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Abstract
In this paper we study stable solutions to the fractional equation

(−�)su = f (u), |u| < 1 in R
d , (0.1)

where 0 < s < 1 and f : [−1, 1] → R is a C1,α function for α > max{0, 1 − 2s}. We
obtain sharp energy estimates for 0 < s < 1/2 and rough energy estimates for 1/2 ≤ s < 1.
These lead to a different proof from literature of the fact that when d = 2, 0 < s < 1,
entire stable solutions to (0.1) are 1-D solutions. The scheme used in this paper is inspired
by Cinti–Serra–Valdinoci [16] which deals with stable nonlocal sets, and Figalli–Serra [26]
which studies stable solutions to (0.1) for the case s = 1/2.

Mathematics Subject Classification Primary 35B06 · 35J15 · 35J20 · 35J91 · 53A10

1 Introduction

1.1 Nonlocal stable De Giorgi conjeture

It is well known that for 0 < s < 1, the fractional s-Laplacian is defined as

(−�)su(x) := C(d, s)(P.V .)

∫
Rd

u(x) − u(y)

|x − y|d+2s dy (1.1)

= C(d, s)

2

∫
Rd

2u(x) − u(x + y) − u(x − y)

|x − y|d+2s dy, (1.2)
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where C(d, x) is a constant such that

̂(−�)su(ξ) = |ξ |2s û(ξ). (1.3)

For � ⊂ R
d , we consider the fractional Allen–Cahn type equation

(−�)su = f (u), |u| < 1 in �,

which is the vanishing condition for the first variation of the energy

J (u,�) = J s(u,�) + J P (u,�)

:= 1

2

∫ ∫
Rd×Rd\(�c×�c)

|u(x) − u(y)|2
|x − y|d+2s dydx

+
∫

�

F(u(x))dx,

up to normalization constants that we omitted for simplicity.
Throughout the paper we assume that F is the primitive function of a given C1,α function

f : [−1, 1] → R, where α > max{0, 1 − 2s}. The regularity of f is to guarantee that any
solution u to (0.1) is inC2(Rd) so that the fractional Laplacian iswell defined, see for example
[8, Lemma 4.4] for the proof. We also throughout the paper assume that F : R → [0,∞)

is a double well potential with two minima −1 and 1. This is the sufficient and necessary
condition to guarantee the existence of 1-D layer solutions to (0.1), see [9, Theorem 2.4].
Recall that layer solutions are solutions that are monotone in one variable and have limits
±1 at ±∞.

In this paper, we study stable solutions to the fractional Allen–Cahn equation (0.1). Recall
that u is a stable solution to (0.1), if the second local variation ofJ (·, R

d) at u is nonnegative.
Or equivalently,

∫
Rd

(
(−�)sv + f ′(u)v

)
v ≥ 0, ∀v ∈ C2

0 (R
d).

Note that stable solutions include local minimizers or monotone stationary solutions of
J (·, R

d). Also it is known that 1-D stable solutions are layer solutions, which is a con-
sequence of [18, Lemma 3.1] and [9, Theorem 2.12].

We would like to study the symmetry results for stable entire solutions to (0.1), which is
related to the nonlocal version of De Giorgi Conjecture for stable solutions:

Conjecture 1 (Nonlocal Stable De Giorgi Conjecture) Let 0 < s < 1 and u be a stable
solution to (0.1), then u is a 1-D solution for d ≤ 7.

1.2 Background andmotivation of Conjecture 1

In 1979, De Giorgi made the following conjecture on the entire solutions to classical Allen–
Cahn equations:

Conjecture 2 (Classical De Girogi Conjecture) If u is a solution to the classical Allen–Cahn
equation

−�u = u − u3, |u| < 1 in R
d , (1.4)

with ∂xd u > 0, then u is a 1-D solution if d ≤ 8.
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The classical De Giorgi conjecture is closely related to minimal surface theory. If u is a
local minimizer to the associated energy funtional

E(u,�) := 1

2

∫
�

|∇u|2dx + 1

4

∫
�

(1 − u2)2dx, (1.5)

where � = R
d , then uε(x) := u(x/ε) is a minimizer to

Eε(v, ε�) =
∫

ε�

ε

2
|∇v|2dx + 1

4ε

∫
ε�

(1 − v2)2dx .

Scaling and energy estimates for minimizers imply

Eε(uε, B1) = εd−1E(u, B1/ε) ≤ C(d).

By Modica-Mortola Gamma convergence result [29], uε → χE − χEc in L1
loc for a subse-

quence εk → 0, and E is a perimeter minimizer in R
d . If 2 ≤ d ≤ 8 and ∂E is a graph, then

the classification of entire minimal graphs inR
d implies that E must be a half space, and thus

{uε > t} converge to a half space locally in L1 for −1 < t < 1. Since {uε > t} = ε{u > t},
De Giorgi conjectured that {u > t} itself should also be a half space for any t, even for u to
be monotone in direction without having to be a minimizer.

