Near-Optimal Fully Dynamic Densest Subgraph

Saurabh Sawlani
Georgia Tech
Atlanta, GA, USA
sawlani@gatech.edu

ABSTRACT

We give the first fully dynamic algorithm which maintains a (1—¢)-
approximate densest subgraph in worst-case time poly(log n, e~!)
per update. Dense subgraph discovery is an important primitive
for many real-world applications such as community detection,
link spam detection, distance query indexing, and computational
biology. We approach the densest subgraph problem by framing
its dual as a graph orientation problem, which we solve using an
augmenting path-like adjustment technique. Our result improves
upon the previous best approximation factor of (1/4 — ¢€) for fully
dynamic densest subgraph [Bhattacharya et. al., STOC ‘15]. We also
extend our techniques to solving the problem on vertex-weighted
graphs with similar runtimes.

Additionally, we reduce the (1 — €)-approximate densest sub-
graph problem on directed graphs to O(log n/¢) instances of (1—¢)-
approximate densest subgraph on vertex-weighted graphs. This
reduction, together with our algorithm for vertex-weighted graphs,
gives the first fully-dynamic algorithm for directed densest sub-
graph in worst-case time poly(log n, 1) per update. Moreover,
combined with a near-linear time algorithm for densest subgraph
[Bahmani et. al, WAW ‘14], this gives the first near-linear time
algorithm for directed densest subgraph.

CCS CONCEPTS

« Theory of computation — Dynamic graph algorithms.

KEYWORDS

dense subgraph discovery, fully dynamic algorithm, linear program-
ming dual, graph orientation, data structures

ACM Reference Format:

Saurabh Sawlani and Junxing Wang. 2020. Near-Optimal Fully Dynamic
Densest Subgraph. In Proceedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing (STOC °20), June 22-26, 2020, Chicago, IL,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3357713.
3384327

1 INTRODUCTION

A majority of real-world networks are very large in size, and a
significant fraction of them are known to change rather rapidly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC °20, June 22-26, 2020, Chicago, IL, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6979-4/20/06. .. $15.00
https://doi.org/10.1145/3357713.3384327

181

Junxing Wang
CMU
Pittsburgh, PA, USA
junxingw@cs.cmu.edu

[58]. This has necessitated the study of efficient dynamic graph
algorithms - algorithms which use the existing solution to quickly
find an updated solution for the new graph. Due to the size of these
graphs, it is imperative that each update be processed in sub-linear
time.

Data structures which efficiently maintain solutions to combi-
natorial optimization problems have shot into prominence over
the last few decades [27, 61]. Many fundamental graph problems
such as graph connectivity [36, 37, 42], maximal and maximum
matchings [11, 12, 14, 15, 33], maximum flows and minimum cuts
[32, 39, 64] have been shown to have efficient dynamic algorithms
which only require sub-linear runtime per update. On the other
hand, lower bounds exist for the update times for a number of these
problems [1-4, 35]. [34] contains a comprehensive survey of many
graph problems and their state-of-the-art dynamic algorithms.

In this paper, we consider the densest subgraph problem. Given
an undirected graph G = (V, E), the density of a subgraph induced
by S C V is defined as pg(S) = |E(S)|/|S|, where E(S) is the set
of all edges within S. The densest subgraph problem (DSP) asks to
find a a set S € V such that

5 def
= S = U .
p; = pG(S) glga‘gpc;()

We call pf, the maximum subgraph density of G.

The densest subgraph problem has great theoretical relevance
due to its close connection to fundamental graph problems such
as network flow and bipartite matching!. While near-linear time
algorithms exist for finding matchings in graphs [24, 28, 51], the
same cannot be said for flows on directed graphs [49]. In this sense,
DSP acts as an indicative middle ground, since it is both a specific
instance of a flow problem [9, 31], as well as a generalization of
bipartite b-matchings. Interestingly, DSP does allow near-linear
time algorithms [9].

In terms of dynamic algorithms, the state-of-the-art data struc-
ture for maintaining (1 + €)-approximate maximum matchings
takes O(+/me™2) time per update [33]. [13] maintain a constant
factor approximation to the b-matching problem in O(log® n) time.
For flow-problems, algorithms which maintain a constant factor
approximation in sublinear update time have proved to be elusive.

In addition to its theoretical importance, dense subgraph discov-
ery is an important primitive for several real-world applications
such as community detection [21, 23, 46, 47, 54], link spam detec-
tion [30], story identification [6], distance query indexing [5, 22, 40]
and computational biology [38, 56, 57], to name a few. Due to its
practical relevance, many related notions of subgraph density, such
as k-cores [60], quasi-cliques [19], a-f-communities [52] have been
studied in the literature. [48, 63, 65] contain several other applica-
tions of dense subgraphs and related problems.

!We describe this connection explicitly in Sections 2 and 3.1.

https://doi.org/10.1145/3357713.3384327
https://doi.org/10.1145/3357713.3384327
https://doi.org/10.1145/3357713.3384327

STOC 20, June 22-26, 2020, Chicago, IL, USA

1.1 Background and Related Work

As defined in [16], we say that an algorithm is a fully dynamic y-
approximation algorithm for the densest subgraph problem if it can
process the following operations: (i) insert/delete an edge into/from
the graph; (ii) query a value which is at least y times the maximum
subgraph density of the graph.

Goldberg [31] gave the first polynomial-time algorithm to solve
the densest subgraph problem by reducing it to O(log n) instances
of maximum flow. This was subsequently improved to use only
O(1) instances, using parametric max-flow [29]. Charikar [20] gave
an exact linear programming formulation of the problem, while
at the same time giving a simple greedy algorithm which gives a
1/2-approximate densest subgraph (first studied in [8]). Despite the
approximation factor, this algorithm is popular in practice [22] due
to its simplicity, its efficacy on real-world graphs, and due to the
fact that it runs in linear time and space.

Obtaining fast algorithms for approximation factors better than
1/2, however, has proved to be a harder task. One approach towards
this is to sparsify the graph in a way that maintains subgraph
densities [50, 53] within a factor of 1—¢, and run the exact algorithm
on the sparsifier. However, this algorithm still incurs a term of n!->
in the running time, causing it to be super-linear for sparse graphs.
A second approach is via numerical methods to solve positive LPs?
approximately. Bahmani et al. [9] gave a O(mlog n - €~2) algorithm
by bounding the width of the dual LP for this problem, and using the
multiplicative weights update framework [7, 55] to find an (1 — €)-
approximate solution. Su and Vu [62] used a similar technique to
obtain an efficient distributed (1 — €)-approximation algorithm.
Alternately, using accelerated methods to solve positive LPs [17]
gives a O(mAe™) algorithm®, where A is the maximum degree in
the input graph.

In terms of dynamic and streaming algorithms for the dens-
est subgraph problem, the first result is by Bahmani et al. [10],
where they modified Charikar’s greedy algorithm to give a (1/2—¢)-
approximation using O(log,, . n) passes over the input. Das Sarma
et al. [59] adapted this idea to maintain a (1/2—¢) approximate dens-
est subgraph efficiently in the distributed CONGEST model. Using
the same techniques as in the static case, Bahmani et al. [9] obtained
a (1—€)-approximation algorithm that requires O (log ne~2) passes
over the input.

Subsequently, Bhattacharya et al. [16] developed a more nuanced
data structure to enable a 1-pass streaming algorithm which finds a
(1/2—€) approximation. They also gave the first dynamic algorithm
for DSP - a fully dynamic (1/4 — €) approximation algorithm using
amortized time O(poly(logn, e~1)) per update. Around the same
time, Epasto et al. [25] gave a fully dynamic (1/2—€)-approximation
algorithm for DSP in amortized time O(log? ne~2) per update, with
the caveat that edge deletions can only be random.

Kannan and Vinay [41] defined a notion of density on directed
graphs, and subsequently gave a O(log n) approximation algorithm
for the problem. Charikar [20] gave a polynomial-time algorithm
for directed DSP by reducing the problem to solving O(n?) LPs. On
the other hand, Khuller and Saha [43] used parametrized maximum

2 A positive linear program is one in which all coefficients, variables and constraints
are non-negative. They are alternatively known as Mixed Packing and Covering LPs.
30 hides polylogarithmic factors in n.

182

Saurabh Sawlani and Junxing Wang

flow to derive a polynomial-time algorithm. In the same paper, the
gave a linear time 2-approximation algorithm for the problem.

1.2 Our Results

We use a “dual” interpretation of the densest subgraph problem to
gain insight on the optimality conditions, as in [9, 20]. Specifically,
we translate it into a problem of assigning edge loads to incident
vertices so as to minimize the maximum load across vertices. Viewed
another way, we want to orient edges in a directed graph so as to
minimize the maximum in-degree of the graph. This view gives a
local condition for near-optimality of the algorithm, which we then
leverage to design a data structure to handle updates efficiently.
As our primary result, we give the first fully dynamic (1 — €)-
approximation algorithm for DSP which runs in O(poly(log n, 1))
worst-case time per update:

THEOREM 1.1. Given a graph G with n vertices, there exists a
deterministic fully dynamic (1 + €)-approximation algorithm for the
densest subgraph problem using O(1) worst-case time per query and
O(log* n - €7°) worst-case time per edge insertion or deletion.

