
Near-Optimal Fully Dynamic Densest Subgraph
Saurabh Sawlani

Georgia Tech

Atlanta, GA, USA

sawlani@gatech.edu

Junxing Wang

CMU

Pittsburgh, PA, USA

junxingw@cs.cmu.edu

ABSTRACT
We give the first fully dynamic algorithm which maintains a (1−𝜖)-
approximate densest subgraph in worst-case time poly(log𝑛, 𝜖−1)
per update. Dense subgraph discovery is an important primitive

for many real-world applications such as community detection,

link spam detection, distance query indexing, and computational

biology. We approach the densest subgraph problem by framing

its dual as a graph orientation problem, which we solve using an

augmenting path-like adjustment technique. Our result improves

upon the previous best approximation factor of (1/4 − 𝜖) for fully
dynamic densest subgraph [Bhattacharya et. al., STOC ‘15]. We also

extend our techniques to solving the problem on vertex-weighted

graphs with similar runtimes.

Additionally, we reduce the (1 − 𝜖)-approximate densest sub-

graph problem on directed graphs to𝑂 (log𝑛/𝜖) instances of (1−𝜖)-
approximate densest subgraph on vertex-weighted graphs. This

reduction, together with our algorithm for vertex-weighted graphs,

gives the first fully-dynamic algorithm for directed densest sub-

graph in worst-case time poly(log𝑛, 𝜖−1) per update. Moreover,

combined with a near-linear time algorithm for densest subgraph

[Bahmani et. al., WAW ‘14], this gives the first near-linear time

algorithm for directed densest subgraph.

CCS CONCEPTS
• Theory of computation→ Dynamic graph algorithms.

KEYWORDS
dense subgraph discovery, fully dynamic algorithm, linear program-

ming dual, graph orientation, data structures

ACM Reference Format:
Saurabh Sawlani and Junxing Wang. 2020. Near-Optimal Fully Dynamic

Densest Subgraph. In Proceedings of the 52nd Annual ACM SIGACT Sym-

posium on Theory of Computing (STOC ’20), June 22–26, 2020, Chicago, IL,

USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3357713.

3384327

1 INTRODUCTION
A majority of real-world networks are very large in size, and a

significant fraction of them are known to change rather rapidly

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’20, June 22–26, 2020, Chicago, IL, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00

https://doi.org/10.1145/3357713.3384327

[58]. This has necessitated the study of efficient dynamic graph

algorithms - algorithms which use the existing solution to quickly

find an updated solution for the new graph. Due to the size of these

graphs, it is imperative that each update be processed in sub-linear

time.

Data structures which efficiently maintain solutions to combi-

natorial optimization problems have shot into prominence over

the last few decades [27, 61]. Many fundamental graph problems

such as graph connectivity [36, 37, 42], maximal and maximum

matchings [11, 12, 14, 15, 33], maximum flows and minimum cuts

[32, 39, 64] have been shown to have efficient dynamic algorithms

which only require sub-linear runtime per update. On the other

hand, lower bounds exist for the update times for a number of these

problems [1–4, 35]. [34] contains a comprehensive survey of many

graph problems and their state-of-the-art dynamic algorithms.

In this paper, we consider the densest subgraph problem. Given

an undirected graph𝐺 = ⟨𝑉 , 𝐸⟩, the density of a subgraph induced

by 𝑆 ⊆ 𝑉 is defined as 𝜌𝐺 (𝑆) = |𝐸 (𝑆) |/|𝑆 |, where 𝐸 (𝑆) is the set
of all edges within 𝑆 . The densest subgraph problem (DSP) asks to

find a a set 𝑆 ∈ 𝑉 such that

𝜌∗𝐺
def

= 𝜌𝐺 (𝑆) = max

𝑈 ⊆𝑉
𝜌𝐺 (𝑈) .

We call 𝜌∗
𝐺
the maximum subgraph density of 𝐺 .

The densest subgraph problem has great theoretical relevance

due to its close connection to fundamental graph problems such

as network flow and bipartite matching
1
. While near-linear time

algorithms exist for finding matchings in graphs [24, 28, 51], the

same cannot be said for flows on directed graphs [49]. In this sense,

DSP acts as an indicative middle ground, since it is both a specific

instance of a flow problem [9, 31], as well as a generalization of

bipartite 𝑏-matchings. Interestingly, DSP does allow near-linear

time algorithms [9].

In terms of dynamic algorithms, the state-of-the-art data struc-

ture for maintaining (1 + 𝜖)-approximate maximum matchings

takes 𝑂 (
√
𝑚𝜖−2) time per update [33]. [13] maintain a constant

factor approximation to the 𝑏-matching problem in 𝑂 (log3 𝑛) time.

For flow-problems, algorithms which maintain a constant factor

approximation in sublinear update time have proved to be elusive.

In addition to its theoretical importance, dense subgraph discov-

ery is an important primitive for several real-world applications

such as community detection [21, 23, 46, 47, 54], link spam detec-

tion [30], story identification [6], distance query indexing [5, 22, 40]

and computational biology [38, 56, 57], to name a few. Due to its

practical relevance, many related notions of subgraph density, such

as 𝑘-cores [60], quasi-cliques [19], 𝛼-𝛽-communities [52] have been

studied in the literature. [48, 63, 65] contain several other applica-

tions of dense subgraphs and related problems.

1
We describe this connection explicitly in Sections 2 and 3.1.

181

https://doi.org/10.1145/3357713.3384327
https://doi.org/10.1145/3357713.3384327
https://doi.org/10.1145/3357713.3384327

STOC ’20, June 22–26, 2020, Chicago, IL, USA Saurabh Sawlani and Junxing Wang

1.1 Background and Related Work
As defined in [16], we say that an algorithm is a fully dynamic 𝛾-

approximation algorithm for the densest subgraph problem if it can

process the following operations: (i) insert/delete an edge into/from

the graph; (ii) query a value which is at least 𝛾 times the maximum

subgraph density of the graph.

Goldberg [31] gave the first polynomial-time algorithm to solve

the densest subgraph problem by reducing it to 𝑂 (log𝑛) instances
of maximum flow. This was subsequently improved to use only

𝑂 (1) instances, using parametric max-flow [29]. Charikar [20] gave

an exact linear programming formulation of the problem, while

at the same time giving a simple greedy algorithm which gives a

1/2-approximate densest subgraph (first studied in [8]). Despite the

approximation factor, this algorithm is popular in practice [22] due

to its simplicity, its efficacy on real-world graphs, and due to the

fact that it runs in linear time and space.

Obtaining fast algorithms for approximation factors better than

1/2, however, has proved to be a harder task. One approach towards

this is to sparsify the graph in a way that maintains subgraph

densities [50, 53] within a factor of 1−𝜖 , and run the exact algorithm
on the sparsifier. However, this algorithm still incurs a term of 𝑛1.5

in the running time, causing it to be super-linear for sparse graphs.

A second approach is via numerical methods to solve positive LPs
2

approximately. Bahmani et al. [9] gave a𝑂 (𝑚 log𝑛 · 𝜖−2) algorithm
by bounding the width of the dual LP for this problem, and using the

multiplicative weights update framework [7, 55] to find an (1 − 𝜖)-
approximate solution. Su and Vu [62] used a similar technique to

obtain an efficient distributed (1 − 𝜖)-approximation algorithm.

Alternately, using accelerated methods to solve positive LPs [17]

gives a 𝑂 (𝑚Δ𝜖−1) algorithm3
, where Δ is the maximum degree in

the input graph.

In terms of dynamic and streaming algorithms for the dens-

est subgraph problem, the first result is by Bahmani et al. [10],

where they modified Charikar’s greedy algorithm to give a (1/2−𝜖)-
approximation using 𝑂 (log1+𝜖 𝑛) passes over the input. Das Sarma

et al. [59] adapted this idea to maintain a (1/2−𝜖) approximate dens-

est subgraph efficiently in the distributed CONGEST model. Using

the same techniques as in the static case, Bahmani et al. [9] obtained

a (1−𝜖)-approximation algorithm that requires𝑂 (log𝑛𝜖−2) passes
over the input.

Subsequently, Bhattacharya et al. [16] developed a more nuanced

data structure to enable a 1-pass streaming algorithm which finds a

(1/2−𝜖) approximation. They also gave the first dynamic algorithm

for DSP - a fully dynamic (1/4 − 𝜖) approximation algorithm using

amortized time 𝑂 (poly(log𝑛, 𝜖−1)) per update. Around the same

time, Epasto et al. [25] gave a fully dynamic (1/2−𝜖)-approximation

algorithm for DSP in amortized time𝑂 (log2 𝑛𝜖−2) per update, with
the caveat that edge deletions can only be random.

Kannan and Vinay [41] defined a notion of density on directed

graphs, and subsequently gave a𝑂 (log𝑛) approximation algorithm

for the problem. Charikar [20] gave a polynomial-time algorithm

for directed DSP by reducing the problem to solving𝑂 (𝑛2) LPs. On
the other hand, Khuller and Saha [43] used parametrized maximum

2
A positive linear program is one in which all coefficients, variables and constraints

are non-negative. They are alternatively known as Mixed Packing and Covering LPs.

3𝑂 hides polylogarithmic factors in 𝑛.

flow to derive a polynomial-time algorithm. In the same paper, the

gave a linear time 2-approximation algorithm for the problem.

1.2 Our Results
We use a “dual" interpretation of the densest subgraph problem to

gain insight on the optimality conditions, as in [9, 20]. Specifically,

we translate it into a problem of assigning edge loads to incident

vertices so as tominimize themaximum load across vertices. Viewed

another way, we want to orient edges in a directed graph so as to

minimize the maximum in-degree of the graph. This view gives a

local condition for near-optimality of the algorithm, which we then

leverage to design a data structure to handle updates efficiently.

As our primary result, we give the first fully dynamic (1 − 𝜖)-
approximation algorithm for DSPwhich runs in𝑂 (poly(log𝑛, 𝜖−1))
worst-case time per update:

Theorem 1.1. Given a graph 𝐺 with 𝑛 vertices, there exists a

deterministic fully dynamic (1 + 𝜖)-approximation algorithm for the

densest subgraph problem using 𝑂 (1) worst-case time per query and

𝑂 (log4 𝑛 · 𝜖−6) worst-case time per edge insertion or deletion.

Moreover, at any point, the algorithm can output the corresponding

approximate densest subgraph in time 𝑂 (𝛽 + log𝑛), where 𝛽 is the

number of vertices in the output.

Charikar [20] gave a reduction from the densest subgraph prob-

lem on directed graphs to solving a number of instances of an

LP. We visualize this LP as DSP on a vertex-weighted graph. We

show that our approach on unweighted graphs extends naturally

to those with vertex weights, thereby also giving a fully dynamic

(1 − 𝜖)-approximation algorithm for directed DSP which runs in

𝑂 (poly(log𝑛, 𝜖−1)) worst-case time per update:

Theorem 1.2. Given a directed graph 𝐺 with 𝑛 vertices, there

exists a deterministic fully dynamic (1− 𝜖)-approximation algorithm

for the densest subgraph problem on 𝐺 using 𝑂 (log𝑛/𝜖) worst-case
query time and worst-case update times of 𝑂 (log5 𝑛 · 𝜖−7) per edge
insertion or deletion.

Moreover, at any point, the algorithm can output the corresponding

approximate densest subgraph in time 𝑂 (𝛽 + log𝑛), where 𝛽 is the

number of vertices in the output.

1.3 Organization
In Section 2, we define essential notation, and formulate DSP as a

linear program. In Section 3, we give our primary result - a fully

dynamic 1 + 𝜖 approximation algorithm for DSP with updates in

worst-case time polylog(𝑛, 𝜖−1). In Section 4, we extend our results

from Section 3 to vertex-weighted graphs. In Section 5, we give a

detailed reduction from directed DSP to undirected vertex-weighted

DSP.

2 PRELIMINARIES
We represent any undirected graph 𝐺 as 𝐺 = ⟨𝑉 , 𝐸⟩, where 𝑉 is

the set of vertices in 𝐺 , 𝐸 is the set of edges in 𝐺 . For any subset of

vertices 𝑆 ⊆ 𝑉 , we denote using 𝐸 (𝑆) the subset of all edges within
𝑆 .