The case when d = 2 was proved by Ghoussoub and Gui in [28], and the case when d = 3
was proved by Ambrosio and Cabré in [1]. For d ≥ 9, counterexamples were given by Del
Pino, Kowalczyk and Wei [17]. The case 4 ≤ d ≤ 8 was proved by Savin [32] under the
additional assumption that

lim
xd→±∞ u(x ′, xd) = ±1, for any x ′ ∈ R

d−1. (1.6)

The conjecture remains open for 4 ≤ d ≤ 8 without the limit condition (1.6). We remark that
in [32], only the minimality of u is used, which is guaranteed by the the monotone condition
and (1.6). We also remark that if the limit in (1.6) is uniform, then Conjecture 2 is true for any
dimension d without the monotone assumption. This is proved in [2,3,22] independently.

This conjecture in its full generality remains open. As far as we know, at this moment the
most general results can be found in [23,24] and references therein.

In the fractional analogue, if a solution u is a minimizer to the associated energy, then
uε(x) := u(x/ε) is a minimizer to

Js,ε(u,�) :=

⎧⎪⎨
⎪⎩

ε2s−1J s(u, ε�) + 1
ε
J P (u, ε�), if 1/2 < s < 1,

1
| log ε|J s(u, ε�) + 1

ε| log ε|J P (u, ε�), if s = 1/2,

J s(u, ε�) + 1
ε2s

J P (u, ε�), if 0 < s < 1/2.

In [38], Savin and Valdinoci proved that if sup0<ε<1 Js,ε(uε,�) < ∞, then uε → χE −χEc

in L1 up to a subsequence, where E is a perimeter minimizer in � for s ∈ [1/2, 1) and an
s-perimeter minimizer in � for s ∈ (0, 1/2). The classification for global s-minimal graphs
is the following, which is a combination of several works due to Cafarelli, Figalli, Valdinoci
and Savin, see [14], [27] and [33].

Let E be an s-perimeter graph. Assume that either

• d = 2, 3,
• or d ≤ 8 and 1

2 − s ≤ ε0 for some ε0 > 0 sufficiently small.

Then E must be a half space.
It is not known whether the above classification result is optimal, since there are no known

examples of s-minimal graphs other than hyperplanes, as far as we are aware.
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These results motivate the following De Giorgi conjecture in the nonlocal case:

Conjecture 3 (Nonlocal De Giorgi Conjecture) Let 0 < s < 1 and u be a solution to (0.1)
with

∂xd u > 0, (1.7)

then u is a 1-D solution for d ≤ 8.

Conjecture 3 has been validated in different cases, according to the following result:

Theorem 1.1 Let u be an entire solution to (0.1) satisfying (1.7). Suppose that either d =
2, 3, s ∈ (0, 1) or d = 4, s = 1/2, then u is 1-D.

Theorem 1.1 is due to [11] when d = 2, s = 1/2, [9] and [35] when d = 2, 0 < s < 1, [5]
when d = 3, s = 1/2, [6] when d = 3, 1/2 < s < 1, [18] when d = 3, 0 < s < 1/2 and
[26] when d = 4, s = 1/2.

Concerning the nonlocal De Giorgi Conjecture in higher dimensions with the additional
limit condition (1.6) or with minimality condition, the best known results are the following
two theorems, which were proved in [36] when s ∈ (1/2, 1), [37] when s = 1/2 and [19]
when s ∈ (1/2 − ε0, 1].
Theorem 1.2 Let d ≤ 8. Then, there exists ε0 ∈ (0, 1/2] such that for any s ∈ (1/2− ε0, 1],
the following statement holds true:

Let u be an entire solution to (0.1) satisfying (1.6) 1 and (1.7) , then u is 1-D.

Theorem 1.3 Let d ≤ 7. Then, there exists ε0 ∈ (0, 1/2] such that for any s ∈ (1/2− ε0, 1],
the following statement holds true:

Let u be an entire solution to (0.1) which is a minimizer of J (·, R
d), then u is 1-D.

A counterexample for d = 9, 1/2 < s < 1 is announced by H. Chan, J. Davila, M. del Pino,
Y. Liu and J. Wei, see the comments after [10, Theorem 1.3]. The other cases remain open.
We also refer the reader to the very nice survey paper [21] for a summary of recent results
on the nonlocal De Giorgi conjecture.

Motivated by Conjecture 3, it is natural to study the stable De Giorgi Conjecture, that is,
Conjecture 1. This is because, on the one hand, it is well known that monotone solutions to
(0.1) are stable solutions. On the other hand, a further relation between stable solutions and
monotone solutions to (0.1) is given in the following remark, whose proof can be found in
[18].

Remark 1.4 If any entire stable solution to (0.1) in R
d−1 is 1-D, then any monotone solution

to (0.1) in R
d is also 1-D for d ≤ 3, s ∈ (0, 1) and for 4 ≤ d ≤ 8, s ∈ (1/2 − ε0, 1), where

ε0 ∈ (0, 1/2] is some constant.

