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Exponential time-marching method for

the unsteady Navier-Stokes equations

Shu-Jie Li∗

Beijing Computational Science Research Center, Beijing, 100193, China

Lili Ju†

Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

In this paper, the predictor-corrector exponential (PCEXP) time marching scheme,
originally developed by S.-J. Li, et al in AIAA-2017-0753 is extended to compute the time-
dependent solutions of the compressible Navier-Stokes equations with high-order discon-
tinuous Galerkin discretizations in space. The ability of PCEXP scheme that can greatly
relax the restriction of time step due to the Courant-Friedrichs-Lewy (CFL) condition is
investigated for the computations of unsteady laminar and turbulent flows with large time
steps. It is observed that the PCEXP scheme yields accurately resolved solutions in regions
of boundary layers and turbulent wakes. Numerical results demonstrate the applicability
of PCEXP scheme to unsteady viscous flows in two and three dimensions.

I. Introduction

The unsteady Navier-Stokes equations are relatively difficult to be accurately while efficiently solved
due to the challenges from the numerics and physics, such as multi-scale effects, high-aspect-ratio meshing,
and numerical errors, corresponding respectively to the physical stiffness, geometric stiffness, and numerical
stiffness. The geometric stiffness directly imposes a severe Courant-Friedrichs-Lewy (CFL) restriction which
results in tiny time steps for explicit time-marching methods, as in the cases of direct numerical simulations
(DNS) and large eddy simulations (LES) of turbulent flows, in which spatial discretizations of the com-
putational domains are often associated with stretched or refined grids for capturing boundary layers and
wake flows. To prevent numerical dissipation from damping unsteady flow structures of laminar and turbu-
lent flows, high-order spatial discretizations are pursued in spite of their relatively higher cost compared to
second-order methods. However, the overall computational performance of using high-order methods is even
more time-consuming for the time-stepping stage. Consequently, efficient time-marching schemes are always
required.

In our previous works, we have shown that the predictor-corrector exponential (PCEXP) scheme can
relax the CFL restriction while maintaining low absolutely temporal errors.1 In this paper, the advantages
of PCEXP scheme for inviscid flows1,2 and steady flows3,4 are verified for unsteady viscous flow regime,
by solving the time-accurate solutions of unsteady compressible Navier-Stokes equations. This paper is
organized as follows. Section II outline the algorithm and implementation of the PCEXP scheme. Section
III reports numerical results to demonstrate the accuracy of solving 2-D and 3-D laminar and turbulence
flows. Finally, Secition IV concludes this work.

∗Research Assistant Professor, Mechanics Division, No.10 West Dongbeiwang Road, Haidian District, Beijing 100193, China,
E-mail: shujie@csrc.ac.cn. AIAA Member.

†Professor, Department of Mathematics, 1523 Greene Street Columbia, SC 29208, USA, E-mail: ju@math.sc.edu.
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II. Predictor-Corrector EXPonential time integrator scheme (PCEXP)

Consider a semi-discrete ordinary differential equation (ODE) system obtained from a spatial discretiza-
tion such as discontinuous Galerkin methods of the form

du

dt
= R(u). (1)

where u = u(x, t),x ∈ Ω denotes a vector of the coefficients associated with the orthonormal basis in
space, and R(u) the corresponding right-hand side of the semi-discrete equations of a spatial discretization.
Without loss of generality, let us focus on a single time step t ∈ [tn, tn+1].

Splitting the right-hand term of (1), we have

du

dt
= Jnu+N(u), (2)

where Jn = DuR(un) denotes the Jacobian matrix of R, N(u) = R(u) − Jnu is the remainder and the
subscript n denotes the variable evaluated at the current time tn, which has an integral solution

un+1 = e∆tJn un + e∆tJn

∫ ∆t

0

e−τJnN(u(x, tn + τ)) dτ (3)

The PCEXP scheme is base on the formula (3), where the stiff part is computed analytically and the nonlinear
term is approximated by a numerical method. Here we do the Taylor expansion about τ to the nonlinear
term

N(u(x, tn + τ)) =

∞∑
k=0

τk

k!

