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Strictly proper scoring rules (SPSR) are incentive compatible for eliciting information about random variables
from strategic agents when the principal can reward agents after the realization of the random variables. They
also quantify the quality of elicited information, with more accurate predictions receiving higher scores in
expectation. In this paper, we extend such scoring rules to settings where a principal elicits private probabilistic
beliefs but only has access to agents’ reports. We name our solution Surrogate Scoring Rules (SSR). SSR build
on a bias correction step and an error rate estimation procedure for a reference answer de�ned using agents’
reports. We show that, with a single bit of information about the prior distribution of the random variables,
SSR in a multi-task setting recover SPSR in expectation, as if having access to the ground truth. Therefore, a
salient feature of SSR is that they quantify the quality of information despite the lack of ground truth, just as
SPSR do for the setting with ground truth. As a by-product, SSR induce dominant truthfulness in reporting.
Our method is veri�ed both theoretically and empirically using data collected from real human forecasters.
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1 INTRODUCTION
Strictly proper scoring rules (SPSR) [3, 10, 13, 28, 33] have been developed to elicit private in-
formation (e.g. probability assessment about whether the S&P 500 index will go up next week)
and evaluate the reported information for settings where the principal will have access to the
ground truth (e.g. whether S&P 500 index actually went up) at some point. The score of an agent
measures the quality of her prediction. Moreover, facing a strictly proper scoring rule, the agent
strictly maximizes her expected score by truthfully revealing her prediction. In this paper, we
focus on extending the literature of SPSR to the information elicitation without veri�cation (IEWV)
settings where the principal does not have access to the ground truth and still wants to elicit private
probabilistic beliefs. We ask the following question:

Can we extend SPSR to scoring mechanisms that can quantify the quality of
elicited probabilistic information and achieve truthful elicitation for IEWV?
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We provide a positive answer to this question for multi-task information elicitation. We develop a
family of scoring mechanisms that under certain assumptions can estimate a biased version of the
ground truth and score predictions against it by removing the bias. As a consequence, we achieve a
certain form of dominant truthfulness in eliciting private probabilistic information, a favorable
property to have for IEWV [6, 9, 11, 14, 15, 17]. To the best of our knowledge, this is the �rst work
to provide a meta solution framework that enables applications of a SPSR to the IEWV setting for
eliciting probabilistic beliefs. We name our solution as Surrogate Scoring Rules.

As a building block, we �rst introduce SSR for a stylized setting where the principal has a noisy
ground truth (and its error rates) to evaluate the quality of elicited information. We show that
SSR preserve the same information quanti�cation and truthful elicitation properties just as SPSR,
despite the lack of access to the exact ground truth. These surrogate scoring rules are inspired by
the use of surrogate loss functions in machine learning [1, 4, 22, 29, 30]. They remove bias from the
noisy ground truth such that in expectation a report is as if evaluated against the ground truth.

Built upon the above bias correction step, when the principal only has access to agents’ reports
and one bit of information about the marginal distribution of the ground truth over the entire
task set, we develop a multi-agent, multi-task mechanism, SSR mechanism , to again achieve
information quanti�cation and truthful elicitation under dominant strategy, when agents adopt the
same (arbitrary) strategy for all the tasks they are assigned, and when the principal has su�ciently
many tasks and agents. The method relies on an estimation procedure to accurately estimate the
average bias in the peer agents’ reports. With the estimation, a random peer agent’s report serves as
a noisy ground truth and SSR can then be applied smoothly to achieve the two desired properties.

We evaluate the empirical performance of SSR with 14 real-world human forecast datasets. The
results show that SSR e�ectively recover, from only agents’ reports, the true scores of agents given
by SPSR with ground truth.
We summarize our contributions as follows:
• We extend Strictly Proper Scoring Rules (SPSR) to a family of scoring mechanisms, Surrogate
Scoring Rules (SSR), that operate in the information elicitation without veri�cation (IEWV)
setting. SSR only require access to peer reports and one-bit information on the prior, and are
able to truthfully elicit probabilistic beliefs.

• SSR can build upon any existing SPSR and quantify the accuracy or value of the reported
information as the SPSR do. Therefore, our work complements the proper scoring rule
literature, and this extension largely expands the application of SPSR in challenging elicitation
setting where the ground truth is unavailable.

• For the IEWV setting, a SSR alike mechanism (SSR mechanism) induces dominant truthfulness
in reporting. To the best of our knowledge, it is the �rst dominantly truthful mechanism that
elicit probabilistic predictions.1 Therefore, we also contribute to the peer prediction literature
via providing a mechanism that elicits truthful probabilistic report in dominant strategy and
rewards agents according to prediction accuracy w.r.t. SPSR instead of correlation.

• We evaluate the empirical performance of SSR mechanism on 14 real-world human prediction
dataset. The results show that SSR are able to better assess the true accuracy of agents than
other existing peer prediction methods.

Organization. The rest of the paper is organized as follows. We survey the most relevant results
in the rest of this section. Section 2 lays out the preliminaries. Section 3 provides our model of
IEWV. In Section 4, we study the information elicitation problem in the stylized setting, where
there is a noisy version of the ground truth with known bias. We introduce surrogate scoring rules
1The mechanism proposed in [16] elicits probabilistic predictions but it is not dominantly truthful. The (variants of)
mechanisms proposed in [5, 14, 17, 31] are dominantly truthful but they elicit categorical information.
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as a powerful solution in this section. In Section 5, we propose the dominantly truthful mechanism,
SSR mechanism, to address the general IEWV problem. We present our experimental study about
our mechanisms in Section 6. We conclude the paper with Section 7. Missing details and proofs can
be found in the Appendix of the full version of this paper [18].

1.1 Related work
The most relevant literature to our paper is strictly proper scoring rules and peer prediction. SPSR
are designed to elicit subjective beliefs of random variables when the principal can evaluate agents’
prediction after the random variables realize. The pioneer work [3] proposes the famous Brier score
to quantify the quality of forecasts. Works for variants and full characterization results of SPSR
include [10, 13, 28, 33].

Peer prediction is the most popular solution to IEWV. Its core idea is to score each agent based on
a reference report elicited from the rest of the agents, and to leverage on the stochastic correlation
between di�erent agents’ information. Earlier peer prediction mechanisms incentivize truthfully
reporting at a Bayesian Nash Equilibrium (BNE) [21, 24, 26, 35, 36]. Recent works [5, 15, 31] have
made truthful equilibrium focal in the sense that it leads to the highest expected payo� to agents
among all equilibria. But there is at least one other equilibrium that gives the same expected payo�
to agents. Several more recent works established dominant truthfulness [6, 9, 11, 14, 15, 17]. In
particular, [15, 17, 27] achieve truthful reporting in dominant strategy with in�nite number of tasks,
with the follow-up work [14] achieving this goal with �nite tasks.