Because of the connection between monotone solutions and stable solutions as revealed
in Remark 1.4, it is important to study Conjecture 1.

1.3 Previous results on Conjecture 1

For d = 2, Conjecture 1 was validated by Cabré and Solá-Morales in [11] for s = 1/2,
and by Cabré and Sire in [9] and by Sire and Valdinoci in [35] for every fractional power

1 This condition can be replaced by the more general condition that the limits of u when xd → ±∞ are 2D ,
see [18, Theorem 8.1]
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0 < s < 1 with different proofs, all of which require Cafarelli–Silvestre extension [12] and
the stability of s-harmonic extensionU in R

d × (0,∞). The stability condition used in these
references is the following:

Remark 1.5 In [9,11,35], the stability of solution u to (0.1) was understood in the sense that
the second local variation of the extension energy

E(U ; R
d+1+ ) = 1

2

∫ ∞

0

∫
Rd

z1−2s |∇U |2dxdt +
∫
Rd

F(u(x))dx

is nonnegative at U , where U is the Cafarelli–Silvestre extension of u which solves{
(i) div(t1−2sU (x, t)) = 0 in R

d × (0,∞)

(i i) cs limt→0 t1−2s∂tU (x, t) = f (U (x, 0)) on ∂R
d+1+

with boundary condition U (x, 0) = u(x), where cs is a constant which is discussed in [8,
Remark 3.11]. It appears that this stable assumption is stronger than ours which just considers
local variations on R

d instead of R
d × (0,∞). Later it was shown in [18, Proposition 2.3]

that the two stable definitions are equivalent for every fractional power 0 < s < 1.

For 3 ≤ d ≤ 8 and 0 < s < 1, Conjecture 1 remains open except for the case d = 3 and
s = 1/2. In fact, it has been recently validated by Figalli and Serra in [26] without using
extension results in [12]. Figalli and Serra utilized the local BV estimates scheme originally
developed by Cinti et al. [16] for stable sets (see Definition 1.6 there), together with the
following sharp interpolation inequality

J 1/2(u, B1) ≤ C(d) log L0

(
1 +

∫
B2

|∇u|dx
)

, (1.8)

where L0 ≥ 2 is an upper bound for ‖∇u‖∞, to prove the following energy estimates in any
dimension d and s = 1/2, which is a key ingredient to validate Conjecture 1.

Proposition 1.6 [26, Proposition 1.7] If u is a stable solution to (0.1), then∫
BR

|∇u| ≤ CRd−1 log(M0R) (1.9)

and

J 1/2(u, BR) ≤ CRd−1 log2(M0R), (1.10)

where C is a universal constant depending only on d and α, and M0 ≥ 2 is an upper bound
for the Hölder norm of f .

With (1.9) and (1.10) being applied in the local BV estimate scheme, and by a bootstrap
argument, Figalli and Serra were able to prove Conjecture 1 for d = 3 and s = 1/2.

1.4 Our contribution in this paper

Proving energy estimates like (1.9) and (1.10) for stable solutions to (0.1) for every fractional
power s ∈ (0, 1) is definitely a decisive step to solve Conjecture 1.

We have observed that actually suitable adaptation of the local BV estimate scheme used
in [26] together with a generalized form of (1.8) can produce energy estimates for stable
solutions in arbitrary dimension d and energy 0 < s < 1. We prove:

123
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Proposition 1.7 Let u ∈ C2(Rd) be a stable solution to

(−�)su = f (u), |u| ≤ 1 in R
d , (1.11)

then there exists constant C1 = C1(d, s) and C2 = C2(d, s, f ) such that for any ball
BR ⊂ R

d , R ≥ 1, we have
∫
BR

|∇u| ≤
{
C1Rd−1 0 < s < 1

2

C2Rd+2s−2 log(M0R) 1
2 ≤ s < 1

(1.12)

and

J s(u, BR) ≤
{
C1Rd−2s 0 < s < 1

2

C2Rd+2s−2 log2(M0R) 1
2 ≤ s < 1,

(1.13)

where M0 ≥ 2 is an upper bound for L∞ norm of f .

Note that it is easy to see that for a bounded Lipschitz function u, the natural growth for
fractional energy is

J s(u, BR) ≤ CRd ,

see for example Lemma 1.8 below. Such estimate is too rough. It is with the stability condition
of u that we can derive a sharper fractional energy growth estimate (1.13) than the natural
one.

(1.12) and (1.13) are sharp for the case 0 < s < 1/2, in the sense that the local minimizers
do satisfy same estimates, which are optimal, see [34] and [30]. Although for the case
1/2 ≤ s < 1, our energy estimates are not optimal, the adaptation of local BV estimates
scheme in [16] and [26] together with our energy estimates can also give a different proof to
validate Conjecture 1 for the case d = 2, 0 < s < 1, see Theorem 3.7.

