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Abstract. We give offline algorithms for processing a sequence of 2-
and 3-edge and vertex connectivity queries in a fully-dynamic undirected
graph. While the current best fully-dynamic online data structures for
3-edge and 3-vertex connectivity require O(n2/3) and O(n) time per
update, respectively, our per-operation cost is only O(log n), optimal
due to the dynamic connectivity lower bound of Patrascu and Demaine.
Our approach utilizes a divide and conquer scheme that transforms a
graph into smaller equivalents that preserve connectivity information.
This construction of equivalents is closely-related to the development of
vertex sparsifiers, and shares important connections to several upcoming
results in dynamic graph data structures, including online models.

1 Introduction

Dynamic graph data structures seek to answer queries on a graph as it undergoes
edge insertions and deletions. Perhaps the simplest and most fundamental query
to consider is connectivity. A connectivity query asks for the existence of a path
connecting two vertices u and v in the current graph. As the insertion or deletion
of a single edge may have large consequences to connectivity across the entire
graph, constructing an efficient dynamic data structure to answer connectivity
queries has been a challenge to the data structure community. A number of
solutions have been developed, achieving a wide variety of runtime tradeoffs in
a number of different models [10–12,18,19,22–24,30,34,36]

The models typically addressed are online: each query must be answered
before the next query or update is given. A less demanding variant is the offline
setting, where the entire sequence of updates and queries is provided as input to
the algorithm. While an online data structure is more general, there are many
scenarios in which the entire sequence of operations is known in advance. This is
often the case when a data structure is used in a subroutine of an algorithm [6,
28], one specific example being the use of dynamic trees in the near-linear time
minimum cut algorithm of Karger [25].
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In exchange for the loss of flexibility, one can hope to obtain faster and sim-
pler algorithms in the offline setting. This has been shown to be the case in the
dynamic minimum spanning tree problem. While an online fully-dynamic mini-
mum spanning tree data structure requires about O(log4 n) time per update [20],
the offline algorithm of Eppstein requires only O(log n) time per update [10].

In this paper, we show similar, but stronger, performance gains for higher ver-
sions of connectivity. In particular, we consider the problems of 2, 3-edge/vertex
connectivity on a fully-dynamic undirected graph. An extension of connectiv-
ity, c-edge connectivity asks for the existence of c edge-disjoint paths between
two vertices u and v in the current graph. Vertex connectivity requires vertex-
disjoint paths instead of edge-disjoint paths. Current online fully-dynamic 2-
edge/vertex connectivity data structures require update time Õ(log2 n)1 [19]
and Õ(log3 n)2 [34], respectively, and current online fully-dynamic 3-edge/vertex
connectivity data structures require update time O(n2/3) and O(n), respec-
tively [11]. In contrast, our offline algorithms for 2, 3-edge/vertex connectivity
require only O(log n) time per operation. As the lower bound on dynamic con-
nectivity [32], as well as most lower bounds in general [1–3,7], also apply in the
offline model, our algorithms are optimal up to a constant factor. This paper
further shows that any lower bound attempting to show hardness stronger than
Ω(log n) time per operation for online fully-dynamic 2, 3-edge/vertex connectiv-
ity must make use of the online model.

As a straightforward application of our results, one can consider the use
of our algorithms when data regarding a dynamic network is collected, but not
analyzed, until a later point in time. For example, to diagnose an issue of network
latency across key routing hubs, or determine viability of a dynamically-changing
network of roads, our algorithms can answer a batch of queries in time O(t log n),
where t is the total number of updates and queries. Since online fully-dynamic
algorithms for higher versions of connectivity are significantly slower, namely,
O(n2/3) and O(n) time update for 3-edge and 3-vertex connectivity, respectively,
our offline data structure makes these computations practical for large data sets
when they would otherwise be prohibitively expensive.

Related to our work are papers by �L ↪acki and Sankowski [30] and Karczmarz
and �L ↪acki [24], which also apply to the above applications but for lower versions
of connectivity. Their work considers a fixed sequence of graph updates, given in
advance, and is then able to answer connectivity queries regarding intervals of
this sequence, online. This is more general than the model we consider because
the queries need not be supplied in advance and data regarding an interval of
time is richer than information from a specific point in time. For connectivity
and 2-edge connectivity, Karczmarz and �L ↪acki achieve O(log n) time per opera-
tion [24]. Both 2-vertex connectivity and 3-edge/vertex connectivity queries are
not supported.