Most of the peer prediction works focus on eliciting categorical signals instead of probabilistic
beliefs. [16] provides a mechanism to elicit probabilistic predictions, but truthfully reporting is an
equilibrium strategy instead of a dominant strategy. When the principal does not have the access
to the ground truth but an unbiased estimator, [34] develops a family of proper scoring rules that
quanti�es the value of probabilistic predictions up to an a�ne transformation [7]. In comparison,
our mechanism does not require to know the ground truth or an unbiased estimate, while it elicits
truthful probabilistic predictions in dominant strategy, and quali�es the value of information in the
predictions as the SPSR does. We emphasize again that our solution SSR provide a meta framework
that maps each existing SPSR to a scoring method to elicit continuous probabilistic predictions.
As mentioned, our work borrows ideas from the machine learning literature on learning with

noisy data (e.g., [8, 22, 29, 32]). At a high level, our goal in this paper aligns with the goal in learning
from noisy labels – both aim to evaluate a prediction when the ground truth is missing, but instead
a noisy signal of the ground truth is available. Our work addresses the additional challenge that
the error rate of the noisy signal remains unknown a priori.

2 PRELIMINARIES
Before we introduce our model of information elicitation without veri�cation, we �rst brie�y
introduce strictly proper scoring rules (SPSR), which are designed for the well-studied information
elicitation with veri�cation settings. We highlight two nice properties of SPSR: (1) SPSR quantify
the value of information and (2) SPSR is incentive compatible for elicitation. Our goal of this paper
is to develop scoring rules that match these properties for the more challenging without veri�cation
settings. Our solutions build upon the understanding of SPSR.

SPSR are designed for eliciting subjective probability distributions of random variables when the
principal can reward agents after the realization of the random variables. SPSR apply to eliciting
predictions for any random variables, but we introduce them for binary random variables in this
section because the rest of our paper focuses on the binary case. Let � 2 {0, 1} represent a binary
event. An agent has subjective belief p for the likelihood of � = 1. When the agent reports a
prediction q for outcome � = 1, the principal rewards the agent using a scoring function S(q,�)
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that depends on both the agent’s report and the realized outcome. Strict properness of S(·, ·) is
de�ned as follows.

De�nition 2.1. A function S : [0, 1] ⇥ {0, 1} ! R that maps the reported belief q and the
ground truth � into a score is a strictly proper scoring rule if it satis�es E[S(p,�)] > E[S(q,�)], for
all p,q 2 [0, 1] and p , q. The expectation is taken with respect to � ⇠ Bernoulli(p).
There is a rich family of strictly proper scoring rules, including Brier (S(q,�) = 1 � (q � �)2),

logarithmic (S(q,�) = log(q) if � = 1 and S(q,�) = log(1 � q) if � = 0) and spherical scoring
rules [10].

Incentive compatibility of SPSR. The de�nition of SPSR immediately gives incentive com-
patibility. If an agent’s belief is p, reporting it truthfully uniquely maximizes his expected score.

SPSR quantify value of information. Another nice property of SPSR is that they quantify
the value/accuracy of reported predictions. To give a rigorous argument, we use an indicator vector
y of length 2 to represent outcome �, with 1 at the �-th position and 0 otherwise. That is, y = (0, 1)
if � = 1 and y = (1, 0) if � = 0. We use a probability vector q = (1 � q,q) to represent probability q.
By the representation theorem [10, 19, 28], any strictly proper scoring rule can be characterized
using a corresponding strictly convex functionG as follows: S(q,�) = G(y)�DG (y, q), where DG is
the Bregman divergence function of G. Now consider the unknown true distribution of �, denoted
p⇤ = (1 � p⇤,p⇤). The expected score (with respect to p⇤) of an agent with prediction q is

E�⇠p⇤ [S(q,�)] = E�⇠p⇤ [G(y)] � E�⇠p⇤ [DG (y, q)].
This means that the maximum score an agent can receives in expectation is E�⇠p⇤ [G(y)] and
this happens when the agent reports q = p⇤. Moreover, a prediction q with smaller divergence
E�⇠p⇤ [DG (y, q)] receives higher score in expectation. Intuitively, E�⇠p⇤ [DG (y, q)] characterizes
how “far away" q is from the true distribution of � under divergence function DG . This implies
that a strictly proper scoring rule S quali�es the the accuracy of a prediction q based on the
corresponding divergence function. When S is taken as the Brier scoring rule, the corresponding
Bregman divergence is the quadratic function. Then E�⇠p⇤ [DG (y, q)] = | |p⇤ � q| |2, implying that a
prediction closer to p⇤ according to `2 norm receives a higher score in expectation. When S is taken
as the log scoring rule, the corresponding Bregman divergence is the KL-divergence, DKL , which is
also called relative entropy. Then, E�⇠p⇤ [DG (y, q)] = DKL(p⇤ | |q) + H (p⇤) where H is the entropy
function. A prediction with smaller KL-divergence from p⇤ receives a higher score in expectation.
This property of SPSR allows the principal to take an expert’s average score over a set of prediction
tasks as a proxy of his average accuracy and rank experts accordingly.

3 OUR MODEL
The goal of this work is to develop scoringmechanisms that quantify the value of elicited information
and are incentive compatible, similar to SPSR, but for settings without veri�cation, i.e. when the
principal does not have access to the realization of the predicted binary events. We model the
information elicitation without veri�cation problem for a multi-task setting. The details of our
model and our design goals are described below.

3.1 Model of Information Structure
A principal has a set of [M] = {1, ...,M} binary random variables (tasks) �k 2 {0, 1} for all k 2 [M],
which she wants to obtain predictions for. Part of our results can be generalized to non-binary
tasks, which can be found in Section B of the Appendix [18]. There is a set [N ] = {1, ...,N } of
agents. Neither the principal nor the agents have access to the ground truth �k , but agents each

EC’20 Session 8c: Crowdsourcing

856



observe a private signal oi ,k , which relates to �k , for task k , where oi ,k comes from a �nite domain
[Oi ] = {0, 1, ...,Oi }. We allow that the domains of signals di�er across agents. We make a few
assumptions on the information structure of this setting.

A��������� 1. Tasks are independent and similar a priori, that is, the joint distribution of
(o1,k , ...,oN ,k ,�k ) is i.i.d. for all task k 2 [M].

This assumption is natural when the set of tasks are of similar nature, for example, tasks asking
about the reproducibility of studies published in a particular journal within a certain time period.
While researchers may a priori hold some beliefs about the journal-wide replication rate, they
receive private signals about each study which allows them to give more informed predictions for
individual studies. We note that most studies in the �eld of IEWV make a similar assumption.2
Agents share a common prior p := Pr[�k = 1] for each task k . We denote the distribution of

a signal oi ,k conditioned on �k by D+
i (conditioned on �k = 1) and D�

i (conditioned on �k = 0).
According to Assumption 1, this conditional distribution (D+

i ,D�
i ) is shared across di�erent tasks

for agent i . We assume thatD+
i , D�

i , otherwise, oi ,k is independent with�k . Each agent knows her
ownD+

i andD�
i . For each task, we further assume that agents’ signals are independent conditioned

on the ground truth.

A��������� 2. For each task, the agents’ signals are mutually independent conditional on the
ground truth. That is, 8k 2 [M], Pr

⇥
o1,k , ...,oN ,k |�k

⇤
=
Œ

i 2[N ] Pr[oi ,k |�k ].

This assumption is to exclude scenarios where agents have some form of “side information”
to coordinate reports. With “side information”, it is impossible to have any mechanism that can
truthfully elicit agents’ predictions without access to the ground truth. This issue has been noted in
IEWV for objective questions by Kong et al. [14, 16] and the same assumption has been adopted.