182

Near-Optimal Fully Dynamic Densest Subgraph STOC ’20, June 22–26, 2020, Chicago, IL, USA

We define 𝜌𝐺 (𝑆) as the density of subgraph induced by 𝑆 in 𝐺 ,

i.e.,

𝜌𝐺 (𝑆)
def

=
|𝐸 (𝑆) |
|𝑆 | .

The maximum subgraph density of 𝐺 , 𝜌∗
𝐺
, is simply the maximum

among all subgraph densities, i.e.,

𝜌∗𝐺
def

= max

𝑆⊆𝑉
𝜌𝐺 (𝑆) .

2.1 LP Formulation and Dual
The following is a well-known LP formulation of the densest sub-

graph problem, introduced in [20]. Associate each vertex 𝑣 with

a variable 𝑥𝑣 ∈ {0, 1}, where 𝑥𝑣 = 1 signifies 𝑣 being included in

𝑆 . Similarly, for each edge, let 𝑦𝑒 ∈ {0, 1} denote whether or not
it is in 𝐸 (𝑆). Relaxing the variables to be real numbers, we get the

following LP, which we denote by Primal(𝐺), whose optimal is

known to be 𝜌∗
𝐺
.

Primal(𝐺)

maximize

∑
𝑒∈𝐸

𝑦𝑒

subject to 𝑦𝑒 ≤ 𝑥𝑢 , 𝑥𝑣, ∀𝑒 = 𝑢𝑣 ∈ 𝐸∑
𝑣∈𝑉

𝑥𝑣 ≤ 1,

𝑦𝑒 ≥ 0, 𝑥𝑣 ≥ 0, ∀𝑒 ∈ 𝐸,∀𝑣 ∈ 𝑉

As in [9, 62], we take greater interest in the dual of the above

problem. Let 𝑓𝑒 (𝑢) be the dual variable associated with the first

2𝑚 constraints of the form 𝑦𝑒 ≤ 𝑥𝑢 in Primal(𝐺), and let 𝐷 be

associated with the last constraint. We get the following LP, which

we denote by Dual(𝐺).

Dual(𝐺)

minimize 𝐷

subject to 𝑓𝑒 (𝑢)+𝑓𝑒 (𝑣) ≥ 1, ∀𝑒 = 𝑢𝑣 ∈ 𝐸∑
𝑒∋𝑣

𝑓𝑒 (𝑣) ≤ 𝐷, ∀𝑣 ∈ 𝑉

𝑓𝑒 (𝑢) ≥ 0, 𝑓𝑒 (𝑣) ≥ 0, ∀𝑒 = 𝑢𝑣 ∈ 𝐸

This LP can be visualized as follows. Each edge 𝑒 = 𝑢𝑣 has a load of

1, which it wants to assign to its end points: 𝑓𝑒 (𝑢) and 𝑓𝑒 (𝑣) such
that the total load on each vertex is at most 𝐷 . The objective is to

find the minimum 𝐷 for which such a load assignment is feasible.

For a fixed 𝐷 , the above formulation resembles a bipartite graph

between edges and vertices. Then, the problem is similar to a bipar-

tite 𝑏-matching problem [13], where the demands on one side are

at most 𝐷 , and the other side are at least 1.

From strong duality, we know that the optimal objective values

of both linear programs are equal, i.e., exactly 𝜌∗
𝐺
. Let 𝜌𝐺 be the

objective of any feasible solution to Primal(𝐺). Similarly, let 𝜌𝐺
be the objective of any feasible solution to Dual(𝐺). Then, by
optimality of 𝜌∗

𝐺
and weak duality,

𝜌𝐺 ≤ 𝜌∗𝐺 ≤ 𝜌𝐺 . (1)

3 FULLY DYNAMIC ALGORITHM
In this section, we describe the main result of the paper: a de-

terministic fully-dynamic algorithm which maintains a (1 − 𝜖)-
approximation to the densest subgraph problem in poly(log𝑛, 𝜖−1)
worst-case time per update.

3.1 Intuition and Overview
At a high level, our approach is to view the densest subgraph prob-

lem via its dual problem, i.e., “assigning" each edge fractionally to

its endpoints (as we discuss in Section 2). We view this as a load

distribution problem, where each vertex is assigned some load from

its incident edges. Then, the objective of the problem is simply to

find an assignment such that the maximum vertex load is mini-

mized. It is easy to verify that an optimal load assignment in the

dual problem is achieved when no edge is able to reassign its load

such that the maximum load among its two endpoints gets reduced.

In other words, local optimality implies global optimality.

In fact, this property holds even for approximately optimal solu-

tions. We show in Section 3.2 that any solution 𝒇 which satisfies

an 𝜂-additive approximation to local optimality guarantees an ap-

proximate global optimal solution with a multiplicative error of at

most 1 −𝑂 (
√
𝜂 log𝑛/𝜌𝐺), where 𝜌𝐺 denotes the maximum vertex

load in 𝒇 . Here, an 𝜂-additive approximation implies that for any

edge, the maximum among its endpoint loads can only be reduced

by at most 𝜂 by reassigning the edge. So, given an estimate of 𝜌𝐺
and a desired approximation factor 𝜖 , we can deduce the required

slack parameter 𝜂, which we will alternatively denote as a function

𝜂 (𝜌𝐺 , 𝜖).
To do away with fractional edge assignments, in Section 3.3

we scale up the graph by duplicating each edge an appropriate

number of times. When 𝜂 is an integer, one can always achieve

an 𝜂-additive approximation to local optimality by assigning each

edge completely to one of its endpoints. We visualize such a load

assignment via a directed graph, by orienting each edge towards

the vertex to which it is assigned. Now, the load on every vertex 𝑣 is

simply its in-degree 𝒅in (𝑣). Then, an 𝜂-approximate local optimal

solution is achieved by orienting each edge such that there is no

edge
−→𝑢𝑣 with 𝒅in (𝑣) − 𝒅in (𝑢) > 𝜂, because otherwise, we can flip

the edge to achieve a better local solution. Let us call this a locally

𝜂-stable oriented graph.

This leaves the following challenges in extending this idea to a

fully dynamic algorithm:

(1) How can we maintain a locally 𝜂-stable oriented graph under

insertion/deletion operations efficiently?

(2) How do we maintain an accurate estimate of 𝜂 while the

graph (and particularly 𝜌𝐺) undergoes changes?

In Sections 3.4 and 3.5, we solve the first issue using a technique

similar to that used by Kopelowitz et al. [44] for the graph orien-

tation problem. When an edge is inserted or deleted, it causes a

vertex to change its in-degree, which might cause an incident edge

to break the invariant for local 𝜂-stability. If we flip the edge to fix

this instability, it might cause further instabilities. To avoid this

cascading of unstable edges, we first identify a maximal chain of

“tight" edges - edges that are close to breaking the local stability

constraint, and flip all edges in such a chain. This way, we only

increment the degree of the last vertex in the chain. Since the chain

183

STOC ’20, June 22–26, 2020, Chicago, IL, USA Saurabh Sawlani and Junxing Wang

was maximal, this increment maintains the stability condition. By

defining a “tight" edge appropriately, and applying the same argu-

ment to the deletion operation, we show that each update incurs at

most 𝑂 (𝜌𝐺/𝜂) flips. This chain of tight edges closely relates to the

concept of augmenting paths in network flows [26] and matchings

[24, 51], which seems fitting, considering our intuition that densest

subgraph relates closely to these problems.

In Section 3.6, we solve the second issue - by simply running

the algorithm for 𝑂 (log𝑛) values of 𝜂, and using the appropriate

version of the algorithm to query the solution.

3.2 Sufficiency of Local Approximation
From Equation 1, we know that the optimal solution to Dual(𝐺)
gives the exactmaximum subgraph density of𝐺 , 𝜌∗

𝐺
. Let us interpret

the variables of Dual(𝐺) as follows:
• Every edge 𝑒 = 𝑢𝑣 assigns itself fractionally to one of its two

endpoints. 𝑓𝑒 (𝑢) and 𝑓𝑒 (𝑣) denote these fractional loads.
• ∑

𝑒∋𝑣 𝑓𝑒 (𝑣) is the total load assigned to 𝑣 . We denote this

using ℓ𝑣 .

• The objective is simply max𝑣∈𝑉 ℓ𝑣 .

If there is any edge 𝑒 = 𝑢𝑣 such that 𝑓𝑒 (𝑢) > 0 and ℓ𝑢 > ℓ𝑣 . Then

𝑒 can transfer an infinitesimal amount of load from 𝑢 to 𝑣 while

not increasing the objective. Hence, there always exists an optimal

solution where for any edge 𝑒 = 𝑢𝑣 , 𝑓𝑒 (𝑢) > 0 =⇒ ℓ𝑢 ≤ ℓ𝑣 . Using

this intuition, we write the approximate version of Dual(𝐺) by
providing a slack of 𝜂 to the above condition. We call this relaxed

LP as Dual(𝐺,𝜂).

Dual(𝐺,𝜂)

ℓ𝑣=
∑
𝑒∋𝑣

𝑓𝑒 (𝑣) ∀𝑢 ∈ 𝑉

𝑓𝑒 (𝑢) + 𝑓𝑒 (𝑣)= 1, ∀𝑒 = 𝑢𝑣 ∈ 𝐸
𝑓𝑒 (𝑢), 𝑓𝑒 (𝑣)≥ 0, ∀𝑒 = 𝑢𝑣 ∈ 𝐸

ℓ𝑢≤ ℓ𝑣 + 𝜂, ∀𝑒 = 𝑢𝑣 ∈ 𝐸, 𝑓𝑒 (𝑢) > 0

Theorem 3.1 states that this local condition is, in fact, also suffi-

cient to achieve global near-optimality. Specifically, it shows that

Dual(𝐺,𝜂) provides a 1/(1−𝜖)-approximation to 𝜌∗
𝐺
, where 𝜂 is a

parameter depending on 𝜖 described later. Kopelowitz et al. [44] use

an identical argument to show the sufficiency of local optimality

for the graph orientation problem.

Theorem 3.1. Given an undirected graph𝐺 with 𝑛 vertices, let 𝒇 , ℓ̂

denote any feasible solution to Dual(𝐺,𝜂), and let 𝜌𝐺
def

= max𝑣∈𝑉 ℓ̂𝑣 .

Then, (
1 − 3

√
𝜂 log𝑛

𝜌𝐺

)
· 𝜌𝐺 ≤ 𝜌∗𝐺 ≤ 𝜌𝐺 .

Proof. Any feasible solution of Dual(𝐺,𝜂) is also a feasible

solution of Dual(𝐺), and so we have 𝜌∗
𝐺
≤ 𝜌𝐺 .

Denote by 𝑇𝑖 the set of vertices with load at least 𝜌𝐺 − 𝜂𝑖 , i.e.,
𝑇𝑖

def

=
{
𝑣 ∈ 𝑉 | ℓ̂𝑣 ≥ 𝜌𝐺 − 𝜂𝑖

}
. Let 0 < 𝑟 < 1 be some adjustable

parameter we will fix later. We define 𝑘 to be the maximal integer

such that for any 1 ≤ 𝑖 ≤ 𝑘 , |𝑇𝑖 | ≥ |𝑇𝑖−1 | (1 + 𝑟) . Note that such a

maximal integer 𝑘 always exists because there are finite number

of vertices in 𝐺 and the size of 𝑇𝑖 grows exponentially. By the

maximality of 𝑘 , |𝑇𝑘+1 | < |𝑇𝑘 | (1 + 𝑟) . In order to bound the density

of this set 𝑇𝑘+1, we compute the total load on all vertices in 𝑇𝑘 . For

any 𝑢 ∈ 𝑇𝑘 , the load on 𝑢 is given by

ℓ̂𝑢 =
∑
𝑢𝑣∈𝐸

ˆ𝑓𝑢𝑣 (𝑢) .

However, we know that 𝑓𝑢𝑣 (𝑢) > 0 =⇒ ℓ̂𝑣 ≥ ℓ̂𝑢 − 𝜂, and hence

we only need to count for 𝑣 ∈ 𝑇𝑘+1. Summing over all vertices in

𝑇𝑘+1, we get∑
𝑢∈𝑇𝑘

ℓ̂𝑢 =
∑

𝑢∈𝑇𝑘 ,𝑣∈𝑇𝑘+1

ˆ𝑓𝑢𝑣 (𝑢) ≤
∑

𝑢∈𝑇𝑘+1,𝑣∈𝑇𝑘+1

ˆ𝑓𝑢𝑣 (𝑢) = |𝐸 (𝑇𝑘+1) |.

