
Flowless: Extracting Densest Subgraphs Without Flow
Computations

Digvijay Boob
Georgia Tech

digvijaybb40@gatech.edu

Yu Gao
Georgia Tech

ygao380@gatech.edu

Richard Peng
Georgia Tech

rpeng@cc.gatech.edu

Saurabh Sawlani
Georgia Tech

sawlani@gatech.edu

Charalampos E. Tsourakakis
Boston University
ctsourak@bu.edu

Di Wang
Google

wadi@google.com

Junxing Wang
CMU

junxingw@cs.cmu.edu

ABSTRACT

The problem of finding dense components of a graph is a major
primitive in graph mining and data analysis. The densest subgraph
problem (DSP) that asks to find a subgraph with maximum average
degree forms a basic primitive in dense subgraph discovery with
applications ranging from community detection to unsupervised
discovery of biological network modules [16]. The DSP is exactly
solvable in polynomial time using maximum flows [14, 17, 22].
Due to the high computational cost of maximum flows, Charikar’s
greedy approximation algorithm is usually preferred in practice due
to its linear time and linear space complexity [3, 8]. It constitutes a
key algorithmic idea in scalable solutions for large-scale dynamic
graphs [5, 7]. However, its output density can be a factor 2 off the
optimal solution.

In this paper we design Greedy++, an iterative peeling algo-
rithm that improves upon the performance of Charikar’s greedy
algorithm significantly. Our iterative greedy algorithm is able to out-
put near-optimal and optimal solutions fast by adding a few more
passes to Charikar’s greedy algorithm. Furthermore Greedy++ is
more robust against the structural heterogeneities (e.g., skewed
degree distributions) in real-world datasets. An additional property
of our algorithm is that it is able to assess quickly, without com-
puting maximum flows, whether Charikar’s approximation quality
on a given graph instance is closer to the worst case theoretical
guarantee of 1/2 or to optimality. We also demonstrate that our
method has significant efficiency advantage over the maximum
flow based exact optimal algorithm. For example, our algorithm
achieves ∼145× speedup on average across a variety of real-world
graphs while finding subgraphs of density that are at least 90% as
dense as the densest subgraph.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan

© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380140

CCS CONCEPTS

• Mathematics of computing→ Graph algorithms; • Theory
of computation→ Graph algorithms analysis.

KEYWORDS

dense subgraph discovery, algorithm design, graph mining, appli-
cations

ACM Reference Format:

Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos E.
Tsourakakis, Di Wang, and Junxing Wang. 2020. Flowless: Extracting Dens-
est Subgraphs Without Flow Computations. In Proceedings of The Web

Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380140

1 INTRODUCTION

Finding dense components in graphs is a major topic in graph
mining with diverse applications including DNA motif detection,
unsupervised detection of interesting stories from micro-blogging
streams in real time, indexing graphs for efficient distance query
computation, and anomaly detection in financial networks, and
social networks [16]. The densest subgraph problem (DSP) is one of
the major formulations for dense subgraph discovery, where, given
an undirected weighted graph G(V ,E,w) we want to find a set of
nodes S ⊆ V that maximizes the degree density w (S)/|S |, where
w(S) is the sum of the weights of the edges in the graph induced
by S . When the weights are non-negative, the problem is solvable
in polynomial time using maximum flows [17]. Since maximum
flow computations are expensive despite the theoretical progress
achieved over the recent years, Charikar’s greedy peeling algorithm
is frequently used in practice [8]. This algorithm iteratively peels
the lowest degree node from the graph, thus producing a sequence
of subsets of nodes, of which it outputs the densest one. This simple,
linear time and linear space algorithm provides a 1/2-approximation
for the DSP. However, when the edge weights are allowed to be
negative, the DSP becomes NP-hard [36].

Our work was originally motivated by a natural question: How
can we quickly assess whether the output of Charikar’s algorithm
on a given graph instance is closer to optimality or to the worst case

573

https://doi.org/10.1145/3366423.3380140
https://doi.org/10.1145/3366423.3380140

WWW ’20, April 20–24, 2020, Taipei, Taiwan Boob et al.

1/2-approximation guarantee? However, we ended up answering
the following intriguing question that we state as the next problem:

Problem 1.1. Can we design an algorithm that per-
forms (i) as well as Charikar’s greedy algorithm in
terms of efficiency, and (ii) as well as the maximum
flow-based exact algorithm in terms of output quality?

Contributions. The contributions of this paper are summarized
as follows:
•We design a novel algorithm Greedy++ for the densest sub-

graph problem, a major dense subgraph discovery primitive that
“lies at the heart of large-scale datamining” [5]. Greedy++ combines
the best of two different worlds, the accuracy of the exact maxi-
mum flow based algorithm [14, 17], and the efficiency of Charikar’s
greedy peeling algorithm [8].
• It is worth outlining that Charikar’s greedy algorithm typi-

cally performs better on real-world graphs than the worse case
1/2-approximation; on a variety of datasets we have tried, the worst
case approximation was 0.8. Nonetheless, the only way to verify
how close the output is to optimality relies on computing the exact
solution using maximum flow. Our proposed method Greedy++
can be used to assess the accuracy of Charikar’s algorithm in prac-
tice. Specifically, we find empirically that for all graph instances
where Greedy++ after a couple of iterations does not significantly
improve the output density, the output of Charikar’s algorithm is
near-optimal.
• We implement our proposed algorithm in C++ and apply it

on a variety of real-world datasets. We verify the practical value
of Greedy++. Our empirical results indicate that Greedy++ is a
valuable addition to the toolbox of dense subgraph discovery; on
real-world graphs, Greedy++ is both fast in practice, and converges
to a solution with an arbitrarily small approximation factor.
Notation. Let G(V ,E) be a undirected graph, where |V | = n, |E | =
m. For a given subset of nodes S ⊂ V , e[S] denotes the number of
edges induced by S . When the graph is weighted, i.e., there exists
a weight function w : E 7→ R+, and w(S) denotes the sum of the
weights of the edges induced by S . We use N (u) to define the set
of neighbors of u, and deg(u) = |N (u)|. We use degS (u) to denote
u’s degree in S , i.e., the number of neighbors of u within the set
of nodes S . We use degmax to denote the maximum degree in G.
Finally, the degree density ρ(S) of a vertex set S ⊆ V is defined as
e[S]
|S | , or

w (S)
|S | when the graph is weighted.

