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Abstract

In this paper we propose a space-time adaptive finite element method for the phase field model
of pitting corrosion, which is a parabolic partial differential equation system consisting of a phase
variable and a concentration variable. A major challenge in solving this phase field model is that
the problem is very stiff, which makes the time step size extremely small for standard temporal
discretizations. Another difficulty is that a high spatial resolution is required to capture the steep
gradients within the diffused interface, which results in very large number of degrees of freedom
for uniform meshes. To overcome the stiffness of this model, we combine the Rosenbrock—Euler
exponential integrator with Crank—Nicolson scheme for the temporal discretization. Moreover, by
exploiting the fact that the speed of the corroding interface decreases with time, we derive an
adaptive time stepping formula. For the spatial approximation, we propose a simple and efficient
strategy to generate adaptive meshes that reduce the computational cost significantly. Thus, the
proposed method utilizes local adaptivity and mesh refinement for efficient simulation of the cor-
rosive dissolution over long times in heterogeneous media with complex microstructures. We also
present an extensive set of numerical experiments in both two and three dimensional spaces to
demonstrate efficiency and robustness of the proposed method.

Keywords: pitting corrosion, phase field model, finite element method, adaptivity, exponential
integrator, semi-implicit scheme

1. Introduction

Pitting corrosion is a form of localized corrosion that causes perforations or pits on the surface
of stainless steel and aluminum alloys, which are otherwise resistant to uniform corrosion [51].
Corrosion pits can act as initiation sites for fatigue cracks leading to accelerated mechanical failure
of structural components [17], and hence the occurrence of unscheduled downtime in industrial
and infrastructure systems (e.g., refineries, power plants, pipelines) [37]. The development of
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efficient and accurate approaches for predicting pitting corrosion damage is essential for avoiding
unscheduled downtime and for implementing life extension strategies. While the recently proposed
phase field model for pitting corrosion [38] is a powerful approach for predicting the evolution of
pit morphologies, it may not be viable for simulating evolution over long times using standard time
stepping schemes, such as the backward difference formula (BDF). To overcome this limitation, we
present a space-time adaptive finite element method for the phase field model of pitting corrosion
based on exponential time-integrators, which can enable efficient simulation over long times.

Existing physics-based (or deterministic) models for simulating pitting corrosion can be broadly
classified into three types: sharp-interface moving boundary models [13, 48, 57], diffuse-interface
cellular-automaton models [45, 49, 50] and diffuse-interface phase field models [33, 38-40]. Due to
the vast number of studies in the literature on sharp and diffuse interface modeling approaches,
we mostly restrict the discussion here to only those relevant to corrosion modeling. It is worth
mentioning that recently a peridynamic model for simulating pitting corrosion was proposed in
[9, 10], which could be classified as a type of diffuse interface model. The sharp-interface models
either used moving mesh finite element method [48] or the extended finite element method coupled
with the level set method [13, 14, 57| to track the evolution of the corroding interface. However,
the implementation of the sharp-interface models can be cumbersome due to algorithmic complex-
ity, especially, in three dimensional spaces. The diffuse-interface cellular-automaton models have
produced interesting results; however, they employ ad hoc schemes to determine mass transport
and interface location [45, 49]. The diffuse-interface phase field method has been widely used to
solve problems with evolving phase interface geometries [6, 8], such as the solidification of mate-
rials [5, 32], superconductivity [12, 22], dendrite growth [60, 61]. While the phase field method
provides a thermodynamically-consistent approach, simulating these models over long times can be
computationally expensive, particularly, when the phase field equations are highly stiff.

For illustration, we consider the phase field model proposed by Mai et al. [38]. This pitting
corrosion model can be viewed as a gradient flow problem of a free energy functional consisting
of a phase field variable ¢ and a normalized concentration variable ¢. The model is described by
a system of two coupled parabolic partial differential equations, see Section 2 for details. One
main difficulty of its numerical solution lies in the strong stiffness of this parabolic system. For
an illustration, taking all the parameters used in practice (see Table 2) into the pitting corrosion
system (2.6)—(2.7) gives the following equations:

g‘f =6.01 x 107°A¢ — 4.16 x 10°¢(¢) + 2.06 x 10*(c — 0.04 — 0.96h(¢)) 1/ (¢), (1.1)
% =8.50 x 107 "°Ac — 8.50 x 107'°A(0.96(¢) + 0.04), (1.2)

where h(¢) = —2¢3 + 3¢? and g(¢) = ¢*(1 — ¢)2. In the above equations, we only show three
effective digits for each coefficient. By noting that the range for values of ¢ and c is [0, 1], the
coefficients of the reaction and diffusion terms in (1.2) are in the same magnitude of O(1071Y).
On the other hand, the coefficient of the reaction term in (1.1) for ¢ is O(10%) while the diffusion
coefficient is only O(107%), and consequently, equation (1.1) is extremely stiff with respect to ¢.
Thus, if conventional backward differentiation formula (BDF) schemes are used for the temporal
discretization, one must take a very small time step size which is actually much smaller than that
required to maintain sufficient accuracy.

To overcome this severe time step restriction due to the stiffness in (1.1), we shall turn to
exponential time integrators, which were first used successfully in chemical physics [43, 44]. Their



applications were initially limited due to the difficulty of calculations of the product of a matrix
exponential with a vector, which is particularly challenging if the dimension of the matrix is large.
Since then tremendous studies have been devoted to efficient algorithms of this type of computations
and achieved significant progresses, see [1-3, 20, 25-27, 46, 58]. Exponential integrator methods
have been widely used for reaction-advection-diffusion systems [19, 56], Navier-Stokes equations
[31, 35], shallow water equations [23], porous media flow [54], and visual computing [36]. One
major advantage of the exponential integrators is their robustness and effectiveness in dealing with
stiff evolution problems [28, 29]. Inspired from the above observations and discussions, we apply
the exponential integrators to solve the equation (1.1) in the pitting corrosion model. Moreover,
by noting that the diffusion and the reaction coefficients are of the same scale in the equation
(1.2), we use the low-cost Crank—Nicolson schemes to solve it. Therefore, we are able to decouple
¢ with ¢ in the system and successfully develop an efficient, linear, second-order accurate temporal
discretization scheme. Furthermore, to accelerate the computation, we develop an adaptive strategy
in time, wherein the time step size gradually increases as the speed of the corroding interface
decreases with time. Thus, the proposed method is suitable for long time simulation.