Each agent forms her own belief about�k based on her received signal oi ,k . We use pi ,k := Pr[� =
1|oi ,k ] to represent agent i’s posterior belief on task k . The principal, who knows neither the prior
p nor the conditional signal distributions D+

i and D�
i , hopes to elicit predictions pi ,k from some

agents. We make a technical assumption about the prior and the knowledge of the principal.

A��������� 3. The common prior p , 0.5 and the principal knows (p > 0.5).

We assume that the principal knows one bit of information about the prior of tasks. This bit of
information can help the principal distinguish between a set of truthful predictions vs. a set of
inverted predictions (i.e. everyone reporting 1 � pi ,k instead of pi ,k ), which otherwise is impossible.
In practice, this bit of information is usually easy to get. For example, the principal may not know
the replication rate of a journal but knows whether on average more than half of the studies are
successfully replicated. The assumption p , 0.5 is a technical condition we will need later to
distinguish the true scenario from the inverted one.
pi ,k encodes the randomness of oi ,k . And, pi ,k is a discrete random variable with values taken in

[0,1]. Assumptions 1 and 2 jointly imply that the agents’ posterior beliefs pi ,k are homogeneous
across tasks and conditionally independent across agents.

P���������� 3.1. Under Assumptions 1 and 2, agents’ beliefs pi ,k are

2 In [5, 14, 17, 27, 31], where they consider information elicitation for subjective questions (i.e., questions with no ground
truth concept, e.g., how do you rank the movie), the authors all assumed that the joint distribution of agents’ signals is the
same for each task and signals are independent across tasks. In [14, 16], where they consider information elicitation for
objective questions (i.e., questions with ground truth), the authors all assumed that the joint distribution of agents’ signals
together with the ground truth is the same for each task, and all signals and the ground truth are independent across tasks.
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• Conditionally homogeneous and independent across tasks: For each agent i 2 [N ], condi-
tioned on �k , her posterior beliefs pi ,k are i.i.d. for all tasks k 2 [M]. That is, 8k,k 0 2 [M]
and k , k 0, 8u 2 [0, 1],8� 2 {0, 1}, Pr[pi ,k = u |�k = �] = Pr[pi ,k 0 = u |�k 0 = �]; and 8M 0 ✓
[M], Pr[{pi ,k }k 2M 0 |{�k }k 2M 0] = Œ

k 2M 0 Pr[pi ,k |�k ].
• Conditionally independent across agents: 8k 2 [M], Pr[p1,k , ...,pN ,k |�k ] =

Œ
i 2[N ] Pr[pi ,k |�k ].

The “conditionally homogeneous" condition simply states that agent’s “expertise levels" are
similar across tasks with same outcomes. In fact, our results hold for models with more general
information structures as long as Proposition 3.1 and Assumption 3 are satis�ed.3

3.2 Mechanism design goals
The principal is interested in designing a scoringmechanism to facilitate the elicitation of predictions
for �k . For each task k , the principal can ask some subset [Nk ] ✓ [N ] agents to give a prediction
qi ,k ,8i 2 [Nk ]. qi ,k can be di�erent from pi ,k . The principal then pays each agent scores based on
the predictions she collects from all tasks. We denote [Mi ] ✓ M the set of tasks agent i answers.
Given a mechanism, an agent may report her belief via some strategy and in�uence the �nal

predictions elicited. We consider that agents adopt strategies for each task independently, but each
strategy could be a mixed strategy.

De�nition 3.2. Let �[0,1] be the space of all probability distributions over [0, 1]. The strategy
of an agent i on task k is a mapping � : [0, 1] ! �[0,1] that maps her posterior belief pi ,k into a
distribution � (pi ,k ) over [0,1] such that the agent draws a report qi from � (pi ,k ).

We de�ne a strategy as a mapping from the space of posterior beliefs, rather than from the space
of private signals. This is without loss of generality because if two realizations of oi ,k give the same
posterior, we can merge the two realizations into one combined realization in our model. We also
assume that each agent adopts the same strategy across tasks.

A��������� 4. (Consistent Strategy) For any agent i 2 [N ], she adopts the same strategy �i (·) over
all tasks k 2 [Mi ].

This assumption is reasonable as we assume that tasks are a priori similar to each agent. We
denote the strategy adopted by agent i on all tasks by �i (·) and denote the strategy pro�le of all
agents except agent i by ��i . We also sometimes abuse our notations and use �i and ��i to represent
the predictions resulted from these strategies.

The principal would like to design a mechanismM that, when only having access to the reported
predictions of the agents, can score agents for each of their reported predictions. The score that
agent i receives for predicting qi ,k for task k , when other agents use strategies ��i on all assigned
tasks, is denoted as Ri (qi ,k ;��i ). Ri (qi ,k ;��i ) depends on agent i’s prediction on task k and can
depend on other agents’ predictions on all other tasks. We restrict our attention to anonymous
mechanisms and hence drop the subscript i in the score function: we have R(qi ,k ;��i ) as the score
of prediction qi ,k . E[R(qi ,k ;��i )] is the expected score that agent i receives for reporting qi ,k when
other agents use strategies ��i . The expectation is taken over the randomness in the ground truth,
other agents’ signals, and other agents’ strategies.

In this IEWV setting, the principal hopes to designM with similar properties as what SPSR have
for the information elicitation with veri�cation settings: quanti�cation of the value of information
and incentive compatibility.

3Here we allow the priors of di�erent tasks to be di�erent and the p in Assumption 3 refers to the mean prior of all tasks.
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Quantify value of information. The score of each prediction should re�ect the true accuracy
of the prediction, similar to what SPSR achieve. That is, for all i , k and qi ,k and for any true
distribution of ground truth �k , E[R(qi ,k ;��i )] = f

�
E�k [S(qi ,k ,�k )]

�
holds for a SPSR S(·, ·) and a

strictly increasing function f .
This design goal aspires that the score an agent receives for a prediction in IEWV recovers what

the agent would receive with a SPSR (with access to the ground truth) in expectation.

Dominant truthfulness. Amechanism is dominantly truthful if each agent reporting truthfully
on each assigned task leads to higher expected payo� than other strategies, regardless of other
agents’ reporting strategies.

De�nition 3.3. For an agent i , a strategy �i is a (weakly) dominant strategy if 8k 2 [Mi ] and oi ,k ,
8i 2 [N ], 8{D+

j ,D�
j }j 2[N ], 8� 0

i ,8��i : E[R(�i ;��i )|oi ,k ] � E[R(� 0
i ;��i )|oi ,k ], and �i is a strictly

dominant strategy if the equality holds only when � 0
i = �i .

A dominant truthful mechanism in IEVW is a mechanism where truthful reporting is each agent’s
weakly dominant strategy and a strictly dominant strategy if her peers’ reports are informative 4.
Let � ⇤

i be the truthful reporting strategy for agent i , i.e., � ⇤
i is the function that maps a belief pi

to a distribution where all probability mass is put on pi . Let q̄�i ,k := 1
N�1

Õ
j,i qj ,k be the mean of

agents’ reported predictions other than agent i’s. Note that q̄�i ,k is a random variable because of
the randomness in reporting strategy �j and the randomness in signal oj ,k received by agent j for
j , i . We say that q̄�i ,k is informative about the ground truth if E[q̄�i ,k |�k = 1] , E[q̄�i ,k |�k = 0].
We formally de�ne the dominantly truthful mechanisms as follows.