2 RELATEDWORK

Dense subgraph discovery. Detecting dense components is a ma-
jor problem in graph mining. It is not surprising that many different
notions of a dense subgraph are used in practice. The prototypical
dense subgraph is a clique. However, the maximum clique problem
is not only NP-hard, but also strongly inapproximable, see [19].
The notion of optimal quasi-cliques has been developed to detect
subgraphs that are not necessarily fully interconnected but very
dense [35]. However, finding optimal quasi-cliques is also NP-hard
[21, 34]. Another popular and scalable approach to finding dense
components is based on k-cores [12]. Recently, k-cores have also
been used to detect anomalies in large-scale networks [15, 29].

The interested reader may refer to the recent survey by Gionis
and Tsourakakis on the more broad topic of dense subgraph dis-
covery [16]. In the following, we only provide a brief overview of
work related to the densest subgraph problem.
Densest subgraph problem (DSP). The goal of the densest sub-
graph problem (DSP) is to find the set of nodes S which maximizes
the degree density ρ(S). The densest subgraph can be identified in
polynomial time by solving a maximum flow problem [14, 17, 22].
Charikar [8] proved that the greedy algorithm proposed byAsashiro
et al.1 [3] produces a 1/2-approximation of the densest subgraph in
linear time. To obtain fast algorithms with better approximation fac-
tors, McGregor et. al. [25], and Mitzenmacher et. al. [26] uniformly
sparsified the input graph, and computed the densest subgraph
in the resulting sparse graph. The first near-linear time algorithm
for the DSP, given by Bahmani et. al. [4], relies on approximately
solving the LP dual of the DSP. It is worth mentioning that Kannan
and Vinay [20] gave a spectral O(logn) approximation algorithm
for a related notion of density.
Charikar’s greedypeeling algorithm. Since our algorithmGreedy++
is an improvement over Charikar’s greedy algorithm, we discuss
the latter algorithm in greater detail. The algorithm removes in each
iteration, the node with the smallest degree. This process creates a
nested sequence of sets of nodes V = Sn ⊃ Sn−1 ⊃ Sn−2 ⊃ . . . ⊃
S1 ⊃ ∅. The algorithm outputs the graph G[Sj] that maximizes the
degree density among j = 1, . . . ,n. The pseudocode is shown in
Algorithm 1.

Algorithm 1 Greedy
Input: Undirected graph G
Output: A dense subgraph of G: Gdensest.
1: Gdensest ← G
2: H ← G;
3: while H , ∅ do
4: Find the vertex u ∈ H with minimum degH (u);
5: Remove u and all its adjacent edges uv from H ;
6: if ρ(H) > ρ(Gdensest) then

7: Gdensest ← H
8: end if

9: end while

10: Return Gdensest.

Fast numerical approximation algorithms for DSP. Bahmani
et. al. [4] approached the DSP via its dual problem, which in turn
they reduced to O(logn) instances of solving a positive linear
program. To solve these LPs, they employed the multiplicative
weights update framework [2, 27] to achieve an ε-approximation
in O(logn/ε2) iterations, where each iteration requires O(m) work.
Notable extensions of the DSP. The DSP has been studied in
weighted graphs, as well as directed graphs. When the edge weights
are non-negative, both the maximum flow algorithm and Charikar’s
greedy algorithm maintain their theoretical guarantees. In the pres-
ence of negative weights, the DSP in general becomes NP-hard [36].
For directed graphs Charikar [8] provided a linear programming
1Despite the fact that the greedy algorithm was originally proposed in [3], it is widely
known as Charikar’s greedy algorithm.

574

Flowless: Extracting Densest Subgraphs Without Flow Computations WWW ’20, April 20–24, 2020, Taipei, Taiwan

approach which requires the computation of n2 linear programs
and a 1/2-approximation algorithm which runs inO(n3 +n2m) time.
Khuller and Saha have provided more efficient implementations
of the exact and approximation algorithms for the undirected and
directed versions of the DSP [22]. Furthermore, Tsourakakis et al.
recently extended the DSP to the k-clique, and the (p,q)-biclique
densest subgraph problems [26, 33]. These extensions can be used
for finding large near-cliques in general graphs and bipartite graphs
respectively. The DSP has also been studied in the dynamic setting
[7, 10, 28], the streaming setting [5, 7, 11, 25], and in the MapRe-
duce computational model [5]. Bahmani, Goel, and Munagala use
the multiplicative weights update framework [2, 27] to design an
improved MapReduce algorithm [4]. We discuss this method in
greater detail in Section 3. Tatti and Gionis [32] introduced a novel
graph decomposition known as locally-dense, that imposes certain
insightful constraints on the k-core decomposition. Further, effi-
cient algorithms to find locally-dense subgraphs were developed
by Danisch et al. [9].

We notice that in the DSP there are no restrictions on the size
of the output. When restrictions on the size of S are imposed the
problem becomes NP-hard. The densest-k-subgraph problem asks
for find the subgraph S with maximum degree density among all
possible sets S such that |S | = k . The state-of-the art algorithm is
due to Bhaskara et al. [6], and provides a O(n1/4+ϵ) approximation
inO(n1/ϵ) time. A long standing question is closing the gap between
this upper bound and the lower bound. Other versions where |S | ≥
k, |S | ≤ k have also been considered in the literature see [1].

3 PROPOSED METHOD

3.1 The Greedy++ algorithm

As we discussed earlier, Charikar’s peeling algorithm greedily re-
moves the node of smallest degree from the graph, and returns the
densest subgraph among the sequence of n subgraphs created by
this procedure. While ties may exist, and are broken arbitrarily, for
the moment it is useful to think as if Charikar’s greedy algorithm
produces a single permutation of the nodes, that naturally defines
a nested sequence of subgraphs.
Algorithm description. Our proposed algorithm Greedy++ it-
eratively runs Charikar’s peeling algorithm, while keeping some
information about the past runs. This information is crucial, as it
results in different permutations, that naturally yield higher quality
outputs. The pseudocode for Greedy++ is shown in Algorithm 2.
It takes as input the graph G, and a parameter T of the number of
passes to be performed, and runs an iterative, weighted peeling
procedure. In each round the load of each node is a function of its
induced degree and the load from the previous rounds. It is worth
outlining that the algorithm is easy to implement, as it is essentially
T instances of Charikar’s algorithm. What is less obvious perhaps,
is why this algorithm makes sense, and works well. We answer this
question in detail in Section 3.2.
Example.We provide a graph instance that clearly illustrates why
Greedy++ is a significant improvement over the classical greedy
algorithm. We discuss the first two rounds of Greedy++. Consider
the following graph G = B