∂kN(un)

∂τk
, (4)

after substituting (4) into (3) , we have

un+1 = e∆tJn un +

∞∑
k=0

∂kN(un)

∂τk

∫ ∆t

0

τk

k!
e(∆t−τ)Jn dτ. (5)

Introducing a new function defined by

φk(∆tJn) =
1

∆tk

∫ ∆t

0

e(∆t−τ)Jn
τk−1

(k − 1)!
dτ, (6)

Equation (5) can be expressed as a composition of linear combinations of products of φk functions

un+1 = e∆tJn un +

∞∑
k=1

∆tk φk(∆tJn)
∂k−1N(un)

∂τk−1
. (7)

Taking k = 1 gives the constant approximation to N in [tn, tn+1], namely

N(u(x, tn + τ)) ≈ N(un) = R(un)− Jn un (8)

Substituting (8) into (7) results in the first-order exponential scheme

un+1 = e∆tJnun +∆t φ1(∆tJn)N(un)

= un +∆t φ1(∆tJn)R(un). (9)

This is also named as the first-order exponential time differencing (ETD1) scheme.6,7 The second-order
scheme ETD26 can be obtained with k = 2. As a consequence, the ETD2 scheme requires the evaluation
of φ2 function, which is often hard to accurately compute. Instead, the second-order PCEXP scheme is
introduced1–3 for avoiding computing the φ2 function, which is obviously expensive.

u∗ = un +∆t φ1(∆tJn)R(un). (10)

un+1 = u∗ +
1

2
∆t φ1(∆tJn) [(N(u∗)−N(un)] . (11)

PCEXP is thus a two-stage method. In the first stage, the solution with the first-order formula (9) is used
to predict a solution u∗ of (10). Then, the n + 1 time solution is computed by the predicted u∗ plus an
averaged nonlinear term with the frozen Jacobian Jn, as expressed in (11). Notice that, PCEXP only require
the tn variables thus it is a one-step method which does not involve the computation of φ2 function.
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A. Implementation with the Krylov subspace method

The implementation of PCEXP scheme involves the evaluation of matrix-vector products, namely, the prod-
uct of the exponential functions of the Jacobian and a vector, such as φ1 times a vector R in (10). The
directly computation of the φ function with the matrix inversion J−1 is prohibitively expensive to evaluate
for large-scale problems.1 Instead, we use the Krylov subspace method proposed in8,9 to overcome the com-
putational difficulties for large-scale CFD problems. The basic idea of the Krylov method is to project and
approximate the multiplication of e∆tJ with any vector N , which is typically very large, onto a small Krylov
subspace, and then carry out the resulting exponential computation of much smaller matrices. To reveal the
structure of φ function times a vector N , by doing the Taylor series expansion to the exponential term

J−1 e
∆tJ − I

∆t
N =

(
I +

(∆tJ)

2!
+

(∆tJ)2

3!
+

(∆tJ)3

4!
+ · · ·

)
N , (12)

one can see that it can be regarded as a function projection onto the Krylov subspace of dimension m,

Km(J ,N) = span{N ,JN ,J2N , · · · ,Jm−1N}. (13)

In the Krylov subspace method, orthogonal basis Vm = [v1,v2, · · · ,vm] of Km can be obtained by the well
known Arnoldi’s algorithm outlined in Algorithm 1.