Moreover, at any point, the algorithm can output the corresponding
approximate densest subgraph in time O(f + log n), where f is the
number of vertices in the output.

Charikar [20] gave a reduction from the densest subgraph prob-
lem on directed graphs to solving a number of instances of an
LP. We visualize this LP as DSP on a vertex-weighted graph. We
show that our approach on unweighted graphs extends naturally
to those with vertex weights, thereby also giving a fully dynamic
(1 — €)-approximation algorithm for directed DSP which runs in
O(poly(log n, e1)) worst-case time per update:

THEOREM 1.2. Given a directed graph G with n vertices, there
exists a deterministic fully dynamic (1 — €)-approximation algorithm
for the densest subgraph problem on G using O(logn/e) worst-case
query time and worst-case update times of O(log® n - €~7) per edge
insertion or deletion.

Moreover, at any point, the algorithm can output the corresponding
approximate densest subgraph in time O(f + log n), where f§ is the
number of vertices in the output.

1.3 Organization

In Section 2, we define essential notation, and formulate DSP as a
linear program. In Section 3, we give our primary result - a fully
dynamic 1 + € approximation algorithm for DSP with updates in
worst-case time polylog(n, e71). In Section 4, we extend our results
from Section 3 to vertex-weighted graphs. In Section 5, we give a
detailed reduction from directed DSP to undirected vertex-weighted
DSP.

2 PRELIMINARIES

We represent any undirected graph G as G = (V, E), where V is
the set of vertices in G, E is the set of edges in G. For any subset of
vertices S C V, we denote using E(S) the subset of all edges within
S.

Near-Optimal Fully Dynamic Densest Subgraph

We define pg (S) as the density of subgraph induced by S in G,
ie.,

def |E(S)|

pG(S) 5

The maximum subgraph density of G, p{;, is simply the maximum
among all subgraph densities, i.e.,

*

def
= ma S).
PG Sggcpc()

2.1 LP Formulation and Dual

The following is a well-known LP formulation of the densest sub-
graph problem, introduced in [20]. Associate each vertex v with
a variable x, € {0, 1}, where x, = 1 signifies v being included in
S. Similarly, for each edge, let y. € {0, 1} denote whether or not
it is in E(S). Relaxing the variables to be real numbers, we get the
following LP, which we denote by PRIMAL(G), whose optimal is
known to be p(;.

PrRiMAL(G)
maximize Z Ye
ecE
subject to Ye < Xy, Xo, Ve=uv € E
sz, <1,
veV
Ye 20,5, 20, VeeEVoeV

As in [9, 62], we take greater interest in the dual of the above
problem. Let fp(u) be the dual variable associated with the first
2m constraints of the form y, < x, in PRIMAL(G), and let D be

associated with the last constraint. We get the following LP, which
we denote by DuAL(G).

DuaL(G)
minimize D
subject to fe(u)+fe(v) > 1, Ve=uv € E
Zfe(v) <D, Yo eV
e30
fe(u) 20, fz(v) 20, Ve=uve€E

This LP can be visualized as follows. Each edge e = uov has a load of
1, which it wants to assign to its end points: fe(u) and fe(v) such
that the total load on each vertex is at most D. The objective is to
find the minimum D for which such a load assignment is feasible.

For a fixed D, the above formulation resembles a bipartite graph
between edges and vertices. Then, the problem is similar to a bipar-
tite b-matching problem [13], where the demands on one side are
at most D, and the other side are at least 1.

From strong duality, we know that the optimal objective values
of both linear programs are equal, i.e., exactly pg;. Let pG be the
objective of any feasible solution to PRIMAL(G). Similarly, let g5
be the objective of any feasible solution to DUAL(G). Then, by
optimality of p(; and weak duality,

ey

PGSPESﬁG.

183

STOC 20, June 22-26, 2020, Chicago, IL, USA

3 FULLY DYNAMIC ALGORITHM

In this section, we describe the main result of the paper: a de-
terministic fully-dynamic algorithm which maintains a (1 — €)-
approximation to the densest subgraph problem in poly(log n, e™!)
worst-case time per update.

3.1 Intuition and Overview

At a high level, our approach is to view the densest subgraph prob-
lem via its dual problem, i.e., “assigning” each edge fractionally to
its endpoints (as we discuss in Section 2). We view this as a load
distribution problem, where each vertex is assigned some load from
its incident edges. Then, the objective of the problem is simply to
find an assignment such that the maximum vertex load is mini-
mized. It is easy to verify that an optimal load assignment in the
dual problem is achieved when no edge is able to reassign its load
such that the maximum load among its two endpoints gets reduced.
In other words, local optimality implies global optimality.

In fact, this property holds even for approximately optimal solu-
tions. We show in Section 3.2 that any solution f which satisfies
an n-additive approximation to local optimality guarantees an ap-
proximate global optimal solution with a multiplicative error of at
most 1 — O(+/nlogn/pg), where pg denotes the maximum vertex
load in f. Here, an n-additive approximation implies that for any
edge, the maximum among its endpoint loads can only be reduced
by at most n by reassigning the edge. So, given an estimate of pg
and a desired approximation factor €, we can deduce the required
slack parameter 5, which we will alternatively denote as a function
n(pG, €)-

To do away with fractional edge assignments, in Section 3.3
we scale up the graph by duplicating each edge an appropriate
number of times. When 7 is an integer, one can always achieve
an n-additive approximation to local optimality by assigning each
edge completely to one of its endpoints. We visualize such a load
assignment via a directed graph, by orienting each edge towards
the vertex to which it is assigned. Now, the load on every vertex v is
simply its in-degree dj, (v). Then, an y-approximate local optimal
solution is achieved by orienting each edge such that there is no
edge wb with dip, (v) — dip (u) > n, because otherwise, we can flip
the edge to achieve a better local solution. Let us call this a locally
n-stable oriented graph.

This leaves the following challenges in extending this idea to a
fully dynamic algorithm:

(1) How can we maintain a locally n-stable oriented graph under
insertion/deletion operations efficiently?

(2) How do we maintain an accurate estimate of n while the
graph (and particularly p) undergoes changes?

In Sections 3.4 and 3.5, we solve the first issue using a technique
similar to that used by Kopelowitz et al. [44] for the graph orien-
tation problem. When an edge is inserted or deleted, it causes a
vertex to change its in-degree, which might cause an incident edge
to break the invariant for local 5-stability. If we flip the edge to fix
this instability, it might cause further instabilities. To avoid this
cascading of unstable edges, we first identify a maximal chain of
“tight" edges - edges that are close to breaking the local stability
constraint, and flip all edges in such a chain. This way, we only
increment the degree of the last vertex in the chain. Since the chain

STOC 20, June 22-26, 2020, Chicago, IL, USA

was maximal, this increment maintains the stability condition. By
defining a “tight" edge appropriately, and applying the same argu-
ment to the deletion operation, we show that each update incurs at
most O(pg/n) flips. This chain of tight edges closely relates to the
concept of augmenting paths in network flows [26] and matchings
[24, 51], which seems fitting, considering our intuition that densest
subgraph relates closely to these problems.

In Section 3.6, we solve the second issue - by simply running
the algorithm for O(log n) values of , and using the appropriate
version of the algorithm to query the solution.

3.2 Sufficiency of Local Approximation

From Equation 1, we know that the optimal solution to DUAL(G)
gives the exact maximum subgraph density of G, py;. Let us interpret
the variables of DUAL(G) as follows:
o Every edge e = uv assigns itself fractionally to one of its two
endpoints. f (1) and f,(v) denote these fractional loads.
® Y .5 fe(v) is the total load assigned to v. We denote this
using £,.
o The objective is simply max,cy fo.
If there is any edge e = uv such that f,(«) > 0 and 4, > £,. Then
e can transfer an infinitesimal amount of load from u to v while
not increasing the objective. Hence, there always exists an optimal
solution where for any edge e = uv, fe(u) > 0 = £, < £,. Using
this intuition, we write the approximate version of DuaL(G) by
providing a slack of 7 to the above condition. We call this relaxed
LP as DuaL(G, n).

DuaLr(G, n)
= fe(v) Vuev
e30
fe(u) + fe(v)=1, VYe=uv € E
fe(w), fe(v)= 0, Ve=uv € E
< by +m, Ve =uv € E, fe(u) >0

Theorem 3.1 states that this local condition is, in fact, also suffi-
cient to achieve global near-optimality. Specifically, it shows that
DuaL(G,) provides a 1/(1-¢)-approximation to p;, where 7 is a
parameter depending on € described later. Kopelowitz et al. [44] use
an identical argument to show the sufficiency of local optimality
for the graph orientation problem.

THEOREM 3.1. Given an undirected graph G with n vertices, letf, ¢

denote any feasible solution to DUAL(G, 17), and let pg def maxyey fy.

Then,
nlogn| . N .
1-3 — - pG < < pG-
(G) P PG SP

ProOF. Any feasible solution of DUAL(G, 1) is also a feasible
solution of DuaL(G), and so we have p; < pG.

