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Abstract

In this paper we propose an efficient numerical scheme for solving the phase field model (PFM) of corrosive
dissolution that is linear and second-order accurate in both time and space. The PFM of corrosion is based
on the gradient flow of a free energy functional depending on a phase field variable and a single concen-
tration variable. While classic backward differentiation formula (BDF) schemes have been used for time
discretization in the literature, they require very small time step sizes owing to the strong numerical stiff-
ness and nonlinearity of the parabolic partial differential equation (PDE) system defining the PFM. Based
on the observation that the governing equation corresponding to the phase field variable is very stiff due
to the reaction term, the key idea of this paper is to employ an exponential time integrator that is more
effective for stiff dynamic PDEs. By combining the exponential integrator based Rosenbrock–Euler scheme
with the classic Crank–Nicolson scheme for temporal integration of the spatially semi-discretized system,
we develop a decoupled linear numerical scheme that alleviates the time step size restriction due to high
stiffness. Several numerical examples are presented to demonstrate accuracy, efficiency and robustness of
the proposed scheme in two-dimensions, and we find that a time step size of 10−3 second for meshes with
the typical spatial resolution 1 µm is stable. Additionally, the proposed scheme is robust and does not suffer
from any convergence issues often encountered by nonlinear Newton methods.

Keywords: Corrosive dissolution, pitting corrosion, phase field model, exponential integrator, numerical
stiffness, semi-implicit scheme

1. Introduction

Localized corrosion of stainless steel and aluminum alloys, including pitting and crevice corrosion,
stress corrosion cracking and corrosion fatigue, poses a significant threat to the safety of aerospace, civil
and transportation infrastructure. Corrosion pits and crevices cause stress concentrations and promote the
nucleation of fatigue cracks [21, 43], which are often difficult to detect before a structure or its component
fails. Mathematical and computational modeling of localized corrosion phenomena is necessary not only to
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gain a better understanding of the complex physical and chemical mechanisms, but also to enable more re-
liable and robust prediction of corrosion damage evolution in structures. Recently, the phase field modeling
approach has been utilized to predict the spatial-temporal evolution of the corrosion damage [e.g., 1, 32].
The main advantage of the phase field model (PFM) is that it describes the evolution of interfaces with-
out explicitly tracking the interface within a finite element or finite difference implementation. However, a
major limitation of the PFM is the computational expense associated with simulating corrosion pit/crevice
evolution over long times and larger spatial domains, despite the availability of high performance comput-
ing platforms. Therefore, in this paper we develop an efficient numerical scheme for solving the phase field
equations governing diffusion-controlled corrosive dissolution.

Localized corrosion involves the rapid dissolution of a passive metal/alloy in a corrosive environment at
discrete sites where the protective passive film has broken down [12]. The initiation or nucleation process
involving passive film breakdown is stochastic in nature and takes place on smaller length scales (on the
order of nanometers), so it is not possible to predict exactly when and where pits will nucleate. Broadly,
there are two classes of models for predicting corrosion damage evolution: purely empirical and mech-
anistic/deterministic. Purely empirical models, including statistical or probabilistic, and artificial neural
networks models [31, 37], need large databases for calibration. However, due to the scarcity of data on
failure events, it is difficult to construct well-calibrated empirical models, so their predictive capability is
generally limited [30, 48]. Mechanistic/deterministic models consider the physical and chemical processes
of corrosion propagation after initiation based on mass, charge and/or momentum balance. In this paper, we
restrict our attention to mechanistic modeling of localized corrosion that considers the anodic dissolution of
metal (electrode) as metal ions at discrete initiation sites into an aqueous solution environment (electrolyte).
Thus, localized corrosive dissolution is defined by a moving interface problem, with the evolution of the
corrosion interface and the chemistry of the solution environment governed by coupled nonlinear partial
differential equations (PDEs). The complexity of this moving interface problem along with the vast separa-
tion of timescales between electrode interface evolution (i.e., corrosion) and ion diffusion in the electrolyte
(i.e., transport) poses significant computational challenges, which necessitates the development of robust
and efficient numerical methods.

Moving interfaces or free boundaries are ubiquitous in multi-component and multi-phase material sys-
tems and modeling their complex topology and evolution patterns is important to a wide range of engi-
neering and scientific disciplines. Several computational models have been developed for solving moving
interface or free boundary problems, which can be broadly classified as either sharp-interface or diffuse-
interface models. The sharp-interface models assume that the interface thickness is negligible (zero), and
they can be implemented using both fixed or moving grid/mesh methods. Several sharp-interface cor-
rosion models have been proposed that use the finite element method to solve the governing equations
[9, 10, 27, 41, 45, 47, 53, 55]. The moving sharp-interface was treated in [27, 41, 45, 47, 53, 55] us-
ing remeshing or mesh moving or arbitrary Lagrangian–Eulerian methods, which can be computationally
expensive and cumbersome. Alternatively, in [9, 10] the combined extended finite element and level set
method was employed to capture the evolution of the sharp-interface without remeshing; however, it is
currently not well developed in three dimensions. On the other hand, the diffuse-interface models assume
that the interface thickness is small, but finite, and are usually implemented using fixed grid/mesh methods.
Several diffuse-interface corrosion models have been proposed, including cellular automation models [40],
finite volume models [42], peridynamic models [7, 8], and phase field models (PFM) [1, 32–34]. While
PFMs have only been recently used to study corrosion, they have been extensively used to study a variety of
moving interface problems, such as solidification [4, 24], microstructure evolution [6], thin film evolution
[39], superconductivity [13], and dendrite growth [50, 51].
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In this paper, we consider a simplified PFM for simulating pitting corrosion presented in [32] using
the free energy density function developed in [25]. This PFM coupling the Allen–Cahn and Cahn–Hilliard
equations can be viewed as a gradient flow problem of a free energy functional consisting of a phase field
variable φ (non-conserved) and a concentration variable c (conserved), respectively. The model parameters
are calibrated in [32] by matching the corrosion rate with that from a sharp-interface model [9]. Thus, the
model is described by a system of two coupled parabolic PDEs (see Section 2 for details); however, the main
numerical challenge arises from the strong stiffness and nonlinearity of this parabolic system of equations,
which severely restricts the time step size. To illustrate this, we introduce all the model parameter values
(see Table 4) into the governing equations (2.11)–(2.12) to obtain the following PDE system:

