Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Parallel Batch-Dynamic Graphs: Algorithms and Lower Bounds

Laxman Dhulipala* David Durfeef

Saurabh Sawlani¥

Abstract

In this paper we study the problem of dynamically
maintaining graph properties under batches of edge
insertions and deletions in the massively parallel model
of computation. In this setting, the graph is stored
on a number of machines, each having space strongly
sublinear with respect to the number of vertices, that
is, n¢ for some constant 0 < € < 1. Our goal is to
handle batches of updates and queries where the data
for each batch fits onto one machine in constant rounds
of parallel computation, as well as to reduce the total
communication between the machines. This objective
corresponds to the gradual buildup of databases over
time, while the goal of obtaining constant rounds of
communication for problems in the static setting has
been elusive for problems as simple as undirected graph
connectivity.

We give an algorithm for dynamic graph connectivity
in this setting with constant communication rounds and
communication cost almost linear in terms of the batch
size. Our techniques combine a new graph contraction
technique, an independent random sample extractor from
correlated samples, as well as distributed data structures
supporting parallel updates and queries in batches.

We also illustrate the power of dynamic algorithms in
the MPC model by showing that the batched version
of the adaptive connectivity problem is P-complete in
the centralized setting, but sub-linear sized batches can
be handled in a constant number of rounds. Due to
the wide applicability of our approaches, we believe
it represents a practically-motivated workaround to the
current difficulties in designing more efficient massively
parallel static graph algorithms.

1 Introduction

Parallel computation frameworks and storage
systems, such as MapReduce, Hadoop and Spark,
have been proven to be highly effective methods
for representing and analyzing the massive datasets
that appear in the world today. Due to the
importance of this new class of systems, models of
parallel computation capturing the power of such
systems have been increasingly studied in recent
years, with the Massively Parallel Computation
(MPC) model [47] now serving as the canonical
model. In recent years the MPC model has seen the

" *Carnegie Mellon University 1dhulipa@cs.cmu.edu
TLinkedIn ddurfee@linkedin.com
FMicrosoft Research jakul@microsoft.com
8Georgia Tech richard.peng@gmail.com
YGeorgia Tech sawlani@gatech.edu
I University of Illinois at Chicago xiaorui@uic.edu

1300

Janardhan Kulkarni* Richard Peng®

Xiaorui Sun!

development of algorithms for fundamental problems,
including clustering [28, 16, 19, 69], connectivity
problems [60, 48, 7, 14, 8], optimization [56, 29, 17],
dynamic programming [43, 18], to name several
as well as many other fundamental graph and
optimization problems [15, 6, 51, 2, 13, 9, 7, 24, 26,
53, 59, 10, 11, 12, 21, 22, 33, 34, 35, 38]. Perhaps the
main goal in these algorithms has been solving the
problems in a constant number of communication
rounds while minimizing the total communication
in a round. Obtaining low round-complexity is well
motivated due to the high cost of a communication
round in practice, which is often between minutes
and hours [47]. Furthermore, since communication
between processors tends to be much more costly
than local computation, ensuring low communication
per-round is also an important criteria for evaluating
algorithms in the MPC model [62, 20].

Perhaps surprisingly, many natural problems
such as dynamic programming [43] and
submodular maximization [17] can in fact be
solved or approximated in a constant number of
communication rounds in MPC model. However,
despite considerable effort, we are still far from
obtaining constant-round algorithms for many
natural problems in the MPC setting where the
space-per-machine is restricted to be sublinear in
the number of vertices in the graph (this setting is
arguably the most reasonable modeling choice, since
real-world graphs can have trillions of vertices). For
example, no constant round algorithms are known for
a problem as simple as connectivity in an undirected
graph, where the current best bound is O(logn)
rounds in general [47, 60, 48, 7, 53, 14]. Other
examples include a O(y/logn) round algorithm
for approximate graph matching [59, 35], and
a O(yloglogn)-round algorithm for (A + 1)
vertex coloring [25]. Even distinguishing between
a single cycle of size n and two cycles of size
n/2 has been conjectured to require (logn)
rounds [47, 60, 48, 61, 69, 34, 42]. Based on this
conjecture, recent studies have shown that several
other graph related problems, such as maximum
matching, vertex cover, maximum independent set

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

and single-linkage clustering cannot be solved in a
constant number of rounds [69, 34].

On the other hand, most large-scale databases are not
formed by a single atomic snapshot, but form rather
gradually through an accretion of updates. Real
world examples of this include the construction of
social networks [54], the accumulation of log files [40],
or even the gradual change of the Internet itself [27,
45, 55]. In each of these examples, the database
is gradually formed over a period of months, if
not years, of updates, each of which is significantly
smaller than the whole database. It is often the
case that the updates are grouped together, and are
periodically processed by the database as a batch.
Furthermore, it is not uncommon to periodically re-
index the data structure to handle a large number of
queries between sets of updates.

In this paper, motivated by the gradual change in
real-world datasets through batches of updates, we
consider the problem of maintaining graph properties
in dynamically changing graphs in the MPC model.
Our objective is to maintain the graph property
for batches of updates, while achieving a constant
number of rounds of computation in addition to
also minimizing the total communication between
machines in a given round.

Specifically, we initiate the study of parallel batch-
dynamic graph problems in MPC, in which an
update contains a number of mixed edge insertions
and deletions. ~ We believe that batch-dynamic
algorithms in MPC capture the aforementioned real
world examples of gradually changing databases, and
provide an efficient distributed solution when the size
of the update is large compared to single update
dynamic algorithms. We note that a similar model
for dynamic graph problems in MPC was recently
studied by Italiano et al. [44]. However, they focus
on the scenario where every update only contains
a single edge insertion or deletion. Parallel batch-
dynamic algorithms were also recently studied in the
shared-memory setting by Tseng et al. [67] for the
forest-connectivity problem and Acar et al. [1] for
dynamic graph connectivity. However, the depth
of these algorithms is at least Q(logn), and it is
not immediately clear whether these results can be
extended to low (constant) round-complexity batch-
dynamic algorithms in the MPC setting.

We also study the power of dynamic algorithms in
the MPC setting by considering a natural “semi-
online” version of the connectivity problem which
we call adaptive connectivity. We show that the
adaptive connectivity problem is P-complete, and
therefore in some sense inherently sequential, at
least in the centralized setting. In contrast to this

1301

lower bound in the centralized setting, we show
that in the MPC model there is a batch-dynamic
algorithm that can process adaptive batches with
size proportional to the space per-machine in a
constant number of rounds. Note that such an
algorithm in the centralized setting (even one that
ran in slightly sublinear depth per batch) would
imply an algorithm for the Circuit Value Problem
with polynomial speedup, thus solving a longstanding
open problem in the parallel complexity landscape.

1.1 Owur Results Since graph connectivity
proves to be an effective representative for the
aforementioned difficulty of graph problems in the
MPC model, the focus of this paper is studying
graph connectivity and adaptive graph connectivity
in the batch-dynamic MPC model.

Graph Connectivity The dynamic connectivity
problem is to determine if a given pair of vertices
belongs to same connected component in the graph
as the graph undergoes (batches of) edge insertions
and deletions. The dynamic connectivity algorithm
developed in this paper is based on a hierarchical
partitioning scheme that requires a more intricate
incorporation of sketching based data structures for
the sequential setting. Not only does our scheme
allow us to achieve a constant number of rounds, but
it also allows us to achieve a total communication
bound that is linear with respect to the batch size
with only an additional n°() factor.

THEOREM 1.1. In the MPC model with memory per
machine s = O(n®) we can maintain o dynamic
undirected graph on m edges which, for constants 9, c,
and integer k such that k- n®*9 - polylog(n) < s, can
handle the following operations with high probability:
1. A batch of up to k edge insertions/deletions, using
0(1/(6cx)) rounds.
2. Query up to k pairs of wertices for I1-edge-
connectivity, using O(1/a) rounds.
Furthermore, the total communication for handling a
batch of k operations is O(kn®*%), and the total space
used across all machines is O(m).

Adaptive Connectivity and Lower-Bounds in
the Batch-Dynamic MPC Model In the adaptive
connectivity problem, we are given a sequence of
query/update pairs. The problem is to process
each query/update pair in order, where each query
determines whether or not a given pair of vertices
belongs to the same connected component of the
graph, and applies the corresponding dynamic update
to the graph if the query succeeds. We obtain the
following corollary by applying our batch-dynamic

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

connectivity algorithm, Theorem 1.1.

COROLLARY 1.1. In the MPC model with memory
per machine s = O(n°) we can maintain a dynamic
undirected graph on m edges which for constants d, «,
and integer k such that k - n®+° - polylog(n) < s can
handle the following operation with high probability:
1. An adaptive batch of up to k (query, edge
insertions/deletions) pairs, using O(1/(da))
rounds.
Furthermore, the total communication for handling a
batch of k operations is O(kn®*?), and the total space
used across all machines is O(m).

We also provide a lower-bound for the adaptive
connectivity problem in the centralized setting,
showing that the problem is P-complete under NC*
reduction. P-completeness is a standard notion of
parallel hardness [50, 37, 23]. As a consequence of
our reduction, we show that the adaptive connectivity
algorithm does not admit a parallel algorithm in the
centralized setting with polynomial speedup, unless
the (Topologically-Ordered) Circuit Value Problem
admits a parallel algorithm with polynomial speedup,
which is a long-standing open problem in parallel
complexity literature.

THEOREM 1.2. The adaptive connectivity problem is
P-complete under NC* reductions.

By observing that our reduction, and the NC!
reductions proving the hardness for the Circuit Value
Problem can be done in O(1) rounds of MPC, we have
the following corollary in the MPC setting.

COROLLARY 1.2. In_the MPC model with memory
per machine s = O(n€) for some constant €, if
adaptive connectivity on a sequence of size O(n) can
be solved in O(k) rounds, then every problem in P can

be solved in O(k) rounds.

1.2 Batch-Dynamic MPC Model In this
section, we first introduce the massively parallel
computation (MPC) model, followed by the batch-
dynamic MPC model which is the main focus of this
paper.

Massively Parallel Computation (MPC) Model.
The Massively Parallel Computation (MPC) model
is a widely accepted theoretical model for parallel
computation [47]. Here, the input graph G has n
vertices and at most m edges at any given instant.
We are given p processors/machines, each with local
memory for storage s = O(m/p).! Note that we

IThroughout this paper, © and O hide polylogarithmic
terms in the size of the input.