⋃ (
∪ki=1Hi

)
where B = Kd,D and Hi =

Kd+2. Namely G is a disjoint union of a complete d × D bipartite

Algorithm 2 Greedy++
Input: Undirected graph G, iteration count T
Output: An approximately densest subgraph of G: Gdensest.
1: Gdensest ← G

2: Initialize the vertex load vector ℓ(0) ← 0 ∈ Zn ;
3: for i : 1→ T do

4: H ← G;
5: while H , ∅ do
6: Find the vertex u ∈ H with minimum ℓ(i−1)u + degH (u);
7: ℓ

(i)
u ← ℓ

(i−1)
u + degH (u);

8: Remove u and all its adjacent edges uv from H ;
9: if ρ(H) > ρ(Gdensest) then

10: Gdensest ← H
11: end if

12: end while

13: end for

14: Return Gdensest.

graph B, and of k (d + 2)-cliques H1, . . . ,Hk . Consider the case
where d ≪ D,k → +∞.G is pictured in Figure 1(a). The density of
G is

2dD + (d + 1)(d + 2)k
2d + 2D + 2k(d + 2) →

d + 1
2 .

Notice that this is precisely the density of any (d + 2)-clique. How-
ever, the density of B is dD

d+D ≈ d , which is in fact the optimal
solution. Charikar’s algorithm outputs G itself, since it starts elimi-
nating nodes of degree d from B, and by doing this, it never sees a
subgraph with higher density. This example illustrates that the 1

2
approximation is tight. Consider now a run of Greedy++.

In its first iteration, it simply emulates Charikar’s algorithm.
The D − d vertices of B which were eliminated first - each have
load d . At this stage, our input is the disjoint union of k cliques
and a d × d bipartite graph. Of the remaining 2d vertices in B,
one vertex is charged with load d , two vertices each with loads
(d −1), (d −2), . . . , 1, and one vertex with load 0. On the other hand,
vertices in Hi are charged with loads d + 1,d, . . . , 0. Figure 1(b)
shows the cumulative degrees of vertices inG after one iteration of
Greedy++.

Without any loss of generality let us assume the vertex from
B that got charged 0 originally had degree d . This vertex in the
second iteration will get deleted first, and the vertex whose sum
of load and degree is d + 1 will get deleted second. But after these
two, all the cliques get peeled away by the algorithm. This leaves
us with a d × D − 2 bipartite graph as the output after the second
iteration, whose density is almost optimal.
Theoretical guarantees. Before we prove our theoretical proper-
ties for our proposed algorithmGreedy++, it is worth outlining that
experiments indicate that the performance of Greedy++ is signifi-
cantly better than the worst-case analysis we perform. Furthermore,
we conjecture that our guarantees are not tight from a theoretical
perspective; an interesting open question is to extend our analysis
in Section 3.2 for Greedy++ to prove that it provides asymptotically
an optimal solution for the DSP. We conjecture that our algorithm
is a (1 + 1√

T
)-approximation algorithm for the DSP. Our fist lemma

states that Greedy++ is a 2-approximation algorithm for the DSP.

575

WWW ’20, April 20–24, 2020, Taipei, Taiwan Boob et al.

B = Kd ,D

.

.

.
.
.
.

.

.

.

(D) a1

(D) a2

(D) a3

(D) ad

b1 (d)

b2 (d)

b3 (d)

bd (d)

bd+1 (d)

bD (d)

Hi = Kd+2

.

.

.

c1
(d + 1)

c2
(d + 1)

c3
(d + 1)

(d + 1)
c4

c5
(d + 1)

cd+2
(d + 1)

(a) Initial degrees of G

B = Kd ,D

.

.

.
.
.
.

.

.

.

(D + 1) a1

(D + 2) a2

(D + 3) a3

(D + d) ad

b1 (d)

b2 (d + 1)

b3 (d + 2)

bd (2d − 1)

bd+1 (2d)

bD (2d)

Hi = Kd+2

.

.

.

c1
(2d + 2)

c2
(2d + 1)

c3
(2d)

(2d − 1)
c4

c5
(2d − 2)

cd+2
(d + 1)

(b) Cumulative degrees (degree + load) of G after one iteration

Figure 1: Illustration of two iterations of Greedy++ on G.
The output after one iteration isG itself (density≈ (d+1)/2),
whereas the output after the second iteration is B \ {b1,b2}
(density ≈ d).

Lemma 3.1. LetGdensest the output ofGreedy++. Then, ρ(Gdensest) ≥

ρ∗G/2, where ρ
∗
G denotes the optimum value of the problem.

Proof. Notice that the first iteration is identical to Charikar’s
2-approximation algorithm, and Gdensest is at least as dense as the
output of the first iteration. □

The next lemma provides bounds the quality of the dual solution,
i.e., at each iteration the average load (average over the algorithm’s
iterations) assigned to any vertex is at most 2ρ∗G .

Lemma 3.2. The following invariant holds for Greedy++: for any
vertex v and iteration i , ℓ

(i)
v ≤ 2i · ρ∗G .

Proof. Consider the point at which vertex v is chosen in itera-
tion i . Denote the graph at that instant to be G(i)v =

〈
V
(i)
v ,E

(i)
v

〉
.

First, let i = 1. The proof for this base case goes through identi-
cally as in [8].

ℓ
(1)
v = degG (1)v (v) ≤

1
|V
(i)
v |

∑
u ∈V (i)v

degG (1)v (u)

=
2|E(1)v |
|V
(1)
v |

= 2 · ρG (1)v ≤ 2 · ρ∗G .

Now, assume that the statement is true for some iteration index
i−1. For any vertexu at that point, the cumulative degree is ℓ(i−1)u +

degG (i)v (u). Since v has the minimum cumulative degree at that
point,

ℓ
(i)
v = ℓ

(i−1)
v + degG (i)v (v) ≤

1
|V
(i)
v |

∑
u ∈V (i)v

(
ℓ
(i−1)
u + degG (i)v (u)

)
≤ 2(i − 1)ρ∗G +

1
|V
(i)
v |

∑
u ∈V (i)v

degG (i)v (u)

≤ 2i · ρ∗G . □

Running time. Finally, we bound the runtime of the algorithm as
follows. The next lemma states that our algorithm can be imple-
mented to run in O((n +m) ·min(logn,T)).

Lemma 3.3. Each iteration of the above algorithm runs in time

O((n +m) ·min(logn,T)).

Proof. The deletion operation, along with assigning edges to a
vertex and updating degrees takes O(m) time since every edge is
assigned once. Finding the minimum degree vertex can be imple-
mented in two ways:

(1) Since degrees in our algorithm can go from 0 to 2Tm, we can
create lists for each separate integer degree value. Now we
need to scan each list from deg = 1 to deg = 2Tm. However,
after deleting a vertex of degree d , we only need to scan from
d−1 onwards. So the total time taken isO(2Tm+n) = O(mT).