The diffusion-reaction parabolic equation system defining phase field models may be solved us-
ing mesh/grid based numerical methods, namely, finite difference [21, 59], finite volume [55], Fourier
spectral [16], finite element [11, 47], and isogeometric analysis [24]. However, in any mesh-based
method, it is important that the mesh-size is taken small enough at the solid-liquid (i.e., metal-
solution) interface to resolve the transition of the phase field ¢ and concentration ¢ variables and
to accurately capture the morphology evolution of the pit during the corrosive dissolution. Using
uniform structured meshes would result in a large number of degrees of freedom (DOF's) and make
long time simulation prohibitively expensive, despite the implementation of efficient time-stepping
schemes. Therefore, local adaptivity and mesh refinement are still important to the efficient simu-
lation of phase transition to capture the evolution of complex geometries in heterogeneous media
(e.g., alloy microstructures with non-corroding intermetallic particles). Herein, we use an adaptive
finite element mesh that is extremely fine at the interface and coarse within the bulk domains
to reduce the total number of DOFs. There is a vast amount of work done on a posterior error
estimates for phase field equations, for example, see [18, 30, 62]. A crucial step in adaptive finite
element method (FEM) is to compute the local error indicators. Based on the property of the pit-
ting corrosion model, we design a very simple, but efficient and accurate error indicator. Thus, we
develop a space-time adaptive FEM for the pitting corrosion model and demonstrate its efficiency
through an extensive set of numerical examples.

The rest of the paper is organized as follows: In Section 2, we provide a brief description
of the phase field model for pitting corrosion. In Section 3, we propose a space-time second-
order fully discrete scheme for solving the phase field model, wherein the FEM is adopted for the
spatial discretization and the Rosenbrock—Euler exponential time integrator in combination with
a Crank—Nicolson scheme is used for the time integration. In Section 4, a space-time adaptive
strategy is developed to accelerate simulation so that is practicable for investigating corrosion
evolution in representative metal/alloy microstructures with non-corroding particles. In Section 5,
we present various numerical examples in both two and three dimensional spaces. The results show
the efficiency and robustness of the proposed method in capturing morphological evolution during
the pitting corrosion process. Finally, some concluding remarks are provided in Section 6.



2. The phase field model of pitting corrosion

In this section, we give a brief description of the phase field pitting corrosion model and refer
to [33, 38| for a more detailed discussion. There are two variables in this model. A phase field
variable ¢ represents the state of the material with ¢ = 1 for the metal and ¢ = 0 for the elec-
trolyte, respectively, and varies continuously across the narrow diffusive interface with the thickness
[. To incorporate the effect of the ions accumulation, the ion concentration c is introduced as an-
other variable. Note here c is often normalized by cgoq such that 0 < ¢ < 1 holds. We list the
nomenclature in Table 1.

Table 1: Nomenclature.

Notation | Physical interpretation
10) Phase field variable
c Normalized molar concentration
Csolid Molar concentration of the solid metal
Csat Saturation concentration in the solution
CSe Normalized solid equilibrium concentration
ClLe Normalized solution equilibrium concentration
Qe Concentration gradient energy coefficient
Qg Phase field variable gradient energy coefficient
f Local free energy density
fs Free energy density of the solid phase
fL Free energy density of the solution phase
Jint Interface free energy density
F Free energy functional of the system
l Interface thickness
D Diffusion coefficient
L Interface kinetics coefficient
A Free energy density curvature
M Diffusion mobility

The driving force for any phase transformation is the reduction of the system’s free energy F.
In the pitting corrosion model, F consists of the homogeneous bulk energy Fpux and the interface
energy Fing:

F(o,¢) = Fouk + Fint = / [ f(o(x, 1), c(x, 1)) + fine(o(x, 1), c(x, 1)) | de,

Q

where €2 denotes the computational domain, & denotes the spatial coordinates, ¢ denotes the time,
f(@,c) is the local free energy density, and fint(¢,c) is the excessive energy associated with the
diffuse interface. The excessive interface energy arises from the inhomogeneity within the interface
region, which can be written as a function of the field variable gradients

fiun (€)= (Vo) + SE (V)

where a4 and a. are the gradient energy coefficients associated with the phase field and concen-
tration variables, respectively.



The definition of the local free energy density f(¢,c) plays a key role in identifying different
models. Here, we adopt the function proposed in [33, 38]. Because the concentration at any point
is evaluated as the weighted sum of the solid and liquid concentrations, the local free energy density
can be represented by

f(@,¢) = h(9) fs(es) + [1 = h()]frcr) + wg(9), (2.1)

where h(¢) is a C*°-continuous interpolation function such that h(0) = 0 and h(1) = 1. As in [38],
w is the height of the double-well potential g(¢) = ¢?(1 — ¢)? and we take h(¢) = —2¢> + 3¢>. The
function h(¢) is a smooth interpolating function, such that h(¢) = 0 for ¢ = 0 and h(¢) = 1 for
¢ = 1. In multiphase field models [53], this interpolation function is taken as h(¢) = ¢; however,
this can shift the local minima of the total free energy and may thus introduce inaccuracies that are
difficult to control [41]. In this work, we simply choose the interpolation function h(¢) = —2¢3+3$>
used in the KKS model [33], which satisfies the additional condition that it has zero-slope at the
equilibrium values of ¢, that is, h'(¢) = 0 for ¢ = 0 and ¢ = 1. Alternatively, the function can also
be chosen as h(¢) = ¢3(10 — 15¢ + 642), which also satisfies the zero-slope condition.

In (2.1), fs(cs) and fr(cr) are the free energy density functions with c¢g and ¢, being the
normalized concentrations of the coexisting solid and liquid phases, respectively. In the pitting
corrosion model, the free energy densities can reasonably be approximated as

fs(es) = Ales — cse)®,  frler) = Bler — cre)? (2.2)
with the following assumptions

Ofs(es) — Ofr(er)
deg  Ocy

c= h’(d))cs + (1 - h(¢))CLa ) (23)

where ¢ge = Csolid/Csolid = 1 and cre = Csat/Csolid are the normalized equilibrium concentrations for
the solid and liquid phases, respectively. In (2.2), A and B are the free energy density curvatures
of the solid and liquid phases, respectively. The curvatures are assumed to be the same for both
the solid and liquid phases in this model, i.e., A = B (see [38]). Using (2.2) and (2.3) in (2.1), we
get the following expression for the local energy density

F(,¢) = A(e — h(@)(cse — cre) — cre)” + wg(9) .

To ensure the decrease of the free energy during the corrosion process, the phase field governing
equations are derived by minimizing F via variational differentiation [38]:

¢ Y )
ot @t =—L55 = L<8¢> oV ¢>’ 24
de 6F of
at(m,t):V-MV(;C:V-MV<aC—aCV20>, (2.5)

where L is the interface kinetics parameter and M = D/2A is the diffusion mobility for mass trans-
port. In practice, only one of the gradient terms (Ve and V¢) would be sufficient to approximate
the energy contribution from the diffuse interface, thus the concentration gradient energy coefficient
a. = 0 is often assumed (see [38]). The gradient energy coefficient a4 and the height of double-well
potential w are correlated to the interface energy ¢ and interface thickness [ as

2
o~ y/16way, l:a*\/ﬁ,
w



where o = 2.94 is a constant parameter. The original pitting corrosion system (2.4)—(2.5) can be
represented by the following parabolic equation system:

887(25 = _L<2A(CL6 - CSe) [C - h(¢) (CSe - CLe) - CLe] h/(¢) + wg/(¢) - 04¢A¢), (26)
0 —2aMAc= —2AMA((6)(ese — er) + exe). (2.7)

where x € Q, t € [0,7]. Appropriate Dirichlet/Neumann boundary and initial conditions are
supplemented to the above system depending on the problem setup.