1302

usually assume m'=% > p > mf, for some § > 0.
This is because the model is relevant only when
the number of machines and the local memory per
machine are significantly smaller than the size of the
input.
The computation in the MPC model proceeds via
rounds. Initially, the input data is distributed across
the processors arbitrarily. During each round, each
processor runs a polynomial-time algorithm on the
data which it contains locally. Between rounds,
each machine receives at most g amount of data
from other machines. The total data received by
all machines between any two rounds is termed as
the communication cost. Note that no computation
can occur between rounds, and equivalently, no
communication can occur during a round.
The aim for our algorithms in this model is
twofold. Firstly and most importantly, we want
to minimize the number of rounds required for our
algorithm, since this cost is the major bottleneck
of massively parallel algorithms in practice. Ideally,
we would want this number to be as low as
O(1). Secondly, we want to decrease the maximum
communication cost over all rounds, since the costs
of communication between processors in practice are
massive in comparison to local computation.
Batch-Dynamic MPC Model. At a high-level,
our model works as follows. Similar to recent
works by Acar et al. [1] and Tseng et al. [67],
we assume that the graph undergoes batches of
insertions and deletions, and in the initial round
of each computation, an update or query batch is
distributed to an arbitrary machine. The underlying
computational model used is the MPC model, and
assume that space per machine is strongly sublinear
with respect to the number of vertices of the graph,
that is, O(n®) for some constant 0 < a < 1.
More formally, we assume there are two kinds of
operations in a batch:
1. Update: A set of edge insertions/deletions of size
up to k.

2. Query: A set of graph property queries of size up
to k.
For every batch of updates, the algorithm needs
to properly maintain the graph according to the
edge insertions/deletions such that the algorithm
can accurately answer a batch of queries at any
instant. We believe that considering batches of
updates and queries most closely relates to practice
where often multiple updates occur in the examined
network before another query is made. Furthermore,
in the MPC model there is a distinction between a
batch of updates and a single update, unlike the
standard model, because it is possible for the batch

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

update to be made in parallel, and handling batch
updates or queries is as efficient as handling a single
update or query, especially in terms of the number of
communication rounds.

We use two criteria to measure the efficiency
of parallel dynamic algorithms: the number of
communication rounds and the total communication
between different machines. Note that massively
parallel algorithms for static problems are often
most concerned with communication rounds. In
contrast, we also optimize the total communication in
the dynamic setting, since the total communication
becomes a bottleneck for practice when overall data
size is very huge, especially when the update is
much smaller than the total information of the
graph. Ideally, we want to handle batches of updates
and queries in constant communication rounds and
sublinear total communication with respect to the
number of vertices in the graph.

The key algorithmic difference between the dynamic
model we introduce here and the MPC model is
that we can decide how to partition the input into
processors as updates occur to the graph.

Dynamic problems in the MPC model were studied
in the very recent paper by Italiano et al. [44].
Their result only explicitly considers the single
update case. In the batch-dynamic scenario, the
result of [44] generalizes but has higher dependencies
on batch sizes in both number of rounds and
total communication.Our incorporation of graph
sketching, fast contraction, and batch search trees are
all critical for obtaining our optimized dependencies
on batch sizes.

1.3 Owur Techniques In this section we give in-
depth discussion of the primary techniques used to
achieve the results presented in the previous section.

Connectivity. Without loss of generality, we
assume that the batch of updates is either only
edge insertions or only edge deletions. For a mixed
update batch with both insertions and deletions,
we can simply handle the edge deletions first, and
then the edge insertions. In case the same edge is
being inserted and deleted, we simply eliminate both
operations.

Similar ~ to previous results on dynamic
connectivity [31, 32, 39, 41, 3, 46, 36, 57, 68, 58],
we maintain a maximal spanning forest. This forest
encodes the connectivity information in the graph,
and more importantly, undergoes few changes per
update to the graph. Specifically:

1. An insert can cause at most two trees in F' to be

joined to form a single tree.

1303

2. A delete may split a tree into two, but if there
exists another edge between these two resulting
trees, they should then be connected together to
ensure that the forest is maximal.

Our dynamic trees data structure adapts the recently

developed parallel batch-dynamic data structure for

maintaining a maximal spanning forest in the shared-
memory setting by Tseng et al. [67] to the MPC
model. Specifically, [67] give a parallel batch-

dynamic algorithm that runs in O(logn) depth w.h.p.

to insert k£ new edges to the spanning forest, to

remove k existing edges in the spanning forest, or
to query the IDs of the spanning tree containing the
given k vertices. We show that the data structure
can be modified to achieve O(1/«) round-complexity
and O(k - n®) communication for any small constant

a satisfying k - n® - polylog(n) < s in the MPC

setting. In addition, if we associate with each vertex

a key of length f.,, then we can query and update

a batch of k key values in O(1/«) round-complexity

and O(k - {xe,-) communication.

With a parallel batch-dynamic data structure to

maintain a maximal spanning forest, a batch of

edge insertions or edge queries for the dynamic

connectivity problem can be handled in O(1/«)

round-complexity and O(k - n®) communication

for any constant «. Our strategy for insertions
and queries is similar to the dynamic connectivity
algorithm of Ttaliano et al. [44]: A set of edge queries
can be handled by querying the IDs of the spanning
tree of all the vertices involved. Two vertices are in
the same connected component if and only if their
IDs are equal. To process a batch of edge insertions,
we maintain the maximal spanning forest by first
identifying the set of edges in the given batch that
join different spanning trees without creating cycles
using ID queries, and then inserting these edges to
the spanning forest, by linking their respective trees.
Handling a set of edge deletions, however, is
more complex. This is because if some spanning
forest edges are removed, then we need to find
replacement edges which are in the graph, but
previously not in the spanning forest, that can be
added to the spanning forest without creating cycles.

To facilitate this, we incorporate developments

in sketching based sequential data structures for

dynamic connectivity [3, 46].

To construct a sketch of parameter 0 < p < 1 for a

graph, we first independently sample every edge of

the graph with probability p, and then set the sketch
for each vertex to be the XOR of the IDs for all the

sampled edges which are incident to the vertex. A

sketch has the property that for any subset of vertices,

the XOR of the sketches of these vertices equals to

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

the XOR of the IDs for all the sampled edges leaving
the vertex subset. In particular, if there is only a
single sampled edge leaving the vertex subset, then
the XOR of the sketches of these vertices equals to
the ID of the edge leaving the vertex subset.
The high level idea of [3, 46] is to use sketches
for each current connected component to sample
previous non-tree edges going out of the connected
component using sketches with different parameters,
and use these edges to merge connected components
that are separated after deleting some tree edges.
We visualize this process by representing each
connected component as a vertex in a multigraph,
and finding a replacement non-tree edge between the
two components as the process of merging these two
vertices. At first glance, it seems like we can translate
this approach to the MPC model by storing all the
sketches for each connected component in a single
machine. However, directly translating such a data
structure leads to either polylog(n) communication
rounds or §2(m) total communication per update
batch. To see this, let us look at some intuitive
ideas to adapt this data structure to the MPC model,
and provide some insight into why they have certain
limitations:

1. Sketch on the original graph: For this case,
once we use the sketch to sample an edge going
out of a given connected component, we only
know the ID of the two vertices of the edge,
but not the two connected components the edge
connects. Obtaining the information about which
connected components the endpoints belong to
requires communication, because a single machine
cannot store the connected component ID of each
vertex in the graph. Hence, to contract all the
connected components using sampled edges for
each connected component, we need one round of
communication. Since we may need to reconnect
as many as k connected components (k is the
number of deletions, i.e., the batch size), this
approach could possibly require logk = ©(logn)
communication rounds.

2. Sketch on the contracted graph where every
connected component is contracted to a
single vertex: To do this, each edge needs to
know which connected components its endpoints
belong to. If we split a connected component
into several new connected components after
deleting some tree edges, the edges whose
vertices previously belong to same connected
component may now belong to different connected
components. To let each edge know which
connected components its endpoints belong to, we
need to broadcast the mapping between vertices

1304

and connected components to all the related edges.
Hence, the total communication can be as large as
Q(m). To further illustrate this difficulty via an
example, consider the scenario that the current
maximal spanning forest is a path of n vertices,
and a batch of k edge deletions break the path
into k + 1 short paths. In this case, almost all
the vertices change their connected component
IDs. In order to find edges previously not in
the maximal spanning forest to link these k& + 1
path, every edge needs to know if the two vertices
of the edge belong to same connected component
or not, and to do this, the update of connected
component ID for vertices of every edge requires
Q(m) communication.
The high level idea of our solution is to speed up the
“contraction” process such that constant iterations
suffice to shrink all the connected components into
a single vertex. To do this, sampling O(1) edges
leaving each connected component in each iterations
(as previous work) is not enough, because of the
existence of low conductance graph. Hence, we need
to sample a much larger number of edges leaving
each connected component. Following this intuition,
we prove a fast contraction lemma which shows
that picking n® edges out of each component finds
all connecting non-tree edges between components
within O(1/«) iterations.
However, a complication that arises with the
aforementioned fast contraction lemma is that it
requires the edges leaving a component to be
independently sampled. But the edges sampled by
a single sketch are correlated. This correlation comes
from the fact that a sketch outputs an edge leaving
a connected component if and only if there is only
one sampled edge leaving that connected component.
To address this issue, we construct an independent
sample extractor to identify enough edges that
are eventually sampled independently based on the
sketches and show that these edges are enough to
simulate the independent sampling process required
by the fast contraction lemma.
We discuss these two ideas in depth below.
Fast Contraction Lemma. We first define a
random process for edge sampling (which we
term ContractionSampling) in Definition 1.1. The
underlying motivation for such a definition is
that the edges obtained from the sketch are not
independently sampled. So, we tweak the sampling
process via an independent sample extractor, which
can then produce edges which obey the random
process ContractionSampling . Before discussing this
independent sample extractor, we will first outline
how edges sampled using ContractionSampling suffice

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

for fast contraction.

the sampled n’ edges leaving C; may all go to

C5. From this perspective, we cannot use a simple

DEFINITION 1.1. (CONTRACTIONSAMPLING PROCESS)degree_baSQd Counting argument to show that every

The random process ContractionSampling for a

multigraph G = (V, E) and an integer k is defined

as follows: each wvertex v independently draws t,

samples Sy 1,52, .., for some integer t, > k

such that

1. the outcome of each S, ; can be an either an edge
incident tov or L;

2. for every edge e incident to vertex v,

to 2
klog n>
g Pr[S,; =¢] > Q .