We remark that when s = 1/2, C2 does not depend on f by keeping track of the constant
in our proof. Thus in this case, the second inequalities in (1.12) and (1.13) coincide with
(1.9) and (1.10) in Proposition 1.6.

We also remark that the key of proving (1.8) is by [25, Lemma 2.1] (or [26, Theorem
2.4]), whose proof was based on by Plancherel formula plus some delicate estimates. The
proof seems to work only for the case s = 1/2. We give a different proof in this paper that
actually works for all cases 1/2 ≤ s < 1. In fact, we can prove the following result, which
might have independent interest.

Lemma 1.8 For any ball BR ⊂ R
d and u which belongs to appropriate space with |u| ≤ 1,

and let s ∈ (0, 1/2), there exists universal constant C = C(d, s) > 0 such that for any
R ≥ 1,

J s(u, BR) ≤ C

(∫
B2R

|∇u|dx + Rd−2s + Rd
)

. (1.14)

If 1/2 ≤ s < 1 and u is assumed to be a Lipschitz function with ‖∇u‖L∞(BR) ≤ L0, L0 ≥ 2,
then there exists C = C(d, s) > 0 such that

J s(u, BR) ≤ C

(
Rd−2s + L2s−1

0 log(2L0R)

∫
B2R

|∇u|
)

. (1.15)

Note that when R = 1 and s = 1/2, (1.15) is exactly (1.8).
It is with Lemma 1.8 and the adaptation of local BV estimate for arbitary fractional powers

s ∈ (0, 1), we can prove Proposition 1.7.
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Remark 1.9 Only after this work was completed, we have noticed that Cinti has mentioned in
her survey article [15] that she, Cabré and Serra are carrying out a careful study on nonlocal
stable phase transitions in [7], which has not been posted yet. As Cinti mentioned, they
will state energy estimates, density estimates, convergence of blow-down and some new
classification results for stable solutions for fractional powers 0 < s < 1/2. While our focus
in this paper is to exploit the ideas in [16,26] to prove energy estimates for all fractional
powers 0 < s < 1, as best as we can do at this moment.

1.5 Outline of this paper

In Sect. 2 we prove Lemma 1.8. In Sect. 3, we validate the BV estimate scheme for any
fractional power s ∈ (0, 1) and use it to prove Proposition 1.7, and then as an application we
validate Conjecture 1 for the case d = 2, s ∈ (0, 1).

2 Proof of Lemma 1.8

In this section we prove Lemma 1.8. We first recall the fractional Sobolev embedding result:

Proposition 2.1 (see [21, Proposition 2.2]) For s ∈ (0, 1), p ≥ 1 and BR ⊂ R
d , we have

‖u‖Ws,p(BR) ≤ C(d, p, s)‖u‖W 1,p(BR) (2.1)

In order to prove Lemma 1.8, we also need to prove:

Lemma 2.2 Assume |u| ≤ 1 and ‖∇u‖L∞(B1) ≤ L0, where L0 ≥ 2, then for s ∈ [1/2, 1),
∫
B1

∫
B1

|u(x) − u(y)|2
|x − y|d+2s dxdy ≤ 1

1 − s
dωd L

2s−1
0

(
(2 − 2s) log(2L0) + 1

) ∫
B1

|∇u(x)|dx
(2.2)

= C(d, s)L2s−1
0 log(L0)

∫
B1

|∇u(x)|dx, (2.3)

where ωd is the volume of the unit ball in R
d .