∂φ

∂t
= 6.01 × 10−6∆φ − 4.16 × 106g′(φ) + 2.06 × 108(c − 0.04 − 0.96h(φ))h′(φ),

∂c
∂t
= 8.50 × 10−10∆c − 8.50 × 10−10∆

(
0.96h(φ) + 0.04

)
,

(1.1)

(1.2)

where h(φ) = −2φ3 + 3φ2 and g(φ) = φ2(1 − φ)2, and up to three significant digits are shown for each
coefficient. Note that the range for the values of φ and c is [0, 1]. It is evident that the coefficients of the
reaction and diffusion terms in (1.2) are of the same order magnitude O(10−10); whereas, the coefficient
of the reaction term in (1.1) for φ is of the order O(108), but the coefficient of the diffusion term is very
small, O(10−6). Consequently, equation (1.1) is extremely stiff with respect to φ and an extremely small
time step size is needed if conventional backward differentiation formula (BDF) schemes are used for the
temporal discretization. For example, in [32] an adaptive, second-order accurate BDF2 scheme was used
along with the standard finite element approximation and a nonlinear solver to solve the above PFM for
pitting corrosion. Although adaptive time-stepping strategy was used in [32], a very small time step size
τ = 10−8 second on adaptively refined spatial meshes with a typical resolution of 1 µm in the vicinity of the
interface may be necessary at the beginning stages of the simulations. It is noteworthy that such a small time
step size (much smaller than that required for accuracy) may be necessary to alleviate spurious oscillations
in the field variables or convergence issues with the nonlinear solver for the PFM.

To overcome this severe time step restriction due to the numerical stiffness of (1.1), we resort to ex-
ponential time-integrator or exponential time-differencing schemes, which were first used successfully in
chemical physics [36, 38]. The applications of exponential time-integrators were originally limited by the
computational difficulty/expense associated with the product of a matrix exponential with a vector, which is
particularly challenging if the dimension of the matrix is large. Since then tremendous efforts have been de-
voted to the development of efficient time-integrators and significant progress has been made [e.g., 2, 3, 16–
18, 49]. More recently, exponential integrator based methods have been used to solve: Navier–Stokes
equations [23, 29], shallow water equations [14], porous media flow [46] and grain coarsening in crystalline
materials [22, 56]. A major advantage of the exponential integrators is their robustness and effectiveness in
dealing with stiff evolution problems, see the discussion in [19, 20]. In view of practical implementation,
there are several efficient packages for computing the action of the exponential of a matrix on the operand
vector, for instance, the package Expokit by Sidje [44], expmv by Al-Mohy and Higham [3] and KIOPS by
Gaudreault, Rainwater and Tokman [15]. Inspired by the above mentioned studies, in this paper we apply
the exponential integrator to solve equation (1.1) for the phase field variable φ. Moreover, by noting that the
diffusion and the reaction coefficients are of the same order in equation (1.2) for the concentration variable
c, we use the standard Crank–Nicolson scheme. Furthermore, we decouple the parabolic PDE system and
successfully develop an efficient linear, second-order accurate scheme. This scheme alleviates the severe
restriction on time step size τ as demonstrated by numerical benchmark tests.
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The rest of this paper is organized as follows: In Section 2, we provide a brief description of the phase
field model for corrosive dissolution. In Section 3, we present a decoupled linear numerical scheme for solv-
ing the governing equations of the model, where the central finite difference is used for spatial discretization,
and an exponential time integrator and the Crank–Nicolson scheme are used for temporal discretization. We
also perform local truncation error analysis to show the second-order accuracy of the proposed numeri-
cal scheme in time and space. In Section 4, we present several numerical benchmark tests to demonstrate
that the proposed scheme is efficient and accurate for simulating the morphological evolution of corrosion
interface. Finally, in Section 5, we provide a brief summary and some concluding remarks.

2. Phase field model for corrosive dissolution

In this section, we give a brief description of the phase field model for corrosive dissolution, and for
a more detailed discussion we refer the reader to [32]. This model is based on the phenomenologically
oriented single-phase-field model for solidification [25, 35]. There are two variables in this model: (1) a
phase field variable φ is introduced to represent the state of the material, such that φ = 1 indicates the
metal (solid) and φ = 0 indicates the aqueous solution (liquid) domains, respectively; and (2) a normalized
concentration variable c is introduced to describe the total metal ion concentration in solution, such that
0 ≤ c ≤ 1. For example, for the 304 stainless steel (SS) alloy, the normalized concentration is defined
as c = c̄/c̄solid, where the variable c̄ is the total molar concentration of Fe2+, Cr3+, and Ni2+ ions and the
constant c̄solid is the concentration of metal atoms in solid phase. The variable φ varies continuously across
the narrow diffuse-interface of thickness l. For convenience, we list the nomenclature used in this paper in
Table 1.

Table 1: Nomenclature.