We show that in each connected component, if we
contract edges sampled by the ContractionSampling
process, the number of edges remaining reduces by
a polynomial factor with high probability by taking

k = poly(n).

LEMMA 1.1. Consider the following contraction

scheme starting with a multigraph G(V,E) on n

vertices and m < poly(n) (multi) edges: For a fized

integer k,

1. let E' be a set of edges sampled by the
ContractionSampling process;

2. contract vertices belonging to same connected
component of graph G' = (V,E') into a new
graph G* = (V* E*) as follows: each wvertex
of V* represents a connected component in the
sampled graph G' = (V, E'), and there is an edge
between two vertices x,y € V* iff there is an edge
i G between the components corresponding to x
and y, with edge multiplicity equal to the sum of
multiplicity of edges in G between the components
corresponding to x and y.

Then the resultant graph has at most O(mk=1/3)

(multi) edges with high probability.

Based on Lemma 1.1, if we iteratively apply the
ContractionSampling process with £ = n® and shrink
connected components using sampled edges into a
single vertex, then every connected component of
the multigraph becomes a singleton vertex in O(1/«)
rounds with high probability.

Lemma 1.1 can be shown using a straightforward
argument for simple graphs. However, in the case
of multigraphs (our graphs are multigraphs because
there can be more than one edge between two
components), this argument is not as easy. It
is possible that for a connected component Cp, a
large number of edges leaving C; will go to another
connected component Cs. Hence, in one round,

1305

connected component merges with at least n’ other
connected components if it connected to at least n®
other connected components.

To deal with parallel edges, and to prove that
the contraction occurs in constant, rather than
O(log n) rounds, we make use of a more combinatorial
analysis. Before giving some intuition about this
proof, we define some useful terminology.

DEFINITION 1.2. (CONDUCTANCE) Given a graph
G(V,E) and a subset of wvertices S C V, the
conductance of S w.r.t. G is defined as

wr E(S', S\ 9]
S min {37, cq da(w), X,esysr dalu)

The conductance of a graph is a measure of how “well-
knit” a graph is. Such graphs are of consequence
to us because the more well-knit the graph is, the
faster it contracts into a singleton vertex. We use the
expander decomposition lemma from [65], which says
that any connected multigraph G can be partitioned
into such subgraphs.

LEMMA 1.2. ([65], SECTION 7.1.) Given a
parameter k > 0, any graph G with n vertices
and m edges can be partitioned into groups of
vertices S1,So, ... such that

e the conductance of each S; is at least 1/k;

e the number of edges between the S;’s is at most
O(mlogn/k).

For each such “well-knit” subgraph H to collapse
in one round of sampling, the sampled edges in H
must form a spanning subgraph of H. One way to
achieve this is to generate a spectral sparsifier of H
[64] - which can be obtained by sampling each edge
with a probability at least O(logn) times its effective
resistance. The effective resistance of an edge is the
amount of current that would pass through it when
unit voltage difference is applied across its end points,
which is a measure of how important it is to the
subgraph being well-knit.

As the last piece of the puzzle, we show that the
edges sampled by the ContractionSampling process do
satisfy the required sampling constraint to produce
a spectral sparsifier of H. Since each such subgraph
collapses, Lemma 1.2 also tells us that only a small
fraction of edges are leftover in G, as claimed in
Lemma 1.1.

It is important to note that although we introduce
sophisticated tools such as expander partitioning

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

and spectral sparsifiers, these tools are only used in
the proof and not in the actual algorithm to find
replacement edges.

Independent Sample Extractor From
Sketches. On a high level, our idea to achieve fast
contraction is to use O(k - polylog(n)) independent
sketches to simulate the ContractionSampling process,
and then apply Lemma 1.1. However, we cannot do
this naively, because ContractionSampling requires
the edges being sampled independently, whereas
the sketch from Lemma 2.1 does not satisfy this
property. Recall that the process of outputting edges
by a sketch (with respect to a fixed partition of the
graph) can be viewed as following two steps: (i)
sample each edge independently with probability
given by the parameter of the sketch; (ii) output all
sampled edges leaving a subset of the partition if
and only if there is only one sampled edge leaving
that subset. This second step creates a correlation
within the edge sampling process.
We would like to remark that this is not an issue
for previous sketching based connectivity algorithms
(e.g. [3, 46]), because in [3, 46], each time, any
current connected component only needs to find an
arbitrary edge leaving the connected component. In
this way, if most current connected components find
an arbitrary edge leaving the component, then after
contracting connected components using sampled
edges, the total number of connected components
reduce by at least a constant factor. In this way,
after O(logn) iterations, each connected component
shrinks into a single vertex. But in our case the
contraction lemma requires edges being sampled
independently. Hence, we cannot directly apply
Lemma 1.1 on sketches.
To get around this issue, we construct an independent
edge sample extractor from the sketches and show
that with high probability, this extractor will extract
a set of independent edge samples that are equivalent
to being sampled from a ContractionSampling random
process, as required by Lemma 1.1. One key
observation is that if the graph is bipartite, then
sketch values on the vertices from one side of the
bipartite graph are independent, because every edge
sample is only related to one sketch value. The high
level idea of our extractor is then to extract bipartite
graphs from sketches, such that each edge appears
in many bipartite graphs with high probability. For
each sketch, consider the following random process:
1. For each vertex of the graph, randomly assign a
color of red or yellow. Then we can construct
a bipartite graph with red vertices on one side,
yellow vertices on the other side, and an edge is in
the bipartite graph if and only if the color of one

1306

endpoint is red, and the other endpoint is yellow.
Note that this step is not related to the process of
sketch construction.

2. Independently sample every edge not in the
bipartite graph with probability same as the
probability of sampling used in the sketch.

3. For each red vertex whose incident edges were not
sampled in Step 2, independently sample every
edge incident to the vertex in the bipartite graph
with probability same as that used in the sketch.

4. Choose all edges sampled in Step 3 which do not
share a red vertex with any other sampled edge.
We show that the edges obtained in Step 4 are
sampled independently (conditioned on the outcome
of Step 2). Another way to see this independence
is to partition all the independent random variables
in the process of generating all the sketches into
two random processes Ry and Ry (based on the
bipartite graph generated for each sketch) such that
R; and R, are independent and simulate a required
ContractionSampling process in the following sense:

1. After implementing the random process R;
and based on the outcome of R;, define
a ContractionSampling process as required by
Lemma 1.1.

2. The random process Ry simulates the defined
ContractionSampling process in the following sense:
there is a partition of the independent random
variables of random process Ry into groups
satisfying the following conditions:

(a) There is a bijection between groups and
random variables of the ContractionSampling
process.

(b) For each group, there exists a function of the
random variables in the group such that the
function is equivalent to the corresponding
random variable of the ContractionSampling
process.

Furthermore, all the edges sampled by the defined
ContractionSampling process are generated by the
sketches (meaning that there exist a vertex and a
sketch such that sketch on the vertex is the ID of the
sampled edge). In this way, we argue that the edges
generated by all the sketches contains a set of edges
generated by a ContractionSampling process so that
we can apply Lemma 1.1.

LEMMA 1.3. Given an integer k and a multigraph

G of n wertices, O(klog®n) independent
sketches simulates a ContractionSampling
process. Furthermore, for every edge sampled

by ContractionSampling , there exists a sketch and a
vertex such that the value of the sketch on the vertex

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

is exactly the ID of that edge.

Adaptive Connectivity and Lower-Bounds in
the Batch-Dynamic MPC Model. The adaptive
connectivity problem is the “semi-online” version of
the connectivity problem where the entire adaptive
batch of operations is given to the algorithm
in advance, but the algorithm must apply the
query/update pairs in the batch in order, that
is each pair on the graph defined by applying
the prefix of updates before it. We note that
the problem is closely related to offfine dynamic
problems, for example for offline dynamic minimum
spanning tree and connectivity [30]. The main
difference is that in the offline problem the updates
(edge insertions/deletions) are not adaptive, and are
therefore not conditionally run based on the queries.
We also note here that every problem that admits a
static NC algorithm also admits an NC algorithm for
the offline variant of the problem. The idea is to run,
in parallel for each query, the static algorithm on the
input graph unioned with the prefix of the updates
occuring before the query. Assuming the static
algorithm is in NC, this gives a NC offline algorithm
(note that obtaining work-efficient parallel offline
algorithms for problems like minimum spanning tree
and connectivity is an interesting problem that we
are not aware of any results for).

Compared to this positive result in the setting
without adaptivity, the situation is very different
once the updates are allowed to adaptively depend
on the results of the previous query, since the simple
black-box reduction given for the offline setting above
is no longer possible. In particular, we show the
following lower bound for the adaptive connectivity
problem which holds in the centralized setting: the
adaptive connectivity problem is P-complete, that
is unless P = NC, there is no NC algorithm for
the problem. The adaptive connectivity problem
is clearly in P since we can just run a sequential
dynamic connectivity algorithm to solve it. To prove
the hardness result, we give a low-depth reduction
from the Circuit Value Problem (CVP), one of the
canonical P-complete problems. The idea is to
take the gates in the circuit in some topological-
order (note that the version of CVP where the
gates are topologically ordered is also P-complete),
and transform the evaluation of the circuit into the
execution of an adaptive sequence of connectivity
queries. We give an NC' reduction which evaluates a
circuit using adaptive connectivity queries as follows.
The reduction maintains that all gates that evaluate
to true are contained in a single connected component
connected to some root vertex, r. Then, to determine

1307

whether the next gate in the topological order,
g = ga N gp, evaluates to true the reduction runs
a connectivity query testing whether the vertices
corresponding to g, and ¢, are connected in the
current graph, and adds an edge (g,r), thereby
including it in the connected component of true gates
if the query is true. Similarly, we reduce evaluating
g = ga V gp gates to two queries, which check whether
ga (gp) is reachable and add an edge from (g,r) in
either case if so. A g = —g, gate is handled almost
similarly, except that the query checks whether g, is
disconnected from s. Given the topological ordering
of the circuit, generating the sequence of adaptive
queries can be done in O(logn) depth and therefore
the reduction works in NC.