Proof We estimate∫
B1

∫
B1

|u(x) − u(y)|2
|x − y|d+2s dydx

=
∫
B1

∫
B2

χ{z: x+z∈B1}|u(x + z) − u(x)|2−2s |u(x + z) − u(x)|2s
|z|d+2s dzdx

=
∫
B1

∫ 2

0

∫
B2

χ{z: |u(x+z)−u(x)|2−2s>t, x+z∈B1}
|u(x + z) − u(x)|2s

|z|d+2s dzdtdx

≤
∫
B1

∫ 2

0

∫
B2

χ
{z:|z|> t

1
2−2s
M0

, x+z∈B1}
|u(x + z) − u(x)|2s

|z|d+2s dzdtdx

=
∫
B1

∫ 2

0

∫
B2

χ
{z:|z|> t

1
2−2s
M0

, x+z∈B1}
|u(x + z) − u(x)|

|z|d+1

|u(x + z) − u(x)|2s−1

|z|2s−1 dzdtdx
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≤ M2s−1
0

∫
B1

∫ 2

0

∫
B2

χ
{z:|z|> t

1
2−2s
M0

, x+z∈B1}

∫ 1
0 |∇u(x + r z)|dr

|z|d dzdtdx

= M2s−1
0

∫ 1

0

∫ 2

0

∫
χ

{z∈B2:|z|> t
1

2−2s
M0

}

∫
B1

χ{x∈B1: x+z∈B1}
|∇u(x + r z)|

|z|d dxdzdtdr

≤ M2s−1
0

∫
B1

|∇u(x)|dx
∫ 1

0

∫ 2

0

∫
χ

{z∈B2:|z|> t
1

2−2s
M0

}
1

|z|d dzdtdr

= M2s−1
0

∫
B1

|∇u(x)|dx
∫ 1

0

∫ (2M0)
2−2s∧2

0

∫
χ

{z∈B2:|z|> t
1

2−2s
M0

}
1

|z|d dzdtdr

= dwdM
2s−1
0

∫
B1

|∇u(x)|dx
∫ 1

0

∫ (2M0)
2−2s∧2

0

(
log(2M0) − 1

2 − 2s
log t

)
dtdr

= 2 ∧ (2M0)
2−2sdωdM

2s−1
0

∫
B1

|∇u(x)|dx
(
log(2M0) + 1 − log

(
2 ∧ (2M0)

2−2s
)

2 − 2s

)

≤ 1

1 − s
dωdM

2s−1
0

(
(2 − 2s) log(2M0) + 1

) ∫
B1

|∇u(x)|dx,

where in the above we have used that the layer-cake formula for nonnegative function g ∈
L1(dλ), λ being a Radon measure,

∫
g(x)H(x)dλ =

∫ ‖g‖∞

0

∫
{x :g(x)>t}

H(x)dλdt,

that for s ∈ [1/2, 1),

{z : |u(x + z) − u(x)|2−2s > t} ⊂ {z : |z| >
t

1
2−2s

M0
},

and that x ∈ B1, x + z ∈ B1 implies

x + r z = r(x + z) + (1 − r)x ∈ B1, by convexity of B1.


�
The following corollary can be obtained by modifying the proof of Lemma 2.2, and it

might have some independent interest.

Corollary 2.3 Let L0 ≥ 2. then for any |u| ≤ 1, ‖∇u‖L∞(B1) ≤ L0 and any p > 1, the
following estimate holds:

∫
B1

∫
B1

|u(x) − u(y)|p
|x − y|d+1 dxdy ≤ C(d, p) log(L0)

∫
B1

|∇u(x)|dx .

We omit the proof of this corollary.
Now we prove Lemma 1.8.

Proof of Lemma 1.8 For 0 < s < 1/2, we estimate

J s(u, BR) =
∫ ∫

Rd×Rd\(Bc
R×Bc

R)

|u(x) − u(y)|2
|x − y|d+2s dydx

123
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≤
∫ ∫

B2R×B2R

|u(x) − u(y)|2
|x − y|d+2s dydx + 2

∫ ∫
BR×Bc

2R

|u(x) − u(y)|2
|x − y|d+2s dydx

≤ 2
∫ ∫

B2R×B2R

|u(x) − u(y)|
|x − y|d+2s dydx + C(d, s)Rd−2s, since |u| ≤ 1

= 2[u]W 2s,1(B2R) + C(d, s)Rd−2s

≤ C(d, s)‖u‖W 1,1(B2R) + C(d, s)Rd−2s, by Proposition 2.1

≤ C(d, s)

(∫
B2R

|∇u|dx + Rd−2s + Rd
)

.

This concludes (1.14).
Let us now prove the lemma for the case 1/2 ≤ s < 1. For any ball BR(x0) ⊂ R

d , we let
uR := u(x0 + Rx), and thus ‖∇uR‖L∞ = R‖∇u‖L∞ ≤ RL0.

By applying Lemma 2.2 to uR and using the scaling properties

J s(uR, B1) = R2s−dJ (u, BR(x0)) and
∫
B1

|∇uR |dx = R1−d
∫
BR(x0)

|∇u|dx,

we thus derive∫ ∫
BR×BR

|u(x) − u(y)|2
|x − y|d+2s dydx ≤ C(d, s)L2s−1

0 log(RL0)

∫
BR

|∇u(x)|dx . (2.4)

Therefore, (1.15) is obtained by the following straightforward computation

J s(u, BR) =
∫ ∫

Rd×Rd\(Bc
R×Bc

R)

|u(x) − u(y)|2
|x − y|d+2s dydx

≤
∫ ∫

B2R×B2R

|u(x) − u(y)|2
|x − y|d+2s dydx + 2

∫ ∫
BR×Bc

2R

|u(x) − u(y)|2
|x − y|d+2s dydx

≤
∫ ∫

B2R×B2R

|u(x) − u(y)|2
|x − y|d+2s dydx + C(d, s)Rd−2s, since |u| ≤ 1

≤ C(d, s)

(
Rd−2s + L2s−1

0 log(2L0R)

∫
B2R

|∇u(x)|dx
)

, by (2.4).


�

3 Local BV estimate scheme for any power 0 < s < 1 and Proof of
Proposition 1.7

As we mentioned in introduction, the local BV estimate scheme was first developed in [16]
and adapted by Figalli and Serra in [26] for the study of stable solutions to (0.1)when s = 1/2.
In this section we show that thanks to Lemma 1.8, the scheme can be applied to give certain
energy estimates for every fractional power 0 < s < 1, as stated in Proposition 1.7.