Notation Physical interpretation
A Free energy density curvature
c̄ Total molar concentration of metal ions or atoms
c̄solid Molar concentration of the metal atoms in solid
c̄sat Saturation concentration of metal ions in solution
c Normalized molar concentration of metal ions or atoms
cS e Normalized equilibrium concentration in solid
cLe Normalized equilibrium concentration in solution
D Diffusion coefficient
f Local free energy density
fS Free energy density of the solid phase
fL Free energy density of the solution phase
fint Interface free energy density
F Free energy functional of the system
L Interface kinetics coefficient
l Interface thickness
M Diffusion mobility
αc Concentration gradient energy coefficient
αφ Phase field variable gradient energy coefficient
φ Phase field variable
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The driving force for any phase transformation is the reduction of the total free energy F of the thermo-
dynamic system. In this simplified PFM for corrosive dissolution [32], F consists of the homogeneous bulk
or local free energy Fbulk and the interface energy Fint defined as

F (φ, c) = Fbulk + Fint =

∫
Ω

[
f (φ(x, t), c(x, t)) + fint(φ(x, t), c(x, t))

]
dx, (2.1)

where Ω denotes the computational domain containing both the metal and solution phases, x denotes the
spatial coordinates, t is the time, f (φ, c) is the local free energy density, and fint(φ, c) is the surface energy
density associated with the diffuse-interface, respectively. The surface energy is the excess energy at the
surface that arises from the inhomogeneity within the interface region defined in terms of the field variable
gradients as

fint(φ, c) =
αφ

2
(∇φ)2 +

αc

2
(∇c)2, (2.2)

where αφ and αc are the gradient energy coefficients associated with the φ and c, respectively.
The local free energy density f (φ, c) refers to a homogeneous system, where all the field variables are

constant in the domain (i.e., gradients are zero). There are many differences with the formulation of free
energy functionals in PFMs depending upon the application (see [35] for detailed review). In our case, the
function f (φ, c) comprises of an interpolation of free energy expressions of the coexisting solid fS and liquid
fL phases and a double-well function g(φ) as

f (φ, c) = h(φ) fS (cS ) + [1 − h(φ)] fL(cL) + wg(φ), (2.3)

where h(φ) = −2φ3 + 3φ2 is a C∞-continuous interpolation function such that h(0) = 0 and h(1) = 1, and
w is the height of the double well potential g(φ) = φ2(1 − φ)2. It is assumed that the diffuse-interface is a
mixture of the solid and liquid phases with different normalized concentrations cS and cL, respectively, but
the chemical potential in both phases is the same, that is,

c = h(φ)cS + (1 − h(φ))cL,
∂ fS (cS )
∂cS

=
∂ fL(cL)
∂cL

. (2.4)

The free energy density functions of the coexisting solid and liquid phases are approximated as

fS (cS ) = A(cS − cS e)2, fL(cL) = B(cL − cLe)2 (2.5)

where cS e = c̄solid/c̄solid = 1 and cLe = c̄sat/c̄solid are the normalized equilibrium concentrations for the solid
and liquid phases, respectively. In (2.5), A and B are the free energy density curvatures of the solid and
liquid phases. The curvatures are assumed to be the same for both the solid and liquid phases in this model,
i.e., A = B [32]. Combining (2.4) and (2.5), we can derive the final expression for the local free energy
density as

f (φ, c) = A
(
c − h(φ)(cS e − cLe) − cLe

)2
+ wg(φ) . (2.6)

To assure the decrease of the free energy during the corrosion process, the governing phase field equa-
tions are derived by minimizing F via its gradient flow [32]:

∂φ

∂t
(x, t) = −L

δF

δφ
= −L

(
∂ f
∂φ
− αφ∇

2φ

)
,

∂c
∂t

(x, t) = ∇ · M∇
δF

δc
= ∇ · M∇

(
∂ f
∂c
− αc∇

2c
)
,

(2.7)

(2.8)
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where L is the interface kinetics parameter and M is the diffusion mobility for mass transport. In practice,
only one of the gradient terms (∇c or ∇φ) would be sufficient to approximate the energy contribution from
the diffuse interface, thus the concentration gradient energy coefficient αc = 0 is often assumed. The gradient
energy coefficient αφ and the height of double well potential w are correlated to the interface energy σ and
interface thickness l as

σ ≈
√

16wαφ, l = α∗
√

2αφ
w
, (2.9)

where α∗ = 2.94 is a constant parameter. The diffusion mobility M can be defined as

M =
D
2A
, (2.10)

where D is the Fick’s diffusion coefficient. Thus, phase field equations (2.7)–(2.8) can be represented by the
following parabolic partial differential equation system:

∂φ

∂t
= −L

(
2A(cLe − cS e)

[
c − h(φ)(cS e − cLe) − cLe

]
h′(φ) + wg′(φ) − αφ∆φ

)
,

∂c
∂t
− 2AM∆c = −2AM∆

(
h(φ)(cS e − cLe) + cLe

) (2.11)

(2.12)

together with appropriate Dirichlet and Neumann boundary and initial conditions.

3. A decoupled, second-order accurate linear numerical scheme

3.1. Spatial discretization

For simplicity, we first consider a rectangular domain Ω = [0, Lx] × [0, Ly] in two dimensional space. A
uniform Nx × Ny grid/mesh Ωh is used with mesh size max{hx, hy} where hx =

Lx
Nx

and hy =
Ly
Ny

. We denote
the spatial coordinates of the grid nodes by {xi, j} for 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny. For a continuous function
u defined on Ω, Uh = {ui, j} is its approximation defined on Ωh with ui, j = u(xi, j). The standard second-order
central finite difference approximation for the Laplacian ∆u at xi, j is defined by

∆u(xi, j) =
ui−1, j − 2ui, j + ui+1, j

h2
x

+
ui, j−1 − 2ui, j + ui, j+1

h2
y

+ O(h2
x + h2

y).

Under the homogeneous Dirichlet boundary condition, matrix representation of the above discrete Laplace
operator in one dimension (x-coordinate) can be written as

Dx
h =

1
h2

x



−2 1
1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2


(Nx−1)×(Nx−1)

, (3.1)
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i.e., uxx ≈ Dx
hU since u0, j = uNx, j = 0 for any 0 ≤ j ≤ Ny. If the homogeneous Neumann (i.e., no-flux)

boundary condition is used, then the one-dimensional Laplace operator Dx
h can be defined as

Dx
h =

1
h2

x



−2 2
1 −2 1
. . .

. . .
. . .