Algorithm 1 Arnoldi’s process

Initialize v1 = N/||N ||2
for j = 1 to m do
w = Jvj

for i = 1 to j do
hi,j = (w,vi)
w = w − hi,jvi

end for
hi+1,j = ||w||2
vj+1 = w/hi+1,j

end for

The computed Vm satisfies the so-called Arnoldi decomposition9

JVm = Vm+1H̃m, (14)

where Vm+1 is of the dimension m× (m+1) and H̃m is a (m+1)×m upper-Heisenberg matrix of the form

If let Hm denotes the matrix composed of the first m rows of H̃m and em = [0, · · · , 0, 1]T be the last
canonical basis, we have

JVm = VmHm + hm+1,mvm+1e
T
m (15)

Because V T
mVm = I, we have

Hm = V T
mJVm. (16)

Therefore Hm represents the projection of the linear transformation of J onto the subspace Km, with respect
to the basis Vm. Based on this, the following approximation was introduced

eJN ≈ eVmHmV T
m N = Vme

HmV T
mN . (17)

Since the first column vector of Vm is v1 = N/||N ||2, we can use V T
m = ||N ||2 e1 with e1 = [1, 0, · · · , 1] to

simply (17) as
eJN ≈ ||N ||2Vme

Hme1. (18)

Since V T
m (αJ) = αHm, the Krylov subspaces associated with J and αJ are identical, thus

eαJN ≈ ||N ||2Vme
αHme1. (19)

Thus the φ1 function can be approximated as

φ1(∆tJ)N =
1

∆t

∫ ∆t

0

e(∆t−τ)JN dτ ≈ 1

∆t

∫ ∆t

0

||N ||2Vme
(∆t−τ)Hme1 dτ. (20)
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Therefore, we obtain

φ1(∆tJ)N ≈ 1

∆t
||N ||2Vm

∫ ∆t

0

e(∆t−τ)Hme1 dτ (21)

=
1

∆t
||N ||2VmH−1

m (e∆tHm − I)e1. (22)

The dimension of Krylov subspace m is much smaller than the dimension of J , so that e∆tHm in (22) can be
computed very easily. In our tests the Chebyshev rational approximation with p = 14 is used for e−∆tHm ,
as in references.9

B. Analytical viscous Jacobian matrices

The accuracy and stability of the PCEXP scheme rely on the the accuracy of approximating the Jacobian
matrix J , which is directly determined by the local truncation error analysis.1 In the PCEXP scheme, the
broadcasting of global information containing the exact roadmap of flow transportation is achieved through
the introduction of exact Jacobian which accurately includes the convection and diffusion behavior of both
the interior and boundary elements.

To compute the Jacobians exactly, we start with the right-hand term of (1) by using a discontinuous
Galerkin spatial discretization2 with one extra term, the lifting operator δ due to the BR2 scheme10

Ri = −
∫
Ω

ψi F̃ dσ +

∫
Ω

(∇ψiF (U + δ) + ψi S ) dx (23)

The surface flux F̃ (24) consisting of convection and the diffusion terms is computed with the Roe’s Riemann
flux solver11 and the BR2 viscous flux,10 respectively

F̃ = F̃invis(UL,UR) + F̃vis(UL,UR,∇UL + δL,∇UR + δR). (24)

The residual Jacobian is so complicated that we have to broke it into several steps. First of all, let us consider
the diagonal Jacobians. They are obtained by taking the derivative of (23) with respect to uj of the host
cell with the superscript or subscript L, and ψ = ψL

∂Ri

∂uL
j

= −
∫
∂Ω

ψi
∂F̃

∂uL
j

dσ +

∫
Ω

(
∇ψi

∂F (U + δ)

∂U

∂U

∂uL
j

+ ψi
∂S

∂U

∂U

∂uL
j

)
dx

= −
∫
∂Ω

ψL
i ψ

L
j

∂F̃

∂uL
j

dσ +

∫
Ω

(
ψL
j ∇ψL

i

∂F (U + δ)

∂U
+ ψL

i ψ
L
j

∂S

∂U

)
dx.