Denote by T; the set of vertices with load at least pg — i, i.e.,
T def
P o=

{U eV)b 2 ps - r]i} .Let 0 < r < 1 be some adjustable
parameter we will fix later. We define k to be the maximal integer
such that for any 1 < i < k, |T;| > |Tj—1|(1 + r). Note that such a
maximal integer k always exists because there are finite number

Saurabh Sawlani and Junxing Wang

of vertices in G and the size of T; grows exponentially. By the
maximality of k, |Tpy1| < |Tr|(1 +r). In order to bound the density
of this set Ty, 1, we compute the total load on all vertices in Tj. For
any u € T, the load on u is given by
fu = Z Suo(u).
uv€EE
However, we know that f,,(u) > 0 = by > b, — 1, and hence
we only need to count for v € T, ;. Summing over all vertices in

Ti1, We get
Dil= Y fw@< Y fu) = BTl
u€eTy u€Ti,v€T)sq U€T)41,0€Tk41

Consider the density of set Ty, 1,

E(Tir)| | ZueTi bu | Til - (pg = 1k)
[Teerl A Tgal oy
where the last inequality follows from the definition of Tj.
Using the fact that [Ty |/|Tyq| > 1/(14+7r) 2 1 -1,
pale) (1= 16 =) 2 pa(1 =) 1 - 2E2),
r-pG
where the last inequality comes from the fact that n > [T| >
(1+r)*, which implies that k < log,,, n < 2logn/r.
Now, we can set our parameter r to maximize the term on the
RHS. By symmetry, the maximum is achieved when both terms in
the product are equal and hence we set

2nlogn
r= ~ .
PG

PG (Ti41) =

5

This gives
" 2
. 2nlogn
PG (Trt1) 2 Pa - l—\/—qu)
PG
2yl
>pg-[1-2 r]Aogn)
PG

v
>

I
.. H/ﬂfﬂ),
PG

Lastly, since pG(Tr41) can be at most the maximum subgraph
density pg;, the theorem follows. O

The set Ty, 1, in the above proof, is actually a subgraph of G with

density at least p(; (1 —3+/nlog n/pc). However, we need the exact
value of p¢ to find this set. As we will see in later sections, we will

only have access to an estimate p®t of the form: p®t < p5 < 2p°st.

So, if we instead set
fZ logn
r= ”pes% ’ (2)
we get

. 2nlogn logn
pc(Tk+1)2pc~(1— 128)(1—2,/&)
PG PG
> pe-|1-4 nlogn
B '

Near-Optimal Fully Dynamic Densest Subgraph

Using the fact that p¢ > p, p®t gives us the following corollary.

|

where Ty, is as defined in the proof of Theorem 3.1, using the value
of r as defined in (2).

Corollary 3.2.

nlogn
pest

PG (Tis1) 2 pg - (1 -4

We can now set 7 corresponding to the desired error € and the
estimate p®t.

3.3 Equivalence to the Graph Orientation

Problem
€2 pest
To obtain an e approximation, we need to set n = .
16logn
simpler analysis and to avoid working with fractional loads, we

def 64 logn

€2
that p®t > p5/2 > pg;/2 = a/4, and thus, n > 1. This means we
can do away with fractional assignments of edges and so each edge
u, v is now assigned to either u or v. We can now frame the question
as follows:

duplicate each edge o times. By doing this, we ensure

Given an undirected graph G and an integer 1, we want to
assign directions to edges in such a way that for any edge
=
uo,

din(0) < din(u) +1.

The above graph orientation problem, i.e., dynamically orienting
edges of a graph to minimize the maximum in-degree, is well studied
[18, 44, 45]. Kopelowitz et al. give an efficient dynamic algorithm for
the problem, where the update time depends on the arboricity* of
the graph with worst-case time bounds. Our technique for inserting
and deleting edges mimics the algorithm by Kopelowitz et al. [44].
However, for our problem, the slack parameter grows linearly
with the maximum vertex load. Hence, we can exploit this additional
power to arrive at worst-case times independent of any measure
of actual density in the graph. Additionally, to bound the cost of a
vertex informing its updated degree to its neighbors, we use a lazy
round-robin informing technique, in which not all neighbors are
always informed of the latest updates. We expand on these details
in the rest of the section.

3.4 Data Structure for Edge Flipping in
Directed Graphs

At the lowest level, we want to build a data structure that maintains
a directed graph undergoing changes. Ideally, we want each vertex
to know its neighbors’ labels, so that we can quickly find any edge
violating or exactly satisfying the approximation condition. We
refer to the latter as a tight edge. However, this property is expensive
because each vertex could possibly have too many neighbors to
inform. Specifically, each vertex could have up to pg in-neighbors
and as many as n — 1 out-neighbors.

4 Arboricity is an alternate measure of density defined as ag (V) = |E(V)|/(|V|-1),
and is within O (1) of our density measure.

185

STOC 20, June 22-26, 2020, Chicago, IL, USA

We deal with this issue in the following way. Since a vertex can
have Q(n) out-neighbors, it does not inform its changes to its out-
neighbors, but only its in-neighbors. So, any vertex remembers the
labels of its out-neighbors. Hence, it is easy to find a tight outgoing
edge; however, to find a tight incoming edge, we need to query the
labels of all its in-neighbors. Hence, both the update subroutines
and finding a tight incoming edge - use as many as pg operations.

However, pg can also get prohibitively large when the graph
sees many insertions, and can reach Q(n) (e.g. in a clique). To tackle
this, we relax the requirement for tightness of an edge: we say that
an edge ud is tight if di, (v) > din (1) + /2. Now, finding a tight
edge becomes less strict - importantly it now suffices to update
one’s in-neighbors (or query one’s in-neighbors) once every /4
iterations. So, in each update, a vertex v only informs 4d;, (v)/n of
its neighbors in round-robin fashion. This reduces the number of
operations to O(«) per update, as desired.

Lemma 3.3. There exists a data structure
LAzYDIRECTEDLABELS(G, 7)) which can maintain a directed
graph G(V,E), appended with vertex labels d : V +— Z% while
undergoing the following operations:

e add (ﬁ) add an edge into G,

e remove (ﬂ) remove an edge from G,

e increment(u): increment d(u) by 1,

e decrement(u): decrement d(u) by 1,

o flip (m)):ﬂip the direction of an edge in G,

e tight_in_nbr(u): find an in-neighbor v with d(v) < d(u) —
n/2, and

o tight_out_nbr(u): find an out-neighbor v with d(v) >
d(u) +n/2.

e label(u): output d(u).

o max_label(): output max,ey d(v).

e maximal_label_set(r): Output all elements with labels >
max_label() —n - i, where i is the smallest integer such that
|labels > 1 - (i+1)| < (1+7r)|labels > n - i.

Moreover, the operations add, remove and flip can be processed in
O(logn) time; tight_in_nbr, increment and decrement can be
processed in O(a) time; and tight_out_nbr and max_label can
be processed in O(1) time. maximal_label_set can be processed in
time in the order of the output size.

The pseudocode for this data structure is in Algorithm 1.

Proor. The correctness of the data structure follows from the
description in Algorithm 1. The operation add involves inserting
an element into a list and a priority queue - giving a worst-case
runtime of O(logn). The runtimes for remove and flip follow
similarly. The operations increment and decrement involve 1 up-
date to a balanced BST and O(«) priority-queue updates, giving a
worst-case runtime of O(alogn) per call. tight_in_nbr queries
O(«) neighbors, resulting in a worst-case runtime of O(«) per call.
tight_out_nbr, label and max_label simply check an element
pointer, resulting in a O(1) runtime. Lastly, maximal_label_set
traverses a balanced BST, until it exceeds the desired threshold. The
time taken is O(f + log n) where f is the number of elements read,
which is also the size of the output. O

STOC 20, June 22-26, 2020, Chicago, IL, USA

Saurabh Sawlani and Junxing Wang

We maintain the following global data structure:

o LaBELS: Balanced binary search tree with all labels. We store the max element separately.

Each vertex u maintains the following data structures:

o d(u): u’s label, initialized to 0.
o INNBRsy: List of u’s in-neighbors, initialized to 0.

o OUTNBRS,: Max-priority queue of u’s out-neighbors indexed using d,, initialized to 0.

Operation add (ﬂ)
Add u to INNBRs,
Add v to OuTNBRs,, with key dy, (v) « d(v)

. —
Operation remove (ud)
Remove u from INNBRS,
Remove v from OUTNBRS,,

Operation flip D)
—

remove (ud)

add (vn1)

Operation increment (u)
dlu) «—d(u) +1
Update d(u) in LABELS

for v € the next 220 [nNpgs, do

| Update dy(u) < d(u) in OUTNBRS,

Operation decrement (u)
du) «—d(u) -1

Update d(u) in LABELS
4din(u)

for v € the next INNBRs,, do
| Update dy(u) < d(u) in OUTNBRS,

Operation tight_in_nbr(u)
4d;, (u)

for v € the next INNBRs, do

‘ if d(v) < d(u) — /2 then return v
return null
Operation tight_out_nbr(u)
t < OUTNBRSs[u].max
if dy,(v) > d(u) + n/2 then return v
else return null

Operation label()
| return d(u)

Operation max_label ()
| return LABELS.max

Operation maximal_label_set(r)

m « max_label()

do
A « elements > m — in LABELS
B < elements > m — 2n in LABELS
me—m-—ung

while |B|/|A| > 1+7r

return B

Algorithm 1: LAzYDIRECTEDLABELS(G, 17): A data structure to maintain a directed graph with vertex labels. V and 5 are known.