1 −2 1
2 −2


(Nx+1)×(Nx+1)

, (3.2)

in which −2u0, j+2u1, j

h2
x

and −2uNx , j+2uNx−1, j

h2
x

are used to approximate uxx on the boundary nodes x0, j and uNx, j

respectively, which is equivalent to the ghost-point approach that sets u−1, j = u1, j and uNx+1, j = uNx−1, j
according to ∂u

∂n = 0 and then applies the central differences. Mixed Dirichlet and Neumann boundary
conditions can be treated by modifying the first and last row of Dx

h correspondingly. The discrete matrix
Dy

h is defined in a similar way. With the help of Kronecker product, the discrete Laplace matrix in two
dimensions is given by

Dh = INy−1 ⊗ Dx
h + Dy

h ⊗ INx−1 (3.3)

where INy−1 and INx−1 are the identity matrices. Similarly, the corresponding matrix representation of the
discrete Laplace operator in 3D can be represented by

Dh = INz−1 ⊗ INy−1 ⊗ Dx
h + INz−1 ⊗ Dy

h ⊗ INx−1 + Dz
h ⊗ INz−1 ⊗ INx−1. (3.4)

Let Φh(t) and Ch(t) represent respectively the vectors consisting of the approximations of φ(x, t) and
c(x, t) on the mesh Ωh. The spatially semi-discretized system with second-order accuracy for the pitting
corrosion model is given by

dΦh

dt
= −L

(
2A(cLe − cS e)

[
Ch − h(Φh)(cS e − cLe) − cLe

]
h′(Φh) + wg′(Φh) − αφDhΦh

)
:= LαφDhΦh + F1(Φh,Ch),

dCh

dt
= MDh

(
2A

[
Ch − h(Φh)(cS e − cLe) − cLe

])
:= F2(Φh,Ch),

(3.5)

(3.6)

where Φh(0)i, j = φ0(xi, j) and Ch(0)i, j = c0(xi, j) are the initial conditions. It should be noted that (3.5)–(3.6)
is an ordinary differential equation (ODE) system now.

For more complicated metal microstructure morphology, the spatial discretization needs to be modified
at some boundary or interface nodes in the finite difference method. For illustration, we consider a metal
matrix that is otherwise homogeneous, except that it contains embedded particles/precipitates that do not
corrode. In Figure 1, Cases I and II represent two typical situations of convex noncorroding particles rep-
resented by the yellow regions. At the nodes adjacent to the particle–matrix interface the homogeneous
Neumann boundary (no-flux) condition needs to be enforced. We implement a simple first-order discretiza-
tion of ∆u at point xi, j which is given by:

∆φ(xi, j) ≈
2φi−1, j − 2φi, j

h2
x

+
φi, j−1 − 2φi, j + φi, j+1

h2
y

, for Case I, (3.7)

∆φ(xi, j) ≈
2φi−1, j − 2φi, j

h2
x

+
−2φi, j + 2φi, j+1

h2
y

, for Case II. (3.8)
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We use the above schemes to do the spatial approximation for the numerical experiment in subsection 4.5.
Alternatively, the second order (or even higher-order) finite difference approximations of ∆u may be defined
at the interface nodes, as detailed in [57, 58].

i− 1 i i+ 1

j + 1

j

j − 1

Case I

i− 1 i i+ 1

j + 1

j

j − 1

Case II

Figure 1: An illustration of the metal matrix with embedded noncorroding particles.

3.2. Temporal integration

We propose a decoupled second order accurate linear scheme for temporal discretization of the above
ODE system (3.5)–(3.6). For simplicity, we assume a uniform time partition {tn = nτ}Nn=0, where τ is the
time step size; non-uniform temporal discretization can also be derived similarly with minor modifications
of notations and formulas.

For the sake of clarity, we provide a brief introduction to the Rosenbrock–Euler exponential time inte-
grator. We begin with the following ODE system

du(t)
dt
= F(u(t)), t ∈ [0, tN], u(0) = u0, (3.9)

where u ∈ Rn represents the state vector and F : Rn → Rn is the vector field. By linearizing F(u(t)) at u(tn),
we obtain

du(t)
dt
= Jnu(t) + [F(u(t)) − Jnu(t)] := Jnu(t) +Gn(u(t)), t ∈ [tn, tn+1], (3.10)

where the Jacobian Jn =
∂F(u)
∂u |u(tn). The state vector u(tn+1) at time tn+1 can be expressed in the integral form

as:

u(tn+1) = eτJnu(tn) +
∫ τ

0
e(τ−s)Jn Gn(u(tn + s)) ds. (3.11)

By taking Gn(u(tn + s)) ≈ Gn(u(tn)) for s ∈ [0, τ], the Rosenbrock–Euler scheme is defined by

un+1 = eτJnun +

∫ τ

0
e(τ−s)Jn Gn(un) ds

= eτJnun + τϕ1(τJn)Gn(un) , (3.12)
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where ϕ1(z) = (ez − 1)/z. The above scheme in (3.12) can be simplified as

un+1 = un + τϕ1(τJn) F(un) (3.13)

Temporal error analysis shows that this is a second-order time integration method for the model ODE system
(3.9); for more details the reader is referred to [19].

To overcome the high stiffness of the ODE system (3.5)–(3.6), we can apply the Rosenbrock–Euler inte-
grator (3.13) directly to solve the coupled system. Thus, knowing [Φn

h,C
n
h]T , we can compute (Φn+1

h ,C
n+1
h )T

at the next time step as [
Φn+1

h
Cn+1

h

]
=

[
Φn

h
Cn

h

]
+ τϕ1(τJn)

[
LαφDhΦ

n
h + F1(Φn

h,C
n
h)

F2(Φn
h,C

n
h)

]
(3.14)

with appropriate boundary conditions, where

Jn =

 LαφDh +
∂F1
∂Φh

(Φn
h,C

n
h) ∂F1

∂Ch
(Φn

h,C
n
h)

∂F2
∂Φh

(Φn
h,C

n
h) ∂F2

∂Ch
(Φn

h,C
n
h)

 (3.15)

denotes the corresponding global Jacobian matrix at time tn of the coupled system. However, the above ap-
proach results in a large Jn matrix. Because we need to perform matrix exponential and product calculations
to evaluate exp(τJn)V (V is a certain vector) at each time step, this approach is quite expensive in practice,
even with the Krylov subspace method [2] for large-scale sparse matrices. Instead of treating φ and c in a
global way, an alternative approach is to decouple the system and solve the two variables φ and c separately.