(2) We can maintain a priority queue, which needs a total of
O(m) update operations, each taking O(logn) time. □

Note that in the case of weighted graphs, we cannot maintain
lists for each possible degree, and hence, it is necessary to use a
priority queue.

3.2 Why does Greedy++ work well?

Explaining the intuition behind Greedy++ requires an understand-
ing of the load balancing interpretation of Charikar’s LP for the
DSP [8], and the multiplicative weights update (MWU) framework
by Plotkin, Shmoys and Tardos [27] used for packing/covering LPs.
In the context of the DSP, the MWU framework was first used by
Bahmani, Goel, and Munagala [4]. We include a self-contained ex-
position of the required concepts from [4, 8] in this section, that has
a natural flow and concludes with our algorithmic contributions.
Intuitively, the additional passes that Greedy++ performs, improve
the load balancing.
Charikar’s LP and the load balancing interpretation. The fol-
lowing is a well-known LP formulation of the densest subgraph

576

Flowless: Extracting Densest Subgraphs Without Flow Computations WWW ’20, April 20–24, 2020, Taipei, Taiwan

problem, introduced in [8], which we denote by Primal(G). Binary
variables xu and ye indicate the inclusion of a vertex u/edge e in an
optimal densest subgraph. Relaxing the variables to real numbers
and suitably scaling down the xu values, we get the following LP,
whose optimal objective value is known to be ρ∗G .

maximize
∑
e ∈E

ye

subject to ye ≤ xu , ∀e = uv ∈ E
ye ≤ xv , ∀e = uv ∈ E∑

v ∈V
xv ≤ 1,

ye ≥ 0, ∀e ∈ E
xv ≥ 0, ∀v ∈ V

We then construct the dual LP for the above problem. Let fe (u)
be the dual variable associated with the first 2m constraints of the
form ye ≤ xu , and let D be associated with the last constraint. We
get the following LP, which we denote by Dual(G), and whose
optimum is also ρ∗G .

minimize D
subject to fe (u)+fe (v) ≥ 1, ∀e = uv ∈ E

ℓv
def
=

∑
e ∋v

fe (v) ≤ D, ∀v ∈ V
fe (u) ≥ 0, ∀e = uv ∈ E
fe (v) ≥ 0, ∀e = uv ∈ E

This LP can be visualized as follows. Each edge e = uv has a load
of 1, which it wants to send to its end points: fe (u) and fe (v) such
that the total load of any vertex v , ℓv , is at most D. The objective is
to find the minimum D for which such a load assignment is feasible.

For a fixed D, the above dual problem can be framed as a flow
problem on a bipartite graph as follows: Let the left side L represent
V and the right side R represent E. Add a super-source s and edges
from s to all vertices in L with capacity D. Add edges from v ∈ V to
e ∈ E if e is incident on v in G. All vertices in R have demands of 1
unit. Although Goldberg’s initial reduction [17] involved a different
flow network, this graph can also be used to use maximum flow
and use that to find the exact optimum to our problem. From strong
duality, we know that the optimal objective values of both linear
programs are equal, i.e., exactly ρ∗G . Let ρG be the objective of any
feasible solution to Primal(G). Similarly, let ρ̂G be the objective of
any feasible solution to Dual(G). Then, by optimality of ρ∗G and
weak duality, we obtain the optimality result ρG ≤ ρ∗G ≤ ρ̂G .
Bahmani et al. [4] use the following covering LP formulation:
decide the feasibility of constraints fe (u) + fe (v) ≥ 1 for each edge
e = uv ∈ E subject to the polyhedral constraints:∑

e ∋v
fe (v) ≤ D, ∀v ∈ V

fe (u) ≥ 0, ∀e = uv ∈ E
fe (v) ≥ 0, ∀e = uv ∈ E

The width of this linear program is the maximum value of
fe (u) + fe (v) provided that fe (u), fe (v) satisfy the constraints of
the program. Bahmani et al. in order to provably bound the width
of the above LP, they introduce another set of simple constraints

as follows: ∑
e ∋v

fe (v) ≤ D, ∀v ∈ V

q ≥ fe (u) ≥ 0, ∀e = uv ∈ E
q ≥ fe (v) ≥ 0, ∀e = uv ∈ E

where q ≥ 1 is a small constant. So, for a particular value of D, they
verify the approximate feasibility of the covering problem using
the MWU framework. However, this necessitates running a binary
search over all possible values of D and finding the lowest value of
D for which the LP is feasible. Since the precision for D can be as
low as ϵ , this binary search is inefficient in practice. Furthermore,
due to the added ℓ∞ constraint to bound the width, extracting the
primal solution (i.e. an approximately densest subgraph) from the
dual is no longer straightforward, and the additional rounding step
to overcome this incurs additional loss in the approximation factor.

In order to overcome these practical issues, we propose an al-
ternate MWU formulation which sacrifices the width bounds but
escapes the binary search phase over D. Eliminating the artificial
width bound makes it straightforward to extract a primal solution.
Moreover, our experiments on real world graphs suggest that width
is not a bottleneck for the running time of the MWU algorithm.
Even more importantly, our alternate formulation naturally yields
Greedy++ as we explain in the following.
Our MWU formulation. We can denote the LP Dual(G) suc-
cinctly as follows:

minimize D

subject to Bf ≤ D1

f ∈ P

where f is the vector representation of the all fe (v) variables, B ∈
Rn×2m is the matrix denoting the left hand side of all constraints
of the form

∑
e ∋v

fe (v) ≤ D. 1 denotes the vector of 1’s and P is a

polyhedral constraint set defined as follows:
fe (u) + fe (v) ≥ 1 ∀e = uv ∈ E

fe (u) ≥ 0 ∀e ∈ E, ∀v ∈ e .
Note that for any f ∈ P, we have that the minimum D satisfying
Bf ≤ D1 is equal to ∥Bf ∥∞. This follows due to the non-negativity
of Bf for any f ∈ P. Now a simple observation shows that for any
non-negative vector y, we can write

∥y∥∞ = max
x∈∆+n

xT y

where ∆+n := {x ≥ 0 : 1T x ≤ 1}. Hence, we can now write Dual(G)
as:

min
f ∈P
∥Bf ∥∞ = min

f ∈P
max
x∈∆+n

xT Bf

= max
x∈∆+n

min
f ∈P

xT Bf . (1)

Here the last equality follows due to strong duality of the convex
optimization.