(25)

where it is found that ∂δ/∂U in the volume integration does not show any effect on accuracy, stability
enhancement and performance gain. As such, ∂δ/∂U in the volume integration is omitted, contributing cost
reduction for the overall performance of PCEXP. The rest volume Jacobians such as ∂F (U + δ)/∂U and
∂S/∂U are easy to evaluate analytically.

In (25), the surface Jacobian ∂F̃ /∂uL
j is hard to be obtained immediately, so we apply the chain-

differential law to (24)

∂F̃

∂uL
j

=
∂F̃invis

∂UL

∂UL

∂uL
j

+
∂F̃vis

∂∇UL

(
∂∇UL

∂uL
j

+
∂δL
∂uL

j

)
+

∂F̃vis

∂∇UR

∂δR
∂uL

j

=
∂F̃invis

∂UL
ψL
j +

∂F̃vis

∂∇UL

(
∇ψL

j I+
∂δL
∂uL

j

)
+

∂F̃vis

∂∇UR

∂δR
∂uL

j

,

(26)

where the Jacobians ∂δL/∂u
L
j and ∂δR/∂u

L
j are derived exactly and they contain the most of viscous-

discretization stabilizing effects therefore must not be omitted. Remaining Jacobians are evaluated exactly
by Automatic Differentiation (AD) tools.
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Similarly, the off-diagonal terms about the neighboring cells with the super or subscript R around the
host cell L are evaluated in the same way

∂Ri

∂uR
j

= −
∫
∂Ω

ψi
∂F̃

∂uR
j

dσ +

∫
Ω

(
∇ψi

∂F (U + δ)

∂U

∂U

∂uR
j

+ ψi
∂S

∂U

∂U

∂uR
j

)
dx

= −
∫
∂Ω

ψL
i ψ

R
j

∂F̃

∂uR
j

dσ +

∫
Ω

(
ψR
j ∇ψL

i

∂F (U + δ)

∂U
+ ψL

i ψ
R
j

∂S

∂U

)
dx,

(27)

where
∂F̃

∂uR
j

=
∂F̃invis

∂UR

∂UR

∂uR
j

+
∂F̃vis

∂∇UR

(
∂∇UR

∂uR
j

+
∂δL
∂uR

j

)
+

∂F̃vis

∂∇UR

∂δR
∂uR

j

=
∂F̃invis

∂UR
ψR
j +

∂F̃vis

∂∇UR

(
∇ψR

j I+
∂δL
∂uR

j

)
+

∂F̃vis

∂∇UR

∂δR
∂uR

j

.

(28)

When σ is an interior face, the flux F̃ (UL,UR) is calculated by Roe’s Riemann solver.11 The Riemann
flux Jacobian matrices of (25) and (26) are evaluated exactly through AD. When σ is a boundary face, using
a corresponding boundary condition, one has

F̃ = F̃bc(UL,Ughost), (29)

where Ughost is a function of UL with the corresponding boundary condition. We remark that this type of
consistent and exact evaluation of the boundary Jacobians is essential for maintaining excellent stability and
convergence. In details, it is obtained in the following way

∂F̃

∂U
=
∂F̃bc

∂UL
+

∂F̃bc

∂Ughost

∂Ughost

∂UL
. (30)

As same as the interior faces, F̃bc uses the same Roe’s Riemann flux, and the Jacobian matrices ∂F̃ /∂UL,
∂Ughost/∂UL are also evaluated exactly by AD. Hence the computations of all the Jacobians in the whole
domain are totally consistent, contributing very strong robustness and good convergence behaviors with
arbitrarily high-order DG for all the flow regimes.