1 The Õ(·) notation hides log log n factors.
2 This complexity is claimed in Thorup’s STOC 2000 [34] result. As noted by Huang

et al. [22], the paper provides few details, deferring to a journal version that has since
not appeared. The best complexity for online fully-dynamic biconnectivity prior to
this claim was O(log5 n) by Holm and Thorup [18].
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In competitive programming, the idea of using divide and conquer as an
offline algorithm for connectivity is known. The authors are aware of several
contest problems3 that are solved with similar techniques to Eppstein’s mini-
mum spanning tree algorithm [10], as we do here. The master’s thesis of Sergey
Kopeliovich, a member of the competitive programming community, describes
such an offline algorithm for fully-dynamic 2-edge connectivity, also achieving
about O(log n) time per operation [26]. Unfortunately, the thesis only appears
in Russian, but we speculate that the ideas used are similar.

The techniques developed in this paper may be of independent interest. Our
work has close connections with recent developments in vertex sparsification, par-
ticularly vertex sparsification-based dynamic graph data structures [4,5,8,9,12–
17,27]. In particular, the equivalent graphs at the core of our algorithms are akin
to vertex sparsifiers, with the main difference that 2- and 3-connectivity require
preserving far less information than the more general definitions of vertex sparsi-
fiers [15,27]. A promising step in this direction is very recent work of Goranci et
al. [17], which suggests the notion of a local sparsifier. This is a generalization of
the sparsifier that we consider here, and leads to efficient incremental algorithms
in the online setting.

Indeed, offline algorithms haven proven useful for the development of online
counterparts in the past. One such example is recent development in the mainte-
nance of dynamic effective resistance. Recent work in fully-dynamic data struc-
tures for maintaining effective resistances online [8] relied heavily upon ideas
from earlier data structures for maintaining effective resistances in offline [9,29]
or offline-online hybrid [9,28] settings.

The results of this paper were previously published online in the open access
journal arXiv [33] and have recently been extended to offline 4- and 5-edge
connectivity [31]. This new work achieves about O(

√
n) time complexity per

operation.
The rest of this paper will be dedicated to proving the following theorem:

Theorem 1. Given a sequence of t updates/queries on a graph of the form:

– Insert edge (u, v),
– Delete edge (u, v),
– Query if a pair of vertices u and v are 2-edge connected/3-edge connected/bi-

connected/tri-connected in the current graph,

there exists an algorithm that answers all queries in O(t log n) time.

For simplicity, we will assume the graph is empty at the start and end of the
sequence, but the results discussed are easily modified to start with an initial
graph G, at the cost of an additive O(m) term in the running time, where m is

3 See https://codeforces.com/blog/entry/15296 and https://codeforces.com/gym/
100551/problem/A, for example.

https://codeforces.com/blog/entry/15296
https://codeforces.com/gym/100551/problem/A
https://codeforces.com/gym/100551/problem/A
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the number of edges of G. Further, we assume a fixed vertex set of size n. Any
update sequence with arbitrary vertex endpoints can be modified to one on a
fixed set of vertices, where the size of the fixed set is equal to the largest number
of non-isolated vertices in any graph achieved in the given update sequence.
Finally, we consider the graph G to be a multigraph, since at times during our
constructions and definitions, we will need to work with multigraphs.

The paper is organized as follows. We describe our offline framework for
reducing graphs to smaller equivalents in Sect. 2. We show how simple tech-
niques can be used to create such equivalents for 2-edge connectivity and
bi-connectivity in Sect. 3. In Sect. 4 we extend these constructions to 3-edge con-
nectivity. Our most technical section is 3-vertex connectivity, where constructing
equivalent graphs requires careful manipulation of SPQR trees. Unfortunately,
due to page limits, this will only appear in the full version of this paper.

2 Offline Framework

The main idea of our offline framework is to perform divide and conquer on the
input sequence, similar to what is done in Eppstein’s offline minimum spanning
tree algorithm [10]. Consider the full sequence of updates and queries x1, . . . , xt,
where each xi is either an edge insertion, edge deletion, or query. Call each xi

an event.
Assume each inserted edge has a unique identity. Then for each inserted edge

e, we may associate an interval [I(e),D(e)], indicating that edge e was inserted
at time I(e) and removed at time D(e). Plotting time along the x-axis and edges
on the y-axis as in Fig. 1 gives a convenient way to view the sequence of events.

e4

e3

e2

e1

I(e1) I(e2) Q I(e3) D(e2) Q I(e4) D(e3) Q D(e4) D(e1)

1 2 3 4 5 6 7 8 9 10 11

Fig. 1. A timeline diagram of four edge insertions(I)/deletions(D) and three queries(Q),
with time on the x-axis and edges on the y-axis.