Consider the density of set 𝑇𝑘+1,

𝜌𝐺 (𝑇𝑘+1) =
|𝐸 (𝑇𝑘+1) |
|𝑇𝑘+1 |

≥
∑
𝑢∈𝑇𝑘 ℓ̂𝑢
|𝑇𝑘+1 |

≥ |𝑇𝑘 | · (𝜌𝐺 − 𝜂𝑘)|𝑇𝑘+1 |
,

where the last inequality follows from the definition of 𝑇𝑘 .

Using the fact that |𝑇𝑘 |/|𝑇𝑘+1 | > 1/(1 + 𝑟) ≥ 1 − 𝑟 ,

𝜌𝐺 (𝑇𝑘+1) ≥ (1 − 𝑟) (𝜌𝐺 − 𝜂𝑘) ≥ 𝜌𝐺 (1 − 𝑟)
(
1 − 2𝜂 log𝑛

𝑟 · 𝜌𝐺

)
,

where the last inequality comes from the fact that 𝑛 ≥ |𝑇𝑘 | ≥
(1 + 𝑟)𝑘 , which implies that 𝑘 ≤ log1+𝑟 𝑛 ≤ 2 log𝑛/𝑟 .

Now, we can set our parameter 𝑟 to maximize the term on the

RHS. By symmetry, the maximum is achieved when both terms in

the product are equal and hence we set

𝑟 =

√
2𝜂 log𝑛

𝜌𝐺
.

This gives

𝜌𝐺 (𝑇𝑘+1) ≥ 𝜌𝐺 ·
(
1 −

√
2𝜂 log𝑛

𝜌𝐺

)2
≥ 𝜌𝐺 ·

(
1 − 2

√
2𝜂 log𝑛

𝜌𝐺

)
≥ 𝜌𝐺 ·

(
1 − 3

√
𝜂 log𝑛

𝜌𝐺

)
.

Lastly, since 𝜌𝐺 (𝑇𝑘+1) can be at most the maximum subgraph

density 𝜌∗
𝐺
, the theorem follows. □

The set𝑇𝑘+1, in the above proof, is actually a subgraph of𝐺 with

density at least 𝜌∗
𝐺
(1− 3

√
𝜂 log𝑛/𝜌𝐺). However, we need the exact

value of 𝜌𝐺 to find this set. As we will see in later sections, we will

only have access to an estimate 𝜌est of the form: 𝜌est ≤ 𝜌𝐺 ≤ 2𝜌est .

So, if we instead set

𝑟 =

√
2𝜂 log𝑛

𝜌est
, (2)

we get

𝜌𝐺 (𝑇𝑘+1) ≥ 𝜌𝐺 ·
(
1 −

√
2𝜂 log𝑛

𝜌𝐺

) (
1 − 2

√
𝜂 log𝑛

𝜌𝐺

)
≥ 𝜌𝐺 ·

(
1 − 4

√
𝜂 log𝑛

𝜌𝐺

)
.

184

Near-Optimal Fully Dynamic Densest Subgraph STOC ’20, June 22–26, 2020, Chicago, IL, USA

Using the fact that 𝜌𝐺 ≥ 𝜌∗
𝐺
, 𝜌est gives us the following corollary.

Corollary 3.2.

𝜌𝐺 (𝑇𝑘+1) ≥ 𝜌∗𝐺 ·
(
1 − 4

√
𝜂 log𝑛

𝜌est

)
,

where 𝑇𝑘+1 is as defined in the proof of Theorem 3.1, using the value

of 𝑟 as defined in (2).

We can now set 𝜂 corresponding to the desired error 𝜖 and the

estimate 𝜌est.

3.3 Equivalence to the Graph Orientation
Problem

To obtain an 𝜖 approximation, we need to set 𝜂 =
𝜖2𝜌est

16 log𝑛
. For

simpler analysis and to avoid working with fractional loads, we

duplicate each edge 𝛼
def

=
64 log𝑛

𝜖2
times. By doing this, we ensure

that 𝜌est ≥ 𝜌𝐺/2 ≥ 𝜌∗
𝐺
/2 ≥ 𝛼/4, and thus, 𝜂 ≥ 1. This means we

can do away with fractional assignments of edges and so each edge

𝑢, 𝑣 is now assigned to either𝑢 or 𝑣 . We can now frame the question

as follows:

Given an undirected graph𝐺 and an integer 𝜂, we want to

assign directions to edges in such a way that for any edge

−→𝑢𝑣 ,
𝒅in (𝑣) ≤ 𝒅in (𝑢) + 𝜂.

The above graph orientation problem, i.e., dynamically orienting

edges of a graph tominimize themaximum in-degree, is well studied

[18, 44, 45]. Kopelowitz et al. give an efficient dynamic algorithm for

the problem, where the update time depends on the arboricity
4
of

the graph with worst-case time bounds. Our technique for inserting

and deleting edges mimics the algorithm by Kopelowitz et al. [44].

However, for our problem, the slack parameter 𝜂 grows linearly

with themaximum vertex load. Hence, we can exploit this additional

power to arrive at worst-case times independent of any measure

of actual density in the graph. Additionally, to bound the cost of a

vertex informing its updated degree to its neighbors, we use a lazy

round-robin informing technique, in which not all neighbors are

always informed of the latest updates. We expand on these details

in the rest of the section.

3.4 Data Structure for Edge Flipping in
Directed Graphs

At the lowest level, we want to build a data structure that maintains

a directed graph undergoing changes. Ideally, we want each vertex

to know its neighbors’ labels, so that we can quickly find any edge

violating or exactly satisfying the approximation condition. We

refer to the latter as a tight edge. However, this property is expensive

because each vertex could possibly have too many neighbors to

inform. Specifically, each vertex could have up to 𝜌𝐺 in-neighbors

and as many as 𝑛 − 1 out-neighbors.

4
Arboricity is an alternate measure of density defined as 𝛼𝐺 (𝑉) = |𝐸 (𝑉) |/(|𝑉 | − 1) ,
and is within𝑂 (1) of our density measure.

We deal with this issue in the following way. Since a vertex can

have Ω(𝑛) out-neighbors, it does not inform its changes to its out-

neighbors, but only its in-neighbors. So, any vertex remembers the

labels of its out-neighbors. Hence, it is easy to find a tight outgoing

edge; however, to find a tight incoming edge, we need to query the

labels of all its in-neighbors. Hence, both the update subroutines

and finding a tight incoming edge - use as many as 𝜌𝐺 operations.

However, 𝜌𝐺 can also get prohibitively large when the graph

sees many insertions, and can reach Ω(𝑛) (e.g. in a clique). To tackle
this, we relax the requirement for tightness of an edge: we say that

an edge
−→𝑢𝑣 is tight if 𝒅in (𝑣) ≥ 𝒅in (𝑢) + 𝜂/2. Now, finding a tight

edge becomes less strict - importantly it now suffices to update

one’s in-neighbors (or query one’s in-neighbors) once every 𝜂/4
iterations. So, in each update, a vertex 𝑣 only informs 4𝒅in (𝑣)/𝜂 of

its neighbors in round-robin fashion. This reduces the number of

operations to 𝑂 (𝛼) per update, as desired.

Lemma 3.3. There exists a data structure

LazyDirectedLabels(𝐺,𝜂) which can maintain a directed

graph 𝐺 (𝑉 , 𝐸), appended with vertex labels 𝑑 : 𝑉 ↦→ Z+ while

undergoing the following operations:

• add
(−→𝑢𝑣) : add an edge into 𝐺 ,

• remove
(−→𝑢𝑣) : remove an edge from 𝐺 ,

• increment(𝑢): increment 𝑑 (𝑢) by 1,

• decrement(𝑢): decrement 𝑑 (𝑢) by 1,

• flip
(−→𝑢𝑣) : flip the direction of an edge in 𝐺 ,

• tight_in_nbr(𝑢): find an in-neighbor 𝑣 with 𝑑 (𝑣) ≤ 𝑑 (𝑢) −
𝜂/2, and
• tight_out_nbr(𝑢): find an out-neighbor 𝑣 with 𝑑 (𝑣) ≥
𝑑 (𝑢) + 𝜂/2.
• label(𝑢): output 𝑑 (𝑢).
• max_label(): output max𝑣∈𝑉 𝑑 (𝑣).
• maximal_label_set(𝑟): Output all elements with labels ≥
max_label() − 𝜂 · 𝑖 , where 𝑖 is the smallest integer such that

|labels ≥ 𝜂 · (𝑖 + 1) | < (1 + 𝑟) |labels ≥ 𝜂 · 𝑖 |.
Moreover, the operations add, remove and flip can be processed in

𝑂 (log𝑛) time; tight_in_nbr, increment and decrement can be

processed in 𝑂 (𝛼) time; and tight_out_nbr and max_label can

be processed in 𝑂 (1) time. maximal_label_set can be processed in

time in the order of the output size.

The pseudocode for this data structure is in Algorithm 1.

Proof. The correctness of the data structure follows from the

description in Algorithm 1. The operation add involves inserting
an element into a list and a priority queue - giving a worst-case

runtime of 𝑂 (log𝑛). The runtimes for remove and flip follow

similarly. The operations increment and decrement involve 1 up-

date to a balanced BST and 𝑂 (𝛼) priority-queue updates, giving a
worst-case runtime of 𝑂 (𝛼 log𝑛) per call. tight_in_nbr queries

𝑂 (𝛼) neighbors, resulting in a worst-case runtime of 𝑂 (𝛼) per call.
tight_out_nbr, label and max_label simply check an element

pointer, resulting in a 𝑂 (1) runtime. Lastly, maximal_label_set
traverses a balanced BST, until it exceeds the desired threshold. The

time taken is 𝑂 (𝛽 + log𝑛) where 𝛽 is the number of elements read,

which is also the size of the output. □

185

STOC ’20, June 22–26, 2020, Chicago, IL, USA Saurabh Sawlani and Junxing Wang

We maintain the following global data structure:

• Labels: Balanced binary search tree with all labels. We store the max element separately.

Each vertex 𝑢 maintains the following data structures:

• 𝑑 (𝑢): 𝑢’s label, initialized to 0.

• InNbrs𝑢 : List of 𝑢’s in-neighbors, initialized to ∅.
• OutNbrs𝑢 : Max-priority queue of 𝑢’s out-neighbors indexed using 𝑑𝑢 , initialized to ∅.

Operation add(−→𝑢𝑣)
Add 𝑢 to InNbrs𝑣

Add 𝑣 to OutNbrs𝑢 with key 𝑑𝑢 (𝑣) ← 𝑑 (𝑣)

Operation remove(−→𝑢𝑣)
Remove 𝑢 from InNbrs𝑣

Remove 𝑣 from OutNbrs𝑢

Operation flip(−→𝑢𝑣)
remove(−→𝑢𝑣)
add(−→𝑣𝑢)

Operation increment(𝑢)
𝑑 (𝑢) ← 𝑑 (𝑢) + 1
Update 𝑑 (𝑢) in Labels

for 𝑣 ∈ the next 4𝒅in (𝑢)
𝜂 InNbrs𝑢 do

Update 𝑑𝑣 (𝑢) ← 𝑑 (𝑢) in OutNbrs𝑣

Operation decrement(𝑢)
𝑑 (𝑢) ← 𝑑 (𝑢) − 1
Update 𝑑 (𝑢) in Labels

for 𝑣 ∈ the next 4𝒅in (𝑢)
𝜂 InNbrs𝑢 do

Update 𝑑𝑣 (𝑢) ← 𝑑 (𝑢) in OutNbrs𝑣

Operation tight_in_nbr(𝑢)

for 𝑣 ∈ the next 4𝒅in (𝑢)
𝜂 InNbrs𝑢 do

if 𝑑 (𝑣) ≤ 𝑑 (𝑢) − 𝜂/2 then return 𝑣

return null
Operation tight_out_nbr(𝑢)

𝑡 ← OutNbrs[𝑢] .max
if 𝑑𝑢 (𝑣) ≥ 𝑑 (𝑢) + 𝜂/2 then return 𝑣

else return null

Operation label()
return 𝑑 (𝑢)

Operation max_label()
return Labels.max

Operation maximal_label_set(𝑟)
𝑚 ← max_label()
do

𝐴← elements ≥ 𝑚 − 𝜂 in Labels

𝐵 ← elements ≥ 𝑚 − 2𝜂 in Labels

𝑚 ←𝑚 − 𝜂
while |𝐵 |/|𝐴| ≥ 1 + 𝑟
return 𝐵

Algorithm 1: LazyDirectedLabels(𝐺,𝜂): A data structure to maintain a directed graph with vertex labels. 𝑉 and 𝜂 are known.