III. Numerical results

In this section, several test cases are presented to demonstrate the capability of solving the unsteady
compressible Navier-Stokes equations. Time-dependent solutions are obtained by conducting the so-called
time marching via the PCEXP scheme, where the time-step size ∆tn is determined by

∆tn =
CFL (n) h3D

(2p+ 1) (‖v‖+ c)
, h3D := 2d

‖E‖
‖∂E‖

, (31)

where CFL (n) is the Courant-Friedrichs-Lewy (CFL) number: a function of the number of time steps n for
steady flows according to the formula (33). p denotes the polynomial order of DG in space, v the velocity
vector at the cell center, c the speed of sound, d the spatial dimension, ‖E‖ and ‖∂E‖ the volume and
the surface area of the boundary of E, respectively; and h3D represents a characteristic size of a cell in 3D
defined by the ratio of its volume and surface area. For quasi-2D problems, we extrude a 2-D mesh to a
3-D (quasi-2D) mesh by one layer of elements and use h2D instead of h3d to eliminate the effect of the z
dimension on obtaining the truly 2-D time step. Given the cell size ∆z in the z direction, h2D is determined
by

2

h2D
=

3

h3D
− 1

∆z
. (32)

The following CFL formula is used for a robust code start-up for unsteady flows, and it is bounded by the
cap value CFLmax

CFL(n) = min

{
CFLmax, max

[
‖Rρ(un)‖−1

2 , 1 +
(n− 1)

(2p+ 1)

]}
, (33)
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where ‖Rρ(un)‖2 := 1
|Ω|

[∫
Ω

Rρ(un)
2dx

] 1
2

, Rρ(un) and |Ω| denote the residual of density and the volume

of entire computational domain.
For the space discretization, a modal discontinuous Galerkin method for arbitrarily shape elements is

used.1,5 All the algorithms are implemented and tested in the HA3D parallel DG solver developed by the
first author. In this paper, the PCEXP time-marching solutions up to fourth order ( p=3 ) DG are computed
for time-dependent laminar and turbulence flows.

A. Unsteady rotating concentric cylinder flow

An analytical time-dependent laminar N-S solution is firstly considered. The problem is an incompressible
viscous fluid between two concentric cylinders of radius r0 and r1. When t = t0 the fluid is at rest and the
two cylinders are suddenly given angular velocity ω0 and ω1. The flow satisfies the unsteady Navier-Stokes
equations in cylindrical coordinates

∂uθ
∂t

=
∂2uθ
∂r2

+
∂[uθ/r]

∂r
(34)

where t is non-dimensionalized with T = r20/ν, and ν is the kinematic viscosity coefficient. uθ and r denote
the tangential velocity and radial coordinate. Its steady solution us is written as

us = r0 ω0
r1/r − r/r1
r1/r0 − r0/r1

+ r1 ω1
r/r0 − r0/r

r1/r0 − r0/r1
(35)

where r0 = 1 is the inner radius, r1 = 2 is the outer radius, respectively. ω0 and ω1 is the angular velocity of
the inner wall and the outer one. The analytical time-dependent solution can be obtained by the speration-
of-variables method of the form

uθ(r, t) = us(r)−
∞∑

n=1

Anfn (r) exp
(
−q2nt

)
(36)

For each value of n, it leads to solve the Bessel’s equation

∂f(r)

∂r2
+
∂[f(r)/r]

∂r
− q2nf(r) = 0 (37)

and the solution is
fn(r) = αnJ1 (qnr) + βnY1 (qnr) (38)

Applying the boundary conditions fn(r0) = 0 and fn(r1) = 0 lead to a series of values of qn and the ratio
αn/βn. One can determine the weights An by projecting the steady solution us on the function fn(r). The
analytical solution (36) is finally obtained by using a finite-term series expansion with n = 20. The Reynolds
number is based on the tangential velocity of the inner spinning cylinder, which is taken as 10 for keeping
laminar state. ω0 is chosen such that the tangential velocity satisfies Ma = 0.05. Constant viscosity is used
to allow the comparison with the incompressible solution. We consider two cases: one is for testing the
correctness of the converged steady solution, the other is for testing the dynamic evolution of the boundary
layer profile.