3.5 Fully Dynamic Algorithm for a Given
Density Estimate

Here, we assume that an estimate of py; (equivalently, an esti-
mate of pg) is known. We denote this estimate as p®st, where
p®t < pg < 2p®t. Using this, we can compute the appropri-
def

ate n(p®t, e) def 2p%t /. Recall that a was defined as o
64logn - €2, From Section 3.4, we have an efficient data struc-
ture to maintain a directed graph, which we will use to maintain
a locally n-stable orientation. This in turn gives a fully dynamic
algorithm which processes updates efficiently, as we explain below.

We first define a tight edge in a locally stable oriented graph:

Definition 3.4. An edge ud is said to be tight if di, (v) = din (u) +
n/2.

Now, consider inserting an edge X7 into a locally 5-stable ori-
ented graph. Since y’s in-degree increases, it could potentially have
an in-neighbor z such that dj,(z) < di,(y) — n. Note that for this
to happen, zij was necessarily a tight edge. To “fix" this break in
stability, we flip the edge yz; however, this causes w’s in-degree
to increase, which we now possibly need to fix. Before explaining
how we circumvent this issue, let us define a maximal tight chain.

186

Definition 3.5. A maximal tight chain from a vertex v is a path of
tight edges w03, 910, . . ., 0w, such that w has no tight outgoing

edges.
A maximal tight chain to a vertex v is a path of tight edges
wo1,0102, . . ., 00, such that w has no tight incoming edges.

Now, instead of fixing the “unstable” edge caused by the increase
in y’s in-degree right away, we instead find a maximal tight chain
to y and flip all the edges in the chain. This way, the in-degrees of
all vertices in the chain except the start remain the same. Due to
the maximality of the chain, the start of the chain has no incoming
tight edges, and hence increasing its in-degree by 1 will not break
local stability. The same argument holds when we delete X7, except
we find a maximal tight chain from y.

The approximate density is nothing but the highest load in the
graph. For querying the actual subgraph itself, we use the observa-
tion from Section 3.2, where the required subgraph can be found by:
(i) finding sets of vertices with load at most 1 - i less than the maxi-
mum (T;), and (ii) returning the first T;1 such that |Ti+1|/|Ti| < 1+,
where r is an appropriate function of 7.

Lemma 3.6. There exists a data structure THRESHOLD(G, 1) which
can maintain an undirected graph G(V,E) while undergoing the
following operations:

Near-Optimal Fully Dynamic Densest Subgraph

e insert(u,v): insert an edge into G,
o delete(u,v): delete an edge from G, and report the vertex with
decreased load
e query_load(u): output the current load of u.
e query_density(): output a value pout such that (1-e€)pf, <
Pout < ;-
e query_subgraph(): output a subgraph with density at least
(1-e)pg-
Moreover, the operation insert takes O(a?) time, delete takes
O(alogn) time, query takes O(1) time, and query_subgraph takes
O(p + logn) time, where f is the size of the output.
The pseudocode for this data structure is in Algorithm 2.

Let us denote by dy,(v), the apparent label of v as seen by u.
This concept is needed because when the label of a vertex changes,
it doesn’t relay this change to all its in-neighbors immediately.
However, we can claim the following:

Lemma 3.7. The local gap constraint is always maintained, i.e., for
any edgeud, d(v) < d(u) +1.

Proor. There are two ways that this invariant could become
unsatisfied: via a decrement to u or an increment to .

Recall that v informs each in-neighbor its label once every /4
updates, hence |dy(v) — d(v)| cannot be larger than n/4. u only
decrements if it cannot find a tight out-neighbor, which means that
dy(v) < d(u)+n/2. Hence, at any instant that d(u) is decremented,
d(v) <d(u) +3n/4.

On the other hand, d(v) is only incremented if v cannot find a
tight in-neighbor. Consider the last time that d(u) is decremented
before this instant. At this point, d(v) < d(u) + 3n/4. After this,
there can only be less than 1/4 increments of d(v) before it queries
d(u) and flips. Hence, d(v) < d(u) + 1. O

Using Lemma 3.7 and Corollary 3.2, we get the following corol-
lary, which shows the correctness of Lemma 3.6.

Corollary 3.8. Let pout = (1 —€) maxyey d(v). Then, (1-¢€)p(; <
Pout < P*G~

ProoF oF LEMMA 3.6. Corollary 3.8 gives the correctness proof.
It remains to show the time bounds. Note that in both insert
and delete operations, the maximum chain of tight edges can
only be of length at most 2pG/n = O(a). The insert oper-
ation calls add and increment once, flip and tight_in_nbr
O(«) times. From Lemma 3.3, this results in a worst-case run-
time of O(a?) per insertion. The delete operation calls remove
and decrement once, flip and tight_out_nbr O(«) times. From
Lemma 3.3, this results in a worst-case runtime of O(« - log n) per
deletion. query_density only needs one max_label call which is
O(1) worst-case. query_load also needs one label call which is
O(1) worst-case. Lastly, query_subgraph’s runtime follows from
Lemma 3.3. m]

3.6 Overall Algorithm

Now, we have a sufficient basis to show our main theorem, which
we restate:

THEOREM 1.1. Given a graph G with n vertices, there exists a
deterministic fully dynamic (1 + €)-approximation algorithm for the

187

STOC 20, June 22-26, 2020, Chicago, IL, USA

densest subgraph problem using O(1) worst-case time per query and
O(log* n - €7©) worst-case time per edge insertion or deletion.

Moreover, at any point, the algorithm can output the corresponding
approximate densest subgraph in time O(f + log n), where f is the
number of vertices in the output.

From Section 3.5, we now have an efficient fully dynamic data
structure THRESHOLD(G, p®t, €) to maintain a 1 — e approxima-
tion to the maximum subgraph density, provided the optimum
remains within a constant factor of some estimate pt. Particularly,
THRESHOLD(G, p®t, €) requires pg /1 to be small to work efficiently.
On the other hand, too small an 7 results in a bad approximation
factor.

To ensure that we always work with the right estimate p°st,
we will construct log, n copies of THRESHOLD, one copy for each
possible p®t, or equivalently each possible value of 7. In the
ith copy of the data structure, we set pfSt — 2724, and so
ni « 2771 Let us call this ith copy of the data structure as
7; < THRESHOLD(G, p;?St, €). We also define ny = 0 for the sake of
the empty graph.

We say that 7; is accurate if p$' < pg, or equivalently n; <
2pG/a. Note that we will never use a copy that is not accurate to
deduce the approximate solution. On the other hand, we say that
Ti is affordable if the maximum possible chain length is less than
2a,1i.e., n; > pg/a. On copies that are not affordable, if there are
any additions which can cause the maximum load in that copy to
increase, we hold these off until a later time.

Lastly, note that for any value of pg, there is exactly one copy
which is both accurate and affordable. We call this the active copy.
The solution is extracted at any point from this copy. Suppose the
index of the current active copy is i. Then, after an insertion, this
can be either i or i + 1. We first test this by querying the maximum
density in 7741, and accordingly update the active index. Similarly,
after a deletion, this can be i or i — 1. For insertions which are
not affordable, we store the edges in a pending list. Consider an
insertion (u,v) which is not affordable in 7;. This means that the
loads on both u and v are at the limit (;a). We save (u,v) in the
pending list. For 7; to become affordable, one of u’s or v’s load must
decrease. At this point, we insert (u,v). The pseudocode for the
overall algorithm is in Algorithm 3.

Notice, importantly, that insertions are made into 7; only when it
is affordable. However, we always allow deletions because these are
either deletions from the pending edges or from the graph currently
stored in 7;, which is still affordable.

ProoF oF THEOREM 1.1. To show the correctness of Algorithm 3,
we need to prove that at all times, pg/2 < p:zttive < pG. We know
that this is true at the start of the algorithm. Assume this property is
true at some instant before an update. When an edge is inserted, the
first inequality might break. So, we test this after every addition and
increment active accordingly. The argument follows similarly for
deletions. However, we also need to make sure that when some 7;
is queried, there are no edges remaining in pending;, otherwise the
queried density could possibly be incorrect. Consider an edge (u, v)
inserted into pending; at some point during the algorithm. For 7;
to be queried, it must be active, which means that at some point, the
load of either u or v decreased, causing (u,v) to be inserted. Even
when there are multiple such edges adjacent to the same high-load

STOC 20, June 22-26, 2020, Chicago, IL, USA

Saurabh Sawlani and Junxing Wang

« Initialize data structure £ « LAzYDIRECTEDLABELS(G,) with:
G=(V,0), a « 64logn-e 2,5« 2p°/a

Operation insert((u,v))
if d(u) > d(v) then
L.add (m)

w0
else

L.add (m)
WU
while £.tight_in_nbr(w) # null do
w’ « L.tight_in_nbr(w)
—
L.flip (w’w)
we—w
L.increment(w)

Operation query_subgraph()

r « +/2nlogn/pest

return £.maximal_label_set(r);

Operation delete((u,v))
if u € INNBRs, then

N
L.remove (uv)
W «— 0
else

L.remove (ﬁ)
W U
while £.tight_out_nbr(w) # null do
w’ «— L.tight_out_nbr(w)
—_—
L.flip (ww’)
w— w’
L.decrement(w)
return(w)

Operation query_density()
| return L.max_label X (1 —e¢);

Operation query_load(u)
| return L.label(u);

Algorithm 2: TurESHOLD(G, p®t, €): Update routines on G when an estimate to its maximum load is known. Additionally V, n = |V,

and € are known.

vertex, we are assured to see at least that many decrements at that
vertex.