Fix some subinterval [l, r] of the sequence of events. Let us classify all edges
present at any point of time in the sequence xl, . . . , xr as one of two types.

1. Edges present throughout the duration (ie ≤ l ≤ r ≤ de), we call permanent
edges.

2. Edges affected by an event in this range (one or both of I(e),D(e) is in (l, r)),
we call non-permanent edges.
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While there may be a large number of permanent edges, the number of non-
permanent edges is limited by the number of time steps, r − l + 1. Therefore,
the graph can be viewed as a large static graph on which a smaller number of
events take place.

Our goal will be to reduce this graph of permanent edges to one whose size
is a small function of the number of events in the subinterval. If we may do
so without affecting the answers to the queries, we can recursively apply the
technique to achieve an efficient divide and conquer algorithm for the original
dynamic c-connectivity sequence.

We will work in the dual-view, considering cuts instead of edge-disjoint or
vertex-disjoint paths. Two vertices u and v are c-edge connected if there does
not exist a cut of c − 1 edges separating them; further, u and v are c-vertex
connected if there does not exist a cut of c − 1 vertices that separates them.

We need the following definition.

Definition 1. Given a graph G = (VG, EG) with vertex subset W ⊆ VG and a
graph H = (VH , EH) with W ⊆ VH , we say that H and G are c-edge equivalent
if, for any partition (A,B) of W , the size of a minimum cut separating A and B
is the same in G and H whenever either of these sizes is less than c. Similarly,
we say H and G are c-vertex equivalent if, for any partition (A,B,C) of W
with |C| < c, the size of a minimum vertex cut D separating A and B such that
C ⊆ D and D ∩ A = ∅, D ∩ B = ∅, is the same in G and H whenever either of
these sizes is less than c.

This gives the following.

Lemma 1. Suppose G = (VG, EG) and H = (VH , EH) are c-edge/c-vertex
equivalent on vertex set W . Let EW denote any set of edges between vertices
of W . Then H ′ = (VH , EH ∪EW )4 and G′ = (VG, EG ∪EW ) are c-edge/c-vertex
equivalent.

Proof. We first show c-edge equivalence. Let (A,B) be any partition of W and
consider the minimum cuts separating A and B in G′ and H ′. Since the edges
in EW are between vertices of W , they must cross the separation (A,B) in the
same way. Therefore, if the minimum cut separating A and B had size less than
c in either G or H, the minimum cuts separating A and B will have equivalent
size in G′ and H ′. Further, if the minimum cuts separating A and B had size
larger or equal to c in both G and H, the minimum cuts separating A and B
will also have size larger or equal to c in G′ and H ′, since we only add edges to
G′ and H ′. Thus G′ and H ′ are c-edge equivalent.

We now consider c-vertex equivalence. Consider a partition (A,B,C) of W .
As with edge connectivity, if no vertex subset D exists satisfying the conditions
of Definition 1, the introduction of additional edges between any vertices of W
will not change the existence of such a set D in G′ or H ′. Furthermore, if an

4 We take ∪ here to be in the multigraph sense; an edge uv ∈ EW is added regardless
if there is already a uv edge in EH or EG.
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edge of EW connects a vertex of A to a vertex of B, no vertex cut separates A
and B in G′ and H ′. Now suppose none of these cases is true, and there exists
a vertex set D satisfying the conditions of Definition 1 such that the removal of
D disconnects A and B in G and H and further that no edge of EW connects a
vertex of A to a vertex of B. Then the removal of vertex set D still disconnects
A and B in G′ and H ′. Thus c-vertex equivalence of G′ and H ′ follows from
c-vertex equivalence of G and H.

Now consider the graph G of permanent edges for the subinterval xl, . . . , xr

of events. Let W be the set of vertices involved in any event in the subinterval
(that is, W is the set of endpoints of all non-permanent edges in the subinterval,
as well as vertices involved in a query). We will refer to these vertices as active
vertices, and all other vertices of G not in W as inactive vertices. Lemma 1 says
that if we reduce G to a c-edge/ c-vertex equivalent graph H on set W , the
result of all queries in xl, . . . , xr on H will be the same as on G. This is because
all cuts in H and G that affect the queries (therefore of size less than c) are of
equivalent size, even after the addition of non-permanent edges in H and G.