1. Converged steady-state solution of the rotating concentric cylinder flow

The steady-state solution of the rotating concentric cylinder flow is computed for verifying the convergence
order of accuracy. An isothermal boundary condition is set on the inner cylinder with angular velocity ω0

corresponding to Ma = 0.05. The outer cylinder is stationary at ω1 = 0 with an adiabatic wall boundary
condition. Three sets of meshes are generated using successive mesh refinements. The quasi-2D coarsest
mesh that consists of 20×2×1 cells is generated by uniformly distributing grid nodes in both directions. We
compute the steady numerical solutions using the PCEXP scheme and the BR2 viscous term discretization.
Quadratic curved elements are used along the boundary surfaces. The L2 error measured in Table 1 is

computed as

√∫
(u− uθ)2dΩ

/∫
dΩ integrating in the entire computational domain Ω, from which the formal

order of accuracy is observed. These results validate the implementation of the BR2 viscous discretization
and the use of curved elements as well.
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Table 1. Validation of the order of accuracy on the three sets successive refined meshes for the Taylor Couette
flow case. The convergence rates of the L2 error (log10) agrees well with the idea ones, respectively.

p = 0 p = 1 p = 2 p = 3

mesh size L2 error order L2 error order L2 error order L2 error order

20× 2 -1.841096 N/A -2.303743 N/A -3.561000 N/A -4.522970 N/A

40× 4 -2.271501 1.43 -3.044176 2.46 -4.625891 3.54 -5.783858 4.19

80× 8 -2.687538 1.38 -3.788182 2.47 -5.557918 3.10 -6.999223 4.04

2. Unsteady solutions of the rotating concentric cylinder flow

The time-accurate solutions of the rotating concentric cylinder flow are computed for verifying the capability
of computing unsteady viscous flows with the PCEXP scheme. The analytical solution (36) is used and
compared to the PCEXP’s on a large-aspect-ratio boundary layer mesh – see Figure 1 (left), having 40 ×
40 × 1 = 1600 quadratic hexahedral elements and the first boundary layer height is compressed to 0.001.
The geometric stiffness induced by such a boundary layer meshing results in a severer time step restriction
for explicit methods.1 In this case, large time steps with CFL = 103 are used, and the computed time-slice
results are in good agreement with the analytical solutions at different time locations as shown in Figure 1
(right). As shown in Table 2, the PCEXP scheme allows few time steps for time-dependent stiff problems
while maintaining time-accurate solutions at low relative errors (< 3%) measured by the L2 norm of the
tangential velocity.

-0.2
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 0.6
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 1

 1  1.2  1.4  1.6  1.8  2
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Radial Distance

CFL=1000, t = 0.2 T

Analytical, t = 0.2 T

CFL=1000, t = 1.0 T

Analytical, t = 1.0 T

CFL=1000, t = 2.0 T

Analytical, t = 2.0 T

CFL=1000, t = 4.0 T

Analytical, t = 4.0 T

Figure 1. Quasi-2D large-aspect-ratio mesh and velocity profiles comparsion (40× 40× 1 = 1600 cells )

Table 2. Results statistics of the PCEXP scheme for the rotating concentric cylinder flow.

Time ( T = r20/ν) 0.2T 1.0T 2.0T 4.0T

#Time steps 16 79 158 315

CFL 103 103 103 103

L2 Error (%) 0.28 0.24 0.26 0.29
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B. Unsteady laminar flows past a circular cylinder