De�nition 3.4. (Dominant truthfulness). A mechanism M is dominantly truthful if 8i 2 [N ],
8k 2 [Mi ] and oi ,k , 8{D+

j ,D�
j }j 2[N ], 8�i , � ⇤

i ,8��i : E[R(� ⇤
i ;��i )|oi ,k ] � E[R(�i ;��i )|oi ,k ], and

the inequality holds strictly for any strategy pro�le ��i under which q̄�i ,k is informative about �k .

In De�nition 3.4, we characterize the condition that peers’ reports are informative by that the
expectation of the mean of peers’ reports di�ers for di�erent realizations of the ground truth.

4 ELICITATIONWITH NOISY GROUND TRUTH
Before we develop mechanisms with desirable properties for our general model, we �rst achieve
these desirable properties, in this section, under a very stylized setting: elicitation with noisy ground
truth. In this setting, we introduce surrogate scoring rules as an e�ective solution. These scoring
rules will be the building blocks of our mechanisms for the general model.
This stylized setting has only one event � and one agent i , who observes a signal oi generated

from distribution Di (�) and forms the posterior pi = Pr[� = 1|oi ]. The principal, although cannot
observe �, has access to a noisy ground truth z that has two error rates, e+z and e�z , de�ned as
follows: e+z := Pr[z = 0|� = 1], e�z := Pr[z = 1|� = 0]. They are the probabilities that z mismatches
� under the two realizations of �. The principal knows the realization z and e+z , e�z . The principal
cannot expect to do much if z is independent of �. Hence, we assume that z and � are stochastically
relevant, an assumption commonly adopted in the information elicitation literature [21].
4Usually, in a dominant truthful mechanism, truthful reporting is the strict dominant strategy. In IEWV, however, if all the
peer agents report predictions independently w.r.t. the ground truth, then there will be no information available for the
mechanism to incentivize truthful reporting. Therefore, it is inevitable to allow a dominant truthful mechanism in IEWV to
pay truthfully reporting strictly higher only when the peer reports are informative about the ground truth. For example,
in [14, 17], the dominant truthful mechanism is de�ned to be a mechanism that pays truthful reporting strictly higher when
for each agent, there exists at least one peer agent reporting truthfully. We will see later that in our de�nition, we do not
require that at least one peer agent reports truthfully. We allow all peer agents to be non-truthful but the mean of their
peers reports should be dependent with the ground truth.
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De�nition 4.1. Random variable z is stochastically relevant for random variable � if the distribu-
tion of � conditioned on z is di�erent for di�erent realizations of z.

The following lemma shows that the stochastic relevance requirement directly translates to a
constraint on the error rates, that is, e+z + e�z , 1.

L���� 4.2. z is stochastically relevant to � if and only if e+z + e�z , 1.

The goal of the principal in this setting is to design a scoring rule to elicit the posterior pi
truthfully using this noisy ground truth z and the knowledge of error rates e+z , e�z . We de�ne the
design space of the scoring rule with noisy ground truth as follows.

De�nition 4.3. Given a noisy ground truth z with error rates (e+z , e�z ) 2 [0, 1]2, a scoring rule with
noisy ground truth is a function R : [0, 1] ⇥ {0, 1} ! R that maps a prediction qi 2 [0, 1] and a
realized noisy ground truth z 2 {0, 1} to a score. The function R can depend on error rates (e+z , e�z ).
Adopting the terminology from the scoring rule literature, we refer to strict properness as the

property that a scoring rule with noisy ground truth gives a strictly higher expected score to a
truthful report than a non-truthful report.

De�nition 4.4. A scoring rule R(qi , z) with noisy ground truth z is strictly proper if it holds for all
realizations of oi and pi = Pr[� = 1|oi ], that 8qi 2 [0, 1](qi , pi ),Ez |oi [R(pi , z)] > Ez |oi [R(qi , z)].

4.1 Surrogate scoring rules (SSR)
In this section, we present our solution, the surrogate scoring rules, for this stylized setting. SSR is
a family of scoring rules with noisy ground truth and is strictly proper under mild conditions.

De�nition 4.5 (Surrogate Scoring Rules). R : [0, 1] ⇥ {0, 1} ! R+ is a surrogate scoring rule if
for some strictly proper scoring rule S : [0, 1] ⇥ {0, 1} ! R+ and a strictly increasing function
f : R+ ! R+, it holds for that 8pi ,qi , e+z , e�z 2 [0, 1] and e+z + e�z , 1, Ez [R(qi , z)] = f

�
E� [S(qi ,�)]

�
,

where � is the ground truth drawn from Bernoulli(pi ) and z is the noisy ground truth generated by
� with error rates e+z , e�z .

The above de�nition seeks a surrogate scoring rule R(·) that helps us remove the bias in z and
return us a strictly proper score in expectation. The idea is borrowed from the machine learning
literature on learning with noisy data [4, 20, 22, 29, 32]. SSR can be viewed as a particular class of
proxy scoring rules [34]. But the approach of [34] to achieve properness is to plug in an unbiased
proxy ground truth to a strictly proper scoring rule. SSR on the other hand directly work with
biased proxy and the scoring function is designed to de-bias the noise. Easily we have the following
strict properness result for SSR:

T������ 4.6. Given an agent’s �xed prior p and private signal oi , SSR R(qi , z) with noisy ground
truth z is strictly proper for eliciting the posterior pi = Pr[� = 1|oi ] if z and oi are independent
conditioned on �, and z are stochastically relevant to �.

We give an implementation of SSR, which we name as SSR� :

R(qi , z = 1) = (1 � e�z ) · S(qi , 1) � e+z · S(qi , 0)
1 � e+z � e�z

, (1)

R(qi , z = 0) = (1 � e+z ) · S(qi , 0) � e�z · S(qi , 1)
1 � e+z � e�z

, (2)

where S can be any strictly proper scoring rule. We note that the knowledge of the error rates
e+z , e

�
z is crucial for de�ning the above SSR. This SSR function is inspired by Natarajan et al.[22]. It

has the following property:

EC’20 Session 8c: Crowdsourcing

860



Mechanism 1 SSR mechanism (Sketch)
1: For each task k , we uniformly randomly pick at least 3 agents, assign task k to them and collect

their reported predictions.
2: For each agent i and each task k she answers, we construct a reference report zi ,k using peer

agents’ reports; estimate the error rates e+zi ,k and e�zi ,k for zi ,k .
3: Pay each agent i for qi ,k on task k by SSR R(qi ,k , zi ,k ) if e+zi ,k + e+zi ,k , 1, and pay 0, otherwise.

L���� 4.7 (L���� 1, [22]). For SSR� : 8qi , e+z , e�z 2 [0, 1] and e+z + e�z , 1,8� 2 {0, 1} :
Ez |� [R(qi , z)] = S(qi ,�).

Intuitively speaking, the linear transform in SSR� will ensure that in expectation, the prediction
qi is scored as if it was scored against � using a SPSR. This can be proved fairly straightforwardly
via spelling out the expectation. Interested readers are also referred to [22]. We would like to note
that other surrogate loss functions designed for learning with noisy labels can also be leveraged to
design SSR.