In contrast, in the MPC setting, we show that we
can achieve O(1) rounds for adaptive batches with
size proportional to the space per machine. Our
algorithm for adaptive connectivity follows naturally
from our batch-dynamic connectivity algorithm
based on the following idea: we assume that
every edge deletion in the batch actually occurs,
and compute a set of replacement edges in G for
the (speculatively) deleted edges. Computing the
replacement edges can be done in the same round-
complexity and communication cost as a static batch
of deletions using Theorem 1.1. Since the number of
replacement edges is at most O(k) = O(s), all of the
replacements can be sent to a single machine, which
then simulates the sequential adaptive algorithm on
the graph induced by vertices affected by the batch
in a single round. We note that the upper-bound in
MPC does not contradict the P-completeness result,
although achieving a similar result for the depth of
adaptive connectivity in the centralized setting for
batches of size O(s) = O(n€) would be extremely
surprising since it would imply a polynomial-time
algorithm for the (Topologically Ordered) Circuit
Value Problem with sub-linear depth and therefore
polynomial speedup.

1.4 Organization Section 2 describes the full
version of the high level idea for graph connectivity.
Section 3 contains a discussion of the data structure
we used to handle batch-update in constant round.
Section 4 gives a proof of our fast contraction lemma.
A proof of our independent sample extractor from
sketches is in the full version of the paper?. Section 5
presents the algorithm for graph connectivity and
the correctness proof. Lastly, our lower and upper
bounds for the adaptive connectivity problem can be
found in the full version of the paper?.

Zhttps://arxiv.org/abs/1908.01956

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/1908.01956

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

2 1-Edge-Connectivity
In this section we prove our result for 1-edge-
connectivity, restated here:

THEOREM 2.1. In the MPC model with memory per
machine s = O(n®) we can maintain a dynamic
undirected graph on m edges which, for constants d, «,
and integer k such that k - n®*9 - polylog(n) < s, can
handle the following operations with high probability:
1. A batch of up to k edge insertions/deletions, using
O(1/(0c)) rounds.
2. Query up to k pairs of wertices for I1-edge-
connectivity, using O(1/a) rounds.
Furthermore, the total communication for handling a
batch of k operations is O(kn®*?), and the total space
used across all machines is O(m).

Parallel Batch-Dynamic Data Structure.
Similar ~ to previous results on dynamic
connectivity [31, 32, 39, 41, 3, 46, 36, 57, 68, 58], our
data structure is based on maintaining a maximal
spanning forest, which we denote using F. Formally,
we define it as follows.

DEFINITION 2.1. (MAXIMAL SPANNING FOREST)
Given a graph G, we call F' a mazimal spanning
forest of G if F is a subgraph of G consisting of a
spanning tree in every connected component of G.

Note that this is more specific than a spanning forest,
which is simply a spanning subgraph of G' containing
no cycles. This forest encodes the connectivity
information in the graph, and more importantly,
undergoes few changes per update to the graph.
Specifically:

1. An insert can cause at most two trees in F' to be

joined to form a single tree.

2. A delete may split a tree into two, but if there
exists another edge between these two resulting
trees, they should then be connected together to
ensure that the forest is maximal.

Note that aside from identifying an edge between two

trees formed when deleting an edge from some tree,

all other operations are tree operations. Specifically,
in the static case, these operations can be entirely
encapsulated via tree data structures such as dynamic
trees [63] or Top-Trees [5]. We start by ensuring
that such building blocks also exist in the MPC
setting. In Section 3, we show that a forest can
also be maintained efficiently in O(1) rounds and low
communication in the MPC model (Theorem 2.2). In
this section, we build upon this data structure and
show how to process updates and 1-edge-connectivity
queries while maintaining a maximal spanning forest

of G.

1308

Let T'(v) indicate the tree (component) in F' to which
a vertex v belongs. We define the component ID of
v as the as the ID of this T'(v). We represent the
trees in the forest using the following data structure.
We describe the data structure in more detail in
Section 3.

THEOREM 2.2. In the MPC model with memory per
machine s = O(n®) for some constant €, for any
constant 0 < a < 1 and a key length i, such that
n® Lrey < 8, we can maintain a dynamic forest I in
space 6(n), with each vertexr v augmented with a key
x, of length lyey (T, is a summable element from a
semi-group),

o LINK(ujvy,...,urvy): Insert k edges into F.
e Cutr(uyvy,...,uxvg): Delete k edges from F.
e ID(vy,...,v;): Given a batch of k vertices, return

their component IDs in F.

e UPDATEKEY((vy,Z7), ..., (v, ®y)): For each i,
update the value of &,, to &,.

e GETKEY(vy,...,

e COMPONENTSUM(v1 ...,vg): Given a set of k
vertices, compute for each v;,

> o

w: weT (v;)

vg): For each i, return &, .

under the provided semi-group operation.
Moreover, all operations can be performed in O(1/a)
rounds and
e LINK and CUT operations can be performed in
6(k ey -) communication per round,

e ID can be performed in 5(k) communication per
round,

e UrPDATEKEY, GETKEY and COMPONENTSUM
operations can be performed in O(k - lyey - n%)
communication per round.

Edge insertions and queries can be handled by above
dynamic data structure: for a set of edge queries,
we use the ID operation to query the ID of all the
vertices. Two vertices are in the same connected
component if and only if their IDs are same. For a
batch of edge insertions, we maintain the spanning
forest by first identifying all the inserted edges
that join different connected components using ID
operation, and then using the LINK operations to put
these edges into the forest.

The process of handling a set of edge deletions is more
complex. This is because, if some spanning forest
edges are removed, then we need to find replacement
edges in the graph which were previously not in the
spanning forest, but can be added to maintain the

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

desired spanning forest. To do this, we use the
the augmentation of tree nodes with z, and the
COMPONENTSUM operation to accommodate each
vertex storing “sketches” in order to find replacement
edges upon deletions.

Sketching Based Approach Overview. At the
core of the DELETE operation is an adaptation of
the sketching based approach for finding replacement
edges by Ahn et al. [3] and Kapron et al. [46].
Since we rely on these sketches heavily, we go into
some detail about the approach here. Without loss
of generality, we assume every edge has a unique
O(logn)-bit ID, which is generated by a random
function on the two vertices involved.

For a vertex v, this scheme sets x, to the XOR of
the edge IDs of all the edges incident to v (which we
assume to be integers):

def
e

e: e~v

For a subset of vertices S, we define 9(5) as the set of
edges with exactly one endpoint in S. Then, taking
the total XOR over all the vertices in S gives (by
associativity of XOR)

DD DD D

VvES vES e: e~v ecE \v: veES,e~v e€d(S)

So if there is only one edge leaving S, this XOR over
all vertices in S returns precisely the ID of this edge.
To address the case with multiple edges crossing a
cut, Ahn et al. [3] and Kapron et al. [46] sampled
multiple subsets of edges at different rates to ensure
that no matter how many edges are actually crossing,
with high probability one sample picks only one of
them. This redundancy does not cause issues because
the edge query procedures also serve as a way to
remove false positives.

We formally define the sketch as follows:

DEFINITION 2.2. (GRAPH SKETCH FROM [3, 46])

A sketch with parameter p of a graph G = (V, E) is

defined as follows:

1. Fvery edge is sampled independently with
probability p. Let E' be the set of sampled edges.

2. For every vertex v € V, let

def
Y @ e

ecE’: e~v

We say a sketch generates edge e if there exists a
vertex v such that =, = e. The variant of this
sketching result that we will use is stated as follows
in Lemma 2.1.

1309

62@6.

LEMMA 2.1. (GRAPH SKETCH FROM |3, 46])

Assume we maintain a sketch for each of

p e {1,1/2,1/4,...,1/2[21=1Y " and let &, denote

the sketches on vertex v,

e upon insertion/deletion of an edge, we can
maintain all &,’s in O(log® n) update time;

o for any subset of vertices S, from the value

we can compute O(logn) edge IDs so that for any
edge e € 9(S), the probability that one of these IDs
is e is at least 1/|0(9)].

Fast Contraction Lemma. As XOR is a semi-
group operation, we can use these sketches in
conjunction with the dynamic forest data structure
given in Theorem 2.2 to check whether a tree
resulting from an edge deletion has any outgoing
edges. In particular, O(logn) copies of this sketch
structure allow us to find a replacement edge with
high probability after deleting a single edge in
O(1/e) rounds and O(n®) total communication. Our
algorithm then essentially “contracts” these edges
found, thus essentially reconnecting temporarily
disconnected trees in F'.

However, a straightforward generalization of the
above method to deleting a batch of k edges results in
an overhead of ©(log k), because it’s possible that this
random contraction process may take up to ©(log k)
rounds. Consider for example a length k path: if we
pick O(1) random edges from each vertex, then each
edge on the path is omitted by both of its endpoints
with constant probability. So in the case of a path,
we only reduce the number of remaining edges by
a constant factor in expectation, leading to a total
of about ©(logk) rounds. With our assumption of
s = O(n®) and queries arriving in batches of k < s,
this will lead to a round count that’s up to ©(logn).
We address this with a natural modification
motivated by the path example: instead of keeping
O(logn) independent copies of the sketching data
structures, we keep 6(715) copies, for some small
constant §, which enables us to sample n’ random
edges leaving each connected component at any
point. As this process only deals with edges
leaving connected components, we can also view
these connected components as individual vertices.
The overall algorithm then becomes a repeated
contraction process on a multi-graph: at each round,
each vertex picks n’ random edges incident to it,
and contracts the graph along all picked edges. Our
key structural result is a lemma that shows that
this process terminates in O(1/4) rounds with high

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

probability. To formally state the lemma, we first
define a random process of sampling edges in a graph.

We would like to remark that this is not an issue
for previous sketching based connectivity algorithms
(e.g. [3, 46]), because in [3, 46], each time, any

DEFINITION 1.1. (CONTRACTIONSAMPLING PROCESS)CUI‘I‘GHt connected Component Only needs to find an

The random process ContractionSampling for a

multigraph G = (V, E) and an integer k is defined

as follows: each wvertex v independently draws t,

samples Sy.1,5.2,. .., for some integer t, > k

such that

1. the outcome of each Sy ; can be an either an edge
incident tov or L;

2. for every edge e incident to vertex v,

ty 2
klog n>
E Pr[S,; =¢] > Q .

Below is our structural lemma, which we prove in
Section 4.

LEMMA 1.1. Consider the following contraction

scheme starting with a multigraph G(V,E) on n

vertices and m < poly(n) (multi) edges: For a fized

integer k,

1. let E' be a set of edges sampled by the
ContractionSampling process;

2. contract vertices belonging to same connected
component of graph G' = (V,E') into a new
graph G* = (V* E*) as follows: each wvertex
of V* represents a connected component in the
sampled graph G' = (V, E'), and there is an edge
between two vertices x,y € V* iff there is an edge
in G between the components corresponding to x
and y, with edge multiplicity equal to the sum of
multiplicity of edges in G between the components
corresponding to x and y.