First, to utilize the stability condition of solution u to (0.1), following [26], see also [4,
Lemma 4.3], we construct suitable variations of energy with respect to a direction v, where
v is a fixed unit vector in R

d .
Let R ≥ 1 and

ψt,v(x) := x + tφ(x)v,
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where

φ(x) =

⎧⎪⎨
⎪⎩
1, |x | ≤ R

2

2 − 2 |x |
R , R

2 ≤ |x | ≤ R

0, |x | ≥ R.

(3.1)

It is clear that when |t | small, ψt,v is a Lipschitz diffeomorphism, and thus it has an inverse.
Define

Pt,vu(x) := u
(
ψ−1
t,v (x)

)
.

Remark 3.1 It is clear that for x ∈ B1/2, if |t | is small, then Pt,vu(x) = u(x − tv).

To simplify notation, we define the second variation operator �t
vv with respect to v on

any functional J to be as

�t
vvJ (u,�) := J (Pt,vu,�) + J (P−t,vu,�) − 2J (u,�).

The following estimate for the second variation of fractional energy is proved in [4, Lemma
4.3] and [26, Lemma 2.1]. For the courtesy of reader, we include a proof.

Lemma 3.2

�t
vvJ s(u, BR) ≤ C(d, s)t2

J s(u, BR)

R2 , ∀R ≥ 1.

Proof We start with more general domain variations as follows. We consider the map

Ft (x) := x + tη(x), (3.2)

where η is a smooth vector field vanishing outside BR . We set

Ptu(x) := u(F−1
t (x)). (3.3)

We estimate

�tJ s(u, BR) := J s(Ptu, BR) + J s(P−t u, BR) − 2J s(u, BR).

We use B̃R to denote R
d × R

d \ (BR × BR). In the following computation, z = x − y and
ε(x, y) := η(x)−η(y)

|x−y| . Since the Taylor expansion of the Jacobian of Ft is

J Ft = 1 + tdivη + t2A(η) + O(t3),

where

A(η) = (divη)2 − tr(∇η)2

2
,

we can compute

�tJ s(u, BR) =
∫ ∫

B̃R

|u(x) − u(y)|2
(
K (z + tε|z|)(1 + tdivη(x)

+ A(η(x))t2)(1 + tdivη(y) + A(η(y))t2)

+ K (z − tε|z|)(1−tdivη(x)+A(η(x))t2)(1−tdivη(y)

+ A(η(y))t2) − 2K (z)
)
dydx
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:=
∫ ∫

B̃R

|u(x) − u(y)|2e(x, y, η, R)dydx,

where K (z) = 1
|z|d+2s . Using that

K (az) = |a|−d−2s K (z), ∀a ∈ R,

we have

e(x, y, η, R)

= K (z)
(
K (

z

|z| + tε)(1 + tdivη(x) + A(η(x))t2)(1 + tdivη(y) + A(η(y))t2)

+ K (
z

|z| − tε)(1 − tdivη(x) + A(η(x))t2)(1 − tdivη(y) + A(η(y))t2) − 2K (
z

|z| )
)

= K (z)
( (

K (z/|z|) + t∇K (z/|z|)ε + t2

2
< ∇2K (z/|z|)ε, ε > +O(t3)

)

(1 + tdivη(x) + A(η(x))t2)

· (1 + tdivη(y) + A(η(y))t2) + (K (z/|z|) − t∇K (z/|z|)ε

+ t2

2
< ∇2K (z/|z|)ε, ε > +O(t3)

)

· (1 − tdivη(x) + A(η(x))t2)(1 − tdivη(y) + A(η(y))t2) − 2K (z/|z|)
)

= 2K (z)t2
(
A(η(x)) + A(η(y)) + divη(x)divη(y) + (divη(x)

+ divη(y))∇K (z/|z|)ε+ < ∇2K (z/|z|)ε, ε >
)

+ O(t3)

≤ C(d, s)‖∇η‖2L∞(BR)K (z)t2

In particular, if we choose η(x) = φ(x)v, where φ is given as (3.1) and v ∈ Sd−1, then we
have

�t
v,vJ s(u, BR) ≤ C(d, s)t2

J s(u, BR)

R2 .


�
Next, we prove the following identity related to nonlocal fractional energy, which was

implicitly used in the proof of [26, Lemma 2.2].

Lemma 3.3 Let� ⊂ R
d . For any functions u, v in appropriate spaces, let u∨v := max{u, v}

and u ∧ v := min{u, v}, we have the identity
J s(v,�) + J s(u,�) − J s(u ∨ v,�) − J s(u ∧ v,�)

= 2
∫ ∫

Rd×Rd\(�c×�c)

(v − u)+(x)(v − u)−(y)K (x − y)dydx, (3.4)

where K (z) = 1
|z|d+2s , (v − u)+ = (v − u) ∨ 0 and (v − u)− = (v − u) ∧ 0.