The key idea of our scheme is to only apply the Rosenbrock–Euler integrator to (3.5) for computing Φh,
due to its high stiffness, and apply low-cost semi-implicit schemes to (3.6) for computing Ch. By using a
variable splitting approach, bothΦh and Ch can be solved with larger time step size τ, which in turn improves
the overall efficiency. We now apply this decouple numerical scheme to the phase field model for corrosive
dissolution. We define the extrapolation

Ĉn+1/2
h =

3
2

Cn
h −

1
2

Cn−1
h , (3.16)

and for t ∈ [tn, tn+1], so that equation (3.5) can be approximated as

dΦh

dt
= Lαφ DhΦh + F1(Φh, Ĉ

n+1/2
h ) := Jφ(Φn

h, Ĉ
n+1/2
h )Φh + G(Φh, Ĉ

n+1/2
h ), (3.17)

where
Jφ(Φh,Ch) = Lαφ Dh +

∂F1

∂Φh
(Φh,Ch), (3.18)

is the Jacobian matrix of the right hand side of (3.5) with respect to φ and

G(Φh,Ch) = F1(Φh,Ch) −
∂F1

∂Φh
(Φn

h,Ch)Φh. (3.19)

Note that by definition ∂F1
∂Φh

(Φh,Ch) is a diagonal matrix. By combining the Rosenbrock–Euler and Crank–
Nicolson schemes, a fully discrete, hybrid scheme for solving (Φn+1

h ,C
n+1
h ) is obtained as: for n = 1, 2, · · · ,N−

1, 
Φn+1

h = Φn + τϕ1(τJφ(Φn
h, Ĉ

n+1/2
h )) (LαφDhΦ

n
h + F1(Φn

h, Ĉ
n+1/2
h )),

Cn+1
h −Cn

h
τ − AMDh(Cn+1

h +Cn
h) = −2AMDh

(
h
(Φn+1

h +Φ
n
h

2
)
(cS e − cLe) + cLe

)
.

(3.20)

(3.21)
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As shown by local truncation error analysis presented in subsection 3.3, the above scheme (3.20)–(3.21) is
second-order accurate in both time and space for homogeneous material systems.

In the above decoupled scheme, we can first solve Φn+1
h from (3.20), and then solve Cn+1

h by putting the
computed Φn+1

h into (3.21). It is a linear scheme, so obviously a nonlinear iterative solver is not needed for
solving (3.20) and (3.21). Because the proposed scheme applies a variable splitting approach, we only need
to compute the matrix exponential exp(τJφ) with the matrix Jφ, which is half the size of Jn in (3.14). Note
that the computation of Φn+1

h dominates the computational expense, and the cost for solving Cn+1
h is almost

negligible. To initiate the scheme (3.20)–(3.21), we consider a two-level temporal discretization scheme at
the first time step t1 as:

Φ1
h = Φ

0
h + τϕ1(τJφ(Φ0

h,C
0
h)) (LαφDhΦ

0
h + F1(Φ0

h,C
0
h)),

C1
h −C0

h

τ
− 2AMDhC1

h = −2AMDh
(
h(Φ1

h)(cS e − cLe) + cLe
)
,

(3.22)

(3.23)

where Φ0
h and C0

h are defined as the initial conditions φ0 and c0, respectively. An alternative second-order
scheme is to apply the BDF2 discretization instead of the Crank–Nicolson to (3.6). In the BDF2 scheme,
one can solve for Cn+1

h as follows:

3Cn+1
h − 4Cn

h +Cn−1
h

2τ
− 2AMDh Cn+1

h = −2AMDh
(
h(Φn+1

h )(cS e − cLe) + cLe
)
. (3.24)

3.3. Local truncation error analysis
Here we provide a local truncation error analysis for the proposed method to verify its second order

convergence in both time and space. To this end, we assume the homogeneous Dirichlet boundary condition
is imposed and the exact solution (φ, c) of the pitting corrosion system (2.11)-(2.12) has enough regularity
for the error analysis.

We first need to show that the point-wise local truncation error of (3.20)–(3.21) for each time step n ≥ 1
is O(τ3 + τh2). Taking the exact solution (φ(x, t), c(x, t)) into (3.21), we can show that

~c(tn+1) − ~c(tn) − τAMDh(~c(tn+1) + ~c(tn))

= −2τAMDh

h ~φ(tn+1) + ~φ(tn)
2

 (cS e − cLe) + cLe

 + O((τ3 + τh2)~1), (3.25)

where ~1 = (1, 1, · · · , 1)T , ~φ(t) = {φ(xi, j, t)} and ~c(t) = {c(xi, j, t)} represent the vectors consisting of the values
of φ and c, respectively, corresponding to the discretized domain Ωh.

The local truncation error analysis for (3.20) needs more effort where the special nonlinear coupling of
φ and c plays a key role. Taking the exact solution (φ(x, t), c(x, t)) into the semi-discretized scheme (3.5)
gives us

d~φ
dt
= LαφDh ~φ + F1(~φ, ~̂c(tn+1/2)) + O((τ2 + h2)~1), t ∈ [tn, tn+1]. (3.26)

and further

d~φ
dt
= LαφDh ~φ + F1(~φ(tn), ~̂c(tn+1/2)) + O((τ2 + h2)~1)

= Jφ(~φ(tn), ~̂c(tn+1/2)) ~φ + G(~φ, ~̂c(tn+1/2)) + O((τ2 + h2)~1)

= Jφ(~φ(tn), ~̂c(tn+1/2)) ~φ + G(~φn, ~̂c(tn+1/2)) + O((τ2 + h2)~1), (3.27)
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where Jφ(~φ,~c) = LαφDh +
∂F1

∂~φ
(~φ,~c) and G(~φ,~c) = F1(~φ,~c) − ∂F1

∂~φ
(~φn, ~c) ~φ. Note that the last equality comes

from the fact that

F1(~φ,~c(tn+1/2)) − F1(~φn, ~̂c(tn+1/2)) =
∂F1

∂~φ
(~φn, ~̂c(tn+1/2)) (~φ − ~φn) + O(τ2~1).