Then the resultant graph has at most O(mk=1/3)

(multi) edges with high probability.

Independent Sample Extractor From
Sketches. On a high level, our idea is to use
O(k - polylog(n)) independent sketches to simulate
the required ContractionSampling process, and
then apply Lemma 1.1. However, we cannot do
this naively, because ContractionSampling requires
the edges being sampled independently, whereas
the sketch from Lemma 2.1 does not satisfy this
property. Recall that the sketch generated at a
vertex v can correspond to an edge (say wv) if no
other edge adjacent to v was sampled in the same
sketch. Consider an example where two edges wv
and ww are sampled by the graph. This means that
no other edge from v or w can be sampled in that
same sketch, implying the sampling process is not
independent.

1310

arbitrary edge leaving the connected component. In
this way, if most current connected components find
an arbitrary edge leaving the component, then after
contracting connected components using sampled
edges, the total number of connected components
reduce by at least a constant factor. In this way,
after O(logn) iterations, each connected component
shrinks into a single vertex. But in our case the
contraction lemma requires edges being sampled
independently. Hence, we cannot directly apply
Lemma 1.1 on sketches.
To get around this issue, we construct an independent
edge sample extractor from the sketches and show
that with high probability, this extractor will extract
a set of independent edge samples that are equivalent
to being sampled from a ContractionSampling random
process, as required by Lemma 1.1. One key
observation is that if the graph is bipartite, then
sketch values on the vertices from one side of the
bipartite graph are independent, because every edge
sample is only related to one sketch value. The high
level idea of our extractor is then to extract bipartite
graphs from sketches, such that each edge appears
in many bipartite graphs with high probability. For
each sketch, consider the following random process:
1. For each vertex of the graph, randomly assign a
color of red or yellow. Then we can construct
a bipartite graph with red vertices on one side,
yellow vertices on the other side, and an edge is in
the bipartite graph if and only if the color of one
endpoint is red, and the other endpoint is yellow.
Note that this step is not related to the process of
sketch construction.

2. Independently sample every edge not in the
bipartite graph with probability same as the
probability of sampling used in the sketch.

3. For each red vertex whose incident edges were not
sampled in Step 2, independently sample every
edge incident to the vertex in the bipartite graph
with probability same as that used in the sketch.

4. Choose all the edges sampled in Step 3 which do
not share a red vertex with any other sampled
edge.

We show that the edges obtained in Step 4 are

sampled independently (conditioned on the outcome

of Step 2). Another way to see this independence
is to partition all the independent random variables
in the process of generating all the sketches into
two random processes Ry and Ry (based on the

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

bipartite graph generated for each sketch) such that
Ry and Ry are independent and simulate a required
ContractionSampling process in the following sense:

1. After implementing the random process R;
and based on the outcome of R;, define
a ContractionSampling process as required by
Lemma 1.1.

2. The random process Ry simulates the defined
ContractionSampling process in the following sense:
there is a partition of the independent random
variables of random process Ry into groups
satisfying the following conditions:

(a) There is a bijection between groups and
random variables of the ContractionSampling
process.

(b) For each group, there exists a function of the
random variables in the group such that the
function is equivalent to the corresponding
random variable of the ContractionSampling
process.

Furthermore, all the edges sampled by the defined
ContractionSampling process are generated by the
sketches (meaning that there exist a vertex and a
sketch such that sketch on the vertex is the ID of the
sampled edge). In this way, we argue that the edges
generated by all the sketches contains a set of edges
generated by a ContractionSampling process so that
we can apply Lemma 1.1.

More formally, we define the simulation between two
random processes as follows.

DEFINITION 2.3. We say a set of independent
random wvariables E1, Fs, ..., E; simulates another
set of independent random wvariables Fi, Fo, ..., Fy
if there exists a set of random wariables U C
{E1,Es,...,E} such that with constant probability,
after fizing aoll the random wariables of U, there
are £ subsets Ty, To,... Ty C {E1,Es,...,E} \ U
(depending on the outcome of the random process for
U) satisfying

1. Ty, ..., Ty are mutually disjoint.

2. For every i € [{], there exist a random variable
which is a function of random wvariables in Tj,
denoted as f;(T;), such that f(T;) is same to the
random variable Fj.

And we show that the process of generating
O(k log3 n) sketches simulates the random process in
the contraction lemma.

LEMMA 1.3. Given an integer k and a multigraph

G of n werticess, O(klog®n) independent
sketches sitmulates a ContractionSampling
process. Furthermore, for every edge sampled

1311

by ContractionSampling , there exists a sketch and a
vertex such that the value of the sketch on the vertex
is exactly the ID of that edge.

3 Batch-Dynamic Trees in MPC

In this section we describe a simple batch-dynamic
tree data structure in the MPC setting. Our data
structure is based on a recently developed parallel
batch-dynamic data structure in the shared-memory
setting [67]. Specifically, Tseng et al. give a
parallel batch-dynamic tree that supports batches
of k links, cuts, and queries for the representative
of a vertex in O(klog(n/k + 1)) expected work and
O(logn) depth w.h.p. Their batch-dynamic trees
data structure represents each tree in the forest using
an Euler-tour Tree (ETT) structure [39], in which
each tree is represented as the cyclic sequence of
its Euler tour, broken at an arbitrary point. The
underlying sequence representation is a concurrent
skip list implementation that supports batch join and
split operations. Augmented trees are obtained by
augmenting the underlying sequence representation.
We show that the structure can be modified to
achieve low round-complexity and communication in
the MPC setting. We now define the batch-dynamic
trees interface and describe how to extend the data
structure into the MPC setting. The main difficulty
encountered in the shared-memory setting is that
nodes are stored in separate memory locations and
refer to each other via pointers. Therefore, when
traversing the skip list at some level i to find a node’s
ancestor at level ¢+ 1, it requires traversing all nodes
that occur before (or after) it at level i. We show that
by changing the sampling probability to 1/n¢, we can
ensure that each level has size O(n¢), each level can be
stored within a single machine and thus this search
can be done within a single round. The new sampling
probability also ensures that the number of levels is
O(1/¢) w.h.p. which is important for achieving our
bounds.

Batch-Dynamic Trees Interface. A Dbatch-
parallel dynamic trees data structure represents a
forest G = (V, E) as it undergoes batches of links,
cuts, and connectivity queries. A Link links two trees
in the forest. A Cut deletes an edge from the forest,
breaking one tree into two trees. A ID query returns a
unique representative for the tree containing a vertex.
Formally the data structure supports the following
operations:
e Link({{ui,v1},...,{ug,vx}}) takes an array of
edges and adds them to the graph G. The input
edges must not create a cycle in G.

e Cut({{u1,v1},...,{ur,vr}}) takes an array of

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

edges and removes them from the graph G.

e ID({uq,...,ui}) takes an array of vertex ids and
returns an array containing the representative of
each u;. The representative of a node, r(u) is a
unique value s.t. r(u) = r(v) iff v and v are in the
same tree.

Furthermore, the trees can be augmented with values
ranging over a domain D, and a commutative
function f : D? — D. The trees can be made
to support queries for the sum according to f on
arbitrary subtrees, but for the purposes of this paper
queries over the entire tree suffice. The interface is
extended with the following two primitives:

e UpdateKey({{u1,%1},...,{ux,Zx}}) takes an
array of vertex id, value pairs and updates the value
for u; to i’z

o GetKey({u,...,us}) takes an array of vertex ids
and returns an array containing the value of each
Uq, Zi‘i.

e ComponentSum({uy,...,u;}) takes an array
of vertex ids and returns an array containing
> wweT(u) Tw Where T'(u;) is the tree containing
u;, T, is the value for node w, and the sum is
computed according to f.

We show the following theorem in this section. Let §

be a parameter controlling the size of the keys stored

at each node and let a be a parameter controlling
the size of the blocks stored internally within a single
machine.

THEOREM 3.1. Let § be a parameter controlling the

keysize, and o be a constant controlling the blocksize

st. 6+ a < € and 0 < «. Then, in the MPC

model with memory per machine s = O(n¢) there is

an augmented batch-dynamic tree data structure in

MPC that supports batches of up to k LINK, CUT,

ID, UppDATEKEY, GETKEY, and COMPONENTSUM

operations in O(1/a) rounds per operation w.h.p.

where k = O(n®).

Furthermore, the batch operations cost

o O(kn®) communication per round w.h.p. for
UPDATEKEY, GETKEY, and COMPONENTSUM

° ON(kn‘;n‘”‘) communication per round w.h.p. for
LINK and CUT and

e O(k) communication per round for ID.

3.1 Augmented Batch-Dynamic Sequences
in MPC In order to obtain Theorem 3.1, we first
show how to implement augmented batch-dynamic
sequences in few rounds of MPC. In particular, we
will show the following lemma. Note that achieving
a similar bound on the round-complexity for large
batches, e.g., batches of size O(n), would disprove

1312

the 2-cycle conjecture. We refer to [67] for the precise
definition of the sequence interface.

LEMMA 3.1. Let 6 be a parameter controlling the
keysize, and o be a constant controlling the blocksize
s.t. 0 +a<eand 0 < a. Then, in the MPC model
with memory per machine s = O(n¢) there is an
augmented batch-dynamic sequence data structure in
MPC that supports batches of up to k SPLIT, JOIN,
ID, UprpATEKEY, GETKEY, and SEQUENCESUM
operations in O(1/a) rounds per operation w.h.p.
where k = O(n®).

Furthermore, the batch operations cost

. O(lmé) communication per round w.h.p. for

UPDATEKEY, GETKEY, and SEQUENCESUM

e O(kn’n®) communication per round w.h.p. for
SPLIT and JOIN and

e O(k) communication per round for 1D.

For the sake of simplicity we discuss the case where
0 =0and 0 < a < € (i.e. values that fit within
a constant number of machine words), and describe
how to generalize the idea to larger values at the end
of the sub-section.

Sequence Data Structure. As in Tseng et al. [67]
we use a skip list as the underlying sequence data
structure. Instead of sampling nodes with constant
probability to join the next level, we sample them
with probability 1/n®. It is easy to see that this
ensures that the number of levels in the list is
O(1/a) w.h.p. since « is a constant greater than
0. Furthermore, the largest number of nodes in some
level ¢ that “see” a node at level i + 1 as their left
or right ancestor is O(n®logn) w.h.p. We say that
the left (right) block of a node belonging to level 4
are all of its siblings to the left (right) before the
next level ¢ + 1 node. As previously discussed, in
the MPC setting we should intuitively try to exploit
the locality afforded by the MPC model to store the
blocks (contiguous segments of a level) on a single
machine. Since each block fits within a single machine
w.h.p., operations within a block can be done in 1
round, and since there are O(1/«a) levels, the total
round complexity will be O(1/«) as desired. Since
the ideas and data structure are similar to Tseng et
al. [67], we only provide the high-level details and
refer the reader to their paper for pseudocode.