Remark 2.1. In the phase field governing equations (2.6)—(2.7), there are two field variables.
The normalized molar concentration c¢ is a conserved field variable constrained by mass balance
because the changes in local concentration can only occur through flux of atoms between neighboring
elements. In contrast, the phase-field ¢ is a phenomenological variable used to indicate which
phase (metal or solution) is present at a particular position in the physical system, so it is a
non-conserved variable. The evolution of the non-conserved phase-field variable is governed by a
time-dependent Ginzburg—Landau equation, also referred to as the Allen—Cahn equation; whereas,
that of the conserved concentration variable is governed by the Cahn—Hilliard equation. For a more
detailed discussion, we refer the reader to the comprehensive review paper by Moelans, Blanpain
and Wollants [42].

3. Space-time second-order fully discrete numerical scheme

8.1. Spatial discretization

We assume (2 is a bounded Lipschitz domain in R3 (or polygonal domain in R?), which might
be non-convex or multi-connected. Let 7 be a tetrahedral partition (or triangular partition in 2D)
of Q with Q = Uge7 K. The size of element K is denoted by hx = diam (K'), where diam (K) can
be simply taken to be the length of the longest edge of K. Let {P]}j\[:h1 be the Nj vertices of T
and V}, be the linear Lagrange finite element space. Furthermore, let {v; }jV:hl be the standard hat
basis functions for the finite element space V},. Thus, the function ; is linear on each element K
and ¢j(Py) = 0; 1, where ¢;, is the Kronecker delta.

With the above notations and the standard Galerkin finite element method (FEM), the semi-
discrete weak form of the pitting corrosion problem (2.6)—(2.7) can be stated as follows: Find
®n,cp 2 [0,T] — V, such that for any test function vy, € Vj,

;

(%,Uh) = —Log(Von, Vup)

ot
- L(QA(CLe - CS@) [Ch - h(¢h>(cSe - CLe) - CLe] h/(¢h) + wg/((bh), Uh)
= —La¢(V¢h, V’Uh) + (Fl ((bh,ch),vh) , (3.1)

(3Ch

5 vh) = —2AM (V (ch — h(én)(cse — cLe) — CLe), Vvh)' (3.2)

At the initial time step, we take the Lagrange interpolation ¢ (0) = II¢o and ¢, (0) = I co, where
I1; is the conventional Lagrange interpolation operator.



By using method of lines, one can directly obtain fully discrete schemes based on the above
semi-discrete FEM. However, certain numerical quadrature must be used to compute the right
hand side of the system (3.1)-(3.2). To simplify the implementation of the FEM and temporal
discretization, we shall develop a quadrature-free approach by taking advantages of mass-lumping
and interpolation techniques. To this end, let K be an element of the mesh 7 and Pgj;, j =
1,...,d+ 1 be its vertices. We define the following quadrature formula

d+1
1
Qx n(u) = measure(K) —— g uw(Pg ;) = / uda, for a function u defined on €,

and inner product
(u,v)p, = Z Qr n(uv), foru and v defined on . (3.3)
KeTy

Then, we can simplify the semi-discrete FEM (3.1)—(3.2) as follows: Find ¢y, cp, : [0,T] — V}, such
that for any test function vy, € Vj,

0
(%’Uh)h = —Layg(Von, Vop) + (F1(¢n, cn), vn)y, »

(866:7 Uh) = —2AM (V (Hh [Ch - h(¢h)(CSe — CLe) — CLe])7 Vvh>

with initial condition ¢, (0) = IIp¢¢ and ¢, (0) = Ico. Here the two unknowns can be represented
as the linear combinations in terms of basis functions {t; é\f:’llz

Ny, Np
Gnlt) =Y aj(t)y, enlt) = Bi(t);.
p= =1

Let a(t) = [a1(t), aa(t),...,an, (0T and B(t) = [B1(t), B2(t), ..., Bn, (1)]T. To obtain ¢ and cp,
we only need to compute the coefficients e and 3. The mass and stiffness matrices for the mesh 7~
are defined by

Mi,j : (1%71/%), wzvqu S Vh, for l,j = ]., .. '7Nha
Kij: (VY;, Vi), i € Vg, fori,j=1,..., Np.

Furthermore, we can obtain a diagonal matrix M by mass-lumping

Np

Mi,j = (51',]' Z M@k for i,j = 1, ey Nh,
k=1

which in fact, with the help of (3.3), can be also obtained by

i, * (wjﬂvbi)h? %7% € Vha for 7‘).7 = 17 o 7Nh-

Thus, we can rewrite the semi-discrete FEM (3.1)—(3.2) into the following matrix form

M

Ma; = —LagKa +M Fi(a,3),
MG, = —2AMK B + 2AM (cs. — cr.) Kh(a),



where ay, B; denote the nodal vectors of the time-derivatives, the right hand side vectors are defined

by {Fi(a,B)}; = Fi(aj,B;) and {h(a)}; = h(e;), for j =1,2,..., Nj. By using the fact that the
~ ~ 1

mass-lumped mass matrix M is diagonal, we can obtain M  trivially. Hence, the above system

can be further reduced to

o = —LagM Ko + Fi(a, 8), (3.4)
M3, = —2AMK B + 2AM (cse — cre) K h(a). (3.5)

At the initial time step, a(0) and B(0) are computed by interpolation of ¢y and c¢g.

The above mass-lumped FEM (3.4)—(3.5) has many advantages for the time discretization dis-
cussed in the next section. Since the stiffness of this problem exists only in the equation for ¢,
we deal with ¢ and ¢ differently in our time integrator. In particular, the ODE system (3.4) is of
standard type u; = F'(u) for which exponential integrators can be applied directly. By noting that
the diffusion coefficient is of the same order as the reaction coefficient, standard Crank—Nicolson
and BDF type scheme can be used to solve (3.5). We use the Matlab package iFEM by Long Chen
[7] to do the spatial approximations. In iFEM, the mass and stiffness matrices can be efficiently
assembled by vectoring the calculations. More importantly, the semi-discrete system (3.4)—(3.5) is
quadrature-free and the time-consuming for loop in Matlab is avoided in the assembling procedure.