From Lemma 3.6, it follows that a query takes O(1) worst-case
time, and finding the subgraph takes O(f + log n) time, where f is
the size of the output subgraph. Each insert or delete operation is
first duplicated a times. Secondly, the updates are made individually
in log, n copies of the data structure.

First, note that any insert or delete operation in pending can be
processed in O(log n) time. This is also true for searching using a
single end point of an edge owing to the manner in which pending
is defined.

When an edge is added, it makes two load queries and then
possibly inserts in 7;. From Lemma 3.6, this gives a worst-case
runtime of O(a> log n) time per insertion.

As for deleting an edge, it sometimes also requires an insertion
into 7;. Again, plugging in runtimes from Lemma 3.6 gives a worst-
case runtime of O(a> log n) time per deletion. O

4 VERTEX-WEIGHTED DENSEST SUBGRAPH

In this section, we extend the ideas from Section 3 to extend to
graphs with vertex weights. As we will see in Section 5, this exten-
sion is crucial in arriving at efficient dynamic algorithms for DSP
on directed graphs.

Let us first formally define the concept of density in vertex-
weighted graphs. Given a graph G = (V, E, w), where w : V - Q=!,
the density of a subgraph induced by a vertex subset S C V is

[ES)

ZUES w(v) ‘

. def .
For ease of notation we denote w(S) < Yives @(v). Constructing
the approximate dual like in Sections 2 and 3, we get the same

def
pG(S) =

188

conditions except the load on a vertex v is now defined as

1
to= o 25

esv

Let wpin and wmax denote the smallest and largest vertex weight
in G. We multiply all the weights by 1/wp, and later divide the
answer by the same amount. This ensures that all weights are at

least 1, and the maximum weight is now given by W def Wmax / ©min-

We first show that local approximations also suffice for vertex-
weighted DSP. We reuse the notation used in Section 3 for the
exact and approximate dual LP — DuAL(G) and DuaL(G,), but
with vertex weights included.

THEOREM 4.1. Given an undirected vertex-weighted graph G with
n vertices, with maximum vertex weight W, let f, £ denote any feasible

solution to DUAL(G, 1)), and let pG def maxyey fy. Then,

nlog(nw)\ N R
1-34|—=""2] pg < pk < pG.
(\/ o PG <pG <P

ProoF. The proof follows the proof of Theorem 3.1 almost iden-
tically.

Any feasible solution of DUAL(G, 1) is also a feasible solution of
DuaL(G), and so we have p, < fG.

Denote by T; the set of vertices with load at least pg — 7i, i.e.,
def

T; {oeV |t >ps—ni}.Let 0 < a < 1 be some adjustable
parameter we will fix later. We define k to be the maximal integer
such that for any 1 < i < k, w(T;) = ©(Ti-1) - (1 +). Note that
such a maximal integer k always exists because there are finite
number of vertices in G and the size of T; grows exponentially. By
the maximality of k, w(Ty;1) < @(Tx) - (1+ @). In order to bound

Near-Optimal Fully Dynamic Densest Subgraph

STOC 20, June 22-26, 2020, Chicago, IL, USA

o fori < 1tolog,ndo
o «— 64logn - €2 pfSt — 2072y
Initialize 7; < THRESHOLD(G, p$™', €)

using the second)
Set active « 0

Operation query()
‘ return T5ctive.query()

Operation query_subgraph()
‘ return T5ctive.query_subgraph()

Operation insert((u,v))

fork «— 1toa do

for i < log, n toactive+1do 7;.insert((u,v))

P Tactive+1-query()

if p > 2p§éttive then active « active+1

else Tictive.insert((u,v))

fori « active—1to1do
t, « Ti.query_load(u); £y « Ti.query_load(v)
if both £, £, > 2p®" then add (u,v) to pending;
else 7;.insert((u,v))

Operation delete((u,v))

fork <« 1toa do

for i < log, n toactive +1do 7;.delete((u,0))
P — Tactive-query()

if p < p®! then

active « active -1

Tactive-delete((u,0))

fori <« active—1to1do

else
w « T;.delete((u,0))
if (w,w’) € pending; for any w’ then
Fi.insert((w, w’))
Remove (w, w’) from pending;

Initialize a sorted list of edges pending; < 0 using two balanced BSTs (one sorted using the first vertex of the edge, and another

if (u,0) € pending; then remove one copy of (u,v) from pending;

// duplicating (u,0) a times
// affordable copies

// unaffordable copies

// edge is still insertable

// duplicating (u,0) a times
// affordable copies

// unaffordable copies

// w’s load was decremented

Algorithm 3: Main update algorithm. V, n = |V|, and € are known quantities.

the density of this set Ty.,;, we compute the total load on all vertices
in Ty. For any u € T, the load on u is given by

2 ! Z ﬁw(u)

by =
uveE

o(u)
However, we know that
fuo(u) >0 = fuzfu—n

and hence we only need to count for v € Ty,;. Summing over all
vertices in Ty, 1, we get

T owi- Y,
UETk41,0€T)41

ueTy U€T),v€T)4q

fuo(u) < fuo(u) = |E(Tiyy)|-

Consider the density of set Ty, 1,

BT Zuer b o(T) - (p6 ~ k)
O(Tr1) — o(Tpr1) @(Tgr1)

P(Ties1) =

189

where the last inequality follows from the definition of Tj..
Since p(Tj41) can be at most the maximum subgraph density
p¢;» and using the fact that w(Ty) /@ (Ty1) > 1/(1+a) 2 1 - a,

P2 (1= (o =1 2 (i —o) [1- LB,
where the last inequality comes from the fact that nW > «(Ty) >
(1+ a)*, which implies that k < log;,,(nW) < 2log(nW)/a.

Now, we can set our parameter & to maximize the term on the
RHS. By symmetry, the maximum is achieved when both terms in
the product are equal and hence we set

2nlog(nW)
a=4|——"=.
PG

STOC 20, June 22-26, 2020, Chicago, IL, USA

2

b (2q10g(nW))
N\ sc

5 2n log(nW)
Je

[1-2y).
PG

Once again, scaling the graph up by a factor of «

This gives

*
PG 2

>

v

G- |1-
2 pG-|1-

def 64log(nW)
e
we can frame the question as the following graph orientation prob-
lem:

Given an undirected graph G with vertex-weights w : V i—
Q* and a slack parameter 77, we want to assign directions
to edges in such a way that for any edge u — o,

din(0) din (v)
(v) = (1) -

To adapt the data structure from Algorithm 1, we only need to
make the following change:

e increment(u) and decrement(u) no incre-
ment/decrement by 1 but by 1/w(u).

e Each entry in the LABELS data structure is additionally ap-
pended with vertex weights - because instead of comput-
ing |A| and |B|, we need to compute w(A) and w(B) in
maximal label_set.

e Since we assumed that w(v) > 1 for all v € V, we do not

have to adjust the conditions for tight edges.

longer

Once we are provided with an estimate of j;, we can use the
data structure from Algorithm 2 without any changes. Similar to
Section 3.6, we now need to guess a value for pg. Notice that
the range of values can now be O(nW). Hence, using O(log(nW))
values, we can apply Algorithm 3 to also solve the vertex-weighted
version of DSP.

This gives us the following result.

THEOREM 4.2. Given a vertex-weighted graph G with n vertices,
and vertex-weights in the range wmin and wmax, there exists a de-
terministic fully dynamic (1 — €)-approximation algorithm for the
densest subgraph problem on G using O(1) worst-case query time
and worst-case update times of O(log* (nW) - €7©) per edge insertion
or deletion.

Moreover, at any point, the algorithm can output the corresponding
approximate densest subgraph in time O(f + log n), where is the
number of vertices in the output.

5 DIRECTED DENSEST SUBGRAPH

The directed version of the densest subgraph problem was intro-
duced by Kannan and Vinay [41]. In a directed graph G = (V, E), for
a pair of sets S, T C V, we denote using E(S, T) the set of directed
edges going from a vertex in S to a vertex in T. The density of a

190

Saurabh Sawlani and Junxing Wang

pair of sets S, T C V is defined as:
def |E(S,T)]
VISIITI

The maximum subgraph density of G is then defined as:

pG(S,T)

*

def
= max S,T).
PG STy el)

Note that we use the same notation for density for undirected and
directed graphs, as the distinction is clear from the graph in the
subscript.

Charikar [20] reduced directed DSP to O(n?) instances of solving
an LP, and also observed that only O(logn/e) suffice to extract
a (1 — €) approximation. Khuller and Saha [43] used the same
reduction, but further simplified the algorithm to O(1) instances of
a parametrized maximum flow problem.

In this section, we recount this reduction, but by visualizing
the problem reduced to as a densest subgraph problem on vertex-
weighted graphs, as defined in Section 4.