Join. The join operation takes a batch of pairs of
sequence elements to join, where each pair contains
the rightmost element of one sequence and the
leftmost element of another sequence. We process
the levels one by one. Consider a join of (r;,l;).
We scan the blocks for r; and I; to find their
left and right ancestors, and join them. In the

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

subsequent round, these ancestors take the place of
(r4,1;) and we recursively continue until all levels are
processed. Observe that at each level, for each join
we process we may create a new block, with O(n®)
elements. In summary, the overall round-complexity
of the operation is O(1/a) w.h.p., and the amount of
communication needed is O(kn®) w.h.p.

Split. The split operation takes a batch of sequence
elements at which to split the sequences they belong
to by deleting the edge to the right of the element.
We process the levels one by one. Consider a split at a
node e;. On each level, we first find the left and right
ancestors as in case of join. We then send all nodes
splitting a given block to the machine storing that
block, and split it in a single round. Then, we recurse
on the next level. If the left and right ancestors of e;
were connected, we call split on the left right ancestor
at the next level. The overall round-complexity is
O(1/a) w.h.p., and the amount of communication
needed is O(kn®) w.h.p.

Augmentation and Other Operations. Each
node in the skip list stores an augmented value
which represents the sum of all augmented values
of elements in the block for which it is a left
ancestor. Note that these values are affected
when performing splits and joins above, but are
easily updated within the same round-complexity
by computing the correct sum within any block
that was modified and updating its left ancestor.
SETKEY operations, which take a batch of sequence
elements and update the augmented values at these
nodes can be handled similarly in the same round-
complexity as join and split above. Note that this
structure supports efficient range queries over the
augmented value, but for the purposes of this paper,
returning the augmented value for an entire sequence
(SEQUENCESUM) is sufficient, and this can clearly
be done in O(1/«a) rounds and O(k) communication.
Similarly, returning a representative node (ID) for
the sequence can be done in O(1/«) rounds w.h.p.
and O(k) communication by finding the top-most
level for the sequence containing the queried node,
and returning the lexicographically first element in
this block.

Handling Large Values. Note that if the values
have super-constant size, i.e. size O(n°) for some
0 s.t. 0 + a < € we can recover similar bounds as
follows. Since the blocks have size O(n®) and each
value has size O(n°) the overall size of the block
is O(n®t9) = O(nf). Therefore blocks can still be
stored within a single machine without changing the
sampling parameter. Storing large values affects the
bounds as follows. First, the communication cost

1313

of performing splits and joins grows by a factor of
O(n®) due to the increased block size. Second, the
cost of getting, setting, and performing a component
sum grows by a factor of O(n%) as well, since k
values are returned, each of size O(n’). Therefore
the communication cost of all operations other than
finding a represntative increase by a multiplicative
O(n®) factor. Finally, note that the bounds on round-
complexity are not affected, since nodes are still
sampled with probability 1/n®.

3.2 Augmented Batch-Dynamic Trees in
MPC We now show how to implement augmented
batch-dynamic trees in MPC, finishing the proof of
Theorem 3.1. We focus on the case where § = 0 (we
are storing constant size words) and explain how the
bounds are affected for larger 4.

Forest Data Structure. We represent trees in
the forest by storing the Euler tour of the tree in
a sequence data structure. If the forest is augmented
under some domain D and commutative function
f : D?> — D, we apply this augmentation to the
underlying sequences.

Link. Given a batch of link operations (which
are guaranteed to be acyclic) we update the forest
structure as follows. Consider a link (u;, v;). We first
perform a batch split operation on the underlying
sequences at all u;,v; for 1 < ¢ < k, which splits
the Euler tours of the underlying trees at the nodes
incident to a link. Next, we send all of the updates to
a single machine to establish the order in which joins
incident to a single vertex are carried out. Finally,
we perform a batch join operation using the order
found in the previous round to link together multiple
joins incident to a single vertex. Since we perform a
constant number of batch-sequence operations with
batches of size O(k), the overall round complexity is
O(1/a) w.h.p. by our bounds on sequences, and the
overall communication is O(kn®) w.h.p.

Cut. Given a batch of cut operations, we update the
forest structure as follows. Consider a cut (u;,v;).
The idea is to splice this edge out of the FEuler
tour by splitting before and after (u;,v;) and (v;, u;)
in the tour. The tour is then repaired by joining
the neighbors of these nodes appropriately. In the
case of batch cuts, we perform a batch split for the
step above. For batch cuts, notice that many edges
incident to a node could be deleted, and therefore
we may need to traverse a sequence of deleted edges
before finding the next neighbor to join. We handle
this by sending all deleted edges and their neighbors
to a single machine, which determines which nodes
should be joined together to repair the tour. Finally,

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

we repair the tours by performing a batch join
operation. Since we perform a constant number of
batch-sequence operations with batches of size O(k)
the overall round complexity is O(1/a) w.h.p. by our
bounds on sequences, and the overall communication
is O(kn®) w.h.p.

Augmentation, Other Operations and Large
Values. Note that the underlying sequences handle
updating the augmented values, and that updating
the augmented values at some nodes trivially maps
to an set call on the underlying sequences. Therefore
the bounds for GETKEY and SETKEY are identical
to that of sequences. Similarly, the bounds for ID are
identical to that of the sequence structure. For super-
constant size values, the bounds are affected exactly
as in the case for augmented sequences with large
values. The communication costs for all operations
other than ID grow by an O(n°) factor and the round-
complexity is unchanged. This completes the proof
of Theorem 3.1.

4 Fast Contraction

The aim of this section is to prove Lemma 1.1, which
is pivotal in proving the correctness of the main
algorithm from Section 2.

Lemma 1.1 is important in proving that our algorithm
can find replacement edges in the spanning forest
quickly in the event of a batch of edges being deleted.
The proof idea is as follows. We first show that
there exists a partitioning of the vertices such that
the edges within the partitions collapse in a single
iteration.

To do this, we first need to define a few terms relating
to expansion criteria of a graph. Let dg(v) denote
the degree of a vertex v in graph G. For edges in a
partition to collapse in a single iteration, we need each
partition to be sufficiently “well-knit”. This property
can be quantified using the notion of conductance.

DEFINITION 1.2. (CONDUCTANCE) Given a graph
G(V,E) and a subset of wertices S C V, the
conductance of S w.r.t. G is defined as

def . |E(S", S\ 8]
5cs min {ZMGS’ dG(u)7 ZUGS\S’ dG(u)}

The following lemma proves the existence of a
partitioning such that each partition has high
conductance.

LEMMA 1.2. ([65], SECTION 7.1.) Given a
parameter k > 0, any graph G with n wvertices
and m edges can be partitioned into groups of
vertices S1, 59, ... such that

1314

e the conductance of each S; is at least 1/k;

e the number of edges between the S;’s is at most
O(mlogn/k).

Now that we have a suitable partitioning, we
want to find a strategy of picking edges in a
decentralized fashion such that all edges within a
partition collapse with high probability. One way
to do this is to pick edges which form a spectral
sparsifier of S;. The following lemma by Spielman
and Srivastava [64] helps in this regard: we use
more recent interpretations of it that take sampling
dependencies into account.

LEmMA 4.1. ([64, 66, 49, 52]) On a graph G, let
FEq ... E, be independent random distributions over
edges such that the total probability of an edge e
being picked is at least Q(logn) times its effective
resistance, then a random sample from H = E; +
FEs + ...+ Ey is connected with high probability.

Now we want to show that the random process
ContractionSampling (Defintion 1.1) where each
vertex draws klog?n samples actually satisfies the
property mentioned in Lemma 4.1, i.e., all edges
are picked with probability at least their effective
resistance. To show this, we first need the following
inequality given by Cheeger.

LEMMA 4.2. ([4]) Given a graph G, for any subset
of vertices S with conductance ¢, we have

- - 1
Ay (Dsl/zLSDsl/Q) > §¢2,

where Lg is the Laplacian matriz of the subgraph of G
induced by S. Dg is the diagonal matriz with degrees
of vertices in S.

LEMMA 4.3. Let S be a subset of vertices of G such
that ¢q(S) > 1/2a'/? for some a > 0. For an edge
e = uv, where u,v € S, the effective resistance of e
measured in S, ERg(e), satisfies

BRs© 20 (G)

Proof. From Lemma 4.2, we get that

1
Ls = 5 (6a(8) L 1, DsT 7,

Using this, along with the definition FRg(u,v) def

XEULEXW, gives us that

9 1 1

(4.1)
ERg(u,v) <

N

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

We have for any subset S’ C S that:
E(S,5\9)
min {350 da (), Lyess da(v)

} > ¢a(9).

Furthermore, for every vertex v € S, we get
ds(v)/dg(v) > ¢ (S), which when substituted into
Equation 4.1 gives

1 a1 1
ERs(u,v) < 3 (¢c(S)) <dG(u) + dG(v)> .

Using ¢q(S) > 1/2a'/? completes the proof. O

Now, we have enough ammunition to prove
Lemma 1.1.

Proof. [Proof of Lemma 1.1] From Lemma 1.2,
we know that our graph can be partitioned
into expanders with conductance at least
Q(E=1/3 log!/? n). Now, let S be one such partition
and let e = uv be an edge contained in S. From the
definition of the random process in Definition 1.1,
we know that for an edge uwv, the probability that it
is sampled by either u or v is at least

9 1 1
klog n <dg(u) + dg(v)) > ERg(uv) - Q(logn),
where the inequality follows from Lemma 4.3. Since
each such edge wv is chosen with probability greater
than Q(logn) times its effective resistance w.r.t. S,
from Lemma 4.1, we know that the edges chosen
within S are connected with high probability.
Thus, we are left with the edges between the
partitions, the number of which is bounded by
O(mlog®®n - k=1/3) edges, 0

5 Connectivity Algorithms and Correctness

We give the algorithms for batch edge queries,
batch edge insertions, and batch edge deletions and
prove the correctness in Section 5.1, Section 5.2
and Section 5.3 respectively. Putting together
Lemmas 5.1, 5.3 and 5.2 then gives the overall result
as stated in Theorem 1.1.