3.2. Temporal integration

In this subsection, we will derive a decoupled, second-order accurate, linear scheme in time for
the above ODE system (3.4)—(3.5). A time partition 0 = tg < t; < --- < tiy = T is assumed, where
{Th =tn — tn_l}gzl is the time step size which might be non-uniform. Due to the strong stiffness
of ¢, using an efficient time integrator is crucial for a robust numerical method. The Rosenbrock—
Euler integrator has been widely used to solve stiff problems, because it is simple, efficient and

second order accurate. For the sake of clarity, we shall introduce this integrator using a simple
ODE system defined by

u'(t) = F(u(t)), te[0,T], u(0)=up, (3.6)

where u € R"™ represents the state vector and F' : R® — R” is the vector field. By linearizing
F(u(t)) at u(ty), we obtain

W () = Jpu(t) + [F(ut) — Jnu(t)] = Jnu(t) + Gu(u(t)),  t € [tn, tnsi]

OF (u)

with the Jacobian J,, := =5, }u(t )

. Then, u(t,+1) can be expressed by the following integral form

Tn+1
U(tnt1) = exp(Tnr1dn)u(ty) + / exp((Tn+1 — 8)Jn) Gn(u(ty, + s)) ds.
0
By taking g (u(ty,+5)) =~ gn(u(t,)) for s € [0, 7], we obtain the following Rosenbrock—Euler scheme

Tn+1
it = el + [ exp((min - $)7) Galua) ds
0

= exp(Tnt1Jn)tn + Tnt1901 (Tnt1Jn) Gr(un) | (3.7)



where 1(z) = %. The above Rosenbrock—Euler scheme (3.7) can be further rewritten as

Upt+1 = Up + Tn+1(P1(Tn+1Jn) F(un) :

A local truncation error analysis shows that it is a second-order time integration method for the
model problem (3.6), see [28, 36].

We now introduce the temporal discretization for (3.4)—(3.5). Our strategy is to use Rosenbrock—
Euler integrator for a (or ¢) and Crank—Nicolson scheme for 8 (or ¢), respectively. To apply the
Rosenbrock-Euler integrator to a;, we define the Jacobian matrix of the right hand side of (3.4)
with respect to a by

8F1(a7/8)

~ ]
Jo(a,B) =—LayM K+ £ ,

and the function

G(a,B) = {—L% M 'Ka+ Fi(a,8)} - Ja(e. B) o

8F1(0(,,6)a

:Fl(aa/g)_ Do )

M is a diagonal matrix. We now define the extrapolation 8"+1/2 = (1 + B —

T"“ ol 1 It is easy to verify that the standard extrapolation ,6’”*1/ 2 = 3,@" — % B 1is recovered if
the time step 7, is uniform. By combining the Rosenbrock—Euler with the Crank—Nicolson schemes,
a fully discrete scheme for solving (a ”H, 2“) is then obtained below for n =1,2,-- -,

where

apt! = exp (ray1dalef, By ) + ror(ranidalad, B ) Glag, B, (38)
n+1 n+1
Tn—l—l

The above scheme is decoupled as we can first solve for o "+1 from (3.8), and next solve for ﬁ"“
by plugging the computed oz”+1 into (3.9). It is also linear so that no nonlinear iteration is needed.
Alternatively, one can use the exponential integrator directly to the whole system of (¢, c) by also
lumping the mass matrix for ¢. However, this would yield a very large Jacobian matrix. For the
proposed scheme (3.8)—(3.9), one only need to compute the product of exp(7Jy) with a vector and
a smaller Jacobian matrix Jo. Moreover, as the computation of 04"“L dominates the computational
effort, the cost for solving B”+1 is almost negligible.

To initialize the scheme (3.8)—(3.9), one can simply take a first-order temporal discretization
scheme at the first time step ¢1:

o = exp (nJa(ef, B)ef, + 7o1(n1 Ja(af, B7)) G(af, B7), (310)
MM+2AMK61:2AM(C —cre) Kh( 1) (3.11)
1 h Se Le Qh)s ’

where o) = a(0) and 3) = 3(0).



4. Space-time adaptive strategy

The proposed fully discrete scheme (3.8)—(3.9) can be used to simulate the pitting corrosion with
uniform spatial mesh and time step sizes. However, the efficiency of the method can be enhanced
by accounting for the behavior of the field variables and its evolution over longer times. First, by
observing the previous results presented in [38], we notice that steep gradients in field variables
¢ and ¢ exist within a thin region at the corrosion (solid-liquid) interface. Second, we notice
that the corrosion process becomes slower with time [13] as the pit grows due to the increase in
the diffusion length. Therefore, we implement a simple space-time adaptive algorithm to accelerate
simulation by exploiting the above two observations of the pitting corrosion process. In the adaptive
algorithm, a finer mesh with more nodes near the corrosion interface is used to capture the phase
field evolution accurately and coarse mesh is adopted elsewhere, where the phase field variable is
constant, to reduce the total DOFs. Adaptive non-uniform grids/meshes are often used in the
numerical simulation of phase field models in the literature [11, 16]. Also, we increase the time
step size adaptively to accelerate the simulation at later stages of corrosion evolution, based on
the speed of the evolving corrosion interface. In this section, we first show the numerical results
generated by the scheme from solving equations (3.8)—(3.9) with the uniform spatial mesh and time
step sizes in Example 4.1. These results establish the viability of the proposed method and provide
a reference for the comparison with the adaptive algorithm presented later. In Table 2, we list the
parameters used in all the numerical examples, which are taken from [38].

Table 2: The physical parameters of phase field model.

Parameter | Physical interpretation Value
o Interface energy 10 J/m?
[ Interface thickness 5 pm
D Diffusion coefficient 8.5 x 10719 m?/s
L Interface kinetics coefficient 2 m3/(Js)
A Free energy density curvature 5.35 x 107 J/mol
Csolid Average concentration of metal 143 mol/L
Csat Average saturation concentration | 5.1 mol/L

Example 4.1. We use the proposed FEM to study the “pencil electrode test”, where the sample
is a 150 pm long metal wire with diameter d = 25 pum in an epoxy coat. The top end of the wire
is exposed to the solution and then the metal is gradually corroded from the top side. Dirichlet
boundary condition ¢ = 0 and ¢ = 0 are used at the top, while homogeneous Neumann boundary
condition is assigned on the other parts. At the initial time t = 0, the whole domain Q consists of
the metal, with only a thin layer of the electrolyte solution on the top (see Figure 1).

We use a uniform mesh with 26 x 151 nodes (i.e., with 3926 DOF's) to solve this problem,
with spatial resolution of 1 pum in each direction. In the temporal direction, a uniform time step
7 = 1.0 x 1073 s is used. We show the numerical results of ¢ and ¢ at ¢t = 1,38,152 and 225 s
in Figure 1, where both ¢ and ¢ agree with previous results in [38]. Note that in all figures of
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t=0 t=1 t=38 t=1562 =225 t*152 t=225

t=1 t38
I I

Figure 1: Numerical results of ¢ (left) and ¢ (right) at times ¢ = 0,1,38,152 and 225 s with the uniform time step
7 =1x 1072 s on a uniform mesh with resolution 1 ym. Both the concentration and phase variable are normalized,
so the red color represents the value 1, the blue color corresponds to the value 0, and other colors represent the

intermediate values. (Example 4.1)

the numerical results throughout this paper, the red color represents where the normalized variable
takes the value 1 and the blue color corresponds to the value 0. For the terminal time T = 225 s, we
find that the CPU time of running our code with this fixed mesh and constant time step 7 is about
20148.16 seconds. Using these simulation results, we will devise the space-time adaptive algorithm.
We first study the considerations for spatial resolution of the mesh, and then the appropriate choice
of the time step sizes. Finally, we summarize the adaptive space-time strategy.