5.1 Reduction from Directed DSP to
Vertex-weighted Undirected DSP
Given a directed graph G = (V,E) and a parameter t > 0, we
construct a vertex-weighted undirected graph
Gt = (Vi, Et,)
where,
o V; def Vt(L) u Vt(R), in which Vt(L) and Vt(R) are both clones
of the original vertex set V;
def
o E;

original directed edge (u,v) € E into an undirected edge

{(u,v) |ue Vt(L),U € Vt(R), (u,0) € E} projects each

between Vt(L) and Vt(R), and
()def 1/2t ue Vt(L)
® wrluU =
! t/2 € Vt(R)

To understand the intuition behind this reduction, consider a pair
of sets S, T C V. Consider the set S(I) corresponding to S in Vt(L),
and the set T(R) corresponding to T in Vt(R). pG(S,T) = EGSD|

VISIITI®

2IEGS.D)| Picking t carefully lets

whereas th(S(L) uTW)Y) = OIS
us relate the two notions, leveraging the AM-GM inequality as
indicated by the two denominators. Lemmas 5.1 and 5.2 show this
relation in detail.

Lemma 5.1. For any directed graph G = (V, E), let G; be defined as
above. Then for any choice of parameter t,

PG = PG,
Proor. Let SV U T(R) denote the densest (vertex-weighted)

subgraph in G;, where s e Vt(L) and TR ¢ Vt(R). LetSand T
denote the corresponding vertex sets in V. Then we have

E(sP uT®)| = pg; - (18t + TR 2

> p,|ISD] - TR,

Near-Optimal Fully Dynamic Densest Subgraph

where the inequality follows from the AM-GM property. Using the
facts |E;(SB uT®)Y| = E(S, T), |SP| = |S], and [TR®)| = |T|, we
get that

EST)

> pe-
NORO R

Lastly, since the density of the pair of sets S, T in the directed graph
G is at most py;, we get that p7, > pg[. a

So, G; provides a ready lower bound for computing maximum
subgraph density, for any ¢. The next lemma shows that a careful
choice of t can give equality between the two optimums.

Lemma 5.2. For any directed graph G = (V, E) and a pair of subsets
S, T that provides the maximum subset density, i.e., pz =pc(S,T),
we have

PG = PG,

wheret = %

Proor. Now, consider the sets s ¢ Vt(L) and TR ¢ Vt(R)
corresponding to S and T respectively. The density of set SU T can
be at most pa:

s ZEGDI
Ge = |8|/t +|T| - t
Substituting ¢ with |S|/|T],
£ s 2|E(S, T)| _ESD] .

PG, 2 = = PG
T S .
ISy st + 1T VISE T

Combining this with the bound from Lemma 5.1 gives that p(, =
pzt. O

Note, however, that this does not directly give an algorithm for
directed densest subgraph, since we do not know the optimum
value of |S|/|T|. Since both |S| and |T| are integers between 0 and
n, there can be at most O(n?) distinct values of |S|/|T|. So, to find
the exact solution, we can simply find pét for all possible t values,
and report the maximum.

This connection was first observed by Charikar [20], where he
reduced the directed densest subgraph problem to solving O(n?)
linear programs. However, our construction helps view these LPs
as DSP on vertex-weighted graphs, for which there are far more
optimized algorithms than solving generic LPs, in both static and
dynamic paradigms. Charikar [20] also observed that a 1 + € ap-
proximate solution could be obtained by only checking O(logn/e)
values of ¢. As one would expect, to obtain an approximate solution
for the directed DSP, it is not necessary to obtain an exact solution
to the undirected vertex-weighted DSP. As we show in Lemma 5.3,
we only require O(log n/e) computations of a 1+¢/2 approximation
to the densest subgraph problem.

Lemma 5.3. For any directed graph G = (V, E) and a pair of subsets
S, T that provides the maximum subset density, i.e., pG(S,T) = p*6,
we have

PG, = (1=€)pg,

S| 1

1T~ (1-e)-

where %'(l—e)sts

191

STOC 20, June 22-26, 2020, Chicago, IL, USA

ProoF. Consider the vertices S € V,(L) and TR ¢ Vt(R)
corresponding to S and T respectively. The density of set S(L) UT(®)
can be at most pgt:

S s 2EGD)
G TSI/t +T]
Substituting the bounds for ¢,

* >%E(S’T‘)Sllz(1_e)p6(s,ﬂ:(l—e)pg. O

Gy = T
SIS+ 1TIy 131

5.2 Implications of the Reduction

The above reduction implies that finding a (1 — €)-approximate
solution to directed DSP can be reduced to O(log n/e) instances of
(1 — e/2)-approximate vertex-weighted undirected DSP.

THEOREM 5.4. Given a directed graph G, with m edges and n
vertices, and a T(m, n, €) time algorithm for (1 — €)-approximate
vertex-weighted undirected densest subgraph, then there exists an
(1 — e)-approximate algorithm for finding the densest subgraph in G
in time T (m, 2n,€/2) - O(logn/e).

Proor. For each value of ¢ in
1 1 1
Vo' (1-¢/2)Vn’ (1-¢/2)2yn" "

we find an approximate value p such that p > (1 —€/2) p*G[, and

Val,

output the maximum such value. Using €/2 as the error parameter
in Lemma 5.3, we get that p > (1 - €)pg.

The number of values of t is log; /(1_¢/2) n = O(log n/e). o

The current fastest algorithms for (1 — €)-approximate static
densest subgraph [9, 17] rely on approximately solving DUAL(G),
which is a positive linear program, and subsequently extracting
a primal solution. Both these parts of the algorithm extend natu-
rally to vertex-weighted graphs. Substituting these runtimes in for
T(m,n, €), we get the following corollary.

Corollary 5.5. Let G be a directed graph with m edges and n vertices,
and let A be the maximum value among all its in-degrees and out-
degrees. Then, there exists an algorithm to find a (1 — €)-approximate
densest subgraph in G in time O(me™2 - min(A, e~ 1)).

Here, O hides polylogarithmic factors in n.
The same reduction also applies to fully dynamic algorithm for
directed DSP.

THEOREM 5.6. Suppose there exists a fully dynamic (1 — €)-
approximation algorithm for undirected vertex-weighted DSP on an
n-vertex graph with update time U (n, €) and query time Q(n, €). Then,
there exists a deterministic fully dynamic (1 — €)-approximation al-
gorithm for directed DSP on an n-vertex graph using U(2n,€/2) -
O(logn/e€) query time and Q(2n,¢€/2) - O(logn/e€) query time.

Substituting the runtimes from Theorem 4.2 in Section 4, we get

our result for dynamic DSP on directed graphs.

THEOREM 1.2. Given a directed graph G with n vertices, there
exists a deterministic fully dynamic (1 — €)-approximation algorithm
for the densest subgraph problem on G using O(logn/e) worst-case

STOC 20, June 22-26, 2020, Chicago, IL, USA

query time and worst-case update times of O(log® n - €~7) per edge
insertion or deletion.

Moreover, at any point, the algorithm can output the corresponding
approximate densest subgraph in time O(f + log n), where is the
number of vertices in the output.

ACKNOWLEDGEMENTS

We thank Richard Peng and Gary Miller for their feedback and
insightful discussions.

REFERENCES

(1]

[2

=

[10]

[11]

[12]

[13

[14]

[15]

Amir Abboud and Seren Dahlgaard. 2016. Popular Conjectures as a Barrier for
Dynamic Planar Graph Algorithms. In IEEE 57th Annual Symposium on Foun-
dations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA. 477-486. https://doi.org/10.1109/FOCS.2016.58
Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer,
Nikos Parotsidis, Ohad Trabelsi, Przemyslaw Uznanski, and Daniel Wolleb-Graf.
2019. Faster Algorithms for All-Pairs Bounded Min-Cuts. In 46th International
Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-
12, 2019, Patras, Greece (LIPIcs), Christel Baier, Ioannis Chatzigiannakis, Paola
Flocchini, and Stefano Leonardi (Eds.), Vol. 132. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 7:1-7:15. https://doi.org/10.4230/LIPIcs.ICALP.2019.7
Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. 2020. New Algorithms
and Lower Bounds for All-Pairs Max-Flow in Undirected Graphs. In Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake
City, UT, USA, January 5-8, 2020, Shuchi Chawla (Ed.). SIAM, 48-61. https:
//doi.org/10.1137/1.9781611975994.4

Amir Abboud and Virginia Vassilevska Williams. 2014. Popular Conjectures Imply
Strong Lower Bounds for Dynamic Problems. In 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014. 434-443. https://doi.org/10.1109/FOCS.2014.53

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast Exact Shortest-
path Distance Queries on Large Networks by Pruned Landmark Labeling. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data (New York, New York, USA) (SIGMOD ’13). ACM, New York, NY, USA,
349-360. https://doi.org/10.1145/2463676.2465315

Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivastava, Michael Svendsen,
and Srikanta Tirthapura. 2014. Dense subgraph maintenance under streaming
edge weight updates for real-time story identification. VLDB . 23, 2 (2014),
175-199. https://doi.org/10.1007/s00778-013-0340-z

Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The Multiplicative Weights
Update Method: a Meta-Algorithm and Applications. Theory of Computing 8, 1
(2012), 121-164. https://doi.org/10.4086/toc.2012.v008a006

Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. 2000. Greed-
ily finding a dense subgraph. Journal of Algorithms 34, 2 (2000), 203-221.
Bahman Bahmani, Ashish Goel, and Kamesh Munagala. 2014. Efficient Primal-
Dual Graph Algorithms for MapReduce. In Algorithms and Models for the Web
Graph - 11th International Workshop, WAW 2014, Beijing, China, December 17-18,
2014, Proceedings. 59-78. https://doi.org/10.1007/978-3-319-13123-8_6
Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest Subgraph
in Streaming and MapReduce. Proc. VLDB Endow. 5, 5 (Jan. 2012), 454-465.
https://doi.org/10.14778/2140436.2140442

