Uk(x, 0)) − ∇F (Ū(x, 0))] · (Uk(x, 0) − Ū(x, 0))dx

⏐⏐⏐⏐⏐
≤ C

∫ T
2

− T
2

|Uk(x, 0) − Ū(x, 0)|2dx → 0,
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where the convergence result follows from (19). Hence∫
ΩT

ya|∇(Uk(x, y) − Ū(x, y))|2dxdy → 0.

This and (19) give that
Uk → Ū in H.

We have obtained the Palais–Smale condition.
Let

Γ := {g ∈ C([0, 1]; H) : g(0) = b2, g(1) = b1}.

Note that
J(b1) = J(b2) = 0 < J(W), ∀ W ∈ H,W ̸= bi, i = 1, 2.

Hence we have
δT := inf

g∈Γ
sup

t∈[0,1]
J(g(t)) > 0.

We set
J(UT ) = δT , where UT = g(t0) for some g ∈ Γ and some t0 ∈ (0, 1).

Now we extend UT periodically (with respect to x) from ΩT to the whole half space R2
+, and we still denote

it as UT . An argument similar to that the proof of Theorem 1.1 in [14] shows that UT is a weak solution of
(5).

Next we show that UT ̸≡ 0. Choose a test function (ψ, 0) ∈ H, where

ψ(x, y) = exp
{

− y

2b+1

}
h(x).

Here b is a parameter to be determined later and h is the odd function defined in Section 2. We construct a
path as

ḡ(t) =
{

2tψ + (1 − 2t)(−1), for 0 ≤ t ≤ 1
2 ,

(2 − 2t)ψ + (2t− 1), for 1
2 ≤ t ≤ 1.

Clearly (ḡ, 0) ∈ Γ . We have ∫
ΩT

ya|∇ḡ|2dxdy ≤
∫
ΩT

ya|∇ψ(x, y)|2dxdy.

Note that

ḡ(t) =
{

2tψ + (1 − 2t)(−1) ∈ [−1, ψ], for 0 ≤ t ≤ 1
2 ,

(2 − 2t)ψ + (2t− 1) ∈ [ψ, 1], for 1
2 ≤ t ≤ 1.

We denote ḡ(t) as ḡt(x, y) to emphasize the dependence of ḡ on (x, y). Then for 0 ≤ t ≤ 1
2 , we have∫ T

2

− T
2

F (ḡt(x, 0), 0)dx =
∫ 0

− T
2

F (ḡt(x, 0), 0)dx+
∫ T

2

0
F (ḡt(x, 0), 0)dx

≤
∫ 0

− T
2

F (ψ(x, 0), 0)dx+ F (0, 0)T2 .

Similarly, for 1
2 ≤ t ≤ 1, we have∫ T

2

− T
2

F (ḡt(x, 0), 0)dx ≤
∫ T

2

0
F (ψ(x, 0), 0)dx+ F (0, 0)T2 .
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Hence for any t ∈ [0, 1], one has

J(ḡt, 0) ≤ F (0, 0)T2 + 1
2

∫
ΩT

ya|∇ψ(x, y)|2dxdy (20)

+ max
{∫ 0

− T
2

F (ψ(x, 0), 0)dx,
∫ T

2

0
F (ψ(x, 0), 0)dx

}
.

Then similar computation as in [17] shows that there exists T2 > 0 such that for T > T2 we have

J(ḡt, 0) < F (0, 0)T = J(0, 0), for ∀ t ∈ [0, 1].

Hence
J(UT ) = δT ≤ max

t∈[0,1]
J(ḡt, 0) < J(0, 0),

which gives that UT ̸≡ 0. Then uT (x) := UT (x, 0) is the desired solution of system (1) with uT (x) ̸≡ 0. □

5. Hamiltonian estimates

Proof of Theorem 1.4. By Lemma 5.1 in [7], we have
∫ +∞

0 ya|∇U(x, y)|2dy < ∞. Hence limy→+∞ ya

Uy(x, y) · Ux(x, y) = 0.
We introduce the function

w(x) := 1
2

∫ ∞

0
[|Ux(x, y)|2 − |Uy(x, y)|2]yady.

A suitable regularity result (see Lemma 5.1 in [7]) allows us to differentiate within the integral in the above
equality to get

w′(x) =
∫ ∞

0
ya[Ux · Uxx − Uy · Uxy](x, y)dy.

Note that
(yaUy)y + yaUxx = 0.

Using integration by parts, we have

w′(x) = −[yaUy(x, y) · Ux(x, y)]|+∞
y=0 = lim

y→0+
yaUy(x, y) · Ux(x, y).

Since U is the s-harmonic extension of solution u of (1), we have

lim
y→0+

yaUy(x, y) · Ux(x, y) = (−∂xx)su(x) · u′(x) = d

dx
F (U(x, 0)).

Hence
w′(x) = d

dx
F (U(x, 0)),

which gives the result of this lemma. □
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