3.5 Fully Dynamic Algorithm for a Given
Density Estimate

Here, we assume that an estimate of 𝜌∗
𝐺

(equivalently, an esti-

mate of 𝜌𝐺) is known. We denote this estimate as 𝜌est, where

𝜌est ≤ 𝜌𝐺 ≤ 2𝜌est . Using this, we can compute the appropri-

ate 𝜂 (𝜌est, 𝜖) def

= 2𝜌est/𝛼 . Recall that 𝛼 was defined as 𝛼
def

=

64 log𝑛 · 𝜖−2. From Section 3.4, we have an efficient data struc-

ture to maintain a directed graph, which we will use to maintain

a locally 𝜂-stable orientation. This in turn gives a fully dynamic

algorithm which processes updates efficiently, as we explain below.

We first define a tight edge in a locally stable oriented graph:

Definition 3.4. An edge
−→𝑢𝑣 is said to be tight if 𝒅in (𝑣) ≥ 𝒅in (𝑢) +

𝜂/2.

Now, consider inserting an edge
−→𝑥𝑦 into a locally 𝜂-stable ori-

ented graph. Since 𝑦’s in-degree increases, it could potentially have

an in-neighbor 𝑧 such that 𝒅in (𝑧) < 𝒅in (𝑦) − 𝜂. Note that for this
to happen,

−→𝑧𝑦 was necessarily a tight edge. To “fix" this break in

stability, we flip the edge 𝑦𝑧; however, this causes 𝑤 ’s in-degree

to increase, which we now possibly need to fix. Before explaining

how we circumvent this issue, let us define a maximal tight chain.

Definition 3.5. A maximal tight chain from a vertex 𝑣 is a path of

tight edges
−−→𝑢𝑣1,−−−→𝑣1𝑣2, . . . ,−−→𝑣𝑘𝑤 , such that 𝑤 has no tight outgoing

edges.

A maximal tight chain to a vertex 𝑣 is a path of tight edges

−−→𝑤𝑣1,
−−−→𝑣1𝑣2, . . . ,−−→𝑣𝑘𝑣 , such that𝑤 has no tight incoming edges.

Now, instead of fixing the “unstable" edge caused by the increase

in 𝑦’s in-degree right away, we instead find a maximal tight chain

to 𝑦 and flip all the edges in the chain. This way, the in-degrees of

all vertices in the chain except the start remain the same. Due to

the maximality of the chain, the start of the chain has no incoming

tight edges, and hence increasing its in-degree by 1 will not break

local stability. The same argument holds when we delete
−→𝑥𝑦, except

we find a maximal tight chain from 𝑦.

The approximate density is nothing but the highest load in the

graph. For querying the actual subgraph itself, we use the observa-

tion from Section 3.2, where the required subgraph can be found by:

(i) finding sets of vertices with load at most 𝜂 · 𝑖 less than the maxi-

mum (𝑇𝑖), and (ii) returning the first𝑇𝑖+1 such that |𝑇𝑖+1 |/|𝑇𝑖 | < 1+𝑟 ,
where 𝑟 is an appropriate function of 𝜂.

Lemma 3.6. There exists a data structure Threshold(𝐺,𝜂) which
can maintain an undirected graph 𝐺 (𝑉 , 𝐸) while undergoing the

following operations:

186

Near-Optimal Fully Dynamic Densest Subgraph STOC ’20, June 22–26, 2020, Chicago, IL, USA

• insert(𝑢, 𝑣): insert an edge into 𝐺 ,

• delete(𝑢, 𝑣): delete an edge from𝐺 , and report the vertex with

decreased load

• query_load(𝑢): output the current load of 𝑢.
• query_density(): output a value 𝜌out such that (1−𝜖)𝜌∗𝐺 ≤
𝜌out ≤ 𝜌∗

𝐺
.

• query_subgraph(): output a subgraph with density at least

(1 − 𝜖)𝜌∗
𝐺
.

Moreover, the operation insert takes 𝑂 (𝛼2) time, delete takes

𝑂 (𝛼 log𝑛) time, query takes𝑂 (1) time, and query_subgraph takes
𝑂 (𝛽 + log𝑛) time, where 𝛽 is the size of the output.

The pseudocode for this data structure is in Algorithm 2.

Let us denote by 𝑑𝑢 (𝑣), the apparent label of 𝑣 as seen by 𝑢.

This concept is needed because when the label of a vertex changes,

it doesn’t relay this change to all its in-neighbors immediately.

However, we can claim the following:

Lemma 3.7. The local gap constraint is always maintained, i.e., for

any edge
−→𝑢𝑣 , 𝑑 (𝑣) ≤ 𝑑 (𝑢) + 𝜂.

Proof. There are two ways that this invariant could become

unsatisfied: via a decrement to 𝑢 or an increment to 𝑣 .

Recall that 𝑣 informs each in-neighbor its label once every 𝜂/4
updates, hence |𝑑𝑢 (𝑣) − 𝑑 (𝑣) | cannot be larger than 𝜂/4. 𝑢 only

decrements if it cannot find a tight out-neighbor, which means that

𝑑𝑢 (𝑣) < 𝑑 (𝑢) +𝜂/2. Hence, at any instant that 𝑑 (𝑢) is decremented,

𝑑 (𝑣) ≤ 𝑑 (𝑢) + 3𝜂/4.
On the other hand, 𝑑 (𝑣) is only incremented if 𝑣 cannot find a

tight in-neighbor. Consider the last time that 𝑑 (𝑢) is decremented

before this instant. At this point, 𝑑 (𝑣) ≤ 𝑑 (𝑢) + 3𝜂/4. After this,
there can only be less than 𝜂/4 increments of 𝑑 (𝑣) before it queries
𝑑 (𝑢) and flips. Hence, 𝑑 (𝑣) ≤ 𝑑 (𝑢) + 𝜂. □

Using Lemma 3.7 and Corollary 3.2, we get the following corol-

lary, which shows the correctness of Lemma 3.6.

Corollary 3.8. Let 𝜌out = (1− 𝜖)max𝑣∈𝑉 𝑑 (𝑣). Then, (1− 𝜖)𝜌∗
𝐺
≤

𝜌out ≤ 𝜌∗
𝐺
.

Proof of Lemma 3.6. Corollary 3.8 gives the correctness proof.

It remains to show the time bounds. Note that in both insert
and delete operations, the maximum chain of tight edges can

only be of length at most 2𝜌𝐺/𝜂 = 𝑂 (𝛼). The insert oper-

ation calls add and increment once, flip and tight_in_nbr
𝑂 (𝛼) times. From Lemma 3.3, this results in a worst-case run-

time of 𝑂 (𝛼2) per insertion. The delete operation calls remove
and decrement once, flip and tight_out_nbr 𝑂 (𝛼) times. From

Lemma 3.3, this results in a worst-case runtime of 𝑂 (𝛼 · log𝑛) per
deletion. query_density only needs one max_label call which is

𝑂 (1) worst-case. query_load also needs one label call which is

𝑂 (1) worst-case. Lastly, query_subgraph’s runtime follows from

Lemma 3.3. □

3.6 Overall Algorithm
Now, we have a sufficient basis to show our main theorem, which

we restate:

Theorem 1.1. Given a graph 𝐺 with 𝑛 vertices, there exists a

deterministic fully dynamic (1 + 𝜖)-approximation algorithm for the

densest subgraph problem using 𝑂 (1) worst-case time per query and

𝑂 (log4 𝑛 · 𝜖−6) worst-case time per edge insertion or deletion.

Moreover, at any point, the algorithm can output the corresponding

approximate densest subgraph in time 𝑂 (𝛽 + log𝑛), where 𝛽 is the

number of vertices in the output.

From Section 3.5, we now have an efficient fully dynamic data

structure Threshold(𝐺, 𝜌est, 𝜖) to maintain a 1 − 𝜖 approxima-

tion to the maximum subgraph density, provided the optimum

remains within a constant factor of some estimate 𝜌est. Particularly,

Threshold(𝐺, 𝜌est, 𝜖) requires 𝜌𝐺/𝜂 to be small to work efficiently.

On the other hand, too small an 𝜂 results in a bad approximation

factor.

To ensure that we always work with the right estimate 𝜌est,

we will construct log2 𝑛 copies of Threshold, one copy for each

possible 𝜌est, or equivalently each possible value of 𝜂. In the

𝑖th copy of the data structure, we set 𝜌est
𝑖
← 2𝑖−2𝛼 , and so

𝜂𝑖 ← 2𝑖−1. Let us call this 𝑖th copy of the data structure as

T𝑖 ← Threshold(𝐺, 𝜌est
𝑖

, 𝜖). We also define 𝜂0 = 0 for the sake of

the empty graph.

We say that T𝑖 is accurate if 𝜌est𝑖
≤ 𝜌𝐺 , or equivalently 𝜂𝑖 ≤

2𝜌𝐺/𝛼. Note that we will never use a copy that is not accurate to

deduce the approximate solution. On the other hand, we say that

T𝑖 is affordable if the maximum possible chain length is less than

2𝛼 , i.e., 𝜂𝑖 > 𝜌𝐺/𝛼. On copies that are not affordable, if there are

any additions which can cause the maximum load in that copy to

increase, we hold these off until a later time.

Lastly, note that for any value of 𝜌𝐺 , there is exactly one copy

which is both accurate and affordable. We call this the active copy.

The solution is extracted at any point from this copy. Suppose the

index of the current active copy is 𝑖 . Then, after an insertion, this

can be either 𝑖 or 𝑖 + 1. We first test this by querying the maximum

density in T𝑖+1, and accordingly update the active index. Similarly,

after a deletion, this can be 𝑖 or 𝑖 − 1. For insertions which are

not affordable, we store the edges in a pending list. Consider an

insertion (𝑢, 𝑣) which is not affordable in T𝑖 . This means that the

loads on both 𝑢 and 𝑣 are at the limit (𝜂𝑖𝛼). We save (𝑢, 𝑣) in the

pending list. For T𝑖 to become affordable, one of 𝑢’s or 𝑣 ’s load must

decrease. At this point, we insert (𝑢, 𝑣). The pseudocode for the
overall algorithm is in Algorithm 3.

Notice, importantly, that insertions are made into T𝑖 only when it
is affordable. However, we always allow deletions because these are

either deletions from the pending edges or from the graph currently

stored in T𝑖 , which is still affordable.

Proof of Theorem 1.1. To show the correctness of Algorithm 3,

we need to prove that at all times, 𝜌𝐺/2 ≤ 𝜌estactive < 𝜌𝐺 . We know

that this is true at the start of the algorithm. Assume this property is

true at some instant before an update. When an edge is inserted, the

first inequality might break. So, we test this after every addition and

increment active accordingly. The argument follows similarly for

deletions. However, we also need to make sure that when some T𝑖
is queried, there are no edges remaining in pending𝑖 , otherwise the
queried density could possibly be incorrect. Consider an edge (𝑢, 𝑣)
inserted into pending𝑖 at some point during the algorithm. For T𝑖
to be queried, it must be active, which means that at some point, the

load of either 𝑢 or 𝑣 decreased, causing (𝑢, 𝑣) to be inserted. Even

when there are multiple such edges adjacent to the same high-load

187

STOC ’20, June 22–26, 2020, Chicago, IL, USA Saurabh Sawlani and Junxing Wang

• Initialize data structure L ← LazyDirectedLabels(𝐺,𝜂) with:
𝐺 = (𝑉 , ∅), 𝛼 ← 64 log𝑛 · 𝜖−2, 𝜂 ← 2𝜌est/𝛼

Operation insert((𝑢, 𝑣))
if 𝑑 (𝑢) ≥ 𝑑 (𝑣) then
L .add

(−→𝑢𝑣)
𝑤 ← 𝑣

else
L .add

(−→𝑣𝑢)
𝑤 ← 𝑢

while L .tight_in_nbr(𝑤) ≠ null do
𝑤 ′ ← L .tight_in_nbr(𝑤)
L .flip

(−−−→
𝑤 ′𝑤

)
𝑤 ← 𝑤 ′

L .increment(𝑤)
Operation query_subgraph()

𝑟 ←
√
2𝜂 log𝑛/𝜌est

return L .maximal_label_set(𝑟);

Operation delete((𝑢, 𝑣))
if 𝑢 ∈ InNbrs𝑣 then
L .remove

(−→𝑢𝑣)
𝑤 ← 𝑣

else
L .remove

(−→𝑣𝑢)
𝑤 ← 𝑢

while L .tight_out_nbr(𝑤) ≠ null do
𝑤 ′ ← L .tight_out_nbr(𝑤)
L .flip

(−−−→
𝑤𝑤 ′

)
𝑤 ← 𝑤 ′

L .decrement(𝑤)
return(𝑤)

Operation query_density()
return L .max_label × (1 − 𝜖);

Operation query_load(𝑢)
return L .label(𝑢);

Algorithm 2: Threshold(𝐺, 𝜌est, 𝜖): Update routines on𝐺 when an estimate to its maximum load is known. Additionally𝑉 , 𝑛 = |𝑉 |,
and 𝜖 are known.

vertex, we are assured to see at least that many decrements at that

vertex.