Aaron Bernstein and Cliff Stein. 2016. Faster Fully Dynamic Matchings with
Small Approximation Ratios. In Proceedings of the Twenty-seventh Annual ACM-
SIAM Symposium on Discrete Algorithms (Arlington, Virginia) (SODA ’16). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 692-711. http:
//dLacm.org/citation.cfm?id=2884435.2884485

Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2018. Deter-
ministic Fully Dynamic Data Structures for Vertex Cover and Matching. SIAM j.
Comput. 47, 3 (2018), 859-887. https://doi.org/10.1137/140998925

Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2018. Dynamic
algorithms via the primal-dual method. Inf. Comput. 261, Part (2018), 219-239.
https://doi.org/10.1016/].ic.2018.02.005

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New
deterministic approximation algorithms for fully dynamic matching. In Proceed-
ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016. 398-411. https://doi.org/10.1145/
2897518.2897568

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2017. Fully Dy-
namic Approximate Maximum Matching and Minimum Vertex Cover in O(log3 n)
Worst Case Update Time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19. 470-489. https://doi.org/10.1137/1.9781611974782.30

192

[16]

[17

(18

[19]

[20

[22

[23

[24]

I
i

[26]

[27

[28

[29

&
=

[31

[32

[33

[35

[36

Saurabh Sawlani and Junxing Wang

Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos
Tsourakakis. 2015. Space- and Time-Efficient Algorithm for Maintaining Dense
Subgraphs on One-Pass Dynamic Streams. In Proceedings of the Forty-seventh
Annual ACM Symposium on Theory of Computing (Portland, Oregon, USA) (STOC
’15). ACM, New York, NY, USA, 173-182. https://doi.org/10.1145/2746539.
2746592

Digvijay Boob, Saurabh Sawlani, and Di Wang. 2019. Faster width-dependent
algorithm for mixed packing and covering LPs. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurlIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (Eds.). 15253-15262. http://papers.nips.cc/paper/9663-faster-
width-dependent-algorithm-for-mixed-packing-and-covering-Ips

Gerth Stelting Brodal and Rolf Fagerberg. 1999. Dynamic Representation of
Sparse Graphs. In Algorithms and Data Structures, 6th International Workshop,
WADS °99, Vancouver, British Columbia, Canada, August 11-14, 1999, Proceedings.
342-351. https://doi.org/10.1007/3-540-48447-7_34

Mauro Brunato, Holger H. Hoos, and Roberto Battiti. 2008. On Effectively Finding
Maximal Quasi-cliques in Graphs. In Learning and Intelligent Optimization,
Vittorio Maniezzo, Roberto Battiti, and Jean-Paul Watson (Eds.). Springer-Verlag,
Berlin, Heidelberg, 41-55. https://doi.org/10.1007/978-3-540-92695-5_4
Moses Charikar. 2000. Greedy Approximation Algorithms for Finding Dense Com-
ponents in a Graph. In Proceedings of the Third International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization (APPROX °00). Springer-Verlag,
Berlin, Heidelberg, 84-95. http://dlLacm.org/citation.cfm?id=646688.702972
J. Chen and Y. Saad. 2012. Dense Subgraph Extraction with Application to
Community Detection. IEEE Transactions on Knowledge and Data Engineering 24,
7 (July 2012), 1216-1230. https://doi.org/10.1109/TKDE.2010.271

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability and
Distance Queries via 2-Hop Labels. SIAM J. Comput. 32, 5 (May 2003), 1338-1355.
https://doi.org/10.1137/S0097539702403098

Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2007. Extraction and
Classification of Dense Communities in the Web. In Proceedings of the 16th
International Conference on World Wide Web (Banff, Alberta, Canada) (WWW *07).
ACM, New York, NY, USA, 461-470. https://doi.org/10.1145/1242572.1242635
Ran Duan and Seth Pettie. 2014. Linear-Time Approximation for Maximum
Weight Matching. 7 ACM 61, 1 (2014), 1:1-1:23. https://doi.org/10.1145/
2529989

Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient Densest Sub-
graph Computation in Evolving Graphs. In Proceedings of the 24th International
Conference on World Wide Web (Florence, Italy) (WWW ’15). International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
Switzerland, 300-310. https://doi.org/10.1145/2736277.2741638

D. R. Ford and D. R. Fulkerson. 2010. Flows in Networks. Princeton University
Press, Princeton, NJ, USA.

Greg N. Frederickson. 1985. Data Structures for On-Line Updating of Minimum
Spanning Trees, with Applications. SIAM J. Comput. 14, 4 (1985), 781-798.
https://doi.org/10.1137/0214055

Harold N. Gabow and Robert Endre Tarjan. 1991. Faster Scaling Algorithms
for General Graph-Matching Problems. J. ACM 38, 4 (1991), 815-853. https:
//doi.org/10.1145/115234.115366

G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. 1989. A Fast Parametric Maximum
Flow Algorithm and Applications. SIAM J. Comput. 18, 1 (Feb. 1989), 30-55.
https://doi.org/10.1137/0218003

David Gibson, Ravi Kumar, and Andrew Tomkins. 2005. Discovering Large Dense
Subgraphs in Massive Graphs. In Proceedings of the 31st International Conference
on Very Large Data Bases (Trondheim, Norway) (VLDB ’05). VLDB Endowment,
721-732. http://dl.acm.org/citation.cfm?id=1083592.1083676

A. V. Goldberg. 1984. Finding a Maximum Density Subgraph. Technical Report
UCB/CSD-84-171. EECS Department, University of California, Berkeley. http:
/Iwww2.eecs.berkeley.edu/Pubs/TechRpts/1984/5956.html

Gramoz Goranci, Monika Henzinger, and Thatchaphol Saranurak. 2018. Fast
Incremental Algorithms via Local Sparsifiers. (2018). unpublished manuscript.
Manoj Gupta and Richard Peng. 2013. Fully Dynamic (1+ e)-Approximate
Matchings. In 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. 548-557. https:
//doi.org/10.1109/FOCS.2013.65

Monika Henzinger. 2018. The State of the Art in Dynamic Graph Algorithms.
In SOFSEM 2018: Theory and Practice of Computer Science, A Min Tjoa, Ladjel
Bellatreche, Stefan Biffl, Jan van Leeuwen, and Jifi Wiedermann (Eds.). Springer
International Publishing, Cham, 40-44.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and Strengthening Hardness for Dynamic Problems
via the Online Matrix-Vector Multiplication Conjecture. In Proceedings of the
Forty-seventh Annual ACM Symposium on Theory of Computing (Portland, Oregon,
USA) (STOC ’15). ACM, New York, NY, USA, 21-30. https://doi.org/10.1145/
2746539.2746609

Monika Rauch Henzinger and Valerie King. 1999. Randomized Fully Dynamic
Graph Algorithms with Polylogarithmic Time per Operation. 7. ACM 46, 4 (1999),

https://doi.org/10.1109/FOCS.2016.58
https://doi.org/10.4230/LIPIcs.ICALP.2019.7
https://doi.org/10.1137/1.9781611975994.4
https://doi.org/10.1137/1.9781611975994.4
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1145/2463676.2465315
https://doi.org/10.1007/s00778-013-0340-z
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1007/978-3-319-13123-8_6
https://doi.org/10.14778/2140436.2140442
http://dl.acm.org/citation.cfm?id=2884435.2884485
http://dl.acm.org/citation.cfm?id=2884435.2884485
https://doi.org/10.1137/140998925
https://doi.org/10.1016/j.ic.2018.02.005
https://doi.org/10.1145/2897518.2897568
https://doi.org/10.1145/2897518.2897568
https://doi.org/10.1137/1.9781611974782.30
https://doi.org/10.1145/2746539.2746592
https://doi.org/10.1145/2746539.2746592
http://papers.nips.cc/paper/9663-faster-width-dependent-algorithm-for-mixed-packing-and-covering-lps
http://papers.nips.cc/paper/9663-faster-width-dependent-algorithm-for-mixed-packing-and-covering-lps
https://doi.org/10.1007/3-540-48447-7_34
https://doi.org/10.1007/978-3-540-92695-5_4
http://dl.acm.org/citation.cfm?id=646688.702972
https://doi.org/10.1109/TKDE.2010.271
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1145/1242572.1242635
https://doi.org/10.1145/2529989
https://doi.org/10.1145/2529989
https://doi.org/10.1145/2736277.2741638
https://doi.org/10.1137/0214055
https://doi.org/10.1145/115234.115366
https://doi.org/10.1145/115234.115366
https://doi.org/10.1137/0218003
http://dl.acm.org/citation.cfm?id=1083592.1083676
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5956.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5956.html
https://doi.org/10.1109/FOCS.2013.65
https://doi.org/10.1109/FOCS.2013.65
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1145/2746539.2746609

Near-Optimal Fully Dynamic Densest Subgraph

[37]

[38]

[39

N
)

[41]

[42

[43

[44

[45

[46]

[47]

[48]

[49

[50]

502-516. https://doi.org/10.1145/320211.320215

Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. J. ACM 48, 4 (2001), 723-760. https://doi.org/10.
1145/502090.502095

Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine Zhou.
2005. Mining Coherent Dense Subgraphs Across Massive Biological Networks
for Functional Discovery. Bioinformatics 21, 1 (Jan. 2005), 213-221. https:
//doi.org/10.1093/bioinformatics/bti1049

Giuseppe F. Italiano and Piotr Sankowski. 2010. Improved Minimum Cuts
and Maximum Flows in Undirected Planar Graphs. CoRR abs/1011.2843 (2010).
arXiv:1011.2843 http://arxiv.org/abs/1011.2843

Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3HOPP: A High-
compression Indexing Scheme for Reachability Query. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data (Providence,
Rhode Island, USA) (SIGMOD ’09). ACM, New York, NY, USA, 813-826. https:
//doi.org/10.1145/1559845.1559930

Ravi Kannan and Vinay V. 1999. Analyzing the structure of large graphs. (1999).
unpublished manuscript.