4.1. Spatial resolution for the sharp interface

¢ on the left edge (0,y) con the left edge (O y) ¢ and c near the interface at t = 38
. —e—¢att=33
“ “ 0.8 catt=38
| b
06! | etz T 061 | Voviom| | 06
s ! | ? /
04} | o o4 | | 04 |
I Tt vy
02|, ! 1 ozf : | 02
- : it M :
0 0 Qo v o 0 v |
0 50 100 150 0 50 100 150 40 45 50 55
pm pm fim

Figure 2: Numerical results of ¢ and ¢ on the left edge with the uniform mesh resolution 1 pm and the time step
7=1.0x10"?s. (Example 4.1)

In Example 4.1 the spatial resolution 1 gm is enough for approximation of (¢, ¢), as the interface
thickness parameter [ is 5 um [38] (see Table 2). Here, we expect to determine the adaptive size
of the spatial mesh with nodes as few as possible but without loss of accuracy to capture the
interfaces. As the setting is homogeneous in the y direction, Example 4.1 indeed can be reduced
to a one dimensional problem. Therefore, we can only check the morphology of the pit along the
left edge (0,y) with 0 < y < 150um. We plot ¢ and ¢ on the left edge at ¢ = 1,38,152 and 225 s
in Figure 2. Clearly, the variables ¢ and ¢ vary steeply near the metal-solution interface region.
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As the unknowns ¢ and ¢ are almost flat away from the narrow interface region, using a uniform
structured mesh with 1 um is clearly unnecessary. A spatially adaptive mesh would reduce the
computational cost significantly. A crucial step in designing the mesh adaptive strategy is to find
a good monitor to control the spatial approximation. We also show the interface region at ¢ = 38 s
in Figure 2. For this uniform resolution 1 pum, we find that the largest variances in one element are
maxger{max ¢|g — min¢|x} =~ 0.3 and maxger{maxc|x — minc|g} =~ 0.4, respectively. Also,
corrosion is usually an irreversible process, which implies that for any fixed x, ¢(x,t) and c(x,t) is
decreasing monotonically as time evolves until the whole metal is corroded. Therefore, our idea is
to use element variance of the concentration variable

K = maxc — m}%nc (4.1)

as indicator to control the spatial approximation. We will show by extensive numerical examples
that this simple element indicator (4.1) is able to control the mesh size efficiently and ensures
adequate accuracy.

4.2. Choice of the time step sizes

Pit depth evolution on a uniform mesh
120 . .

100 1
80 -
60

40 |

Pit depth (um)

20 ¢

\/E(SO'S)

Figure 3: Pit depth evolution computed with 7 = 1.0 x 1072 s on a uniform mesh with resolution 1 pym. (Example
4.1)

We examine the choice of the time step sizes by considering the speed of the pit interface motion.
The plot of the pit depth (¢ = 0.5) is shown in Figure 3. Evidently, the pit depth varies linearly with
the square root of time, which agrees with previous results in [13, 38]. This observation indicates
that the speed of the diffusion-controlled corrosion process decreases in time due to the increased
length of the corrosion cavity. Consequently, the evolution of the pit morphology becomes slower,
although there is no stationary state for this problem. Therefore, it is inefficient to use a uniform
time step size, especially, for long time simulations. The overall simulation can be accelerated
significantly by using variable time step sizes {7, })\_;.

Herein, we propose a strategy for the adaptive time stepping such that during each time interval
[tn, tn+1], the pit interface moves by the same distance, that is,

Tn4+1VUn = constant,

12



where vy, is the interface speed and 7,41 = (tn4+1 — tp) is the time step size at time ¢,,. In practical
simulations, we use the uniform small time step size 7 = 1.0 x 1072 s for ¢,, < 1 to ensure accuracy
and avoid any numerical instability, and adopt the adaptive time stepping scheme for ¢, > 1 to
accelerate the simulation. Denoting the interface speed at t = 1 by 0, we can express the formula
for the adaptive time step size as follows:

7, if t, <1,
Tnael =13 o (4.2)
/vy, ift, > 1.

From the sharp interface formulation [13], it is known that the velocity of the interface is related to
the gradient of the concentration field c. Because we adopt the piecewise linear finite element for
spatial approximation, the gradient V¢y, is constant in each element. To make the adaptive time
stepping strategy applicable for a generalized interface evolution scenario, we determine the speed
of interface I' at time ¢,, as
= max |Vep(K,ty)|.
vn = max [Vep(K,ty)]
KNT#)

Thus, we automate the determination of the time step size based on the maximum interface speed
at any particular time t,.

4.3. Space-time adaptive strategy

We now present the space-time adaptive strategy for the system of equations (3.8)—(3.9). Let
hAmin and hmax denote the minimum and maximum element sizes used in the computation, respec-
tively, which are prescribed beforehand. The space-time adaptive algorithm is given below:

Step 1. Determine an initial mesh 7° and initial approximations (;52 and c%, such that

max hg < Amax, min hg > hpiyn, max ng < 0.4.
KeTo KeT?o KeTo

Step 2. Take a time step 71 = 1.0 x 1072 s and compute qﬁ}b and c}b by (3.10)—(3.11) and then
adaptively refine/coarsen the mesh and perform interpolation as follows:

(2.a) Calculate the element indicator ny for ¢} at ¢1 by formula (4.1) and refine the element
K if

hK > 2hmin  and ng > 0.4. (43)

After this refinement process, we obtain a finer mesh TL. Interpolate ¢?, d),ll, 02 and
c,l1 from 70 to 7.

(2.b) Calculate the element indicator nx again for each K € 71 by formula (4.1) and
coarsen the element K if

hi < hmin/2 or (hg < hmax/2 and ng < 0.02). (4.4)

After thii coarsening process, we obtain a new mesh 7. Interpolate ¢2, gb,ll, C?L and
¢} from T' to T

Step 3. For n > 2, execute the following iteration:
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(3.a) Determine the time step size 7, by the formula (4.2), then compute ¢} and cj by
(3.8)1-(3.9) based on previous results qbz_z, cz_z, gbz_l and cz_l defined on the mesh
T

(3.b) Calculate the element indicator nx for ¢} at ¢, by formula (4.1) and then refine
77! by the refinement rule (4.3) :c\o obtain 7"~!. Interpolate ¢271’ 0271, ¢y and
¢ from 7" to the refined mesh 771,

(3.c) Calculate the element indicator 7 again for ¢ on the refined mesh 777! by for-
mula (4.1) and coarsen the element K by the coarsening rule (4.4) to obtain 7.
Interpolate ¢Z_17 cz_l, oY and ¢! from 7" ! to T If t, < T, set n =n+ 1 and
go to (3.a); otherwise, stop iteration.