T������ 4.8. SSR� is a surrogate scoring rule and8pi ,qi , e+z , e�z 2 [0, 1](e+z +e�z , 1),Ez [R(qi , z)] =
E� [S(qi ,�)], where � is the ground truth drawn from Bernoulli(pi ) and z is the noisy ground truth
generated by � with error rate e+z , e�z .

With Theorem 4.8 we know that SSR� quanti�es the quality of information just as the strictly
proper scoring rule S does. Further, SSR� has the following variance:

T������ 4.9. Let pz := Pr[z = 1]. SSR� su�ers the following variance:

Ez
⇥
R(qi , z) � Ez [R(qi , z)]

⇤2
=

2pz · (1 � pz )
(1 � e+z � e�z )2

· (S(qi , 1) � S(qi , 0))2 . (3)

5 ELICITATIONWITHOUT VERIFICATION
The results in the previous section are built upon the fact that there exists a noisy copy of the
ground truth and we know its error rates. In this section, we apply the idea of SSR to information
elicitation without veri�cation. A reasonable way to do so is to take agents’ reports as the source
for this noisy reference of the ground truth. Yet the principal cannot assume the knowledge of
the noise in agents’ reports. We �nd a way to construct a noisy ground truth from agents’ report
with estimable error rates. We refer this noisy ground truth as the reference report. Applying SSR
with this reference report, we can �nally get a dominantly truthful mechanism that elicits the
information and that the payment of the mechanism also quanti�es the value of information of
agents’ reports as what the SPSR do. We call this mechanism SSR mechanism . We present the
sketch of our mechanism in Mechanism 1.
The challenge of designing such a mechanism is to construct such a reference report zi ,k in

Mechanism 1 and successfully estimate its error rates e+zi ,k , e
�
zi ,k . In the following sections, we show

how to construct such a reference report and how to estimate the error rates.

5.1 Reference report and its property
Let sj ,k be a binary signal independently drawn from Bernoulli(qj ,k ). We term sj ,k the prediction
signal of agent j on task k . We construct the reference report zi ,k for agent i as follows:We uniformly
randomly pick an agent j from the peer agent set [N ]\{i}, collect her prediction qj ,k , and draw the
prediction signal sj ,k ⇠ Bernoulli(qj ,k ). We use this sj ,k as the reference report zi ,k .

Clearly, conditioned on the reports qj ,k , j 2 [N ], the distribution of zi ,k is Bernoulli
�
q̄�i ,k

�
as we

uniformly randomly pick a prediction signal. Note that in ourmodel,qi ,k ⇠ �i (pi ,k ), i 2 [N ],k 2 [M].
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Due to Proposition 3.1 and Assumption 4, q̄�i ,k is i.i.d. across tasks k 2 [M]. Thus, zi ,k ,k 2 [M]
have the following two properties.

L���� 5.1. 8i 2 [N ],k 2 [M], zi ,k is independent to agent i’s posterior pi ,k conditioned on �k .

This property ensures that zi ,k can be used as the conditionally independent noisy ground truth
by Theorem 4.6 and thus, SSR with zi ,k is strictly proper for eliciting the posterior belief pi ,k .

L���� 5.2. For any strategy pro�le agents play, reference reports of an agent i 2 [N ] are i.i.d. and
have the same error rates w.r.t. the ground truth, i.e., 8�1, ...,�N ,8i 2 [N ], 9e+i , e�i 2 [0, 1],8k 2 [M] :
Pr[zi ,k = 0|�k = 1] = e+i , Pr[zi ,k = 1|�k = 0] = e�i .

This lemma shows that the error rates of the reference reports for agent i are the same across
all tasks. This property makes it possible to estimate the error rates using multi-task data. In the
following sections, we introduce the estimation of the error rates and complete our mechanism.

5.2 Asymptotic se�ing
To better deliver our idea for error rates estimation, we start with an asymptotic setting with in�nite
amounts of tasks and agents, i.e.,M,N ! 1. We will later provide �nite sample justi�cation for
our mechanism.

We focus on estimating the error rates of the reference reports for agent i . Based on Lemma 5.2, we
can use z to denote the reference report for agent i on a generic task, and we only need to estimate
the error rates e+z , e�z of z. Our estimation algorithm relies on establishing three equations. We
show that the three equations, with knowing their true parameters (which is true in the asymptotic
setting), together will uniquely de�ne e+z , e�z . Then, in next section, we argue that in the �nite
sample setting, with imperfect estimate of parameters from agents’ reports, the solution from the
perturbed set of equations will approximate the true values of e+z , e�z , with guaranteed accuracy.

To construct the three equations, we make the following preparation. Let S�i := {sj ,k }j,i ,k 2[M ]
be a realization of the prediction signals from all agents except i on all tasks. For a single task, we
draw three random variables z1, z2, z3. z1 is a prediction signal uniformly randomly picked from all
peer agents’ prediction signals on that task. Excluding the picked signal z1, we then a uniformly
randomly pick a prediction signal and set it as z2. Finally, we uniformly randomly pick a prediction
signal as z3, excluding both z1 and z2. z1, z2, z3 are independent conditioned on the ground truth as
agents’ reports are conditional independent and we have in�nite number of agents. Meanwhile,
z1 has the same error rates with the reference report z as they two come from the same random
process. With in�nite number of agents, z2 and z3 also have the same error rates as z. For the same
reason to z (Proposition 3.1 and Assumption 4), z1, z2, z3 each is i.i.d. across tasks. Therefore, with
in�nite tasks, we can know any statistics about z1, z2 and z3 by counting corresponding frequencies
on S�i . We can then establish the following three equations.

1. First-order equation: The �rst equation is based on the distribution z. Let ��i := Pr[z = 1].
��i can be expressed as a function of e+z , e�z via spelling out the conditional expectation:

��i = p · Pr[z = 1|� = 1] + (1 � p) · Pr[z = 1|� = 0] = p · (1 � e+z ) + (1 � p) · e�z . (4)

2. Matching between two prediction signals: The second equation is derived from a second
order statistics, namely the matching probability. We consider the matching-on-1 probability of
two uniformly randomly picked prediction signals z1, z2 (on the same task, but from di�erent
peer agents). Denote this probability as ��i := Pr[z1 = 1, z2 = 1]. This matching probability can be
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Mechanism 2 SSR mechanism
1: For each task k , uniformly randomly pick at least 3 agents, assign task k to them, collect their

reported predictions and generate the prediction signal for each prediction.
2: For each agent i and each task k she answers, uniformly randomly select one prediction signal

sj ,k from her peers’ prediction signals on the same task and let the reference report zi ,k := sj ,k .
3: Solve Eqn.(4, 5, 6) to obtain e�z , e

+
z .

4: Pay each agent i for qi ,k on task k by SSR� if e+zi + e+zi , 1, and pay 0, otherwise.

written as a function of e�z , e+z :

��i = p · Pr [z1 = 1, z2 = 1|� = 1] + (1 � p) · Pr [z1 = 1, z2 = 1|� = 0]
= p · Pr [z1 = 1|� = 1] · Pr [z2 = 1|� = 1] + (1 � p) · Pr [z1 = 1|� = 0] Pr [z2 = 1|� = 0]
= p · (1 � e+z )2 + (1 � p) · (e�z )2. (5)

3. Matching among three prediction signals: The third equation is obtained by going one
order higher that, we check the matching-on-1 probability over three prediction signals z1, z2, z3
drawn randomly from three di�erent peer agents on the same task. Denote this probability as
��i := Pr[z1 = z2 = z3 = 1]. Similarly as Eqn. (5), we have:

��i = p · (1 � e+z )3 + (1 � p) · (e�z )3. (6)

Notice that all three parameters ��i , ��i ,��i can be perfectly estimated using S�i with in�nite
number of tasks and agents, yet without accessing any of the ground truth. With the knowledge of
these three parameters, we prove the following:

T������ 5.3. (p, e�z , e+z ) are uniquely identi�ed using Eqn.(4, 5, 6) under Assumption 3, that is,
when p , 0.5 and the principal knows (p > 0.5).