Then, it holds that

~φ(tn+1) = eτJφ(~φ(tn),~̂c(tn+1/2))~φ(tn) +
∫ τ

0
e(τ−s)Jφ(~φ(tn),~̂c(tn+1/2))G(~φ(tn), ~̂c(tn+1/2))

+

∫ τ

0
e(τ−s)Jφ(~φ(tn),~̂c(tn+1/2))O((τ2 + h2)~1)ds

= ~φ(tn) + τϕ1(Jφ(~φ(tn), ~̂c(tn+1/2)))(LαφDh ~φ(tn) + F1(~φ(tn), ~̂c(tn+1/2)))

+

∫ τ

0
e(τ−s)Jφ(~φ(tn),~̂c(tn+1/2))O((τ2 + h2)~1)ds

For the scaled discrete Laplace matrix LαφDh, it holds that

‖esLαφDh‖∞ ≤ 1, ∀ s ≥ 0,

according to Theorem 2 in [28]. Thus, for any 0 ≤ s ≤ τ, it holds

‖e(τ−s)Jφ(~φ(tn),~̂c(tn+1/2))‖∞ =

∥∥∥∥∥e(τ−s)LαφDhe
∂F1
∂~φ

(~φ(tn),~̂c(tn+1/2)
∥∥∥∥∥
∞

≤ ‖e(τ−s)LαφDh‖∞

∥∥∥∥∥e
∂F1
∂~φ

(~φ(tn),~̂c(tn+1/2)
∥∥∥∥∥
∞

≤

∥∥∥∥∥e
∂F1
∂~φ

(~φ(tn),~̂c(tn+1/2)
∥∥∥∥∥
∞

≤ Constant, (3.28)

where we have used the regularity of (φ, c) and the fact that ∂F1

∂~φ
(~φ,~c) is a diagonal matrix. With the bound

(3.28), we obtain∥∥∥∥∥∫ τ

0
e(τ−s)Jφ(~φ(tn),~̂c(tn+1/2))O((τ2 + h2)~1) ds

∥∥∥∥∥
∞

= τ‖O((τ2 + h2)~1)‖∞ = O(τ3 + τh2), (3.29)

which gives us the local truncation error estimate for (3.20) as

~φ(tn+1) = ~φ(tn) + τϕ(Jφ(~φ(tn), ~̂c(tn+1/2)))(LαφDh ~φ(tn) + F1(~φ(tn), ~̂c(tn+1/2))) + O((τ3 + τh2)~1).

The formula (3.22)–(3.23) is applied only once (at the first step n = 0) for the purpose of startup,
therefore it is easy to show in a similar way that their corresponding point-wise local truncation errors are
O(τ2 + τh2). Overall, the final error is expected to be O(τ2 + h2) after time integration, that is, the scheme is
second order accurate.

4. Numerical experiments

In this section, we present several numerical experiments to establish the viability of the proposed
method (3.20)–(3.21) for the phase field model of corrosive dissolution. These numerical examples are
adopted from [9, 32]. The package Expokit [44] based on the Krylov subspace method is used for com-
puting the action of a matrix exponential on a vector. We use the bicgstab to solve for c. All numerical
experiments are conducted on a Linux laptop with a quad-core Intel 2.5GHz Processor and 7.9GB Memory.
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4.1. Numerical convergence test

In this example, we shall test the convergence rates of the proposed scheme using manufactured solu-
tions. Here, we consider the following equation system

∂φ

∂t
=

c
2 + cos(πx)

h′(φ) + ∆φ, x ∈ (0, 1)

∂c
∂t
= ∆

(
c + h(φ)

)
+ r(x, t), x ∈ (0, 1)

(4.1)

(4.2)

where h(φ) = φ2. The exact solutions are given by

φ(x, t) = cos(πx) exp(2t3), c(x, t) = (3t2 +
π2

2
)(2 + cos(πx)). (4.3)

The initial conditions and the source function r(x, t) are determined by the above exact solution (4.3). Ho-
mogeneous Neumann boundary condition is supplemented to the above problem (4.1)–(4.2). This manufac-
tured problem is modified from the PFM for corrosion (2.11)–(2.12), where the essential nonlinear coupling
between φ and c is preserved by the term c

2+cos(πx) h
′(φ). We set the terminal time tN = 0.5.

To test the second-order temporal convergence, we solve (4.1)–(4.2) on a fixed spatial mesh with Nx =

1024 and gradually refine the time step sizes τ = 1/24+ j, for j = 1, . . ., 4. The discrete L2-norm errors of φ
and c are reported in Table 2, which demonstrate that the scheme is second-order accurate in time. To test
the spatial convergence rate, we fix the time step size τ = 1

1024 and gradually refine the spatial meshes with
Nx = 24+ j for j = 1, . . ., 4. We present the discrete L2-norm errors of φ and c in Table 3 and observe that the
scheme is second-order accurate in space for homogeneous domains.

Table 2: Discrete L2-norm errors of the proposed scheme with gradually refined time step sizes on a fixed spatial mesh with
Nx = 1024.

τ ‖φN − ΦN
h ‖L2 Order ‖cN −CN

h ‖L2 Order

1/32 1.3952e-02 - 1.2535e-02 -

1/64 3.6904e-03 1.92 3.2767e-03 1.94

1/128 9.3286e-04 1.98 8.2848e-04 1.98

1/256 2.2382e-04 2.06 2.0239e-04 2.03

Table 3: Discrete L2-norm errors of the proposed scheme on gradually refined spatial meshes with a fixed time step size τ = 1
1024 .

h ‖φN − ΦN
h ‖L2 Order ‖cN −CN

h ‖L2 Order

1/32 1.6712e-02 - 1.0669e-02 -

1/64 4.1337e-03 2.02 2.6126e-03 2.03

1/128 1.0183e-03 2.02 6.3930e-04 2.03

1/256 2.4306e-04 2.07 1.5079e-04 2.08
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Table 4: The physical parameters of phase field model for corrosive dissolution.