Proof Define sets

A := {x ∈ R
d : v(x) > u(x)}
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and

�̃ := R
d × R

d \ (�c × �c).

Then we calculate

J s(v,�) + J s(u,�) − J s(u ∨ v,�) − J s(u ∧ v,�)

=
∫ ∫

(A×Ac)∩�̃

(|v(x) − v(y)|2 − |v(x) − u(y)|2) K (x − y)dydx

+
∫ ∫

(Ac×A)∩�̃

(|v(x) − v(y)|2 − |u(x) − v(y)|2) K (x − y)dydx

+
∫ ∫

(A×Ac)∩�̃

(|u(x) − u(y)|2 − |u(x) − v(y)|2) K (x − y)dydx

+
∫ ∫

(Ac×A)∩�̃

(|u(x) − u(y)|2 − |v(x) − u(y)|2) K (x − y)dydx

= 2
∫ ∫

(A×Ac)∩�̃

((v(x) − u(x))(u(y) − v(y))) K (x − y)dydx

+ 2
∫ ∫

(Ac×A)∩�̃

((u(x) − v(x))(v(y) − u(y))) K (x − y)dydx

= 2
∫ ∫

Rd×Rd\(�c×�c)

(v − u)+(x)(v − u)−(y)K (x − y)dydx .


�
Remark 3.4 The above lemma implies

J s(v,�) + J s(u,�) ≥ J s(u ∨ v,�) + J s(u ∧ v,�),

and “ =′′ holds only if either v ≤ u or v ≥ u in �. To our knowledge this was first used in
[30, Corollary 3], and it is really reveals the nonlocal feature of fractional energies.

By using the matrix determinant lemma

det(I + α ⊗ β) = 1 + α · β

where I is the identity matrix and α, β are two vectors, one can also check that

�t
vvJ P (u, B1) = 0. (3.5)

This together with lemma 3.2 immediately yields

Lemma 3.5 There exists universal constant C = C(d, s) > 0 such that

�t
vvJ (u, BR) ≤ Ct2J s(u, BR)/R2.

For the rest, unless otherwise specified, we writeC as various universal constants depend-
ing on d and s.

The next lemma, which is from [26, Lemma 2.2], dealing with the case s = 1/2 and
in the same spirit of [16, Lemma 2.5], gives upper bound for the interior BV-norm of u by
the s-fractional energy in a larger ball. Again, the proof in [26, Lemma 2.2] works for all
fractional powers 0 < s < 1. We state the result and include the proof as courtesy to the
readers.

123



Some energy estimates for stable solutions to fractional… Page 13 of 17    49 

Lemma 3.6 Let u be a stable solution to (1.11), then there exists a universal constant C =
C(d, s) such that for any R ≥ 1,(∫

B1/2
(∂vu(x))+dx

) (∫
B1/2

(∂vu(y))−dy
)

≤ CJ s(u, BR)/R2 (3.6)

and ∫
B1/2

|∇u(x)|dx ≤ C
(
1 + √

J s(u, B1)
)

. (3.7)

Proof Let ū = max{Pt,vu, u} and u = min{Pt,vu, u}. By Lemma 3.3 and Remark 3.1, we
have

J s(ū, BR) + J s(u, BR) + 2
∫
B1/2

∫
B1/2

(u(x − tv) − u(x))+ (u(y − tv) − u(y))−
|x − y|d+2s dydx

≤ J s(Pt,vu, BR) + J s(u, BR).

We also have

J P (ū, BR) + J P (u, BR)

=
∫

{Pt,vu>u}∩BR

F(Pt,vu) +
∫

{Pt,vu<u}∩BR

F(u) +
∫

{Pt,vu<u}∩BR

F(Pt,vu)

+
∫

{Pt,vu>u}∩BR

F(u)

= J P (Pt,vu, BR) + J P (u, BR).

Since |x − y| < 1 when x, y ∈ B1/2, we have

J (ū, BR) + J (u, BR) + 2
∫
B1/2

∫
B1/2

(u(x − tv) − u(x))+ (u(y − tv) − u(y))−

≤ J (Pt,vu, BR) + J (u, BR). (3.8)

Using this and the stability condition of u, and by adding J (P−t,vu, BR) − 3J (u, BR) to
both sides of (3.8), we have:∫

B1/2

∫
B1/2

(u(x − tv) − u(x))+ (u(y − tv) − u(y))− dydx ≤ o(t2) + �t
vvJ (u, BR)

≤ o(t2) + Ct2J s(u, BR)/R2, by Lemma 3.5.