Remark 4.1. It should be pointed out that Mai et al. [38] solved the two nonlinear PDEs (2.6)-
(2.7) of phase field model in a fully coupled (implicit) manner, whereas in our method we decouple
the two equations and through mass lumping and explicit time differencing schemes (extrapolation)
we only have to solve a linear system. Moreover, in Mai et al. [38] adaptive time stepping is
used, so that if the nonlinear solver takes too many iterations to converge they reduce the time
step and restart the nonlinear solve. Because we solve a fully linear discrete system given by (3.8)-
(3.9), we do not need nonlinear iterations. Instead, through the adaptive time stepping we improve
computational efficiency based on the observation that the speed of the corroding interface decreases
as pits/crevices grow deeper. Thus, the proposed space-time finite element method is quite efficient
not only due to space-time adaptivity but also because it avoids nonlinear iterations.

5. Numerical experiments

In this section, we provide a broad spectrum of numerical experiments to test the proposed
space-time adaptive FEM for both two and three dimensional problems, including model verification
and comparison studies [13, 38]. The mesh adaptivity and matrix assembling is done in the Matlab
package iFEM by Long Chen [7], which uses an efficient vectorial assembling procedure. The inherent
refinement and coarsening functions in iFEM are used to adapt the mesh at each time step. The
package Expokit (Matlab version) by Sidje [52] is used for computing the action of the matrix
functions exp(7A) and ¢1(7A) on a vector. All computations in this paper were done on a Linux
laptop with a four-core Intel 2.5 GHz Processor and 7.9 GB Memory.

5.1. Numerical results in two-dimensional space

Example 5.1. We use the proposed space-time adaptive FEM to solve the benchmark problem in
Example 4.1. Here, we set hyin = 1 pm and hpmax = 15 um. We show in Figure 4 the numerical
results of ¢ at t = 0, 38, 152, and 225 s. The pit depth (¢ = 0.5) evolution in time is plotted
in Figure 5. As expected, the pit depth varies linearly with respect to \/t. The results agree well
with those in Example 4.1, the previous ones in [38, Section 3.1], and the analytic solution in [51].
For comparison, we also plot the experiment data in Figure 5 which is taken from [15]. Thus, this
example both verifies and validates our FEM implementation.

It is no surprise that the computational cost of the proposed space-time adaptive FEM is
significantly less than that of the method in Example 4.1 with uniform mesh and time step size.
As shown in Figure 4, the adaptive mesh has less than 200 DOFs, whereas the uniform mesh has
3926 DOFs. For a terminal time 7" = 225, we find that the CPU time of running our code is 936.91
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Figure 4: Numerical results of ¢ and meshes obtained by the proposed space-time adaptive FEM. (Example 5.1)
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Figure 5: Pit depth evolution (left) computed by the proposed space-time adaptive FEM along with the evolution of
the time step sizes (right). (Example 5.1)

seconds which is only 4.65% of that in Example 4.1 (20148.16 seconds) and about 12.87% of that
for the simulation with adaptive space meshing and uniform time stepping (7279.38 seconds). The
evolutions of adaptive and uniform time step sizes are shown by the right picture in Figure 5. The
adaptive time step sizes determined from (4.2) are ten more times larger than the uniform one when
t > 100 s and numerical stability is still maintained during the computations, owing to the use of
the exponential time integration scheme. Although there is some overhead cost from mesh adapting
and assembling, the overall computational cost of the space-time adaptive FEM is less. It should be
noted that for rectangular domains, a uniform-grid-based finite difference scheme with Fast Fourier
Transform (FFT) may be quite efficient, although we did not compare the computational cost of
FEM and FFT based methods. Here, we use the FEM because it is more suitable for complicated
geometries and general boundary conditions encountered in corrosion simulations.

Example 5.2. We use the proposed space-time adaptive FEM to investigate the evolution of the
semi-circular pit growth. The sample size is 400 um x 200 pum. A semi-circular opening with
diameter 16 um at the center of the top edge exposes the metal to bulk solution environment.
Homogeneous Dirichlet boundary conditions ¢ = ¢ = 0 are applied on this opening, whereas, ho-
mogeneous Neumann boundary condition is prescribed on the rest of the external boundary. This
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benchmark example has been previously studied in [13, 38] and qualitatively validates our imple-
mentation against the experiment conducted in [15].
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Figure 6: Iso-isoface (¢ = 0.5) of the pit evolution (left) and pit depth evolution (right). (Example 5.2)
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Figure 7: The adaptive meshes generated by the proposed method at times ¢ = 0, 10, 20, 100, 200, 300, 400, 600 and
1000 s. (Example 5.2)

We set hpmin = 1 pm and hpax = 25 pm in this example. The CPU time of running our code
till the terminal time 7" = 1000 s is 2 hours and 9 minutes. The plots of the iso-surface ¢ = 0.5
at time ¢t = 100k with £ = 0,1,...,10, and the pit depth (at ¢ = 0.5) evolution in time is shown
in Figure 6. Our numerical results in Figure 6 show that the shape of the corrosion pit remains
semi-circular. This is because of three reasons: (1) corrosion process is purely diffusion-controlled;
(2) the metal domain is homogeneous without any large heterogeneities; and (3) the metal is only
exposed to the corrosive solution only through a small semi-circular opening on the top boundary
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of the domain. It is important to note that even though this 2D example is an idealization of the
experiment conducted by Ernst and Newman [15], the pit shapes are in good agreement with those
observed in experiments. We also observe that the pit depth increases linearly with the square root
of time v/t. However, the speed of pit moving is slower than that in Example 5.1, because gradient
of concentration near the interface is lesser during semi-circular pit growth.

In Figure 7, we show the adaptive meshes at time ¢ = 0, 10, 20, 100, 200, 300, 400, 600 and 1000
s. The number of DOFs gradually increases as time evolves, because the length of the corrosion
interface increases. In the adaptive mesh at the terminal time 7" = 1000 s there are only 3500 DOF's,
which is much smaller than that in a uniform mesh with 1 pm resolution (80601 DOFs). Thus,
the computational efficiency of the proposed space-time adaptive FEM stems from the reduction
of number of DOFs.