Parameter Physical interpretation Value

σ Interface energy 10 J/m2

l Interface thickness 5 µm

D Diffusion coefficient 8.5 × 10−10 m2/s

L Interface kinetics coefficient 2 m3/(Js)

A Free energy density curvature 5.35 × 107 J/mol

c̄solid Average concentration of metal 143 mol/L

c̄sat Average saturation concentration 5.1 mol/L

4.2. Pencil electrode experiment

In this example, we use the proposed scheme to simulate the one-dimensional “pencil electrode ex-
periment” conducted in [11]. The specimen is a 150 µm long stainless steel (304 SS) wire with diameter
d = 25 µm mounted in an epoxy resin. Only the top end of the wire is exposed to the electrolyte solution, as
shown in Figure 2. Therefore, we set the Dirichlet boundary condition c = 0 and φ = 0 at the top, and c = 1
and φ = 1 at the bottom boundary, whereas the homogeneous Neumann boundary condition is assigned
along the length (cylindrical surface) of the wire. At the initial time t = 0, the whole domain Ω is in the
uncorroded state, that is, c = 1 and φ = 1. All model parameters are listed in Table 4, which are assumed
from [32].

Figure 2: A schematic illustration of the pencil electrode experiment.

This example was solved in [32] using the finite element method to discretize in space together with an
adaptive BDF2 scheme to discretize in time. The interface thickness parameter l is 5 µm. As remarked by
Mai and co-workers in [32], accurate evaluation of the field variables (φ, c) requires that the mesh resolution
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be at least 1 µm in each direction near the interface. More importantly, an extremely small time step τ = 10−8

second was required initially to ensure convergence of the nonlinear solver and to alleviate oscillations in
(φ, c) solutions. Herein, we use the proposed scheme to solve this example problem on a 25 × 150 uniform
grid with a resolution of 1 µm throughout the domain. We find that the use of the time step size τ = 10−3

second is stable for the entire evolution process for our method, which is much larger than that of the
conventional BDF type schemes. The proposed scheme uses a CPU time of 16205 seconds to arrive at
t = 225 second. Figure 3 presents the numerical results of the material state φ and the concentration c
at t = 0, 38, 152 and 225 seconds. We also plot the evolution of the pit depth (φ = 0.5) in Figure 4,
which agrees well with previous results obtained in [32, Section 3.1], the analytic solution in [42] and the
experimental data in [11]. As expected during diffusion-controlled corrosion, the pit depth increases linearly
with the square root of time.
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Figure 3: Simulated results by the proposed scheme with the time step size τ = 10−3 second and the spatial mesh resolution 1 µm
for the pencil electrode test.
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Figure 4: Simulated evolution of the pit depth is plotted against the data from the pencil electrode experiment in [11] and the exact
analytical solution from [42].

It should be remarked that computational cost needed by the proposed scheme (3.20)–(3.21) could be
significantly less than that by the scheme (3.14), which directly applies the Rosenbrock–Euler integrator to
the whole ODE system (3.5)–(3.6). We observe that, when the terminal time is t = 1 second, the CPU time
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used by the proposed scheme is only 79.8 seconds, compared to 6, 972 seconds by the scheme (3.14).
Next we investigate the performance of the proposed scheme (3.20)–(3.21) on finer meshes. When

the spatial mesh is further refined, the discretized corrosion model becomes stiffer, which then requires
even smaller time step sizes τ. At the same time, the total size of the ODE system is also getting scaled
accordingly. When a uniform grid of 33×198 (resolution 0.75 µm) is used, we find that τ = 7.5×10−4 second
is stable for the proposed scheme which needs about a CPU time of 180.2 seconds to arrive at t = 1 seconds.
If a 50×300 uniform grid (resolution 0.5 µm) is used, τ = 1.0×10−4 second is needed for numerical stability
and the proposed scheme costs a CPU time of 2, 660 seconds to arrive at t = 1 second. Fortunately, we shall
point out that the spatial resolution 1 µm is enough to capture the morphological evolution of corrosion
interface, and with this resolution, the scheme (3.20)–(3.21) with the time step size τ = 1.0× 10−3 second is
stable and efficient for the benchmark test (and all later examples).

4.3. Growth of an isolated pit

In this example, we use the proposed scheme to simulate the evolution of an isolated semi-circular pit
growth, similar to the experiment conducted in [11]. We consider a specimen size of 400 µm × 200 µm.
At the initial state (t = 0), we consider a semi-circular pit with diameter 16 µm situated at the center of the
top edge, as shown in Figure 5. The homogeneous Dirichlet boundary condition is applied for both φ and c
at the pit mouth region, while the homogeneous Neumann boundary condition is applied at the rest of the
external domain boundary. All model parameters are listed in Table 4, which are assumed from [32].

We use the scheme described by (3.20)–(3.21) with the time step size τ = 10−3 second on a 400 × 200
uniform grid (resolution 1 µm in each direction) to do simulations. In this case, the dimension of the matrix
in τJn is 80610 × 80610, which is quite large. We observe that the proposed scheme (3.20)–(3.21) costs a
CPU time of 1554.5 seconds to arrive at t = 1 second. The plots of the phase field variable φ at various times
t = 0, 40, 100, 200, 400, 600 and 1000 seconds are provided in Figure 5. We also show the evolution of the
pit depth versus time in Figure 6 by measuring the depth of the lowest point on the contour line corresponding
to φ = 0.5. Experiments by Ernst and Newman [11, Figure 8] show that the shape of an isolated corrosion
pit remains circular, which qualitatively validates the results obtained in Figure 5. Currently, we do not
have detailed experimental data in the literature to perform a quantitative calibration and validation of the
phase field model with regards to pit shape evolution. The results of evolution of the morphology and pit
depth exactly match with [32, Section 3.2]. However, compared to the BDF/BDF2 schemes used in [32],
the proposed scheme is computationally more efficient because: (1) it allows the use of a larger time step
size τ = 10−3 second even at initial times without loss of second-order accuracy in (φ, c) solutions; (2) the
linear decoupled scheme does not require nonlinear (Newton) iterations.