From Lemma 3.6, it follows that a query takes 𝑂 (1) worst-case
time, and finding the subgraph takes 𝑂 (𝛽 + log𝑛) time, where 𝛽 is

the size of the output subgraph. Each insert or delete operation is

first duplicated 𝛼 times. Secondly, the updates are made individually

in log2 𝑛 copies of the data structure.

First, note that any insert or delete operation in pending can be

processed in 𝑂 (log𝑛) time. This is also true for searching using a

single end point of an edge owing to the manner in which pending
is defined.

When an edge is added, it makes two load queries and then

possibly inserts in T𝑖 . From Lemma 3.6, this gives a worst-case

runtime of 𝑂 (𝛼3 log𝑛) time per insertion.

As for deleting an edge, it sometimes also requires an insertion

into T𝑖 . Again, plugging in runtimes from Lemma 3.6 gives a worst-

case runtime of 𝑂 (𝛼3 log𝑛) time per deletion. □

4 VERTEX-WEIGHTED DENSEST SUBGRAPH
In this section, we extend the ideas from Section 3 to extend to

graphs with vertex weights. As we will see in Section 5, this exten-

sion is crucial in arriving at efficient dynamic algorithms for DSP

on directed graphs.

Let us first formally define the concept of density in vertex-

weighted graphs. Given a graph𝐺 = ⟨𝑉 , 𝐸,𝑤⟩, where𝑤 : 𝑉 ↦→ Q≥1,
the density of a subgraph induced by a vertex subset 𝑆 ⊆ 𝑉 is

𝜌𝐺 (𝑆)
def

=
|𝐸 (𝑆) |∑
𝑣∈𝑆 𝜔 (𝑣)

.

For ease of notation we denote 𝜔 (𝑆) def= ∑
𝑣∈𝑆 𝜔 (𝑣). Constructing

the approximate dual like in Sections 2 and 3, we get the same

conditions except the load on a vertex 𝑣 is now defined as

ℓ𝑣 =
1

𝜔 (𝑣)
∑
𝑒∋𝑣

𝑓𝑒 (𝑣) .

Let𝜔min and𝜔max denote the smallest and largest vertex weight

in 𝐺 . We multiply all the weights by 1/𝜔min and later divide the

answer by the same amount. This ensures that all weights are at

least 1, and the maximumweight is now given by𝑊
def

= 𝜔max/𝜔min.

We first show that local approximations also suffice for vertex-

weighted DSP. We reuse the notation used in Section 3 for the

exact and approximate dual LP – Dual(𝐺) and Dual(𝐺,𝜂), but
with vertex weights included.

Theorem 4.1. Given an undirected vertex-weighted graph𝐺 with

𝑛 vertices, with maximum vertex weight𝑊 , let
ˆ𝑓 , ℓ̂ denote any feasible

solution to Dual(𝐺,𝜂), and let 𝜌𝐺
def

= max𝑣∈𝑉 ℓ̂𝑣 . Then,(
1 − 3

√
𝜂 log(𝑛𝑊)

𝜌𝐺

)
· 𝜌𝐺 ≤ 𝜌∗𝐺 ≤ 𝜌𝐺 .

Proof. The proof follows the proof of Theorem 3.1 almost iden-

tically.

Any feasible solution of Dual(𝐺,𝜂) is also a feasible solution of

Dual(𝐺), and so we have 𝜌∗
𝐺
≤ 𝜌𝐺 .

Denote by 𝑇𝑖 the set of vertices with load at least 𝜌𝐺 − 𝜂𝑖 , i.e.,
𝑇𝑖

def

=
{
𝑣 ∈ 𝑉 | ℓ̂𝑣 ≥ 𝜌𝐺 − 𝜂𝑖

}
. Let 0 < 𝛼 < 1 be some adjustable

parameter we will fix later. We define 𝑘 to be the maximal integer

such that for any 1 ≤ 𝑖 ≤ 𝑘 , 𝜔 (𝑇𝑖) ≥ 𝜔 (𝑇𝑖−1) · (1 + 𝛼) . Note that
such a maximal integer 𝑘 always exists because there are finite

number of vertices in 𝐺 and the size of 𝑇𝑖 grows exponentially. By

the maximality of 𝑘 , 𝜔 (𝑇𝑘+1) < 𝜔 (𝑇𝑘) · (1 + 𝛼) . In order to bound

188

Near-Optimal Fully Dynamic Densest Subgraph STOC ’20, June 22–26, 2020, Chicago, IL, USA

• for 𝑖 ← 1 to log2 𝑛 do
𝛼 ← 64 log𝑛 · 𝜖−2; 𝜌est

𝑖
← 2𝑖−2𝛼

Initialize T𝑖 ← Threshold(𝐺, 𝜌est
𝑖

, 𝜖)
Initialize a sorted list of edges pending𝑖 ← ∅ using two balanced BSTs (one sorted using the first vertex of the edge, and another

using the second)

Set active← 0

Operation query()
return Tactive .query()

Operation query_subgraph()
return Tactive .query_subgraph()

Operation insert((𝑢, 𝑣))
for 𝑘 ← 1 to 𝛼 do // duplicating (𝑢, 𝑣) 𝛼 times

for 𝑖 ← log2 𝑛 to active + 1 do T𝑖 .insert((𝑢, 𝑣)) // affordable copies

𝜌 ← Tactive+1 .query()
if 𝜌 ≥ 2𝜌estactive then active← active + 1
else Tactive .insert((𝑢, 𝑣))
for 𝑖 ← active − 1 to 1 do // unaffordable copies

ℓ𝑢 ← T𝑖 .query_load(𝑢); ℓ𝑣 ← T𝑖 .query_load(𝑣)
if both ℓ𝑢 , ℓ𝑣 ≥ 2𝜌est then add (𝑢, 𝑣) to pending𝑖
else T𝑖 .insert((𝑢, 𝑣)) // edge is still insertable

Operation delete((𝑢, 𝑣))
for 𝑘 ← 1 to 𝛼 do // duplicating (𝑢, 𝑣) 𝛼 times

for 𝑖 ← log2 𝑛 to active + 1 do T𝑖 .delete((𝑢, 𝑣)) // affordable copies

𝜌 ← Tactive .query()
if 𝜌 < 𝜌est then

active← active − 1
Tactive .delete((𝑢, 𝑣))

for 𝑖 ← active − 1 to 1 do // unaffordable copies
if (𝑢, 𝑣) ∈ pending𝑖 then remove one copy of (𝑢, 𝑣) from pending𝑖
else

𝑤 ← T𝑖 .delete((𝑢, 𝑣)) // 𝑤’s load was decremented

if (𝑤,𝑤 ′) ∈ pending𝑖 for any𝑤 ′ then
T𝑖 .insert((𝑤,𝑤 ′))
Remove (𝑤,𝑤 ′) from pending𝑖

Algorithm 3:Main update algorithm. 𝑉 , 𝑛 = |𝑉 |, and 𝜖 are known quantities.

the density of this set𝑇𝑘+1, we compute the total load on all vertices

in 𝑇𝑘 . For any 𝑢 ∈ 𝑇𝑘 , the load on 𝑢 is given by

ℓ̂𝑢 =
1

𝜔 (𝑢)
∑
𝑢𝑣∈𝐸

ˆ𝑓𝑢𝑣 (𝑢)

However, we know that

𝑓𝑢𝑣 (𝑢) > 0 =⇒ ℓ̂𝑣 ≥ ℓ̂𝑢 − 𝜂
and hence we only need to count for 𝑣 ∈ 𝑇𝑘+1. Summing over all

vertices in 𝑇𝑘+1, we get∑
𝑢∈𝑇𝑘

𝜔 (𝑢)ℓ̂𝑢 =
∑

𝑢∈𝑇𝑘 ,𝑣∈𝑇𝑘+1

ˆ𝑓𝑢𝑣 (𝑢) ≤
∑

𝑢∈𝑇𝑘+1,𝑣∈𝑇𝑘+1

ˆ𝑓𝑢𝑣 (𝑢) = |𝐸 (𝑇𝑘+1) |.

Consider the density of set 𝑇𝑘+1,

𝜌 (𝑇𝑘+1) =
|𝐸 (𝑇𝑘+1) |
𝜔 (𝑇𝑘+1)

≥
∑
𝑢∈𝑇𝑘 ℓ̂𝑢

𝜔 (𝑇𝑘+1)
≥ 𝜔 (𝑇𝑘) · (𝜌𝐺 − 𝜂𝑘)

𝜔 (𝑇𝑘+1)
,

where the last inequality follows from the definition of 𝑇𝑘 .

Since 𝜌 (𝑇𝑘+1) can be at most the maximum subgraph density

𝜌∗
𝐺
, and using the fact that 𝜔 (𝑇𝑘)/𝜔 (𝑇𝑘+1) > 1/(1 + 𝛼) ≥ 1 − 𝛼 ,

𝜌∗𝐺 ≥ (1 − 𝛼) (𝜌𝐺 − 𝜂𝑘) ≥ 𝜌𝐺 (1 − 𝛼)
(
1 − 2𝜂 log(𝑛𝑊)

𝛼 · 𝜌𝐺

)
,

where the last inequality comes from the fact that 𝑛𝑊 ≥ 𝜔 (𝑇𝑘) ≥
(1 + 𝛼)𝑘 , which implies that 𝑘 ≤ log1+𝛼 (𝑛𝑊) ≤ 2 log(𝑛𝑊)/𝛼 .

Now, we can set our parameter 𝛼 to maximize the term on the

RHS. By symmetry, the maximum is achieved when both terms in

the product are equal and hence we set

𝛼 =

√
2𝜂 log(𝑛𝑊)

𝜌𝐺
.

189

STOC ’20, June 22–26, 2020, Chicago, IL, USA Saurabh Sawlani and Junxing Wang

This gives

𝜌∗𝐺 ≥ 𝜌𝐺 ·
(
1 −

√
2𝜂 log(𝑛𝑊)

𝜌𝐺

)2
≥ 𝜌𝐺 ·

(
1 − 2

√
2𝜂 log(𝑛𝑊)

𝜌𝐺

)
≥ 𝜌𝐺 ·

(
1 − 3

√
𝜂 log(𝑛𝑊)

𝜌𝐺

)
. □

Once again, scaling the graph up by a factor of 𝛼
def

=
64 log(𝑛𝑊)

𝜖2
,

we can frame the question as the following graph orientation prob-

lem:

Given an undirected graph𝐺 with vertex-weights𝑤 : 𝑉 ↦→
Q+ and a slack parameter 𝜂, we want to assign directions

to edges in such a way that for any edge 𝑢 → 𝑣 ,

𝒅in (𝑣)
𝜔 (𝑣) ≤

𝒅in (𝑢)
𝜔 (𝑢) + 𝜂.

To adapt the data structure from Algorithm 1, we only need to

make the following change:

• increment(𝑢) and decrement(𝑢) no longer incre-

ment/decrement by 1 but by 1/𝜔 (𝑢).
• Each entry in the Labels data structure is additionally ap-

pended with vertex weights - because instead of comput-

ing |𝐴| and |𝐵 |, we need to compute 𝜔 (𝐴) and 𝜔 (𝐵) in
maximal_label_set.
• Since we assumed that 𝜔 (𝑣) ≥ 1 for all 𝑣 ∈ 𝑉 , we do not

have to adjust the conditions for tight edges.