This idea can lead to a divide and conquer algorithm if we can produce such
equivalent graphs H of small size efficiently. Specifically:

Lemma 2. Given a graph G with m edges and vertex set W of size k, if there is
an O(m) time algorithm that produces a graph H of size O(k) that is c-edge/c-
vertex equivalent to G on W , then there is an algorithm that can answer all c-
edge/c-vertex connectivity queries in a sequence of events x1, . . . , xt in O(t log n)
time.

Proof. We perform divide and conquer on the sequence of events. We take the
sequence of events x1, . . . , xt and divide it in half. Over each half, we will take
the graph of permanent edges, which we denote G, and reduce it to a c-edge/ c-
vertex equivalent graph H. We repeat the scheme recursively. As the subintervals
get smaller, non-permanent edges become permanent and are absorbed by the
production of equivalent graphs. Eventually, we reduce to subintervals with a
constant number of events, which can be answered by any algorithm of our
choice on a graph of constant size.

Consider the sizes of the graphs in each step of recursion. The graph G is
the graph produced in the previous level plus the edges that became permanent
in this interval. The graph produced at the previous level has size linear in
the number of events at the current level, and since we reduce the number of
events by a factor 2 in each step of recursion, the number of edges that become
permanent is also linear. It follows that the divide and conquer satisfies the
recurrence T (t) = 2T (t/2) + O(t), which solves to T (t) = O(t log t). If t is
polynomially-bounded by n, T (t) = O(t log n). If not, we may first break the
sequence of events x1, . . . xt into blocks of size, say, n2. Since the size of the
graph G cannot be more than O(n2) in any subinterval, we can therefore handle
each block separately and answer all queries in O(t log n) time. This proves the
lemma.
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The remainder of the paper will show the construction of 2-edge, 2-vertex,
3-edge, and 3-vertex equivalent graphs.

3 Equivalent Graphs for 2-Edge Connectivity and
Bi-connectivity

We now show offline algorithms for dynamic 2-edge connectivity and bi-
connectivity by constructing 2-edge and 2-vertex equivalents needed by Lemma
2. These two properties ask for the existence of a single edge/vertex whose
removal separates query vertices u and v. Since these cuts can affect at most
one connected component, it suffices to handle each component separately.

The underlying structure for 2-edge connectivity and bi-connectivity is tree-
like. This is perhaps more evident for 2-edge connectivity, where vertices on
the same cycle belong to the same 2-edge connected component. We will first
describe the reductions that we will make to this tree in Sect. 3.1, and adapt
them to bi-connectivity in Sect. 3.2.

At times we will make use of the term “equivalent cut”. By this we mean
that a cut C ′ is equivalent to C if it has the same size and separates the vertices
of W in the same way.

3.1 2-Edge Connectivity

Using depth-first search [21], we can identify all cut-edges in the graph and the
2-edge connected components that they partition the graph into. The case of
edge cuts is slightly simpler conceptually, since we can combine vertices without
introducing new cuts. Specifically, we show that each 2-edge connected compo-
nent can be shrunk to single vertex.

Lemma 3. Let S be a 2-edge connected component in G. Then contracting all
vertices in S to a single vertex s in H5, and endpoints of edges correspondingly,
creates a 2-edge equivalent graph.

Proof. The only cuts that we need to consider are ones that remove cut edges in
G or H. Since we only contracted vertices in a component, there is a one-to-one
mapping of these edges from G to H. Since S is 2-edge connected, all vertices
in it will be on the same side of one of these cuts. Furthermore, removing the
same edge in H leads to a cut with s instead. Therefore, all active vertices in S
are mapped to s, and are therefore on the same side of the cut.

This allows us to reduce G to a tree H, but the size of this tree can be much
larger than k. Therefore we need to prune the tree by removing inactive leaves
and length 2 paths whose middle vertex is inactive.

5 Here we slightly abuse our requirement W ⊆ VH , where VH are the vertices of H.
A map of W onto VH that preserves the cuts needed by c-edge/c-vertex equivalence
suffices.
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Lemma 4. If G is a tree, the following two operations lead to 2-edge equivalent
graphs H.

– Removing an inactive leaf.
– Removing an inactive vertex with degree 2 and adding an edge between its two

neighbors.

Proof. In the first case, the only cut in G that no longer exist in H is the one
that removes the cut edge connecting the leaf with its unique neighbor. However,
this places all active vertices in one component and thus does not separate W
and need not be represented in H.