Pit depth evolution

T T

1 50 | ——The proposed method with D = 8.5 x 10719 m?/s B
prop

----- The proposed method with D = 6.1 x 1071 m?/s

- - -XFE-LSM Duddu (2014)

El
=
— 100 |
I3
= 50 ]
.O:
O 1 1 1
0 10 20 30

Figure 8: The pit depth evolution obtained by the proposed method for D = 8.5 x 107*° and D = 6.1 x 10~'°
compared with Duddu’s previous results in [13]. (Example 5.2)

For comparison, we plot the evolution of pit depth in Figure 8 with D = 8.5 x 1071Y m?/s and
D = 6.1 x 10719 m?/s, and also the sharp interface result of Duddu [13]. Because the metal ions
only diffuse in the solution phase and the diffusion in the solid phase is negligible, we need to define
D =8.5x 1071 m?/s in the liquid phase and D = 0 in the solid phase. In the phase field model of
Mai et al. [38], the diffusion coefficient was interpolated as D = 8.5 x 1071(1 — ¢) m?/s. Obviously,
taking a constant value of D = 8.5 x 1071% m? /s will lead to a slight over prediction of the interface
velocity and pit depth. Instead, taking a smaller constant value of D = 6.1 x 1071% m?/s gives a
better match with the sharp interface result of Duddu [13], as shown in Figure 8. Nevertheless,
we note that proposed space-time FEM can accommodate nonlinear diffusion equation with some
minor changes.

Example 5.3. We use the proposed space-time adaptive FEM to simulate the electropolishing pro-
cess, which is widely used to eliminate the surface roughness of metallic materials in industry
[34, 38]. Here we consider a 350 pm x 150 pm rectangular domain where the rough metal sur-
face is exposed to the solution, see the first sub-figure in Figure 9. We set homogeneous Dirichlet
boundary condition for ¢ and c on the top boundary and homogeneous Neumann boundary condi-
tion on the rest of the external boundary. This example demonstrates the ability of our numerical
implementation to handle the evolution of arbitrarily shaped features on the corrosion interface.
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Figure 9: Numerical results of ¢ obtained by the proposed method at t = 0, 3, 9, 16, 32 and 100 s. (Example 5.3)
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Figure 10: Meshes generated by the proposed method at ¢ =0, 3, 9, 16, 32 and 100 s. (Example 5.3)

In the computation, we set hpin = 1 pm and hpax = 15 pm. The CPU time of running our code
till the terminal time 7" = 100 s is 55 minutes. Numerical results of ¢ at ¢ = 0, 3, 9, 16, 32, 100 s are
shown in Figure 9. We can see clearly that as time evolves, the rough surface is electrochemically
polished into a smooth flat surface without applying mechanical abrasion. We show the adaptive
meshes generated by the proposed method in Figure 10. The number of DOF's used in the adaptive
mesh is much less than that of the uniform meshes (53001 DOFs) with spatial resolution 1um. In
Figure 11, we show a zoomed-in picture of local mesh and the iso-surface corresponding to ¢ = 0.5.
We can see that the adaptive meshing algorithm is able to provide sufficient resolution needed to
accurately simulate the evolution of the phase field variable.

Example 5.4. We use the proposed space-time adaptive FEM to investigate pitting corrosion evo-
lution in a composite material or alloy with non-corroding particles in the microstructure. Here we
consider a 200 pm x 140 um square specimen with embedded non-corroding (ceramic) particles, yel-
low regions in Figure 12. Zero flux boundary condition for ¢ and c is applied on the particle-metal
interfaces, as the particles are non-corroding. The geometries of the particles and pit morphology
can have complex shapes, and the adaptive mesh is able to capture them accurately. To initialize,
we set a 10 um semi-circular opening on the top boundary, where ¢ =c =0 and ¢ =c =1 in the
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Figure 11: Local meshes and iso-surface of ¢ = 0.5 at t =0, 3, 9, 16, 32 and 100 s. (Example 5.3)

rest of the domain. Homogeneous Dirichlet boundary condition is applied on the initial pit opening
on the top boundary, whereas homogeneous Neumann boundary condition is applied on the rest
of external boundary and the particle-metal interface. This example demonstrates the robustness
and the stability of our implementation in simulating the evolution of complex pit shapes in alloy
microstructures with large time steps.

We first generate an adaptively refined mesh by choosing hpyi, = 1 pm and define the arbitrarily
shaped regions of non-corroding particles. Starting with this adaptive mesh we perform computa-
tions till terminal time 7' = 100 s and the CPU time of running our code is around 3 hours and 18
minutes. We plot the snapshots of numerical results at t = 1, 10, 50, 100, 250, 350, 500, 750 and
1000 s in Figure 12. Due to the complex shapes of the particles and the nonlinear nature of the
corrosion process, the evolution of the pit morphology is quite intricate and interesting. Figure 13,
plots the mesh generated by our algorithm, where the number of DOFs is less than 3000 at any
time during the simulation.

5.2. Numerical results in three-dimensional space

In this subsection, we provide four numerical examples in three-dimensional space. Examples 5.5
and 5.6 are the 3D versions of Examples 5.1 and 5.2, respectively. The phase field model presented
in Section 2 naturally extends to three dimensions, so we still use the same model parameters listed
in Table 2. In 5.7 and 5.8, our intention is to only demonstrate the suitability of the space-time
FEM for simulating the evolution of corrosion pits in 3D. However, detailed studies involving model
calibration/validation against experiments is beyond the scope of this article.
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Figure 12: Numerical results for the composite material model. (Example 5.4)

Example 5.5. We use the proposed scheme to study “pencil electrode test” in three-dimensions.
We consider a 150 um x 25 um x 25 um metal wire coated with corrosion-resistant epory material
on the lateral surface, so that only the top end of the wire is exposed to the solution. Homogeneous
Dirichlet boundary condition ¢ = ¢ = 0 are used at the top boundary, and ¢ = ¢ = 1 are used at
the bottom boundary, respectively; whereas, homogeneous Neumann boundary condition is prescribed
along the lateral surface of the metal wire. At the initial time t = 0 s, the whole domain is in the pure
metal state. This study illustrates the performance of the space-time FEM on 3D meshes, verifies
the results against 1D analytical solution and validates the phase field model with experimental data.

We set hpin = 1 pm and hpax = 15 pm. The CPU time of running our code is around 8 hours
and 20 minutes till the terminal time T = 225 s. In Figure 14, we show the field plots of ¢ at
T = 0, 38, 152, and 225 s. We show the evolution of the pit depth (¢ = 0.5) in Figure 15. As
expected, the pit depth varies linearly with v/¢. Our numerical results agree with the 2D results in
Examples 4.1 and 5.1, the previous works [38, Section 3.1], and the analytic solution given in [49].
It should be noted that, if a uniform mesh with 1 um in each direction is used, there will be 102, 076
DOFs; whereas, the maximum DOFs used in our method is less than 6,000, which demonstrates
its computational efficiency.

Example 5.6. We use the proposed space-time adaptive FEM to investigate the evolution of the
semi-cylinder pit growth in three dimensions. This example is a three-dimensional analogue of
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Figure 13: Adaptive meshes at ¢t = 1, 10, 50, 100, 250, 350, 500, 750 and 1000 s. (Example 5.4)

Ezample 5.2. We consider a 400 um x 50 um x 200 pum sample. In the initial state, there is a
semi-cylinder opening with diameter 16 um and length 50 um at the center line of the top surface.
Homogeneous Dirichlet boundary conditions for both ¢ and c are applied on this opening, whereas
homogeneous Neumann boundary condition is used on the rest of the external boundary.