The “inner" minimization part of (1) can be performed easily. In
particular, we need an oracle which, given a vector x, solves

C(x) = min
f ∈P

∑
e=uv

xu fe (u) + xv fe (v).

577

WWW ’20, April 20–24, 2020, Taipei, Taiwan Boob et al.

Lemma 3.4. Given a vector x,C(x) can be computed inO(m) time.

Proof. For each edge e = uv , simply check which of xu and
xv is smaller. WLOG, assume it is xu . Then, set fe (u) = 1 and
fe (v) = 0. □

We denote the optimal f for a given x as f(x). Now, using the
above oracle, we can apply the MWU algorithm to the “outer"
problem of (1), i.e., maxx∈∆+n C(x). Additionally, to apply the MWU
framework, we need to estimate the width of this linear program.
The width for (1) can be bounded by largest degree, dmax of the
graph G. Indeed, we see in Lemma 3.4 that f(x) is a 0/1 vector. In
that case, ∥Bf(x)∥∞ ≤ dmax.

We conclude our analysis of this alternative dual formulation of
the DSP with the following theorem.

Theorem 3.5. Our alternative dual formulation admits a MWU

algorithm that outputs an f ∈ P such that ∥Bf ∥∞ ≤ (1 + ϵ)ρ∗G .

For the sake of completeness, we detail the MWU algorithm and
the proof of Theorem 3.5 in Appendix A.

Let us now view Charikar’s peeling algorithm in the context of
this dual problem. In a sense, the greedy peeling algorithm resem-
bles one “inner" iteration of the MWU algorithm, where whenever
a vertex is removed, its edges assign their load to it. Keeping this
in mind, we designed Greedy++ to add “outer" iterations to the
peeling algorithm, thus improving the approximation factor arbi-
trarily with increase in iteration count. By weighting vertices using
their load from previous iterations, Greedy++ implicitly performs
a form of load balancing on the graph, thus arriving at a better dual
solution.

4 EXPERIMENTS

4.1 Experimental setup

The experiments were performed on a single machine, with an
Intel(R) Core(TM) i7-2600 CPU at 3.40GHz (4 cores), 8MB cache
size, and 8GB of main memory. We find densest subgraphs on the
samples using binary search and maximum flow computations.
The flow computations were done using C++ implementations of
the push-relabel algorithm [18], HiPR2. We have implemented our
algorithm Greedy++ and Charikar’s greedy algorithm in C++. Our
implementations are efficient and our code is available publicly3.

We use a variety of datasets obtained from the Stanford’s SNAP
database [24], ASU’s Social Computing Data Repository [37], Bi-
oGRID [31] and from the Koblenz Network Collection [23], that are
shown in table Table 1. A majority of the datasets are from SNAP,
and hence we mark only the rest with their sources. Multiple edges,
self-loops are removed, and directionality is ignored for directed
graphs. The first cluster of datasets are unweighted graphs. The
largest unweighted graph is the web-trackers graph with roughly
141M edges, while the smallest unweighted graph has roughly 25K
edges. For weighted graphs, we use a set of Twitter graphs that
were crawled during the first week of February 2018 [30]. Finally,
we use a set of signed networks (slashdot, epinions). We remind the
reader that while the DSP is NP-hard on signed graphs, Charikar’s
2HiPR is available at http://www.avglab.com/andrew/soft/hipr.tar
3Our code for Greedy++ and the exact algorithm is available at the anonymous link
https://www.dropbox.com/s/jzouo9fjoytyqg3/code-greedy%2B%2B.zip?dl=0

Name n m

web-trackers [23] 40 421 974 140 613 762
orkut [23] 3 072 441 117 184 899
livejournal-affiliations [23] 10 690 276 112 307 385
wiki-topcats 1 791 489 25 447 873
cit-Patents 3 774 768 16 518 948
actor-collaborations [23] 382 219 15 038 083
ego-gplus 107 614 12 238 285
dblp-author 5 425 963 8 649 016
web-BerkStan 685 230 6 649 470
flickr [37] 80 513 5 899 882
wiki-Talk 2 394 385 4 659 565
web-Google 875 713 4 322 051
com-youtube 1 134 890 2 987 624
roadNet-CA 1 965 206 2 766 607
web-Stanford 281 903 1 992 636
roadNet-TX 1 379 917 1 921 660
roadNet-PA 1 088 092 1 54 898
Ego-twitter 81 306 1 342 296
com-dblp 317 080 1 049 866
com-Amazon 334 863 925 872
soc-slashdot0902 82 168 504 230
soc-slashdot0811 77 360 469 180
soc-Epinions 75 879 405 740
blogcatalog [37] 10,312 333 983
email-Enron 36 692 183 831
ego-facebook 4 039 88 234
ppi [31] 3 890 37 845
twitter-retweet [30] 316 662 1 122 070
twitter-favorite [30] 226 516 1 210 041
twitter-mention [30] 571 157 1 895 094
twitter-reply [30] 196 697 296 194
soc-sign-slashdot081106 77 350 468 554
soc-sign-slashdot090216 81 867 497 672
soc-sign-slashdot090221 82 140 500 481
soc-sign-epinions 131 828 711 210

Table 1: Datasets used in our experiments.

algorithm does provide certain theoretical guarantees, see Theorem
2 in [36].

4.2 Experimental results

Before we delve in detail into our experimental findings, we sum-
marize our key findings here:
• Our algorithm Greedy++ when given enough number of
iterations always finds the optimal value, and the densest
subgraph. This agrees with our conjecture that running T
iterations of Greedy++ gives a 1 +O(1/√T) approximation
to the DSP.
• Experimentally, Charikar’s greedy algorithm always achieves
at least 80% accuracy, and occasionally finds the optimum.
• For graphs onwhich the performance of Charikar’s greedy al-
gorithm is optimal, the first couple of iterations of Greedy++

578

http://www.avglab.com/andrew/soft/hipr.tar
https://www.dropbox.com/s/jzouo9fjoytyqg3/code-greedy%2B%2B.zip?dl=0

Flowless: Extracting Densest Subgraphs Without Flow Computations WWW ’20, April 20–24, 2020, Taipei, Taiwan

0 5 10 15 20 25 30
#Iterations

0

5

10

15

20

25

Co
un

t

Iterations for 99% OPT

0 20 40 60 80 100
#Iterations

0

5

10

15

20

25

Co
un

t

Iterations for 100% OPT

(a) (b)

Figure 2: Number of iterations for Greedy++. Histograms of number of iterations to reach (a) 99% of the optimum degree

density, (b) the optimum degree density.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Number of edges 1e8