Once we are provided with an estimate of 𝜌𝐺 , we can use the

data structure from Algorithm 2 without any changes. Similar to

Section 3.6, we now need to guess a value for 𝜌𝐺 . Notice that

the range of values can now be 𝑂 (𝑛𝑊). Hence, using 𝑂 (log(𝑛𝑊))
values, we can apply Algorithm 3 to also solve the vertex-weighted

version of DSP.

This gives us the following result.

Theorem 4.2. Given a vertex-weighted graph𝐺 with 𝑛 vertices,

and vertex-weights in the range 𝜔min and 𝜔max, there exists a de-

terministic fully dynamic (1 − 𝜖)-approximation algorithm for the

densest subgraph problem on 𝐺 using 𝑂 (1) worst-case query time

and worst-case update times of𝑂 (log4 (𝑛𝑊) · 𝜖−6) per edge insertion
or deletion.

Moreover, at any point, the algorithm can output the corresponding

approximate densest subgraph in time 𝑂 (𝛽 + log𝑛), where 𝛽 is the

number of vertices in the output.

5 DIRECTED DENSEST SUBGRAPH
The directed version of the densest subgraph problem was intro-

duced by Kannan and Vinay [41]. In a directed graph𝐺 = ⟨𝑉 , 𝐸⟩, for
a pair of sets 𝑆,𝑇 ⊆ 𝑉 , we denote using 𝐸 (𝑆,𝑇) the set of directed
edges going from a vertex in 𝑆 to a vertex in 𝑇 . The density of a

pair of sets 𝑆,𝑇 ⊆ 𝑉 is defined as:

𝜌𝐺 (𝑆,𝑇)
def

=
|𝐸 (𝑆,𝑇) |√
|𝑆 | |𝑇 |

.

The maximum subgraph density of 𝐺 is then defined as:

𝜌∗𝐺
def

= max

𝑆,𝑇 ⊆𝑉
𝜌𝐺 (𝑆,𝑇) .

Note that we use the same notation for density for undirected and

directed graphs, as the distinction is clear from the graph in the

subscript.

Charikar [20] reduced directed DSP to𝑂 (𝑛2) instances of solving
an LP, and also observed that only 𝑂 (log𝑛/𝜖) suffice to extract

a (1 − 𝜖) approximation. Khuller and Saha [43] used the same

reduction, but further simplified the algorithm to𝑂 (1) instances of
a parametrized maximum flow problem.

In this section, we recount this reduction, but by visualizing

the problem reduced to as a densest subgraph problem on vertex-

weighted graphs, as defined in Section 4.

5.1 Reduction from Directed DSP to
Vertex-weighted Undirected DSP

Given a directed graph 𝐺 = ⟨𝑉 , 𝐸⟩ and a parameter 𝑡 > 0, we

construct a vertex-weighted undirected graph

𝐺𝑡 = ⟨𝑉𝑡 , 𝐸𝑡 , 𝜔𝑡 ⟩

where,

• 𝑉𝑡
def

= 𝑉
(𝐿)
𝑡 ∪𝑉 (𝑅)𝑡 , in which 𝑉

(𝐿)
𝑡 and 𝑉

(𝑅)
𝑡 are both clones

of the original vertex set 𝑉 ;

• 𝐸𝑡
def

=

{
(𝑢, 𝑣) | 𝑢 ∈ 𝑉 (𝐿)𝑡 , 𝑣 ∈ 𝑉 (𝑅)𝑡 , (𝑢, 𝑣) ∈ 𝐸

}
projects each

original directed edge (𝑢, 𝑣) ∈ 𝐸 into an undirected edge

between 𝑉
(𝐿)
𝑡 and 𝑉

(𝑅)
𝑡 , and

• 𝜔𝑡 (𝑢)
def

=

{
1/2𝑡 𝑢 ∈ 𝑉 (𝐿)𝑡

𝑡/2 𝑢 ∈ 𝑉 (𝑅)𝑡

To understand the intuition behind this reduction, consider a pair

of sets 𝑆,𝑇 ⊆ 𝑉 . Consider the set 𝑆 (𝐿) corresponding to 𝑆 in 𝑉
(𝐿)
𝑡 ,

and the set 𝑇 (𝑅) corresponding to 𝑇 in 𝑉
(𝑅)
𝑡 . 𝜌𝐺 (𝑆,𝑇) = |𝐸 (𝑆,𝑇) |√

|𝑆 | |𝑇 |
,

whereas 𝜌𝐺𝑡
(𝑆 (𝐿) ∪𝑇 (𝑅)) = 2 |𝐸 (𝑆,𝑇) |

(1/𝑡) |𝑆 |+𝑡 |𝑇 | . Picking 𝑡 carefully lets

us relate the two notions, leveraging the AM-GM inequality as

indicated by the two denominators. Lemmas 5.1 and 5.2 show this

relation in detail.

Lemma 5.1. For any directed graph𝐺 = ⟨𝑉 , 𝐸⟩, let𝐺𝑡 be defined as

above. Then for any choice of parameter 𝑡 ,

𝜌∗𝐺 ≥ 𝜌∗𝐺𝑡
.

Proof. Let 𝑆 (𝐿) ∪ 𝑇 (𝑅) denote the densest (vertex-weighted)

subgraph in 𝐺𝑡 , where 𝑆
(𝐿) ∈ 𝑉 (𝐿)𝑡 and 𝑇 (𝑅) ∈ 𝑉 (𝑅)𝑡 . Let 𝑆 and 𝑇

denote the corresponding vertex sets in 𝑉 . Then we have

|𝐸𝑡 (𝑆 (𝐿) ∪𝑇 (𝑅)) | = 𝜌∗𝐺𝑡
· (|𝑆 (𝐿) |/𝑡 + 𝑡 |𝑇 (𝑅) |)/2

≥ 𝜌∗𝐺𝑡

√
|𝑆 (𝐿) | · |𝑇 (𝑅) |,

190

Near-Optimal Fully Dynamic Densest Subgraph STOC ’20, June 22–26, 2020, Chicago, IL, USA

where the inequality follows from the AM-GM property. Using the

facts |𝐸𝑡 (𝑆 (𝐿) ∪𝑇 (𝑅)) | = 𝐸 (𝑆,𝑇), |𝑆 (𝐿) | = |𝑆 |, and |𝑇 (𝑅) | = |𝑇 |, we
get that

𝐸 (𝑆,𝑇)√
|𝑆 | · |𝑇 |

≥ 𝜌∗𝐺𝑡
.

Lastly, since the density of the pair of sets 𝑆,𝑇 in the directed graph

𝐺 is at most 𝜌∗
𝐺
, we get that 𝜌∗

𝐺
≥ 𝜌∗

𝐺𝑡
. □

So, 𝐺𝑡 provides a ready lower bound for computing maximum

subgraph density, for any 𝑡 . The next lemma shows that a careful

choice of 𝑡 can give equality between the two optimums.

Lemma 5.2. For any directed graph𝐺 = ⟨𝑉 , 𝐸⟩ and a pair of subsets
𝑆,𝑇 that provides the maximum subset density, i.e., 𝜌∗

𝐺
= 𝜌𝐺 (𝑆,𝑇),

we have

𝜌∗𝐺 = 𝜌∗𝐺𝑡
,

where 𝑡 =

√
|𝑆 |
|𝑇 | .

Proof. Now, consider the sets 𝑆 (𝐿) ∈ 𝑉
(𝐿)
𝑡 and 𝑇 (𝑅) ∈ 𝑉

(𝑅)
𝑡

corresponding to 𝑆 and 𝑇 respectively. The density of set 𝑆 ∪𝑇 can

be at most 𝜌∗
𝐺𝑡

:

𝜌∗𝐺𝑡
≥ 2|𝐸 (𝑆,𝑇) |
|𝑆 |/𝑡 + |𝑇 | · 𝑡 .

Substituting 𝑡 with |𝑆 |/|𝑇 |,

𝜌∗𝐺𝑡
≥ 2|𝐸 (𝑆,𝑇) |

|𝑆 |
√
|𝑇 |
|𝑆 | + |𝑇 |

√
|𝑆 |
|𝑇 |

=
|𝐸 (𝑆,𝑇) |√
|𝑆 | · |𝑇 |

= 𝜌∗𝐺 .

Combining this with the bound from Lemma 5.1 gives that 𝜌∗
𝐺

=

𝜌∗
𝐺𝑡

. □

Note, however, that this does not directly give an algorithm for

directed densest subgraph, since we do not know the optimum

value of |𝑆 |/|𝑇 |. Since both |𝑆 | and |𝑇 | are integers between 0 and

𝑛, there can be at most 𝑂 (𝑛2) distinct values of |𝑆 |/|𝑇 |. So, to find

the exact solution, we can simply find 𝜌∗
𝐺𝑡

for all possible 𝑡 values,

and report the maximum.

This connection was first observed by Charikar [20], where he

reduced the directed densest subgraph problem to solving 𝑂 (𝑛2)
linear programs. However, our construction helps view these LPs

as DSP on vertex-weighted graphs, for which there are far more

optimized algorithms than solving generic LPs, in both static and

dynamic paradigms. Charikar [20] also observed that a 1 + 𝜖 ap-

proximate solution could be obtained by only checking 𝑂 (log𝑛/𝜖)
values of 𝑡 . As one would expect, to obtain an approximate solution

for the directed DSP, it is not necessary to obtain an exact solution

to the undirected vertex-weighted DSP. As we show in Lemma 5.3,

we only require𝑂 (log𝑛/𝜖) computations of a 1+𝜖/2 approximation

to the densest subgraph problem.

Lemma 5.3. For any directed graph𝐺 = ⟨𝑉 , 𝐸⟩ and a pair of subsets
𝑆,𝑇 that provides the maximum subset density, i.e., 𝜌𝐺 (𝑆,𝑇) = 𝜌∗

𝐺
,

we have

𝜌∗𝐺𝑡
≥ (1 − 𝜖)𝜌∗𝐺 ,

where

√
|𝑆 |
|𝑇 | · (1 − 𝜖) ≤ 𝑡 ≤

√
|𝑆 |
|𝑇 | ·

1
(1−𝜖) .

Proof. Consider the vertices 𝑆 (𝐿) ∈ 𝑉
(𝐿)
𝑡 and 𝑇 (𝑅) ∈ 𝑉

(𝑅)
𝑡

corresponding to 𝑆 and𝑇 respectively. The density of set 𝑆 (𝐿)∪𝑇 (𝑅)
can be at most 𝜌∗

𝐺𝑡
:

𝜌∗𝐺𝑡
≥ 2|𝐸 (𝑆,𝑇) |
|𝑆 |/𝑡 + |𝑇 | · 𝑡 .

Substituting the bounds for 𝑡 ,

𝜌∗𝐺𝑡
≥ 2(1 − 𝜖) |𝐸 (𝑆,𝑇) |

|𝑆 |
√
|𝑇 |
|𝑆 | + |𝑇 |

√
|𝑆 |
|𝑇 |

= (1 − 𝜖)𝜌𝐺 (𝑆,𝑇) = (1 − 𝜖)𝜌∗𝐺 . □

5.2 Implications of the Reduction
The above reduction implies that finding a (1 − 𝜖)-approximate

solution to directed DSP can be reduced to 𝑂 (log𝑛/𝜖) instances of
(1 − 𝜖/2)-approximate vertex-weighted undirected DSP.

Theorem 5.4. Given a directed graph 𝐺 , with 𝑚 edges and 𝑛

vertices, and a 𝑇 (𝑚,𝑛, 𝜖) time algorithm for (1 − 𝜖)-approximate

vertex-weighted undirected densest subgraph, then there exists an

(1 − 𝜖)-approximate algorithm for finding the densest subgraph in 𝐺

in time 𝑇 (𝑚, 2𝑛, 𝜖/2) ·𝑂 (log𝑛/𝜖).