In the second case, if a cut removes either of the edges incident to the degree 2
vertex, removing the new edge creates an equivalent cut since the middle vertex
is inactive. Also, for a cut that removes the new edge in H, removing either of
the two original edges in G leads to an equivalent cut.

This allows us to bound the size of the tree by the number of active vertices,
and therefore finish the construction.

Lemma 5. Given a graph G with m edges and k active vertices W , a 2-edge
equivalent of G of size O(k), H, can be constructed in O(m) time.

Proof. We can find all the cut edges and 2-edge connected components in O(m)
time using depth-first search [21], and reduce the resulting structure to a tree H
using Lemma 3. On H, we repeatedly apply Lemma 4 to obtain H ′.

In H ′, all leaves are active, and any inactive internal vertex has degree at
least 3. Therefore the number of such vertices can be bounded by O(k), giving
a total size of O(k).

3.2 Bi-connectivity

All cut-vertices (articulation points) can also be identified using DFS, leading to
a structure known as the block-tree. However, several modifications are needed
to adapt the ideas from Sect. 3.1. The main difference is that we can no longer
replace each bi-connected component with a single vertex in H, since cutting
such vertices corresponds to cutting a much larger set in G. Instead, we will
need to replace the bi-connected components with simpler bi-connected graphs
such as cycles.

Lemma 6. Replacing a bi-connected component with a cycle containing all its
cut-vertices and active vertices gives a 2-vertex equivalent graph.

Proof. As this mapping maintains the bi-connectivity of the component, it does
not introduce any new cut-vertices. Therefore, G and H have the same set of
cut vertices and the same block-tree structure. Note that the actual order the
active vertices appear in does not matter, since they will never be separated.
The claim follows similarly to Lemma 3.
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The block-tree also needs to be shrunk in a similar manner. Note that the
fact that blocks are connected by shared vertices along with Lemma 6 implies
the removal of inactive leaves. Any leaf component with no active vertices aside
from its cut vertex can be reduced to the cut vertex, and therefore be removed.
The following is an equivalent of the degree two removal part of Lemma 4.

Lemma 7. Two bi-connected components C1 and C2 with no active vertices that
share cut vertex w and are only incident to one other cut vertex each, u and v
respectively, can be replaced by an edge connecting u and v to create a 2-vertex
equivalent graph.

Proof. As we have removed only w, any cut vertex in H is also a cut vertex
in G. As C1 and C2 contain no active vertices, this cut would induce the same
partition of active vertices.

For the cut given by removing w in G, removing u in H gives the same cut
since C1 has no active vertices (which in turn implies that u is not active). Note
that the removal of u may break the graph into more pieces, but our definition
of cuts allows us to place these pieces on two sides of the cut arbitrarily.

Note that Lemma 6 may need to be applied iteratively with Lemma 7 since
some of the cut vertices may no longer be cut vertices due to the removal of
components attached to them.

Lemma 8. Given a graph G with m edges and k active vertices W , a 2-vertex
equivalent of G of size O(k), H, can be constructed in O(m) time.

Proof. We can find all the initial block-trees using depth-first search [21]. Then
we can apply Lemmas 6 and 7 repeatedly until no more reductions are possible.
Several additional observations are needed to run these reduction steps in O(m)
time. As each cut vertex is removed at most once, we can keep a counter in each
component about the number of cut vertices on it. Also, the second time we run
Lemma 6 on a component, it’s already a cycle, so the reductions can be done
without examining the entire cycle by tracking it in a doubly linked list and
removing vertices from it.

It remains to bound the size of the final block-tree. Each leaf in the block-tree
has at least one active vertex that’s not its cut vertex. Therefore, the block-tree
contains at most O(k) leaves and therefore at most O(k) internal components
with 3 or more cut vertices, as well as O(k) components containing active ver-
tices. If these components are connected by paths with 4 or more blocks in
the block tree, then the two middle blocks on this path meet the condition of
Lemma 7 and should have been removed by the above procedure. This gives a
bound of O(k) on the number of blocks, which in turn implies an O(k) bound
on the number of cut vertices. The edge count then follows from the fact that
Lemma 6 replaces each component with a cycle, whose number of edges is linear
in the number of vertices, and that the bi-connected components themselves are
arranged in a tree.
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4 3-Edge Connectivity

We now extend our algorithms to 3-edge connectivity. Our starting point is a state-
ment similar to Lemma 3, namely that we can contract all 3-edge connected com-
ponents. Though of no consequence to our algorithms, we note that unlike 2-edge
or biconnected components, 3-edge connected components need not be connected.