0

5

10

15

20

25

30

Ru
nt

im
e

(s
ec

s)
/it

er
at

io
n

0 1000000 2000000 3000000 4000000 5000000 6000000
Number of edges

0

50

100

150

200

250

300
Sp

ee
du

p

(a) (b)

Figure 3: Scalability. (a) Running time in seconds of each iteration of Greedy++ versus the number of edges. (b) Speedup

achieved by Greedy++ over the exact max-flow based algorithm, plotted vs. number of edges in the graph. Specifically, the

y-axis is the ratio of the run time of the exact max flow algorithm divided by the run time of Greedy++ that finds 90% of the

optimal solution.

suffice to deduce convergence safely, and thus act in practice
as a certificate of optimality. This is the first method to the
best of our knowledge that can be used to infer quickly the
actual approximation of Charikar’s algorithm on a given
graph instance.
• When Charikar’s algorithm does not yield an optimal solu-
tion, then Greedy++ within few iterations is able to increase
the accuracy to 99% of the optimum density, and by adding
a few more iterations is able to find the optimal density and
extract and optimal output.
• Whenwe are able to run the exact algorithm (for graphs with
more than 8M edges, the maximum flow code crashes) on our
machine, the average speedup that our algorithm provides
to reach the optimum is 144.6× on average, with a standard
deviation equal to 57.4. The smallest speedup observed was

67.9×, and the largest speedup 290×. Additionally, we remark
that the exact algorithm is only able to find solutions up to
an accuracy of 10−3 on most graphs.
• The speedup typically increases as the size of the graph
increases. In fact, the maximum flow exact algorithm cannot
complete on the largest graphs we use.
• The maximum number of iterations needed to reach 90% of
the optimum is at most 3, i.e., by running two more passes
compared to Charikar’s algorithm, we are able to boost the
accuracy by 10%.
• The same remarks hold for both weighted and unweighted
graphs.

Number of iterations. We first measure how many iterations
we need to reach 99% of the optimum, or even the optimum. Fig-
ures 2(a), (b) answer these questions respectively. We observe the

579

WWW ’20, April 20–24, 2020, Taipei, Taiwan Boob et al.

0 5 10 15 20 25 30 35 40

#Iterations

75

80

85

90

95

100
Ac

cu
ra

cy

0 20 40 60 80 100

#Iterations

75

80

85

90

95

100

Ac
cu

ra
cy

(a) (b)

0 2 4 6 8 10 12 14 16

#Iterations

75

80

85

90

95

100

Ac
cu

ra
cy

0 10 20 30 40 50 60 70

#Iterations

75

80

85

90

95

100

Ac
cu

ra
cy

(c) (d)

0 10 20 30 40 50

#Iterations

75

80

85

90

95

100

Ac
cu

ra
cy

0 10 20 30 40 50 60 70

#Iterations

75

80

85

90

95

100

Ac
cu

ra
cy

(e) (f)

0 1 2 3 4 5 6

#Iterations

75

80

85

90

95

100

Ac
cu

ra
cy

0 1 2 3 4 5 6

#Iterations

75

80

85

90

95

100

Ac
cu

ra
cy

(g) (h)

Figure 4: Convergence to optimum as a function of the number of iterations of Greedy++. (a) roadNet-CA, (b) roadNet-PA, (c)
roadNet-TX, (d) com-Amazon, (e) dblp-author, (f) ego-twitter, (g) twitter-favorite, (h) twitter-reply. Here, the accuracy is given

by
ρ(Hi)
ρ∗
G

, where Hi is the output of Greedy++ after i iterations.

580

Flowless: Extracting Densest Subgraphs Without Flow Computations WWW ’20, April 20–24, 2020, Taipei, Taiwan

impressive performance of Charikar’s greedy algorithm; for the ma-
jority of the graph instances we observe that it finds a near-optimal
densest subgraph. Nonetheless, even for those graph instances –as
we have emphasized earlier– our algorithm Greedy++ acts as a cer-
tificate of optimality. Namely, we observe that the objective remains
the same after a couple of iterations if and only if the algorithm has
reached the optimum. For the rest of the graphs where Charikar’s
greedy algorithm outputs an approximation greater than 80% but
less than 99%, we observe the following: for five datasets it takes at
most 3 iterations, for one graph it takes nine iterations, and then
there exist three graphs for which Greedy++ requires 10, 22, and 29
iterations respectively. If we insist on finding the optimum densest
subgraph, we observe that the maximum number of iterations can
go up to 100. On average, Greedy++ requires 12.69 iterations to
reach the optimum densest subgraph.
Scalability. Our experiments verify the intuitive facts that (i) each
iteration of the greedy algorithm runs fast, and (ii) the exact algo-
rithm that uses maximum flows is comparatively slow.We constrain
ourselves on the set of data for which we were able to run the ex-
act algorithm. Figure 3(a) shows the time that each iteration of the
Greedy++ takes on average (runtimes are well concentrated around
the average) over the iterations performed to reach the optimal
densest subgraph. Figure 3(b) shows the speedup achieved by our
algorithm when we condition on obtaining at least 90% (notice that
frequently the actual accuracy is greater than 95%) of the optimal
solution versus the exact max-flow based algorithm. Specifically,
we plot the ratio of the running times of the exact algorithm by
the time of Greedy++ versus the number of edges. Notice that for
small graphs, the speedups are very large, then they drop, and they
exhibit an increasing trend as the graph size grows. For the largest
graphs in our collection, the exact algorithm is infeasible to run on
our machine.

100 101 102 103 104 105 106 107 108 109

Number of edges

101

102

103

104

*

Figure 5: Log-log plot of optimal degree density ρ∗ versus
the number of edges in the graph.

Convergence. Figure 4 illustrates the convergence of Greedy++
for various datasets. Specifically, each figure plots the accuracy of
Greedy++ after T iterations versus T . The accuracy is measured as
the ratio of the degree density achieved by Greedy++ by the optimal
degree density. Figures 4(a),(b),(c),(d),(e),(f),(g),(h) correspond to the

convergence behavior of roadNet-CA, roadNet-PA, roadNet-TX,
com-Amazon, dblp-author, ego-twitter, twitter-favorite, twitter-
reply respectively. These plots illustrate various interesting prop-
erties of Greedy++ in practice. Observe Figure 4(e). Notice how
Greedy++ keeps outputting the same subgraph for few consecutive
iterations, but then suddenly around the 10th iteration it “jumps”
and finds an even denser subgraph. Recall that on average over our
collection of datasets for which we can run the exact algorithm (i.e.,
datasets with less than 8M edges), Greedy++ requires roughly 12
iterations to reach the optimum densest subgraph. For this reason
we suggest running Greedy++ for that many iterations in practice.
Furthermore, we typically observe an improvement over the first
pass, with the exception of the weighted graph twitter-reply, where
the “jump” happens at the end of the third iteration.