Proof. For each value of 𝑡 in[
1
√
𝑛
,

1

(1 − 𝜖/2)
√
𝑛
,

1

(1 − 𝜖/2)2
√
𝑛
, . . . ,
√
𝑛

]
,

we find an approximate value 𝜌 such that 𝜌 ≥ (1 − 𝜖/2)𝜌∗
𝐺𝑡
, and

output the maximum such value. Using 𝜖/2 as the error parameter

in Lemma 5.3, we get that 𝜌 ≥ (1 − 𝜖)𝜌∗
𝐺
.

The number of values of 𝑡 is log1/(1−𝜖/2) 𝑛 = 𝑂 (log𝑛/𝜖). □

The current fastest algorithms for (1 − 𝜖)-approximate static

densest subgraph [9, 17] rely on approximately solving Dual(𝐺),
which is a positive linear program, and subsequently extracting

a primal solution. Both these parts of the algorithm extend natu-

rally to vertex-weighted graphs. Substituting these runtimes in for

𝑇 (𝑚,𝑛, 𝜖), we get the following corollary.

Corollary 5.5. Let𝐺 be a directed graph with𝑚 edges and𝑛 vertices,

and let Δ be the maximum value among all its in-degrees and out-

degrees. Then, there exists an algorithm to find a (1− 𝜖)-approximate

densest subgraph in 𝐺 in time 𝑂 (𝑚𝜖−2 ·min(Δ, 𝜖−1)).

Here, 𝑂 hides polylogarithmic factors in 𝑛.

The same reduction also applies to fully dynamic algorithm for

directed DSP.

Theorem 5.6. Suppose there exists a fully dynamic (1 − 𝜖)-
approximation algorithm for undirected vertex-weighted DSP on an

𝑛-vertex graph with update time𝑈 (𝑛, 𝜖) and query time𝑄 (𝑛, 𝜖). Then,
there exists a deterministic fully dynamic (1 − 𝜖)-approximation al-

gorithm for directed DSP on an 𝑛-vertex graph using 𝑈 (2𝑛, 𝜖/2) ·
𝑂 (log𝑛/𝜖) query time and 𝑄 (2𝑛, 𝜖/2) ·𝑂 (log𝑛/𝜖) query time.

Substituting the runtimes from Theorem 4.2 in Section 4, we get

our result for dynamic DSP on directed graphs.

Theorem 1.2. Given a directed graph 𝐺 with 𝑛 vertices, there

exists a deterministic fully dynamic (1− 𝜖)-approximation algorithm

for the densest subgraph problem on 𝐺 using 𝑂 (log𝑛/𝜖) worst-case

191

STOC ’20, June 22–26, 2020, Chicago, IL, USA Saurabh Sawlani and Junxing Wang

query time and worst-case update times of 𝑂 (log5 𝑛 · 𝜖−7) per edge
insertion or deletion.

Moreover, at any point, the algorithm can output the corresponding

approximate densest subgraph in time 𝑂 (𝛽 + log𝑛), where 𝛽 is the

number of vertices in the output.

ACKNOWLEDGEMENTS
We thank Richard Peng and Gary Miller for their feedback and

insightful discussions.

REFERENCES
[1] Amir Abboud and Søren Dahlgaard. 2016. Popular Conjectures as a Barrier for

Dynamic Planar Graph Algorithms. In IEEE 57th Annual Symposium on Foun-

dations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New

Brunswick, New Jersey, USA. 477–486. https://doi.org/10.1109/FOCS.2016.58

[2] Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer,

Nikos Parotsidis, Ohad Trabelsi, Przemyslaw Uznanski, and Daniel Wolleb-Graf.

2019. Faster Algorithms for All-Pairs Bounded Min-Cuts. In 46th International

Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-

12, 2019, Patras, Greece (LIPIcs), Christel Baier, Ioannis Chatzigiannakis, Paola

Flocchini, and Stefano Leonardi (Eds.), Vol. 132. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 7:1–7:15. https://doi.org/10.4230/LIPIcs.ICALP.2019.7

[3] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. 2020. New Algorithms

and Lower Bounds for All-Pairs Max-Flow in Undirected Graphs. In Proceedings

of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake

City, UT, USA, January 5-8, 2020, Shuchi Chawla (Ed.). SIAM, 48–61. https:

//doi.org/10.1137/1.9781611975994.4

[4] Amir Abboud and Virginia VassilevskaWilliams. 2014. Popular Conjectures Imply

Strong Lower Bounds for Dynamic Problems. In 55th IEEE Annual Symposium

on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October

18-21, 2014. 434–443. https://doi.org/10.1109/FOCS.2014.53

[5] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast Exact Shortest-

path Distance Queries on Large Networks by Pruned Landmark Labeling. In

Proceedings of the 2013 ACM SIGMOD International Conference on Management

of Data (New York, New York, USA) (SIGMOD ’13). ACM, New York, NY, USA,

349–360. https://doi.org/10.1145/2463676.2465315

[6] Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivastava, Michael Svendsen,

and Srikanta Tirthapura. 2014. Dense subgraph maintenance under streaming

edge weight updates for real-time story identification. VLDB J. 23, 2 (2014),

175–199. https://doi.org/10.1007/s00778-013-0340-z

[7] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The Multiplicative Weights

Update Method: a Meta-Algorithm and Applications. Theory of Computing 8, 1

(2012), 121–164. https://doi.org/10.4086/toc.2012.v008a006

[8] Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. 2000. Greed-

ily finding a dense subgraph. Journal of Algorithms 34, 2 (2000), 203–221.

[9] Bahman Bahmani, Ashish Goel, and Kamesh Munagala. 2014. Efficient Primal-

Dual Graph Algorithms for MapReduce. In Algorithms and Models for the Web

Graph - 11th International Workshop, WAW 2014, Beijing, China, December 17-18,

2014, Proceedings. 59–78. https://doi.org/10.1007/978-3-319-13123-8_6

[10] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest Subgraph

in Streaming and MapReduce. Proc. VLDB Endow. 5, 5 (Jan. 2012), 454–465.

https://doi.org/10.14778/2140436.2140442

[11] Aaron Bernstein and Cliff Stein. 2016. Faster Fully Dynamic Matchings with

Small Approximation Ratios. In Proceedings of the Twenty-seventh Annual ACM-

SIAM Symposium on Discrete Algorithms (Arlington, Virginia) (SODA ’16). Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA, 692–711. http:

//dl.acm.org/citation.cfm?id=2884435.2884485

[12] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2018. Deter-

ministic Fully Dynamic Data Structures for Vertex Cover and Matching. SIAM J.

Comput. 47, 3 (2018), 859–887. https://doi.org/10.1137/140998925

[13] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2018. Dynamic

algorithms via the primal-dual method. Inf. Comput. 261, Part (2018), 219–239.

https://doi.org/10.1016/j.ic.2018.02.005

[14] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New

deterministic approximation algorithms for fully dynamic matching. In Proceed-

ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC

2016, Cambridge, MA, USA, June 18-21, 2016. 398–411. https://doi.org/10.1145/

2897518.2897568

[15] Sayan Bhattacharya, Monika Henzinger, and DanuponNanongkai. 2017. Fully Dy-

namic Approximate MaximumMatching andMinimumVertex Cover inO(log
3
n)

Worst Case Update Time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,

January 16-19. 470–489. https://doi.org/10.1137/1.9781611974782.30

[16] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos

Tsourakakis. 2015. Space- and Time-Efficient Algorithm for Maintaining Dense

Subgraphs on One-Pass Dynamic Streams. In Proceedings of the Forty-seventh

Annual ACM Symposium on Theory of Computing (Portland, Oregon, USA) (STOC

’15). ACM, New York, NY, USA, 173–182. https://doi.org/10.1145/2746539.

2746592

[17] Digvijay Boob, Saurabh Sawlani, and Di Wang. 2019. Faster width-dependent

algorithm for mixed packing and covering LPs. In Advances in Neural Information

Processing Systems 32: Annual Conference on Neural Information Processing Systems

2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, HannaM.Wallach,

Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and

Roman Garnett (Eds.). 15253–15262. http://papers.nips.cc/paper/9663-faster-

width-dependent-algorithm-for-mixed-packing-and-covering-lps

[18] Gerth Stølting Brodal and Rolf Fagerberg. 1999. Dynamic Representation of

Sparse Graphs. In Algorithms and Data Structures, 6th International Workshop,

WADS ’99, Vancouver, British Columbia, Canada, August 11-14, 1999, Proceedings.

342–351. https://doi.org/10.1007/3-540-48447-7_34

[19] Mauro Brunato, Holger H. Hoos, and Roberto Battiti. 2008. On Effectively Finding

Maximal Quasi-cliques in Graphs. In Learning and Intelligent Optimization,

Vittorio Maniezzo, Roberto Battiti, and Jean-Paul Watson (Eds.). Springer-Verlag,

Berlin, Heidelberg, 41–55. https://doi.org/10.1007/978-3-540-92695-5_4

[20] Moses Charikar. 2000. Greedy Approximation Algorithms for Finding Dense Com-

ponents in a Graph. In Proceedings of the Third International Workshop on Approxi-

mation Algorithms for Combinatorial Optimization (APPROX ’00). Springer-Verlag,

Berlin, Heidelberg, 84–95. http://dl.acm.org/citation.cfm?id=646688.702972

[21] J. Chen and Y. Saad. 2012. Dense Subgraph Extraction with Application to

Community Detection. IEEE Transactions on Knowledge and Data Engineering 24,

7 (July 2012), 1216–1230. https://doi.org/10.1109/TKDE.2010.271

[22] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability and

Distance Queries via 2-Hop Labels. SIAM J. Comput. 32, 5 (May 2003), 1338–1355.

https://doi.org/10.1137/S0097539702403098

[23] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2007. Extraction and

Classification of Dense Communities in the Web. In Proceedings of the 16th

International Conference on World Wide Web (Banff, Alberta, Canada) (WWW ’07).

ACM, New York, NY, USA, 461–470. https://doi.org/10.1145/1242572.1242635

[24] Ran Duan and Seth Pettie. 2014. Linear-Time Approximation for Maximum

Weight Matching. J. ACM 61, 1 (2014), 1:1–1:23. https://doi.org/10.1145/

2529989

[25] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient Densest Sub-

graph Computation in Evolving Graphs. In Proceedings of the 24th International

Conference on World Wide Web (Florence, Italy) (WWW ’15). International World

Wide Web Conferences Steering Committee, Republic and Canton of Geneva,

Switzerland, 300–310. https://doi.org/10.1145/2736277.2741638

[26] D. R. Ford and D. R. Fulkerson. 2010. Flows in Networks. Princeton University

Press, Princeton, NJ, USA.

[27] Greg N. Frederickson. 1985. Data Structures for On-Line Updating of Minimum

Spanning Trees, with Applications. SIAM J. Comput. 14, 4 (1985), 781–798.

https://doi.org/10.1137/0214055

[28] Harold N. Gabow and Robert Endre Tarjan. 1991. Faster Scaling Algorithms

for General Graph-Matching Problems. J. ACM 38, 4 (1991), 815–853. https:

//doi.org/10.1145/115234.115366

[29] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. 1989. A Fast Parametric Maximum

Flow Algorithm and Applications. SIAM J. Comput. 18, 1 (Feb. 1989), 30–55.

https://doi.org/10.1137/0218003

[30] David Gibson, Ravi Kumar, and Andrew Tomkins. 2005. Discovering Large Dense

Subgraphs in Massive Graphs. In Proceedings of the 31st International Conference

on Very Large Data Bases (Trondheim, Norway) (VLDB ’05). VLDB Endowment,

721–732. http://dl.acm.org/citation.cfm?id=1083592.1083676

[31] A. V. Goldberg. 1984. Finding a Maximum Density Subgraph. Technical Report

UCB/CSD-84-171. EECS Department, University of California, Berkeley. http:

//www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5956.html

[32] Gramoz Goranci, Monika Henzinger, and Thatchaphol Saranurak. 2018. Fast

Incremental Algorithms via Local Sparsifiers. (2018). unpublished manuscript.

[33] Manoj Gupta and Richard Peng. 2013. Fully Dynamic (1+ e)-Approximate

Matchings. In 54th Annual IEEE Symposium on Foundations of Computer Sci-

ence, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. 548–557. https:

//doi.org/10.1109/FOCS.2013.65

[34] Monika Henzinger. 2018. The State of the Art in Dynamic Graph Algorithms.

In SOFSEM 2018: Theory and Practice of Computer Science, A Min Tjoa, Ladjel

Bellatreche, Stefan Biffl, Jan van Leeuwen, and Jiří Wiedermann (Eds.). Springer

International Publishing, Cham, 40–44.