Dividing t2 on both sides and passing to limit as t → 0, we can conclude (3.6).
Define A±

v := ∫
B1/2

(∂vu(x))± dx , then by (3.6) we have

min{A+
v , A−

v } ≤
√
A+
v A−

v ≤ √
CJ s(u, B1). (3.9)

In addition, since |u| ≤ 1 and divergence theorem,

|A+
v − A−

v | =
∣∣∣
∫
B1/2

∂vu(x)
∣∣∣ ≤ C . (3.10)

Therefore, (3.9) and (3.10) yield∫
B1/2

|∂vu(x)|dx = A+
v + A−

v = |A+
v − A−

v | + 2min{A+
v , A−

v } ≤ C
(
1 + √

J s(u, B1)
)

.
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This proves (3.7). 
�
Now we are in a position to prove Proposition 1.7.

Proof of Proposition 1.7 For 0 < s < 1/2, combining (1.14) for R = 1 and Lemma 3.6, we
have

∫
B1

|∇u| ≤ C

(
1 +

√
C

(
1 +

∫
B4

|∇u|
))

. (3.11)

By AM–GM inequality and Young’s inequality, for 0 < δ < 1, whose choice depends on d
and s which will be specified later on, there exists C > 0 such that

∫
B1

|∇u| ≤ δ

∫
B4

|∇u| + C/δ. (3.12)

Now we do the scaling argument. For any x0 ∈ R
d and ρ > 0 with Bρ(x0) ⊂ B1,

let w(x) := u(x0 + ρ
4 x), then w is also a stable solution to (0.1) with f (x) replaced by

ρ2s

42s
f (x0 + ρ

4 x). Since the estimate above does not depend on f , by (3.12) we have
∫
B1

|∇w| ≤ δ

∫
B4

|∇w| + C/δ.

that is,

ρ1−d
∫
Bρ/4(x0)

|∇u| ≤ δρ1−d
∫
Bρ(x0)

|∇u| + C/δ. (3.13)

Then by Simon’s Lemma proved in [31], see also (see [16, Lemma 3.1] and [26, Lemma
2.3]), we can choose universal constant δ depending on d and s such that from (3.13), we
conclude that ∫

B1/2
|∇u| ≤ C, (3.14)

where C depends only on d and s.
Note that (3.14) is true for any stable solution u to (0.1), hence we can apply (3.14) for

u(x0 + 2Rx), which is also a stable solution to (1.11), instead of u(x), and thus we have∫
BR(x0)

|∇u| ≤ CRd−1, ∀x0 ∈ R
d . (3.15)

By (3.14) and (1.14), we have that for any stable solution u to (0.1),

J s(u, B1/4) ≤ C . (3.16)

Also by scaling property

J s(u(x0 + 4Rx), B1/4) = (4R)2s−dJ s(u, BR(x0)).

Thus from (3.16) we conclude

J s(u, BR(x0)) ≤ CRd−2s, ∀x0 ∈ R
d (3.17)

These conclude (1.12) and (1.13) for the case 0 < s < 1/2.
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Next, we consider the case 1/2 ≤ s < 1. By (1.15) and (3.7) we have

∫
B1/2

|∇u(x)|dx ≤ C

(
1 +

√
C

(
1 + L2s−1

0 log(2L0)

∫
B2

|∇u|
))

,

where L0 ≥ 2 is an upper bound for ‖∇u‖L∞(B1). Then similar to the argument (3.11)-(3.14),
we have ∫

B1/2
|∇u(x)|dx ≤ CL2s−1

0 log(2L0), (3.18)

For any x0 ∈ R
d , since uR(x) := u(2Rx + x0) is also a stable solution to (0.1) with f

replaced by R2s f , by (3.18) we have∫
B1/2

|∇uR(x)|dx ≤ CL2s−1
R log(2LR), (3.19)

where LR ≥ 2 is an upper bound for ‖∇uR‖L∞(B1) = 2R‖∇u‖L∞(B2R(x0)). By [13, Proposi-
tion 5.2] and since |u| ≤ 1,‖∇u‖L∞(Rd ) ≤ C(d, s)M0, and thuswe can choose LR ≤ CM0R.
Hence by (3.19) and scaling property we can conclude (1.12) for the case 1/2 ≤ s < 1. Then
by (1.15), and elliptic estimate L0 ≤ CM0, we derive (1.13) for the case 1/2 ≤ s < 1. Note
that the constant C2 in (1.13) for the case 1/2 < s < 1 does depend on f . However, when
s = 1/2, the constant in (1.13) does not depend on f . 
�

To the end, we recall the following result, which validates Conjecture 1 for the case
d = 2, 0 < s < 1. This was proved in [9] and [35] using different approaches. Applying the
energy estimates obtained in this paper, we can give a new proof.

Theorem 3.7 If u is a stable solution to (0.1) in R
2, then u is 1-D.

Proof By Proposition 1.7, the RHS of (3.6) goes to zero as R → ∞, and hence(∫
B1/2

(∂vu)+(x)dx

) (∫
B1/2

(∂vu)−(y)dy

)
= 0. (3.20)

Then u is monotone in B1/2 along direction v. Since (3.20) is true for any fixed direction v
and any half ball, by the continuity of u we conclude that u is 1-D. 
�
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