The solution of Eqn.(4, 5, 6) can be expressed in closed form, which we present in Mechansim 3 in
the �nite sample setting. Now we have completed our mechanism. The full mechanism is presented
in Mechanism 2. We further show that the three equations are both necessary and su�cient to
estimate the error rates:

T������ 5.4. The higher order (� 4) matching equations do not bring in additional information.

Theorem 5.3 shows that without ground truth data, knowing how frequently human agents reach
consensus with each other will help us characterize their (average) subjective biases. Further, it
implies that SSR mechanism is asymptotically (inM,N ) preserving the information quanti�cation
as strictly proper scoring rules do and induces a strictly dominant strategy for agent to report
truthfully, when z is informative (weakly dominant strategy otherwise). To see this, because both
e+z , e

�
z are set to their true values, we have E[R(qi ,k , z)] = E[S(qi ,k ,�)]. Formally,

T������ 5.5. When z is informative, asymptotically (M,N ! 1) the expected score of SSR mech-
anism equals to the score of its corresponding strictly proper scoring rule S : E[R(qi ,k , z)] = E[S(qi ,k ,�)].

C�������� 1. SSR mechanism is dominantly truthful with in�nite number of tasks and agents.

R����� 1. Theorem 5.3 and 5.5 rely on Proposition 3.1 and Assumptions 3 and 4. Proposition 3.1 and
Assumption 4 guarantee that there exists, across the predictions of di�erent tasks, a similar information
pattern that we can learn to infer the ground truth. Therefore, they can be hardly relaxed in IEVW
settings. For Assumption 3, we’d like to argue that at least one bit of information is needed in order to
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Mechanism 3 Estimation of e+z , e�z
1: Estimate g��i , f��i , f��i . Compute the following quantities:

a =
f��i �g��i f��if��i � (g��i )2 , b =

g��i f��i � (f��i )2f��i � (g��i )2 , x =
a �

p
a2 � 4b
2

, x =
a +

p
a2 � 4b
2

2: Denote by e, e as the x, x that are closer and further to g��i respectively:
e = argminx 2{x ,x } |x �g��i |, e = argmaxx 2{x ,x } |x �g��i |

3: If p < 0.5: ee�z := e, ee+z := 1 � e; else if p > 0.5: ee�z := e, ee+z := 1 � e .

distinguish the case when agents are truthfully reporting from the case that agents are misreporting
by reverting their observations. This is because for every possible tuple (p, e�z , e+z ) resulted by truthful
reporting from agents, consider the following counterfactual world: relabeling 0 ! 1 and 1 ! 0,
we will have another distribution of observations characterized by the tuple (1 � p, e+z , e

�
z ). Then

agents misreporting will lead to a distribution with parameters being the same as (p, e�z , e+z ). Thus the
mechanism designer cannot tell the above two cases apart. Some work [14] relaxes Assumption 3 by
excluding the “relabeling equilibrium” from consideration.

We will show in the next section, SSR mechanism is also dominantly truthful with �nite number
of tasks and agents under mild conditions. Several remarks follow. (1) We would like to emphasize
again that for an agent i , both z and R(·) come from prediction signals of her peer agents’ reports
S�i : z will be decided by agents j , i’s reports S�i . R(·) not only has z as input, but its de�nition
also depends on e+z and e�z , which will be learned from S�i . (2) When making decisions on reporting,
we show under our mechanisms agents can choose to be oblivious of how much error presents in
others’ reports. This removes the practical concern of implementing a particular Nash Equilibrium.
(3) Another salient feature of our mechanism is that we have migrated the cognitive load for having
prior knowledge from agents to the mechanism designer. Yet we do not assume the designer has
direct knowledge neither; instead we will leverage the power of estimation from reported data to
achieve our goal.

5.3 Finite sample analysis
With �niteM,N , there are multiple reasons that we won’t be able to obtain perfect estimates of
e+z , e

�
z . For instance, in forming Eqn.(4, 5, 6), the error rates of two randomly picked prediction

signals z2, z3 will not have the exactly same error rates with z. However when the number of agent
is large enough, we will show that the error rates of z2, z3 can approximate these e+z , e�z with small
and diminishing errors (as a function of number of agents N ). This can factor into the errors in
estimating ��i . Furthermore, the algorithm’s estimates of the following three parameters for each
agent i , ��i , ��i ,��i , are not perfect.
All three parameters ��i , ��i ,��i can be estimated from agents’ reports, without the need of

knowing any ground truth labels. Let k1,k2,k3 be the three agents whose prediction signals are
selected as z1, z2, z3 for each task k 2 [M] (In practice, we only need to assign task k to these three
randomly selected agents). Then we estimate:

g��i =
ÕM

k=1 (sk1,k = 1)
M

, f��i =
ÕM

k=1 (sk1,k = sk2,k = 1)
M

, f��i =
ÕM

k=1 (sk1,k = sk2,k = sk3,k = 1)
M

.

We then solve the system of equations (4, 5, 6) with these estimates to obtain estimated error rates
e+z , e

�
z . We present the solution in Mechanism 3.

EC’20 Session 8c: Crowdsourcing

864



We give a statistical consistency analysis for this estimation procedure for this �nite sample
setting. We bound the estimation error in estimating reports’ error rate as a function ofM and N .
The �rst source of errors is due to the imperfect estimations of ��i ,��i ,��i . The second one is due
to estimation errors for matching probability with heterogeneous agents. Formally we have the
following theorem:

L���� 5.6. ee+z , ee�z given by Mechanism 3 satisfy |ee+z � e+z |  �, |ee�z � ee�z |  � with probability at

least 1 � � , where � := O
� 1
N +

q
ln 1

�
M

�
, which can be made arbitrarily small with increasingM and N .

Denote by � := (1�p)(1� e�z � e+z ). The above estimation of e+z , e�z further leads to the following
the above consistency result:

T������ 5.7. For the scoring function eR(·) de�ned for SSR� using ee+z , ee�z , when M,N are large
enough s.t. �  (1 � e�z � e+z )/4, with probability at least 1 � � ,

|eR(qi , z) � R(qi , z)| 
12� ·max S

�2 , 8qi 2 [0, 1], z 2 {0, 1},

where max S is the maximum score of the underlying SPSR that eR builds on. This further implies that

|E[eR(qi , z)] � E[R(qi , z)]| 
12� ·max S

�2 , |E[eR(qi , z)] � E[S(qi ,�)]| 
12� ·max S

�2 , 8qi 2 [0, 1]

Now we present the incentive guarantees in �nite sample regime under noisy estimations. We
�rst note that any linear transformation of a particular SSR mechanism preserves its incentive
property. To simply our analysis, we will �rst perform the following operation to “cancel" the
e�ects of noisy estimation of e+z , e�z in the denominator of R(·): eR(qi , z) := (1 � ee+z � ee�z ) · eR(qi , z) -
note the above linear transform (independent of agent’s reports) does not change the incentive
property of SSR.