4.4. Electropolishing of a metal surface

In this example, we use the proposed scheme to simulate the electropolishing process, which was studied
previously in [32]. Electropolishing is widely used in the manufacturing industry as a surface treatment
process to reduce the surface roughness of metallic materials [e.g., 26]. The metal with a rough surface is
exposed to an appropriate electrolyte solution and a large anodic potential is applied to the metal to accelerate
the corrosive dissolution process. In this case, the diffusion of metal ions in the solution environment limits
the dissolution process at the corrosion interface (i.e., diffusion-controlled corrosion); consequently, the
peaks in the surface roughness dissolve faster than the valleys, thus smoothing the surface. To simulate
this process, here we consider a 400 µm × 200 µm rectangular domain with a rough surface at time t = 0,
as shown in Figure 7. The homogeneous Dirichlet boundary condition is used on the top boundary, while
the homogeneous Neumann boundary condition is used on the rest of the external domain boundary. For
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Figure 5: Simulated results by the proposed scheme with the time step size τ = 10−3 second on a uniform mesh with resolution
1 µm showing the growth of an isolated semi-circular pit.
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Figure 6: Simulated evolution of the pit depth with time during the growth of an isolated semi-circular pit. The pit depth is evaluated
by measuring the depth of the lowest point on the contour line corresponding to φ = 0.5.

illustration, we consider the model parameters in Table 4 calibrated for stainless steel 304 SS alloy. We use
a uniform spatial mesh with resolution 1 µm in each direction and use the time step size τ = 10−3 second
at all times. Numerical results of the material state φ at t = 0, 1, 2, 3, 5, 10, 20, 100 and 300 seconds are
shown in Figure 7, which illustrates the transformation of an initially rough surface into a smoother surface
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due to diffusion-controlled corrosive dissolution. For this simulation, we observe that the proposed scheme
(3.20)–(3.21) needs a CPU time of 1667.42 seconds to arrive at t = 1 second.

Figure 7: Simulated results by the proposed scheme with the time step size τ = 10−3 second on a uniform mesh with spatial
resolution 1 µm, illustrating the electropolishing of a rough metal surface.

4.5. Corrosion of an alloy with intermetallic particles

In the final example, our aim is to demonstrate the ability of the proposed scheme to efficiently simulate
the corrosive dissolution of an alloy matrix containing intermetallic particles or precipitates (IMPs) that
are corrosion resistant. The presence of IMPs plays a crucial role in the susceptibility of stainless steel
[5] and aluminum alloys [54]. In certain cases, the precipitates induce micro-galvanic corrosion processes
because they have a different electrochemical potential than the surrounding alloy matrix [55]. Highly
alloyed stainless steels and Ni-Fe-Cr alloys are particularly susceptible to localized corrosion (e.g., pitting)
because the IMPs potentially reduce corrosion resistance of the surrounding matrix [52].

We consider a 200 µm × 200 µm square alloy matrix with distributions of noncorroding IMPs. At the
initial state, we set a 10 µm pit on the top boundary, shown in Figure 8. The homogeneous Dirichlet bound-
ary condition is used along the pit mouth on the top surface, while the homogeneous Neumann boundary
condition is used on the rest of the external domain boundary and on the internal particle–matrix interfaces.
For illustration, we consider the model parameters in Table 4 for the alloy matrix, which were calibrated for
stainless steel 304 SS alloy. Due to the irregular shape of the ceramic particles, the morphological evolution
of the pit is quite complicated even in the simple case of diffusion-controlled corrosion. We performed the
same computations on a uniform 200 × 200, 250 × 250 mesh with a resolution of 1 µm and 0.8 µm, respec-
tively. For these two grid resolutions, we find that the proposed scheme with the time step size τ = 10−3
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second is stable. To arrive at t = 1 second, we observe that the CPU times of 840.58 seconds and 1356.09
seconds are needed, respectively. The snapshots of simulated results at t = 1, 10, 40, 50, 100, 200, 300, 400
and 500 seconds are shown in Figure 8, which demonstrate the robustness of the proposed scheme.

Figure 8: Simulated results by the proposed scheme with the time step size τ = 10−3 second on a uniform mesh with spatial
resolution 1 µm for the corrosion of an alloy with intermetallic particles.

5. Conclusions

The phase field model for corrosive dissolution is highly nonlinear and computationally expensive to
solve because of the strong numerical stiffness of the reaction-diffusion equation system. Consequently,
implicit first/second order accurate backward difference formula (BDF/BDF2) schemes require very small
time step sizes, as low as 10−8 second at initial times to ensure numerical stability or to avoid oscillations
in the field variables. In this paper, we have developed an efficient decoupled linear numerical scheme,
in which the equation for material corrosion/damage state φ is solved by the exponential time integrator,
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while the equation for c is solved by the conventional Crank–Nicolson scheme. We tested the accuracy,
convergence and stability of the proposed numerical schemes by considering several numerical examples.
We emphasize that the proposed scheme is stable with the time step size of 10−3 second at all times for
the typical spatial resolution of 1 µm in all the example problems presented in this work. While we used
central finite differences for spatial discretization, the proposed temporal discretization scheme and the
decoupled approach can be easily extended to finite element and finite volume methods, where adaptive
mesh refinement can be used to optimize the mesh for computational efficiency and to capture the domain
or material microstructure geometries. Our future work will focus on implementing the proposed scheme in
the finite element method to study stress corrosion cracking where it is important to account for the effects
of elastic strain energy in the free energy functional. The proposed scheme is general enough to be applied
to any phase field model encountering strong numerical stiffness, so we believe it would be relevant to the
broader computational mathematics and material science community.
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