Bruce M. Kapron, Valerie King, and Ben Mountjoy. 2013. Dynamic graph con-
nectivity in polylogarithmic worst case time. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Or-
leans, Louisiana, USA, January 6-8, 2013. 1131-1142. https://doi.org/10.1137/1.
9781611973105.81

Samir Khuller and Barna Saha. 2009. On Finding Dense Subgraphs. In Proceedings
of the 36th International Colloquium on Automata, Languages and Programming:
Part I (Rhodes, Greece) (ICALP °09). Springer-Verlag, Berlin, Heidelberg, 597-608.
https://doi.org/10.1007/978-3-642-02927-1_50

Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. 2014. Ori-
enting Fully Dynamic Graphs with Worst-Case Time Bounds. In Automata, Lan-
guages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part II. 532-543. https://doi.org/10.1007/
978-3-662-43951-7_45

Lukasz Kowalik. 2007. Adjacency queries in dynamic sparse graphs. Inf. Process.
Lett. 102, 5 (2007), 191-195. https:/doi.org/10.1016/j.ipl.2006.12.006

Ravi Kumar, Jasmine Novak, and Andrew Tomkins. 2006. Structure and Evolution
of Online Social Networks. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Philadelphia, PA, USA)
(KDD ’06). ACM, New York, NY, USA, 611-617. https://doi.org/10.1145/1150402.
1150476

Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, Sridhar Rajagopalan,
Andrew Tomkins, Andrew Tomkins, and Andrew Tomkins. 1999. Trawling the
Web for Emerging Cyber-communities. Comput. Netw. 31, 11-16 (May 1999),
1481-1493. https://doi.org/10.1016/S1389-1286(99)00040-7

Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. 2010. A Survey of
Algorithms for Dense Subgraph Discovery. Springer US, Boston, MA, 303-336.
https://doi.org/10.1007/978-1-4419-6045-0_10

Aleksander Madry. 2011. From graphs to matrices, and back: new techniques for
graph algorithms. Ph.D. Dissertation. Massachusetts Institute of Technology,
Cambridge, MA, USA. http://hdLhandle.net/1721.1/66014

Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu. 2015. Densest
Subgraph in Dynamic Graph Streams. In Mathematical Foundations of Computer
Science 2015 - 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28,

193

[51

[52

[53

[54]

o
2

[56]

[57

[58

[59

=
=2

[61

[62

[63

[64

[65

STOC 20, June 22-26, 2020, Chicago, IL, USA

2015, Proceedings, Part II. 472-482. https://doi.org/10.1007/978-3-662-48054-
0_39

Silvio Micali and Vijay V. Vazirani. 1980. An O(sqrt(|v|) |E|) Algorithm for
Finding Maximum Matching in General Graphs. In 21st Annual Symposium on
Foundations of Computer Science, Syracuse, New York, USA, 13-15 October 1980.
17-27. https://doi.org/10.1109/SFCS.1980.12

Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert Endre Tarjan. 2008.
Finding Strongly Knit Clusters in Social Networks. Internet Mathematics 5, 1
(2008), 155-174. https://doi.org/10.1080/15427951.2008.10129299

Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis,
and Shen Chen Xu. 2015. Scalable Large Near-Clique Detection in Large-Scale
Networks via Sampling. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Sydney, NSW, Australia)
(KDD ’15). ACM, New York, NY, USA, 815-824. https://doi.org/10.1145/2783258.
2783385

M. E. J. Newman. 2006. Modularity and community structure in
networks. Proceedings of the National Academy of Sciences 103,
23 (2006), 8577-8582. https://doi.org/10.1073/pnas.0601602103

arXiv:https://www.pnas.org/content/103/23/8577 full.pdf

Serge A Plotkin, David B Shmoys, and Eva Tardos. 1995. Fast approximation algo-
rithms for fractional packing and covering problems. Mathematics of Operations
Research 20, 2 (1995), 257-301.

Jun Ren, Jianxin Wang, Min Li, and Lusheng Wang. 2013. Identifying protein com-

plexes based on density and modularity in protein-protein interaction network.
BMC Systems Biology 7, 4 (23 Oct 2013), S12. https://doi.org/10.1186/1752-

0509-7-54-S12

Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning Zhang.
2010. Dense Subgraphs with Restrictions and Applications to Gene Annotation
Graphs. In Research in Computational Molecular Biology, Bonnie Berger (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 456-472.

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer
Ozsu. 2017. The Ubiquity of Large Graphs and Surprising Challenges of Graph
Processing. Proc. VLDB Endow. 11, 4 (Dec. 2017), 420-431. https://doi.org/10.
1145/3186728.3164139

Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Amitabh Trehan. 2012.
Dense Subgraphs on Dynamic Networks. In Distributed Computing - 26th Inter-
national Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012. Proceedings.
151-165. https://doi.org/10.1007/978-3-642-33651-5_11

Stephen B. Seidman. 1983. Network structure and minimum degree. Social
Networks 5,3 (1983), 269 — 287. https://doi.org/10.1016/0378-8733(83)90028-X
Daniel D. Sleator and Robert Endre Tarjan. 1983. A Data Structure for Dynamic
Trees. J. Comput. Syst. Sci. 26, 3 (June 1983), 362-391. https://doi.org/10.1016/
0022-0000(83)90006-5

Hsin-Hao Su and Hoa T. Vu. 2019. Distributed Dense Subgraph Detection and
Low Outdegree Orientation. CoRR abs/1907.12443 (2019).

Lei Tang and Huan Liu. 2010. Graph Mining Applications to Social Network
Analysis. Springer US, Boston, MA, 487-513. https://doi.org/10.1007/978-1-
4419-6045-0_16

Mikkel Thorup. 2007. Fully-Dynamic Min-Cut. Combinatorica 27, 1 (2007), 91-127.
https://doi.org/10.1007/s00493-007-0045-2

Charalampos E. Tsourakakis. 2014. A Novel Approach to Finding Near-
Cliques: The Triangle-Densest Subgraph Problem. CoRR abs/1405.1477 (2014).
arXiv:1405.1477 http://arxiv.org/abs/1405.1477

https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/502090.502095
https://doi.org/10.1093/bioinformatics/bti1049
https://doi.org/10.1093/bioinformatics/bti1049
http://arxiv.org/abs/1011.2843
http://arxiv.org/abs/1011.2843
https://doi.org/10.1145/1559845.1559930
https://doi.org/10.1145/1559845.1559930
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1007/978-3-642-02927-1_50
https://doi.org/10.1007/978-3-662-43951-7_45
https://doi.org/10.1007/978-3-662-43951-7_45
https://doi.org/10.1016/j.ipl.2006.12.006
https://doi.org/10.1145/1150402.1150476
https://doi.org/10.1145/1150402.1150476
https://doi.org/10.1016/S1389-1286(99)00040-7
https://doi.org/10.1007/978-1-4419-6045-0_10
http://hdl.handle.net/1721.1/66014
https://doi.org/10.1007/978-3-662-48054-0_39
https://doi.org/10.1007/978-3-662-48054-0_39
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1080/15427951.2008.10129299
https://doi.org/10.1145/2783258.2783385
https://doi.org/10.1145/2783258.2783385
https://doi.org/10.1073/pnas.0601602103
http://arxiv.org/abs/https://www.pnas.org/content/103/23/8577.full.pdf
https://doi.org/10.1186/1752-0509-7-S4-S12
https://doi.org/10.1186/1752-0509-7-S4-S12
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1007/978-3-642-33651-5_11
https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/s00493-007-0045-2
http://arxiv.org/abs/1405.1477
http://arxiv.org/abs/1405.1477

	Abstract
	1 Introduction
	1.1 Background and Related Work
	1.2 Our Results
	1.3 Organization

	2 Preliminaries
	2.1 LP Formulation and Dual

	3 Fully Dynamic Algorithm
	3.1 Intuition and Overview
	3.2 Sufficiency of Local Approximation
	3.3 Equivalence to the Graph Orientation Problem
	3.4 Data Structure for Edge Flipping in Directed Graphs
	3.5 Fully Dynamic Algorithm for a Given Density Estimate
	3.6 Overall Algorithm

	4 Vertex-weighted Densest Subgraph
	5 Directed Densest Subgraph
	5.1 Reduction from Directed DSP to Vertex-weighted Undirected DSP
	5.2 Implications of the Reduction

	References