Throughout this section, we will use the batch-
dynamic tree data structure discussed in Section 3
to maintain

1. a maximal spanning forest F' of the graph,

2. a key ¥, for every vertex v, where &, is a vector
of O(n?) sketch values on vertex v,

3. an edge list data structure which can be used to
check if an edge is in the graph given an edge ID.

1315

5.1 Algorithm for Batch Edge Queries Since
F' is a maximal spanning tree, the query operations
are directly provided by calling ID on all involved
vertices. Pseudocode of this routine is in
Algorithm 5.1.

LEMMA 5.1. The algorithm QUERY (Algorithm 5.1)
correctly answers connectivity queries and takes
O(1/a) rounds, each with total communication at

most O(k).

Proof. The correctness and performance bounds
follow from the fact that F' is a maximal spanning
forest of F' and from Theorem 2.2. a

5.2 Algorithm for Batch Edge Insertions
Given a batch of k edge insertions, we want to
identify a subset of edges from the batch that are
going to add to F' to maintain the invariant that F
is a maximal spanning forest. To do this, we use
ID operation to find IDs of all the involved vertices
in the edge insertion batch. Then we construct a
graph Gjocq; which initially contains all the edges in
the edge insertion batch, and then contracts vertices
from same connected component of F' to a single
vertex. Since this graph contains k edges, we can
put this graph into a single machine, and compute
a spanning forest Fjocqr Of Giocar- We maintain
the maximal spanning forest F' by adding edges in
Flocar to F. We also maintain the edge list data
structure by adding inserted edges to the list, and
maintain the sketches for the involved vertices by the
UPDATEKEY operation. Pseudocode of the batched
insertion routine is in Algorithm 5.2.

LEMMA 5.2. The algorithm INSERT in Algorithm 5.2
correctly maintains a mazximal spanning forest of
G and takes O(1/a) rounds, each with total

communication at most O(kn®*+9).

Proof. To show the correctness, notice that since we
add only a forest on the components as a whole,
there is never an edge added between two already
connected components. Additionally, since the forest
is spanning, we do not throw away any necessary
edges.

From Theorem 2.2, using GETKEY, UPDATEKEY, ID
and LINK falls under the claimed bound for rounds
and communication, whereas the rest of the steps are
performed only locally. |

5.3 Algorithm for Batch Edge Deletions
Pseudocode of the batched deletion routine is in
Algorithm 5.3.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

QUERY((u1,v1), (u2,v2), ..., (ug, vg))

Input: Pairs of vertices (uy,v1), (ug,v2), ..., (ug, Uk)

Output: For each 1 <4 <k, yes if u; and v; are connected in GG, and no otherwise.
1. Call ID(uy,v1,u2,va, ..., Uk, Uk).

2. For each 7, output yes if u; and v; have the same component ID, and no otherwise.

Algorithm 5.1: Querying the connectivity between a batch of vertex pairs

INSERT(’(L1’I)1, U2V, . . ., ukvk)

Input: new edges e; = uyv1, €2 = ugvs, ..., €5 = UpVk.
1. Add all k£ edges to the edge list data structure.

2. Run GETKEY(u1,v1,. .., Uk, Vk)-

3. For every sketch, sample every inserted edge Wlth probability equal to the parameter of the sketch,

and compute the updated key value for vertices mul , :c;l, cee i’uk, T, -
Run UPDATEKEY ((uy, Z,,,), (v1, &), - - ., (uk, B,), (v&, &,).

Run ID({uy,v1, ug, va ... uk, vk }).

Using these IDs as vertex labels, construct a graph Gy, among the inserted edges, on a local machine.
Find a maximal spanning forest Fj,cq; 0of Gioeqr locally on this machine.

Run LINK(E(Fiocal))-

NS e

Algorithm 5.2: Pseudocode for maintaining the data structure upon a batch of insertions.

DELETE(eq, e, . . ., €x)
Input: edges e; = vy, €9 = ugvs,. .., e = ugvy that are currently present in the graph.

1. Update the global edge index structure.

2. Run GETKEY (u1,v1, ..., Uk, Vg)-
3. For every sketch, compute the updated key value mul,a:;l, ceey :E;k,:i’:,k for vertices uy,v1,..., Uk, Uk
by removing the IDs of edges e, ..., ¢eg.
/ / / "
4. Run UPDATEKEY ((u1, &,,), (v1,%,,), - -, (U, xuk), (v, ka))

5. Run CuT for all edges that are in the spanning forest. Let u;...u; be representative vertices from
the resulting trees

6. Run COMPONENTSUM({u1 ...u;}) to extract the total XOR values from each of the trees.
7. Repeat O(1/6) rounds:
(a) From the XOR values of the current components, deduce a list of potential replacement edges,
Er
(b) Identify the subset of edges with endpoints between current components given by
ID(uq)...ID(u¢) using a call to QUERY.
(¢) Find Tg, a maximal spanning forest of the valid replacement edges, via local computation.
(d) LINK(E(TR)).
(e) Update uj...u; and their XOR values, either using another batch of queries, or by a local
computation.

Algorithm 5.3: Pseudocode for maintaining the data structure upon a batch of deletions.

Copyright © 2020 by SIAM
1316 Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

LEMMA 5.3. The algorithm DELETE (Algorithm 5.8)
correctly maintains a mazimal spanning forest of
G and takes O(1/6a) rounds, each with total

communication at most O(kn®*+9).

Proof. Note that F' remains a maximal spanning
forest if the deleted edges are from outside of F.
So, we only need to deal with the complementary
case. Consider some tree T € F, from which we
deleted k — 1 edges. T is now separated into k trees,
T1,T5,...,T;. We need to show that the algorithm
eventually contracts all T; using the edges stored
in the sketches. For this, note that the guarantees
of Lemma 1.3 imply that from the O(n’) copies of
sketches, we can sample edges leaving a group of T;s
in ways that meet the requirements of Lemma 1.1.
These trees will collapse into singleton vertices in
O(1/6) rounds with high probability by applying
Lemma 1.1 iteratively. Thus the result is correct.
Steps 1-6 only require O(l/a) rounds of
communication, from Theorem 2.2. Step 7 loops
O(1/0) times, and its bottleneck is step 7b, the
verification of the locations of the endpoints in the
trees. Once again by the guarantees of Theorem 2.2,
this takes O(1/«) rounds for each iteration, and at
most O(kn’T) communication per round.

Lastly, we call LINK on the edges in Er across various
iterations. Since at most k edges are deleted from F,
there can only be at most k replacement edges, so the
total communication caused by these is O(kn®t?).
0

References

[1] Umut A. Acar, Daniel Anderson, Guy E.
Blelloch, and Laxman Dhulipala. Parallel batch-
dynamic graph connectivity. In ACM Symposium
on Parallelism in Algorithms and Architectures
(SPAA), pages 381-392, 2019.

[2] Kook Jin Ahn and Sudipto Guha. Access to data
and number of iterations: Dual primal algorithms
for maximum matching under resource constraints.
ACM Transactions on Parallel Computing (TOPC),
4(4):17, 2018.

[3] Kook Jin Ahn, Sudipto Guha, and Andrew
McGregor. Analyzing graph structure via linear
measurements. In ACM-SIAM symposium on
Discrete Algorithms (SODA), pages 459-467, 2012.

[4] Noga Alon and Vitali D Milman. A1, isoperimetric
inequalities for graphs, and superconcentrators.
Journal of Combinatorial Theory, Series B,
38(1):73-88, 1985.

[5] Stephen Alstrup, Jacob Holm,
Lichtenberg, and Mikkel Thorup.

Kristian De
Maintaining

(18]

1317

information in fully dynamic trees with top trees.
ACM Transactions on Algorithms, 1(2):243-264,
2005.

Alexandr Andoni, Aleksandar Nikolov, Krzysztof
Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In ACM
Symposium on Theory of Computing (STOC), pages
574-583, 2014.

Alexandr Andoni, Zhao Song, Clifford Stein,
Zhengyu Wang, and Peilin Zhong. Parallel graph
connectivity in log diameter rounds. In IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 674-685, 2018.

Alexandr Andoni, Clifford Stein, and Peilin Zhong.
Log diameter rounds algorithms for 2-vertex and 2-
edge connectivity. arXiv preprint arXiv:1905.00850,
2019.

Sepehr Assadi. Simple round compression
for parallel vertex cover. arXiv preprint
arXiw:1709.04599, 2017.

Sepehr Assadi, MohammadHossein Bateni, Aaron
Bernstein, Vahab Mirrokni, and CIliff Stein.
Coresets meet edcs: algorithms for matching and
vertex cover on massive graphs. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
1616-1635, 2019.

Sepehr Assadi, Yu Chen, and Sanjeev Khanna.
Sublinear algorithms for (A4 1) vertex coloring.
In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 767-786, 2019.

Sepehr Assadi, Nikolai Karpov, and Qin Zhang.
Distributed and streaming linear programming in
low dimensions. In ACM Symposium on Principles
of Database Systems (PODS), pages 236-253, 2019.
Sepehr Assadi and Sanjeev Khanna. Randomized
composable coresets for matching and vertex cover.
In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 3-12, 2017.
Sepehr Assadi, Xiaorui Sun, and Omri Weinstein.
Massively parallel algorithms for finding well-
connected components in sparse graphs. To appear
m ACM Symposium on Principles of Distributed
Computing (PODC), 2019.

Bahman Bahmani, Ravi Kumar, and Sergei
Vassilvitskii. Densest subgraph in streaming and
mapreduce. Proceedings of the VLDB Endowment,
5(5):454-465, 2012.

Bahman Bahmani, Benjamin Moseley, Andrea
Vattani, Ravi Kumar, and Sergei Vassilvitskii.
Scalable k-means++. Proceedings of the VLDB
Endowment, 5(7):622-633, 2012.

Rafael da Ponte Barbosa, Alina Ene, Huy L Nguyen,
and Justin Ward. A new framework for distributed
submodular maximization. In 2016 IEEE 57th
Annual Symposium on Foundations of Computer
Science (FOCS), pages 645-654. Teee, 2016.
MohammadHossein Bateni, Soheil Behnezhad,
Mahsa Derakhshan, MohammadTaghi Hajiaghayi,
and Vahab Mirrokni. Massively parallel

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

[27]

(28]

[29]

30]

[31]

[32]

dynamic programming on trees. arXiv preprint
arXiv:1809.03685, 2018.

MohammadHossein Bateni, Aditya Bhaskara,
Silvio Lattanzi, and Vahab Mirrokni. Distributed
balanced clustering via mapping coresets. In
Advances in Neural Information Processing
Systems, pages 2591-2599, 2014.