T������ 5.8. When z is informative, set M,N large enough but �nite, SSR mechanism returns
a score that is �(M,N ) close to the score of its corresponding strictly proper scoring rules, where

�(M,N ) = O
� 1
N +

q
lnM
M

�
is a diminishing term in both M and N . Further, for each agent i , it is a

strictly dominant strategy to truthfully report qi ,k ,8k when S(q,�) is strongly concave and Lipschitz
in q for any � 2 {0, 1} andM,N are su�ciently large.

The intuition about dominant truthfulness part is that when M,N are su�ciently large, the
estimation error is too small such that the deviation gain through utilizing the error cannot surpass
the loss in the true score, and the quali�edM,N are determined by the curvature of S(·).

C�������� 2. When SPSR S(q,�) is strongly concave and Lipschitz in q for all � 2 {0, 1}, the SSR
mechanism built upon S(·) is dominantly truthful with �nite but su�ciently large N andM .

For example, Log scoring rule over interval [0.01, 0.99] is strongly concave and Lipschitz.5

6 EMPIRICAL STUDIES
Using 14 real-world human forecasting datasets, we demonstrate that without the need of accessing
ground truth, SSR mechanism demonstrate stronger correlation with the true scores given by SPSR
(which use ground truth outcome) than the other peer prediction methods across di�erent datasets
we tested over.
5When log scoring rule is applied, the range of the prediction is usually restricted to a closed interval excluding point 0 and
1, e.g., [0.01, 0.99]. This is because log scoring rule is not well-de�ned (in�nite) when the prediction is 0 (or 1) while the
ground truth is 1 (or 0).
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Items G1 G2 G3 G4 H1 H2 H3 M1a M1b M1c M2 M3 M4a M4b

# of questions (original) 94 111 122 94 88 88 88 50 50 50 80 80 90 90
# of agents (orginal) 1972 1238 1565 7019 768 678 497 51 32 33 39 25 20 20

After applying the �lter

# of questions 94 111 122 94 72 80 86 50 50 50 80 80 90 90
# of agents 1409 948 1033 3086 484 551 87 51 32 33 39 25 20 20

Avg. # of answers per question 851 533 369 1301 188 252 33 51 32 33 39 18 20 20
Avg. # of answers per agent 57 62 44 40 28 37 33 50 50 50 80 60 90 90

Majority vote correct ratio (%) 0.90 0.92 0.95 0.96 0.88 0.86 0.92 0.58 0.76 0.74 0.61 0.68 0.62 0.72

Table 1. Statistics about binary-outcome datasets from GJP, HFC and MIT datasets

6.1 Se�ing
We evaluate the properties of SSR mechanism (built upon three popular SPSR) with 14 real-world
forecasting datasets and compare the results to those of other four popular existing peer prediction
methods. In what follows, we introduce the details of these settings.

6.1.1 Datasets. We conduct our experiments on 14 datasets from three human forecasting and
crowdscourcing projects: the Good judgment Project (GJP), the Hybrid Forecasting Project (HFC)
and an MIT collected human judgment datasets. These three projects are di�erent in both the
populations of participants, forecast topics and elicitation methods.

GJP datasets [2]. It contains four datasets on geopolitical forecasting questions. The four
datasets, denoted by G1⇠G4, was collected from 2011 to 2014 respectively. They have di�erent
forecasting questions and forecasters. Each forecaster has a single probabilistic prediction for a
question she answered in the datasets.

HFC datasets [12]. It contains three datasets, denoted by H1⇠H3, collected from the Hybrid
Forecast Competition organized by IARPA in 2018. The three datasets share the same forecasting
questions about geopolitics, �nance, economics, etc, but have di�erent forecasters and collecting
methods. These three datasets record multiple probabilistic predictions each forecaster made at
di�erent dates. We used the �nal prediction made by a forecaster on a question she answered.

MIT datasets [25]. It contains seven datasets, denoted as M1a, M1b, M1c, M2, M3, M4a, M4b,
with di�erent questions and forecasters. The questions ranges from the capital of states to the
price interval that artworks belong to, to some trivia questions. The forecasters were students in
class and colleagues in labs. In datasets M1a, M1b, M4a, M4b, forecasters made binary vote on a
forecasting question. In datasets M1c, M2, M3, forecasters gave a probabilistic prediction.

We focus on the forecasting questions with binary outcomes in these datasets. We �ltered out
the questions with less than 10 submitted predictions and the participants who predicted on less
than 15 questions. No questions were �ltered out from GJP and MIT datasets and only a few from
HFC datasets. Basic statistics of these datasets are presented in Table 1.

6.1.2 SPSR. We consider three SPSR: Brier score, log scoring rule, and rank-sum scoring rule. The
�rst two are the most widely adopted scoring rules, and they are equivalent to squared error and
cross-entropy loss, respectively, for measuring the accuracy of predictions. The rank-sum scoring
rule can be written as an a�ne transformation (depending on the number of tasks in each ground
truth category) of AUC-ROC metric, [23]. Therefore, it is also of interest to us.
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In the experiments, we adopt the convention used the in the GJP for Brier score that it ranges
from 0 to 2 and a smaller score corresponds to a higher accuracy.6 To align with Brier score, we
also use a log scoring rule and a rank-sum score rule that a smaller score corresponds to a higher
accuracy and the minimum possible score is 0.
Let [Mi ] be the set of tasks answered by agent i . Recall that qi ,k and �k are agent i’s prediction

and the ground truth for task k , respectively. The exact formulas for the three scoring rules we
used are as follows:

• Brier score: SBrier(qi ,k ,�k ) = (qi ,k � �k )2 +
�
(1 � qi ,k ) � (1 � �k )

�2
= 2(qi ,k � �k )2.

An agent’s accuracy score under Brier score is the mean Brier score 1
Mi

Õ
k 2[Mi ] S

Brier(qi ,k ,�k ).
• Log scoring rule: S log(qi ,k ,�k ) = log(qi ,k ) if �k = 1; and S log(qi ,k ,�k ) = log(1 � qi ,k ) if
�k = 0.
An agent’s accuracy under log scoring rule is also the mean score 1

Mi

Õ
k 2[Mi ] S

log(qi ,k ,�k ).
As it is unbounded in the worst case, we change all predictions with value 1 to 0.99 and
predictions with value 0 to 0.01 to ensure a well-de�ned score.

• Rank-sum scoring rule is a multi-task scoring rule. For a single task k , it assigns a score

S rank(qi ,k ,�k ) = ��k ·�
�
qi ,k |{qi ,k 0}k 0 2[Mi ]

�
,

where�
�
qi ,k |{qi ,k 0}k 0 2[Mi ]

�
:=

Õ
k 0 2[Mi ] (qi ,k 0 < qi ,k ) �

Õ
k 0 2[Mi ] (qi ,k 0 > qi ,k ) is the rank

of prediction qi ,k in all agent i’s predictions. Then, agent i’s rank-sum score S ranki is de�ned:
S ranki =

Õ
k 2[Mi ] S

rank(qi ,k ,�k ).7 The range of the score increases with the number of answered
tasks quadratically. We normalize the score using 1 + 4

M2
i
S ranki to range [0, 2].