It should be noted that, if a uniform mesh with 1 pgm in each direction is used, there will be
4,110,651 DOF's; whereas, the maximum DOFs used in our method is less than 68,400. To reduce
the cost, we use the proposed adaptive meshing algorithm with hy;, = V2 pm and hpax = 30 pm.
The CPU time of running our code till the terminal time T" = 225 is nearly 84 hours. The plots of ¢
and the meshes at times ¢t = 1, 20, 100, 200 and 300 s are provided in Figure 16 and the iso-surface
plot of ¢ = 0.5 is presented in the left picture of Figure 17. The pit depth (¢ = 0.5) evolutions
of 2D and 3D cases are plotted in the right picture in Figure 17, in which the two curves overlap.
Because corrosion is uniform in the (50 pum) thickness direction, this 3D problem is equivalent to
the 2D problem, and this demonstrates that our 3D numerical implementation is consistent.

Example 5.7. We use the proposed space-time adaptive FEM to investigate the evolution of the
semi-circular pit growth in three dimensions. We consider a 200um x 200um x 100pum sample. In
the initial state, there is a hemispherical opening with diameter 16um at the center of the top surface.
Homogeneous Dirichlet boundary conditions for both ¢ and c are applied on this opening, whereas
homogeneous Neumann boundary condition is used on the rest of the external boundary. This
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Figure 14: Numerical results of ¢ and meshes obtained by the proposed method. (Example 5.5)
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Figure 15: Pit depth evolution obtained by the proposed method. (Example 5.5)

example simulates the experiment conducted in [15] that studies the evolution of an approximately
250 pm? pit opening on a metal surface that is elsewhere protected from corrosion using a epoxy
coating. Due to complex nature of corrosion and the simplistic assumptions of phase field model,
we can only qualitatively validate the results based on erperimental results.

It should be noted that, if a uniform mesh with 1 pgm in each direction is used, there will be
4,080,501 DOFs; whereas, the maximum DOF's used in our method is less than 90, 300. To reduce
the cost, we use the proposed adaptive meshing algorithm with Ay, = ﬂum and hpax = 30pm.
The CPU time for running the code till the terminal time 7" = 300 s is nearly 52 hours. The plots of
¢ and the meshes at times ¢ = 1, 20, 100, 200 and 300 s are provided in Figure 18. The iso-surface
plot of ¢ = 0.5 is presented in the left subfigure of Figure 19. It is evident that the pit remains
semi-circular as time evolves, which is qualitatively consistent with the experiments of Ernst and
Newman [15]. However, due to the difference in specimen geometry and the lack of time-series data
of pit depth from experiments in [15], we cannot quantitatively validate the phase field model. We
compare the 2D and 3D results in Figure 19 for the pit depth (¢ = 0.5) evolution. The pit depth
varies (somewhat) linearly with v/# in both 2D and 3D experiments, but the rate of pit growth is
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Figure 16: Numerical results of ¢ and the meshes at times ¢t = 1,20, 75, 150 and 225 s. (Example 5.6)
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Figure 17: Iso-isoface (¢ = 0.5) of the pit evolution (left) and pit depth evolution (right). (Example 5.6)

different. At any given time t, the pit depth in the 3D case is smaller than that in the 2D case.
This is expected because the 3D case is not an extrusion of the 2D domain, and the pit opening
that exposes the metal to the solution does not span the entire width of the specimen. Because
the pit opening is smaller in the 3D case, the solution becomes more saturated in the pit solution
domain; consequently the gradients in concentration are smaller leading to slower pit growth.

Example 5.8. In the final example, we simulate the evolution and coalescence of four small square
pits, as shown in Figure 20. The metal sample is a cube with dimensions 400 um x 400 pum X
200 pm. The pit morphology and its evolution in this example is much more complex, so the use of
an adaptive mesh is crucial to ensure computational feasibility. It should be noted that a uniform
mesh with 1 um in each direction has 32,321,001 DOFs, which is almost impossible to run on a
laptop, due to memory restrictions. The adaptive mesh uses less than 163,000 DOF's, which is 200
times less than the DOFs the structured uniform mesh. We set hyin = \/i,um and hpmax = 30um.
The CPU time for running this code till the terminal time T = 150 s is nearly 86 hours. The phase
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Figure 18: Numerical results of ¢ and the mesh obtained by the proposed method at time t = 0, 20, 100,200 and

300 s. (Example 5.7)
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Figure 19: Iso-isoface (¢ = 0.5) of the pit evolution (left) and pit depth evolution (right). (Example 5.7)

field results at times t = 0,1,2,5,8,20,50,100 and 150 s are shown in Figure 20. In Figure 21, we
show the iso-surface of » = 0.5 att = 1,5,8,20,150 s. We observe that the four pits gradually merge
into a big ellipsoid looking pit, as time evolves. This observation is consistent with the experiments
in [15] and with the 2D numerical results from a sharp-interface model in [13].

6. Conclusion

The phase field model of pitting corrosion is computationally tedious and expensive because
the stiffness of the reaction-diffusion equation system requires very restricted time step size and the
resolution of the steep gradients in phase field and concentration variables near the interface requires
very fine mesh resolution. In this paper, we introduce a mass-lumped FEM to solve the pitting
corrosion model, where both space and time adaptivity are applied. For the time discretization,
we combine the exponential integrator with backward Euler/Crank—Nicolson scheme and design an
adaptive time stepping formula to gradually increase the time step size as the diffusion-controlled
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Figure 20: Numerical results of ¢ and meshes obtained by the proposed space-time adaptive method at times
t=0,1,2,5,8,20,50,100 and 150 s. (Example 5.8)

t=1 t=150

Figure 21: Iso-surface of ¢ = 0.5 obtained by the proposed method at times ¢t = 1,5,8,20 and 150 s. (Example 5.8)

corrosion process slows down. We find that initially a small time step size of 103 seconds is
sufficient to ensure numerical stability for time ¢ < 1 second and later on we are able to take larger
time steps to accelerate the simulation over longer times. For the spatial approximation, we propose
a simple adaptive mesh strategy that automatically refines the mesh in the vicinity of the interface
and coarsens it away from the interface based on element variance indicators, thus reducing the
number of DOF's significantly. Another major contribution of this paper is that we present an
extensive set of benchmark numerical experiments to demonstrate that our method is suitable for
practical simulations of the pitting corrosion model in two and three dimensional spaces. The 1D
pencil electrode test allows us to verify and calibrate the model parameters of the phase field model;
however, due to the lack of time-series data of semi-circular and hemispherical pit growth in the
literature we cannot validate the 2D and 3D model results. In fact, the phase field model based
on the simple assumption of diffusion-controlled corrosion may not be adequate to estimate the
corrosion rate very accurately in more complex 2D and 3D geometries. In our future work, we will
apply the proposed space-time adaptive algorithm to more advanced corrosion models, including
stress corrosion cracking and galvanic corrosion [4, 39, 40], and calibrate and validate the simulation
results against detailed laboratory experiments.
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