Lemma 9. Let S be a 3-edge connected component in G. Then contracting all
vertices in S to a single vertex s in H, and endpoints of edges correspondingly,
creates a 3-edge equivalent graph.

Proof. A two-edge cut will not separate a 3-edge connected component. There-
fore all active vertices in S fall on one side of the cut, to which vertex s may
also fall. The proof follows analogously to Lemma 3.

Such components can also be identified in O(m) time using depth-first
search [35], so the preprocessing part of this algorithm is the same as with the
2-connectivity cases. However, the graph after this shrinking step is no longer a
tree. Instead, it is a cactus, which in its simplest terms can be defined as:

Definition 2. A cactus is an undirected graph where each edge belongs to at
most one cycle.

On the other hand, cactuses can also be viewed as a tree with some of the
vertices turned into cycles6. Such a structure essentially allows us to repeat the
same operations as in Sect. 3 after applying the initial contractions.

Lemma 10. A connected undirected graph with no nontrivial 3-edge connected
component is a cactus.

Due to space restrictions, we save the proof for Appendix A.
With this structural statement, we can then repeat the reductions from the

2-edge equivalent algorithm from Sect. 3.1 to produce the 3-edge equivalent
graph.

Lemma 11. Given a graph G with m edges and k active vertices W , a 3-edge
equivalent of G of size O(k), H, can be constructed in O(m) time.

Proof. Lemma 10 means that we can reduce the graph to a cactus after O(m)
time preprocessing.

First consider the tree where the cycles are viewed as vertices. Note that in
this view, a vertex that’s not on any cycle is also viewed as a cycle of size 1.
This can be pruned in a manner analogous to Lemma 4:

1. Cycles containing no active vertices and incident to 1 or 2 other cycles can
be contracted to a single vertex.

2. Inactive single-vertex cycles incident to 1 other cycle can be removed.
6 Some ‘virtual’ edges are needed in this construction, because a vertex can still belong

to multiple cycles.
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This procedure takes O(m) time and produces a graph with at most O(k) leaves.
Correctness of the first rule follows by replacing a cut of the two edges within an
inactive cycle by a cut of the single contracted vertex with one of its neighbors.
The second rule does not affect any cuts separating W . It remains to reduce the
length of degree 2 paths and the sizes of the cycles themselves.

As in Lemma 4, all inactive vertices of degree 2 can be replaced by an edge
between its two neighbors. This bounds the length of degree 2 paths and reduces
the size of each cycle to at most twice its number of incidences with other cycles.
This latter number is in turn bounded by the number of leaves of the tree of
cycles. Hence, this contraction procedure reduces the total size to O(k).

We remark that this is not identical to iteratively removing inactive vertices
of degrees at most 2. With that rule, a cycle can lead to a duplicate edge between
pairs of vertices, and a chain of such cycles needs to be reduced in length.

A Omitted Proofs

Proof (Proof of Lemma 10). We prove by contradiction. Let G be a graph with no
nontrivial 3-edge connected component. Suppose there exists two simple cycles
a and b in G with more than one vertex, and thus at least one edge, in common.

Call the vertices in the first simple cycle a1, . . . , an and the second simple
cycle b1, . . . , bm, in order along the cycle.

Since these cycles are not the same, there must be some vertex not common
to both cycles. Without loss of generality, assume (by flipping a and b) that b is
not a subset of a, and (by shifting b cyclically) that b1 is only in b and not a.

Now let bfirst be the first vertex after b1 in b that is common to both cycles, so

first
def= min

i
bi ∈ a. (1)

and let blast be the last vertex in b common to both cycles

last
def= max

i
bi ∈ a. (2)

The assumption that these two cycles have more than 1 vertex in common means
that

first < last. (3)

We claim bfirst and blast are 3-edge connected.
We show this by constructing three edge-disjoint paths connecting bfirst and

blast. Since both bfirst and blast occur in a, we may take the two paths formed
by cycle a connecting bfirst and blast, which are clearly edge-disjoint.

By construction, vertices

blast+1, . . . , bm, b1, . . . , bfirst−1 (4)

are not shared with a. Thus they form a third edge-disjoint path connecting
bfirst and blast, and so the claim follows. Therefore, a graph with no 3-edge
connected vertices, and thus no nontrivial 3-edge connected component has the
property that two simple cycles have at most one vertex in common.
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