Anomaly detection. It is worth outlining that Greedy++ provides
a way to compute the densest subgraph in graphs where the maxi-
mum flow approach does not scale. For example, for graphs with
more than 8million edges, the exact method does not run on our ma-
chine. By running Greedy++ for enough iterations we can compute
a near-optimal or the optimal solution. This allows us to compute
a proxy of ρ∗ for the largest graphs, like orkut and trackers. We
examined to what extent there exists a pattern between the size
of the graph and the optimal density. In contrast to the power law
relationship between the k-cores and the graph size claimed in [29],
we do not observe a similar power law when we plot ρ∗ (the exact
optimal value or the proxy value found by Greedy++ after 100
iterations for the largest graphs) versus the number of edges in the
graph. This is shown in Figure 5. Part of the reason why we do
not observe such a law are anomalies in graphs. For instance, we
observe that small graphs may contain extremely dense subgraphs,
thus resulting in significant outliers.

5 CONCLUSION

In this paper we provide a powerful algorithm for the densest sub-
graph problem, a popular and important objective for discover-
ing dense components in graphs. The main practical value of our
Greedy++ algorithm is two-fold. First, by running few more it-
erations of Charikar’s greedy algorithm we obtain (near-)optimal
results that can be obtained using only maximum flows. Second,
Greedy++ can be used to answer for first time the question “Is
the approximation of Charikar’s algorithm on this graph instance
closer to 1/2 or to 1?” without computing the optimal density using
maximum flows. Empirically, we have verified that Greedy++ com-
bines the best of “two worlds” on real data, i.e., the efficiency of the
greedy peeling algorithm, and the accuracy of the exact maximum
flow algorithm. We believe that Greedy++ is a valuable addition
to the algorithmic toolbox for dense subgraph discovery that com-
bines the best of two worlds, i.e., the accuracy of maximum flows,
and the time and space efficiency of Charikar’s greedy algorithm.

An intriguing open question which remains from our work is a
theoretical convergence proof for Greedy++. In addition to the em-
pirical evidence towards convergence, we believe that our algorithm
mimics a linear programming solution given by the multiplicative-
weight-update framework [2, 27]. Hence, we state this open problem
as the following conjecture:

581

WWW ’20, April 20–24, 2020, Taipei, Taiwan Boob et al.

Conjecture 5.1. Greedy++ is a 1 +O(1/√T) approxi-
mation algorithm for the DSP, where T is the number
of iterations it performs.

REFERENCES

[1] Reid Andersen and Kumar Chellapilla. 2009. Finding dense subgraphs with size
bounds. In International Workshop on Algorithms and Models for the Web-Graph.
Springer, 25–37.

[2] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights
update method: a meta-algorithm and applications. Theory of Computing 8, 1
(2012), 121–164.

[3] Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. 2000. Greed-
ily finding a dense subgraph. Journal of Algorithms 34, 2 (2000), 203–221.

[4] Bahman Bahmani, Ashish Goel, and Kamesh Munagala. 2014. Efficient primal-
dual graph algorithms for mapreduce. In International Workshop on Algorithms

and Models for the Web-Graph. Springer, 59–78.
[5] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest subgraph

in streaming and mapreduce. Proceedings of the VLDB Endowment 5, 5 (2012),
454–465.

[6] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan
Vijayaraghavan. 2010. Detecting high log-densities: an O (n 1/4) approximation
for densest k-subgraph. In Proceedings of the forty-second ACM symposium on

Theory of computing. ACM, 201–210.
[7] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos

Tsourakakis. 2015. Space-and time-efficient algorithm for maintaining dense
subgraphs on one-pass dynamic streams. In Proceedings of the forty-seventh

annual ACM symposium on Theory of computing. ACM, 173–182.
[8] Moses Charikar. 2000. Greedy approximation algorithms for finding dense

components in a graph. In International Workshop on Approximation Algorithms

for Combinatorial Optimization. Springer, 84–95.
[9] Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2017. Large Scale

Density-friendly Graph Decomposition via Convex Programming. In Proceedings

of the 26th International Conference on World Wide Web, WWW 2017, Perth, Aus-

tralia, April 3-7, 2017. 233–242. DOI:http://dx.doi.org/10.1145/3038912.3052619
[10] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient densest

subgraph computation in evolving graphs. In Proceedings of the 24th International

Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 300–310.

[11] Hossein Esfandiari, MohammadTaghi Hajiaghayi, and David P Woodruff. 2015.
Applications of uniform sampling: Densest subgraph and beyond. arXiv preprint
arXiv:1506.04505 (2015).

[12] Hossein Esfandiari, Silvio Lattanzi, and Vahab Mirrokni. 2018. Parallel and
Streaming Algorithms for K-Core Decomposition. arXiv preprint arXiv:1808.02546
(2018).

[13] Yoav Freund and Robert E. Schapire. 1996. Game Theory, On-line Prediction
and Boosting. In Proceedings of the Ninth Annual Conference on Computational

Learning Theory (COLT ’96). ACM, New York, NY, USA, 325–332. DOI:http:
//dx.doi.org/10.1145/238061.238163

[14] Giorgio Gallo, Michael D Grigoriadis, and Robert E Tarjan. 1989. A fast parametric
maximum flow algorithm and applications. SIAM J. Comput. 18, 1 (1989), 30–55.

[15] Christos Giatsidis, Fragkiskos Malliaros, Dimitrios Thilikos, and Michalis Vazir-
giannis. 2014. Corecluster: A degeneracy based graph clustering framework. In
Twenty-Eighth AAAI Conference on Artificial Intelligence.