[35] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol

Saranurak. 2015. Unifying and Strengthening Hardness for Dynamic Problems

via the Online Matrix-Vector Multiplication Conjecture. In Proceedings of the

Forty-seventh Annual ACM Symposium on Theory of Computing (Portland, Oregon,

USA) (STOC ’15). ACM, New York, NY, USA, 21–30. https://doi.org/10.1145/

2746539.2746609

[36] Monika Rauch Henzinger and Valerie King. 1999. Randomized Fully Dynamic

Graph Algorithms with Polylogarithmic Time per Operation. J. ACM 46, 4 (1999),

192

https://doi.org/10.1109/FOCS.2016.58
https://doi.org/10.4230/LIPIcs.ICALP.2019.7
https://doi.org/10.1137/1.9781611975994.4
https://doi.org/10.1137/1.9781611975994.4
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1145/2463676.2465315
https://doi.org/10.1007/s00778-013-0340-z
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1007/978-3-319-13123-8_6
https://doi.org/10.14778/2140436.2140442
http://dl.acm.org/citation.cfm?id=2884435.2884485
http://dl.acm.org/citation.cfm?id=2884435.2884485
https://doi.org/10.1137/140998925
https://doi.org/10.1016/j.ic.2018.02.005
https://doi.org/10.1145/2897518.2897568
https://doi.org/10.1145/2897518.2897568
https://doi.org/10.1137/1.9781611974782.30
https://doi.org/10.1145/2746539.2746592
https://doi.org/10.1145/2746539.2746592
http://papers.nips.cc/paper/9663-faster-width-dependent-algorithm-for-mixed-packing-and-covering-lps
http://papers.nips.cc/paper/9663-faster-width-dependent-algorithm-for-mixed-packing-and-covering-lps
https://doi.org/10.1007/3-540-48447-7_34
https://doi.org/10.1007/978-3-540-92695-5_4
http://dl.acm.org/citation.cfm?id=646688.702972
https://doi.org/10.1109/TKDE.2010.271
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1145/1242572.1242635
https://doi.org/10.1145/2529989
https://doi.org/10.1145/2529989
https://doi.org/10.1145/2736277.2741638
https://doi.org/10.1137/0214055
https://doi.org/10.1145/115234.115366
https://doi.org/10.1145/115234.115366
https://doi.org/10.1137/0218003
http://dl.acm.org/citation.cfm?id=1083592.1083676
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5956.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5956.html
https://doi.org/10.1109/FOCS.2013.65
https://doi.org/10.1109/FOCS.2013.65
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1145/2746539.2746609

Near-Optimal Fully Dynamic Densest Subgraph STOC ’20, June 22–26, 2020, Chicago, IL, USA

502–516. https://doi.org/10.1145/320211.320215

[37] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic

deterministic fully-dynamic algorithms for connectivity, minimum spanning tree,

2-edge, and biconnectivity. J. ACM 48, 4 (2001), 723–760. https://doi.org/10.

1145/502090.502095

[38] Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine Zhou.

2005. Mining Coherent Dense Subgraphs Across Massive Biological Networks

for Functional Discovery. Bioinformatics 21, 1 (Jan. 2005), 213–221. https:

//doi.org/10.1093/bioinformatics/bti1049

[39] Giuseppe F. Italiano and Piotr Sankowski. 2010. Improved Minimum Cuts

and Maximum Flows in Undirected Planar Graphs. CoRR abs/1011.2843 (2010).

arXiv:1011.2843 http://arxiv.org/abs/1011.2843

[40] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3HOPP: A High-

compression Indexing Scheme for Reachability Query. In Proceedings of the 2009

ACM SIGMOD International Conference on Management of Data (Providence,

Rhode Island, USA) (SIGMOD ’09). ACM, New York, NY, USA, 813–826. https:

//doi.org/10.1145/1559845.1559930

[41] Ravi Kannan and Vinay V. 1999. Analyzing the structure of large graphs. (1999).

unpublished manuscript.

[42] Bruce M. Kapron, Valerie King, and Ben Mountjoy. 2013. Dynamic graph con-

nectivity in polylogarithmic worst case time. In Proceedings of the Twenty-Fourth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Or-

leans, Louisiana, USA, January 6-8, 2013. 1131–1142. https://doi.org/10.1137/1.

9781611973105.81

[43] Samir Khuller and Barna Saha. 2009. On Finding Dense Subgraphs. In Proceedings

of the 36th International Colloquium on Automata, Languages and Programming:

Part I (Rhodes, Greece) (ICALP ’09). Springer-Verlag, Berlin, Heidelberg, 597–608.

https://doi.org/10.1007/978-3-642-02927-1_50

[44] Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. 2014. Ori-

enting Fully Dynamic Graphs with Worst-Case Time Bounds. In Automata, Lan-

guages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,

Denmark, July 8-11, 2014, Proceedings, Part II. 532–543. https://doi.org/10.1007/

978-3-662-43951-7_45

[45] Lukasz Kowalik. 2007. Adjacency queries in dynamic sparse graphs. Inf. Process.

Lett. 102, 5 (2007), 191–195. https://doi.org/10.1016/j.ipl.2006.12.006

[46] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. 2006. Structure and Evolution

of Online Social Networks. In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (Philadelphia, PA, USA)

(KDD ’06). ACM, NewYork, NY, USA, 611–617. https://doi.org/10.1145/1150402.

1150476

[47] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, Sridhar Rajagopalan,

Andrew Tomkins, Andrew Tomkins, and Andrew Tomkins. 1999. Trawling the

Web for Emerging Cyber-communities. Comput. Netw. 31, 11-16 (May 1999),

1481–1493. https://doi.org/10.1016/S1389-1286(99)00040-7

[48] Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. 2010. A Survey of

Algorithms for Dense Subgraph Discovery. Springer US, Boston, MA, 303–336.

https://doi.org/10.1007/978-1-4419-6045-0_10

[49] Aleksander Madry. 2011. From graphs to matrices, and back: new techniques for

graph algorithms. Ph.D. Dissertation. Massachusetts Institute of Technology,

Cambridge, MA, USA. http://hdl.handle.net/1721.1/66014

[50] AndrewMcGregor, David Tench, Sofya Vorotnikova, andHoa T. Vu. 2015. Densest

Subgraph in Dynamic Graph Streams. In Mathematical Foundations of Computer

Science 2015 - 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28,

2015, Proceedings, Part II. 472–482. https://doi.org/10.1007/978-3-662-48054-

0_39

[51] Silvio Micali and Vijay V. Vazirani. 1980. An O(sqrt(|v |) |E |) Algorithm for

Finding Maximum Matching in General Graphs. In 21st Annual Symposium on

Foundations of Computer Science, Syracuse, New York, USA, 13-15 October 1980.

17–27. https://doi.org/10.1109/SFCS.1980.12

[52] Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert Endre Tarjan. 2008.

Finding Strongly Knit Clusters in Social Networks. Internet Mathematics 5, 1

(2008), 155–174. https://doi.org/10.1080/15427951.2008.10129299

[53] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis,

and Shen Chen Xu. 2015. Scalable Large Near-Clique Detection in Large-Scale

Networks via Sampling. In Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (Sydney, NSW, Australia)

(KDD ’15). ACM, NewYork, NY, USA, 815–824. https://doi.org/10.1145/2783258.

2783385

[54] M. E. J. Newman. 2006. Modularity and community structure in

networks. Proceedings of the National Academy of Sciences 103,

23 (2006), 8577–8582. https://doi.org/10.1073/pnas.0601602103

arXiv:https://www.pnas.org/content/103/23/8577.full.pdf

[55] Serge A Plotkin, David B Shmoys, and Éva Tardos. 1995. Fast approximation algo-

rithms for fractional packing and covering problems. Mathematics of Operations

Research 20, 2 (1995), 257–301.

[56] Jun Ren, JianxinWang, Min Li, and LushengWang. 2013. Identifying protein com-

plexes based on density and modularity in protein-protein interaction network.

BMC Systems Biology 7, 4 (23 Oct 2013), S12. https://doi.org/10.1186/1752-

0509-7-S4-S12

[57] Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning Zhang.

2010. Dense Subgraphs with Restrictions and Applications to Gene Annotation

Graphs. In Research in Computational Molecular Biology, Bonnie Berger (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 456–472.

[58] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer

Özsu. 2017. The Ubiquity of Large Graphs and Surprising Challenges of Graph

Processing. Proc. VLDB Endow. 11, 4 (Dec. 2017), 420–431. https://doi.org/10.

1145/3186728.3164139

[59] Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Amitabh Trehan. 2012.

Dense Subgraphs on Dynamic Networks. In Distributed Computing - 26th Inter-

national Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012. Proceedings.

151–165. https://doi.org/10.1007/978-3-642-33651-5_11

[60] Stephen B. Seidman. 1983. Network structure and minimum degree. Social

Networks 5, 3 (1983), 269 – 287. https://doi.org/10.1016/0378-8733(83)90028-X

[61] Daniel D. Sleator and Robert Endre Tarjan. 1983. A Data Structure for Dynamic

Trees. J. Comput. Syst. Sci. 26, 3 (June 1983), 362–391. https://doi.org/10.1016/

0022-0000(83)90006-5

[62] Hsin-Hao Su and Hoa T. Vu. 2019. Distributed Dense Subgraph Detection and

Low Outdegree Orientation. CoRR abs/1907.12443 (2019).

[63] Lei Tang and Huan Liu. 2010. Graph Mining Applications to Social Network

Analysis. Springer US, Boston, MA, 487–513. https://doi.org/10.1007/978-1-

4419-6045-0_16

[64] Mikkel Thorup. 2007. Fully-DynamicMin-Cut. Combinatorica 27, 1 (2007), 91–127.

https://doi.org/10.1007/s00493-007-0045-2

[65] Charalampos E. Tsourakakis. 2014. A Novel Approach to Finding Near-

Cliques: The Triangle-Densest Subgraph Problem. CoRR abs/1405.1477 (2014).

arXiv:1405.1477 http://arxiv.org/abs/1405.1477

193

https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/502090.502095
https://doi.org/10.1093/bioinformatics/bti1049
https://doi.org/10.1093/bioinformatics/bti1049
http://arxiv.org/abs/1011.2843
http://arxiv.org/abs/1011.2843
https://doi.org/10.1145/1559845.1559930
https://doi.org/10.1145/1559845.1559930
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1007/978-3-642-02927-1_50
https://doi.org/10.1007/978-3-662-43951-7_45
https://doi.org/10.1007/978-3-662-43951-7_45
https://doi.org/10.1016/j.ipl.2006.12.006
https://doi.org/10.1145/1150402.1150476
https://doi.org/10.1145/1150402.1150476
https://doi.org/10.1016/S1389-1286(99)00040-7
https://doi.org/10.1007/978-1-4419-6045-0_10
http://hdl.handle.net/1721.1/66014
https://doi.org/10.1007/978-3-662-48054-0_39
https://doi.org/10.1007/978-3-662-48054-0_39
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1080/15427951.2008.10129299
https://doi.org/10.1145/2783258.2783385
https://doi.org/10.1145/2783258.2783385
https://doi.org/10.1073/pnas.0601602103
http://arxiv.org/abs/https://www.pnas.org/content/103/23/8577.full.pdf
https://doi.org/10.1186/1752-0509-7-S4-S12
https://doi.org/10.1186/1752-0509-7-S4-S12
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1007/978-3-642-33651-5_11
https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/s00493-007-0045-2
http://arxiv.org/abs/1405.1477
http://arxiv.org/abs/1405.1477

	Abstract
	1 Introduction
	1.1 Background and Related Work
	1.2 Our Results
	1.3 Organization

	2 Preliminaries
	2.1 LP Formulation and Dual

	3 Fully Dynamic Algorithm
	3.1 Intuition and Overview
	3.2 Sufficiency of Local Approximation
	3.3 Equivalence to the Graph Orientation Problem
	3.4 Data Structure for Edge Flipping in Directed Graphs
	3.5 Fully Dynamic Algorithm for a Given Density Estimate
	3.6 Overall Algorithm

	4 Vertex-weighted Densest Subgraph
	5 Directed Densest Subgraph
	5.1 Reduction from Directed DSP to Vertex-weighted Undirected DSP
	5.2 Implications of the Reduction

	References