Paul Beame, Paraschos Koutris, and Dan Suciu.
Communication steps for parallel query processing.
In ACM Symposium on Principles of Database
Systems (PODS), pages 273-284, 2013.

Soheil Behnezhad, Laxman Dhulipala, Hossein
Esfandiari, Jakub Lacki, Vahab Mirrokni, and
Warren Schudy. Massively parallel computation
via remote memory access. In ACM Symposium
on Parallelism in Algorithms and Architectures
(SPAA), pages 59-68, 2019.

Soheil Behnezhad, MohammadTaghi Hajiaghayi,
and David G Harris. Exponentially faster
massively parallel maximal matching. arXiw
preprint arXiv:1901.08744, 2019.

Guy E Blelloch and Bruce M Maggs. Parallel
algorithms. ACM Computing Surveys (CSUR),
28(1):51-54, 1996.

Sebastian Brandt, Manuela Fischer, and Jara Uitto.
Matching and MIS for uniformly sparse graphs
in the low-memory MPC model. arXiv preprint
arXiv:1807.05374, 2018.

Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari,
Jara Uitto, and Yufan Zheng. The complexity of
(A+1) coloring in congested clique, massively
parallel computation, and centralized local
computation. In PODC, pages 471-480. ACM,
2019.

Artur Czumaj, Jakub Lacki, Aleksander Madry,
Slobodan Mitrovi¢, Krzysztof Onak, and Piotr
Sankowski. Round compression for parallel
matching algorithms. In ACM Symposium on
Theory of Computing (STOC), pages 471-484, 2018.
Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters.
Communications of the ACM, 51(1):107-113, 2008.
Alina Ene, Sungjin Im, and Benjamin Moseley. Fast
clustering using mapreduce. In ACM International
Conference on Knowledge Discovery and Data
Mining (SIGKDD), pages 681-689, 2011.

Alina Ene and Huy Nguyen. Random coordinate
descent methods for minimizing decomposable
submodular functions. In International Conference
on Machine Learning (ICML), pages 787-795, 2015.
David Eppstein. Offline algorithms for dynamic
minimum spanning tree problems. Journal of
Algorithms, 17(2):237-250, 1994.

Greg N. Frederickson. Data structures for on-
line updating of minimum spanning trees, with
applications. SIAM J. Comput., 14(4):781-798,
1985.

Z. Galil and G. Italiano. Fully dynamic algorithms
for 2-edge connectivity. SIAM Journal on

(36]

(41]

1318

Computing, 21(6):1047-1069, 1992.

Buddhima Gamlath, Sagar Kale, Slobodan
Mitrovié, and Ola Svensson. Weighted matchings
via unweighted augmentations. arXiv preprint
arXiw:1811.02760, 2018.

Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto.
Conditional hardness results for massively parallel
computation from distributed lower bounds. To
appear in IEEE Symposium on Foundations of
Computer Science (FOCS), 2019.

Mohsen Ghaffari and Jara Uitto. Sparsifying
distributed algorithms with ramifications in
massively parallel computation and centralized
local computation. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1636-1653,
2019.

David Gibb, Bruce M. Kapron, Valerie King, and
Nolan Thorn. Dynamic graph connectivity with
improved worst case update time and sublinear
space. CoRR, abs/1509.06464, 2015. Availabel at:
http://arxiv.org/abs/1509.06464.

Raymond Greenlaw, H James Hoover, Walter L
Ruzzo, et al. Limits to parallel computation: P-
completeness theory. Oxford University Press on
Demand, 1995.

MohammadTaghi Hajiaghayi, Saeed Seddighin, and
Xjaorui Sun. Massively parallel approximation
algorithms for edit distance and longest common
subsequence. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1654-1672,
2019.

Monika Rauch Henzinger and Valerie King.
Randomized fully dynamic graph algorithms with
polylogarithmic time per operation. J. ACM,
46(4):502-516, 1999.

Hemant Hingave and Rasika Ingle. An approach
for mapreduce based log analysis using hadoop.
In IEEE International Conference on FElectronics
and Communication Systems (ICECS), pages 1264—
1268, 2015.

Jacob Holm, Kristian De Lichtenberg, and Mikkel
Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity. Journal
of the ACM, 48(4):723-760, 2001. Announced at
STOC’98.

Sungjin Im and Benjamin Moseley. A conditional
lower bound on graph connectivity in mapreduce.
CoRR, abs/1904.08954, 2019.

Sungjin Im, Benjamin Moseley, and Xiaorui Sun.
Efficient massively parallel methods for dynamic
programming. In ACM Symposium on Theory of
Computing (STOC), pages 798-811, 2017.
Giuseppe F Italiano, Silvio Lattanzi, Vahab S
Mirrokni, and Nikos Parotsidis. Dynamic
algorithms for the massively parallel computation
model. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 49-58,
2019.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/25/20 to 38.121.82.6. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

U Kang, Charalampos E Tsourakakis, and Christos
Faloutsos. Pegasus: A peta-scale graph mining
system implementation and observations. In IEEFE
International Conference on Data Mining (ICDM),
pages 229-238, 2009.

Bruce M. Kapron, Valerie King, and Ben Mountjoy.
Dynamic graph connectivity in polylogarithmic
worst case time. In Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2013.

Howard Karloff, Siddharth Suri, and Sergei
Vassilvitskii. A model of computation for
mapreduce. In ACM-SIAM symposium on Discrete
Algorithms (SODA), pages 938-948, 2010.
Raimondas Kiveris, Silvio Lattanzi, Vahab
Mirrokni, Vibhor Rastogi, and Sergei Vassilvitskii.
Connected components in mapreduce and beyond.
In ACM Symposium on Cloud Computing (SOCC),
pages 1-13, 2014.

Toannis Koutis, Alex Levin, and Richard Peng.
Faster spectral sparsification and numerical
algorithms for SDD matrices. ACM Trans.
Algorithms, 12(2):17:1-17:16, 2016. Available at
http://arxiv.org/abs/1209.5821.

Clyde P Kruskal, Larry Rudolph, and Marc Snir.
A complexity theory of efficient parallel algorithms.
Theoretical Computer Science, 71(1):95-132, 1990.
Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii,
and Andrea Vattani. Fast greedy algorithms in
mapreduce and streaming. ACM Transactions on
Parallel Computing (TOPC), 2(3):14, 2015.
Rasmus Kyng, Jakub Pachocki, Richard Peng,
and Sushant Sachdeva. A framework for
analyzing resparsification algorithms. In ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 2032-2043, 2017.

Jakub Lacki, Vahab Mirrokni, and Michat
Wilodarczyk. Connected components at
scale via local contractions. arXiw preprint
arXw:1807.10727, 2018.

Guojun Liu, Ming Zhang, and Fei Yan. Large-scale
social network analysis based on mapreduce. In
IEEFE International Conference on Computational
Aspects of Social Networks (CASoN), pages 487—
490, 2010.

Grzegorz Malewicz, Matthew H Austern, Aart JC
Bik, James C Dehnert, Ilan Horn, Naty Leiser,
and Grzegorz Czajkowski. Pregel: a system for
large-scale graph processing. In ACM International
Conference on Management of Data (SIGMOD),
pages 135-146, 2010.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar,
and Andreas Krause. Distributed submodular
maximization: Identifying representative elements
in massive data. In Advances in Neural Information
Processing Systems, pages 2049-2057, 2013.
Danupon Nanongkai and Thatchaphol Saranurak.
Dynamic spanning forest with worst-case update
time: adaptive, las vegas, and O(n'/?~¢)-time. In
Symposium on Theory of Computing (STOC), pages

(58]

[59]

(60]

(61]

(62]

1319

1122-1129, 2017.

Danupon Nanongkai, Thatchaphol Saranurak,
and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case
update time. In Symposium on Foundations of
Computer Science (FOCS), pages 950-961, 2017.
Krzysztof Onak. Round compression for parallel
graph algorithms in strongly sublinear space. arXiv
preprint arXiw:1807.08745, 2018.

Vibhor Rastogi, Ashwin Machanavajjhala, Laukik
Chitnis, and Anish Das Sarma. Finding connected
components in map-reduce in logarithmic rounds.
In IEEE Conference on Data Engineering (ICDE),
pages 5061, 2013.

Tim Roughgarden, Sergei Vassilvitskii, and
Joshua R Wang. Shuffles and circuits (on lower
bounds for modern parallel computation). Journal
of the ACM (JACM), 65(6):41, 2018.

Anish Das Sarma, Foto N Afrati, Semih Salihoglu,
and Jeffrey D Ullman. Upper and lower bounds
on the cost of a map-reduce computation. In
Proceedings of the VLDB Endowment, volume 6,
pages 277-288, 2013.

Daniel D. Sleator and Robert Endre Tarjan. A data
structure for dynamic trees. J. Comput. Syst. Sci.,
26(3):362-391, June 1983.

D. Spielman and N. Srivastava. Graph sparsification
by effective resistances. SIAM Journal on
Computing, 40(6):1913-1926, 2011. Available at
http://arxiv.org/abs/0803.0929.

D. Spielman and S. Teng. Spectral
sparsification of graphs. SIAM Journal on
Computing, 40(4):981-1025, 2011. Available at
http://arxiv.org/abs/0808.4134.

Joel A. Tropp. User-friendly tail bounds for
sums of random matrices. Found. Comput.
Math., 12(4):389-434, August 2012. Available at
http://arxiv.org/abs/1004.4389.

Thomas Tseng, Laxman Dhulipala, and Guy
Blelloch. Batch-parallel Euler tour trees. Algorithm
Engineering and Experiments (ALENEX), pages
92-106, 2019.

Christian Wulff-Nilsen. Fully-dynamic minimum
spanning forest with improved worst-case update
time. In ACM Symposium on Theory of Computing
(STOC), pages 1130-1143, 2017.

Grigory Yaroslavtsev and Adithya Vadapalli.
Massively parallel algorithms and hardness for
single-linkage clustering under ¢,-distances. In
International Conference on Machine Learning

(ICML), 2018.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Our Results
	Batch-Dynamic MPC Model
	Our Techniques
	Organization

	1-Edge-Connectivity
	Batch-Dynamic Trees in MPC
	Augmented Batch-Dynamic Sequences in MPC
	Augmented Batch-Dynamic Trees in MPC

	Fast Contraction
	Connectivity Algorithms and Correctness
	Algorithm for Batch Edge Queries
	Algorithm for Batch Edge Insertions
	Algorithm for Batch Edge Deletions