[16] Aristides Gionis and Charalampos E Tsourakakis. 2015. Dense subgraph dis-
covery: Kdd 2015 tutorial. In Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2313–2314.
[17] Andrew V Goldberg. 1984. Finding a maximum density subgraph. University of

California Berkeley, CA.
[18] Andrew V Goldberg and Robert E Tarjan. 1988. A new approach to the maximum-

flow problem. Journal of the ACM (JACM) 35, 4 (1988), 921–940.
[19] J. Håstad. 1999. Clique is hard to approximate within n1−ϵ . Acta Mathematica

182, 1 (1999).
[20] Ravi Kannan andVVinay. 1999. Analyzing the structure of large graphs. Rheinische

Friedrich-Wilhelms-Universität Bonn Bonn.
[21] Yasushi Kawase and Atsushi Miyauchi. 2018. The densest subgraph problem

with a convex/concave size function. Algorithmica 80, 12 (2018), 3461–3480.
[22] Samir Khuller and Barna Saha. 2009. On finding dense subgraphs. In International

Colloquium on Automata, Languages, and Programming. Springer, 597–608.
[23] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection. In Proceedings

of the 22Nd International Conference on World Wide Web (WWW ’13 Companion).
ACM, New York, NY, USA, 1343–1350. DOI:http://dx.doi.org/10.1145/2487788.
2488173

[24] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. (June 2014). http://snap.stanford.edu/data

[25] AndrewMcGregor, David Tench, Sofya Vorotnikova, and Hoa T Vu. 2015. Densest
subgraph in dynamic graph streams. In International Symposium on Mathematical

Foundations of Computer Science. Springer, 472–482.
[26] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis,

and Shen Chen Xu. 2015. Scalable large near-clique detection in large-scale
networks via sampling. In Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 815–824.
[27] Serge A Plotkin, David B Shmoys, and Éva Tardos. 1995. Fast approximation algo-

rithms for fractional packing and covering problems. Mathematics of Operations

Research 20, 2 (1995), 257–301.
[28] Saurabh Sawlani and Junxing Wang. 2019. Near-Optimal Fully Dynamic Densest

Subgraph. arXiv preprint arXiv:1907.03037 (2019).
[29] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. 2016. Corescope: graph

mining using k-core analysis: patterns, anomalies and algorithms. In 2016 IEEE

16th International Conference on Data Mining (ICDM). IEEE, 469–478.
[30] Konstantinos Sotiropoulos, John W Byers, Polyvios Pratikakis, and Charalam-

pos E Tsourakakis. 2019. TwitterMancer: Predicting Interactions on Twitter
Accurately. arXiv preprint arXiv:1904.11119 (2019).

[31] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton
Breitkreutz, and Mike Tyers. 2006. BioGRID: A general repository for in-
teraction datasets. Nucleic acids research 34 (01 2006), D535–9. DOI:http:
//dx.doi.org/10.1093/nar/gkj109

[32] Nikolaj Tatti and Aristides Gionis. 2015. Density-friendly Graph Decomposition.
In Proceedings of the 24th International Conference on World Wide Web, WWW

2015, Florence, Italy, May 18-22, 2015. 1089–1099. DOI:http://dx.doi.org/10.1145/
2736277.2741119

[33] Charalampos Tsourakakis. 2015. The k-clique densest subgraph problem. In
Proceedings of the 24th international conference on world wide web. International
World Wide Web Conferences Steering Committee, 1122–1132.

[34] Charalampos Tsourakakis. 2015. Streaming graph partitioning in the planted
partition model. In Proceedings of the 2015 ACM on Conference on Online Social

Networks. ACM, 27–35.
[35] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,

and Maria Tsiarli. 2013. Denser than the densest subgraph: extracting optimal
quasi-cliques with quality guarantees. In Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM, 104–112.
[36] Charalampos E Tsourakakis, Tianyi Chen, Naonori Kakimura, and Jakub Pachocki.

2019. Novel Dense Subgraph Discovery Primitives: Risk Aversion and Exclusion
Queries. arXiv preprint arXiv:1904.08178 (2019).

[37] R. Zafarani and H. Liu. 2009. Social Computing Data Repository at ASU. (2009).
http://socialcomputing.asu.edu

A MULTIPLICATIVE WEIGHTS UPDATE

ALGORITHM

In this section, we give an algorithm to solve the zero-sum game
maxx∈∆n minf ∈P xT Bf , which corresponds to solving the dual of
the densest subgraph problem, as described in Section 3.2. Given
that we have an oracle access to minf ∈P xT Bf , we can use the
multiplicative weights update framework to get an ε-approximation
of the game [13].

The pseudocode for theMWU algorithm is shown in Algorithm 3.
To prove the convergence of Algorithm 3, we use the following

theorem from [2]. We modify it slightly to accommodate for the
fact that the width of the DSP, | |Bf (x)| |∞, can be at most degmax.
In other words, the oracle can assign at most degmax edges to any
particular vertex.

Lemma A.1 (Theorem 3.1 from [2]). Given an error parameter

ε , there is an algorithm which solves the zero-sum game up to an

additive factor of ε using O(W logn/ε2) calls to Oracle, with an

additional processing time of O(n) per call, whereW is the width of

the problem.

Using the fact that our Oracle runs inO(m) time (fromLemma 3.4),
and usingW = degmax, we get the following corollary.

582

http://dx.doi.org/10.1145/3038912.3052619
http://dx.doi.org/10.1145/238061.238163
http://dx.doi.org/10.1145/238061.238163
http://dx.doi.org/10.1145/2487788.2488173
http://dx.doi.org/10.1145/2487788.2488173
http://snap.stanford.edu/data
http://dx.doi.org/10.1093/nar/gkj109
http://dx.doi.org/10.1093/nar/gkj109
http://dx.doi.org/10.1145/2736277.2741119
http://dx.doi.org/10.1145/2736277.2741119
http://socialcomputing.asu.edu

Flowless: Extracting Densest Subgraphs Without Flow Computations WWW ’20, April 20–24, 2020, Taipei, Taiwan

Algorithm 3Multiplicative Weight Update Algorithm
Input: Matrix B, approximation factor ε .
Output: An approximate solution to the zero-sum game.
1: Initialize the weight vector asw(1)i ← 1 for all i ∈ [n]
2: Initialize η ← ε/2 degmax
3: for t : 1→ T do

4: x
(t)
i ← w

(t)
i /∥w

(t)∥1 for all i ∈ [n].
5: Find f(x(t)) using Oracle(x(t)).
6: Set C(x(t)) ← (x(t))T Bf(x(t))
7: Let bTi f(x

(t)) be the i-th element in Bx(t).
8: Update the weights as

w
(t+1)
i ← w

(t)
i (1 + ηb

T
i f(x

(t))).

9: end for

10: Return 1
T

∑
t ∈[T]C(x(t)) as the solution.

Corollary A.2. The Multiplicative Weight Update algorithm (Al-

gorithm 3) outputs a (1 + ε) approximate solution to the densest

subgraph problem in time O(m degmax logn/ε2).

583

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 The Greedy++ algorithm
	3.2 Why does Greedy++ work well?

	4 Experiments
	4.1 Experimental setup
	4.2 Experimental results

	5 Conclusion
	References
	A Multiplicative Weights Update Algorithm