6.1.3 Treatments. Though existing peer prediction methods are not designed for recovery of SPSR,
we add comparisons to them for completeness of our study.8 In particular, we’d like to understand
whether in practice SSR has the advantage of revealing the true scores given by SPSR while not
accessing ground truth information.

In our experiments, we consider four popular existing peer prediction methods, serving as com-
parisons to SSR: proxy scoring rule (PSR) with extremized mean [34], peer truth serum (PTS) [27],
correlated agreement (CA) [31], determinant mutual information (DMI) [14].

PSR is to directly apply the SPSR w.r.t. an unbiased proxy of the ground truth, andWitkowski et al
recommended using the extremized mean of the reported predictions as the unbiased proxy, when
there is no veri�cation data available [34]. Using di�erent SPSR as the building block, we can get
di�erent PSR. PTS, CA, DMI are not build upon SPSR and are designed to elicit a categorical label
instead of a probabilistic prediction. When applied them on datasets with probabilistic predictions,
we assume that a categorical label is drawn from the probabilistic prediction and we compute an
asymptotically consistent estimator of their expected scores, where the expectation is taken over
the drawn of the categorical label.

6.2 Main results

6This is di�erent from using SPSR as a payment method, where the higher the better. We can transfer between these two
usages by applying a negative scalar.
7The AUC-ROC of agent i is equal to 1

2

✓
1 � 1

M+
i (Mi�M+

i )
S rank
i

◆
, where Mi+ :=

Õ
k02[Mi ] (�k0 = 1) [23].

8We do not intend to claim our mechanism is better in any sense, as it would be an unfair comparison since the goals were
di�erent in each design of these mechanisms.
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(a) Brier (� = 0.787 · x + 0.001) (b) Log (� = 0.790 · x � 0.005) (c) Rank-sum (� = 0.839 ·x � 0.057)

Fig. 1. Regression of individuals’ true accuracy and SSR score over 14 datasets under three di�erent SPSR.

(a) Brier score (b) Log scoring rule (c) Rank-sum scoring rule

Fig. 2. The number of datasets in each level of correlation (measured by Pearson’s correlation coe�icient)
between individuals’ peer prediction scores and di�erent SPRS.

Unbiasedness of SSR. We exam to what extend SSR recover the true accuracy scores given by
di�erent SPSR. We compute the true mean score and mean SSR score of each human forecaster in
all datasets.

The pairs of true mean accuracy score and mean SSR score of every individual in the 14 datasets
are illustrated by blue dots in Fig 1. It is clear that most of them concentrate around � = x , which
demonstrates the unbiasedness of SSR scores. Then, we separate forecasters into di�erent bins w.r.t.
their true scores. For Brier score and rank-sum scoring rule, the centers of the bins are from 0 to
2.0 with a width of 0.05. For log scoring rule, the centers of the bins are from 0 to 5 with a width
of 0.1. For forecasters in each bin, we then calculate the mean SSR score of these forecasters (we
ignore bins with less than 20 forecasters). We �nd that for users at same true score level, their SSR
scores are also at at similar level. These are illustrated by orange triangles in Fig 1. Finally, we draw
the linear regression curves on these binned means such that each true accuracy level is weighted
uniformly in the regression (blue curve in Fig 1). The slope for the three curves are all around 0.8,
while the intercepts are all round 0. This shows that the average SSR score is extremely close to
the true accuracy score when the true accuracy score is small. In other words, SSR can calibrate
the true accuracy almost perfectly for sophisticated forecasters. Given most agents have a true
accuracy score better than uniformly randomly guessing 0 and 1 (which is 1 in Brier score and
rank-sum score and 2.3 in log score) in these 14 datasets, SSR approximate the true scores well for
most of the time.

Correlation with SPSR. We exam the correlations between agents’ peer prediction scores and
true accuracy scores given by the three SPSR, Brier score, log scoring rule and rank-sum scoring
rule. When a SPSR is chosen as the true score, we also use this SPSR as the underlying scoring rule
called by SSR and PSR. PTS, CA and DMI scores are independent from which SPSR is used. We
adjust the scores such that a lower score corresponds to a higher accuracy (or a higher payment to
the agents) in the context of each peer prediction method.

We exam these correlations on each dataset independently, and categorize the level of correlations
according to the Pearson’s correlation coe�cient and p-values. As shown in Fig 2, we �nd that
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(a) Mean squared loss (b) Mean cross-entropy loss (c) AUC-ROC

Fig. 3. The portion of top t% forecasters w.r.t. 3 di�erent metrics (mean squared loss, cross-entropy loss,
AUC-ROC loss) in the top t% forecasters selected by di�erent methods (averaged over 14 datasets).

(a) Mean squared loss (b) Mean cross-entropy loss (c) AUC-ROC

Fig. 4. The portion of bo�om 50% forecasters w.r.t. 3 di�erent metrics (mean squared loss, cross-entropy loss,
AUC-ROC loss) in the top t% users selected by di�erent methods (averaged over 14 datasets).

for Brier score, and log scoring rule, SSR achieves a Pearson’s correlation ����������� > 0.8 on
9 out of 14 datasets. The second best, PSR, achieves a ����������� > 0.8 on at most 6 out of 14
datasets. PTS and CAS do not have a ����������� > 0.8 on any datasets, while DMI achieves
����������� > 0.8 on at most 2 of the datasets. For rank-sum scoring rule, all peer prediction
scores achieve similar levels of correlation among 14 datasets, while SSR are better than the others.
We observe similar results on Spearman’s correlation test (Fig 5 in the Appendix [18]). This result
on Spearman’s (rank) test, in particular, implies that SSR mechanism rank the agents in a similar
order of agents’ true expertise.

Expert identi�cation. We exam to what extent di�erent peer prediction scores can identify
top performing experts. We rank the forecasters according to one of three most-widely used loss
function (mean squared loss, mean cross-entropy loss, and AUC-ROC). We focus on two metrics
about expert identi�cation: i. percent of true top t% forecasters in the top t% forecasters selected by
a peer prediction methods, ii. percent of below-average forecasters, the bottom 50% forecasters,
in the top t% forecasters selected by a peer prediction methods. Results are shown in Fig 3 and
Fig 4. We �nd that for both mean squared loss and mean cross-entropy loss, in the top t% forecaster
selected by SSR, there are more true top t% forecasters, than in the top forecasters selected by
other peer prediction scores for t% ranges from 5% to 50%. Meanwhile, there are less below-average
forecasters in the top t% forecasters top t% by SSR and PSR than by the other peer prediction
scores. For AUC-ROC, di�erent peer prediction scores have similar performance, while SSR and
DMI are slightly better than the others. These results echo the results about the correlation of peer
prediction scores w.r.t. di�erent SPSR.
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7 CONCLUDING REMARKS
We propose SSR to quantify the value of elicited information in IEWV settings, as strictly proper
scoring rules do for the with veri�cation setting. SSR also induce truthful reporting in strictly
dominant strategy for eliciting probabilistic predictions. SSR contribute to both the SPSR and peer
prediction literature. Our �ndings are both veri�ed analytically and empirically. Our work opens
up the study of calibrating the value of information for the peer prediction setting.
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