The 2-D unsteady viscous flow benchmark problem: unsteady laminar flow past a circular cylinder is com-
puted at Reynolds number 60, 80, 100, 120, 140, 160, 180, based on the cylinder diameter. For Re ≤ 180, the
flow is essentially two dimensional and alternating vortices are convected downstream from the cylinder, i.e.,
the well known von Karman vortex street. The unsteady characteristic frequency expressed in dimension-
less Strouhal number St = fd/U is computed by the PCEXP scheme and compared with the experimental
results of Williamson and Brown12 and the numerical results of Karniadakis13 using a high-order spectral
method, as shown in Table 3. Among which, the PCEXP results are computed with the fourth-order DG and
PCEXP time marching on 3617 hybrid elements with the far-field boundary located 35 diameters away from
the cylinder plus a buffer layer of 25 diameters wide filled by rectangle elements. The CFL number takes
500 for all the Reynolds numbers. Figure 3 gives the computed Karman vortex streets at Re = 60, 120, 180.
Different vortex patterns are showing which correspond to different Strouhal numbers. Table 3 shows the
computed Strouhal number St and also the comparison to experimental12 and numerical results,13 again,
they are fairly close to the references.

Figure 2. Hybrid grids and velocity contour for the laminar flow past a circular cylinder at Re = 180.

Table 3. Results statistics for the laminar flow past a circular cylinder.

Re 60 80 100 120 140 160 180

Present 0.139 0.155 0.168 0.178 0.185 0.191 0.197

Experiments12 0.135 0.152 0.164 0.173 0.181 0.186 N/A

Karniadakis13 0.153 0.168 0.178 0.185 0.192 0.197 0.203

C. Turbulent flow past a square cylinder at Ma = 0.15, Re = 22000

In this case, an implicit large eddy simulation (ILES) of turbulent flow past a 2-D square cylinder is computed
by the PCEXP scheme as an illustrative example. Figure 4 shows the wake flow pattern captured with the
DG p = 4 accuracy along with the PCEXP time-marching scheme. The instantaneous result shows a rather
detailed turbulence structure, demonstrating the applicability of using PCEXP to turbulent flows which
deserves a further research on it.
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(a) Re = 60

(b) Re = 120

(c) Re = 180

Figure 3. Vorticity field for the laminar flow past a circular cylinder with CFL = 500.

Figure 4. Turbulent flow field for the flow past a square cylinder: Ma = 0.15, Re = 22000, DG p = 4.
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D. Flow past a sphere at Ma = 0.3, Re = 300

The 3-D unsteady laminar flow past a sphere at Ma = 0.3 is considered for demonstrating the applicability
of PCEXP to 3-D unsteady flows. The Reynolds number Re = 300 is based on the sphere diameter d = 2
and far-field boundaries are located 50 diameters away from the sphere. The third-order DG is used for
spatial discretization while the time marching is achieved by the PCEXP scheme using CFL = 500. The
height of the first boundary layer is 0.05 and uniform edge size around 0.8 is used in the wake region. Very
large cells sizing up to 20 are generated as a far-field buffer zone for damping the outflow structure as shown
in Figure 5(a). The wake flow pattern is shown in Figure 5(a) and 5(b), where similar shed vortex structures
are observed compared with the experimental photograph of Figure 6. The statistic results are given in
Table 4 comparing with the reference results, where the present result is close to Gassner’s 4th-order spatial-
temporal, high-resolution result.14 Again, it shows the low temporal error feature of PCEXP as found in
the previous study.1

(a) Q contour colored by the velocity magnitude

(b) Velocity magnitude contour on the cut slice at z = 0

Figure 5. Computed wake structure for the flow past a sphere at Ma = 0.3, Re = 300.

Figure 6. Experimental result15 for the shed vortex structure of the flow past a sphere at Re = 300.
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Method #Cell Sorder Torder Cd ∆Cd St

Present 80093 3rd 2nd 0.674 0.0033 0.133

Gassner14 160000 4th 4th 0.673 0.0031 0.131

Johnson15 428442 2nd 2nd 0.656 0.0035 0.137

Haga16 54312 4th 3rd 0.670 0.0032 0.131

Table 4. Results statistics of the PCEXP scheme for the flow past a sphere at Re = 300.

IV. Conclusion

In this work, the Predictor-Corrector EXPonential time-integrator scheme ( PCEXP )1–3 is successfully
applied to simulate time-dependent compressible viscous flows with high-order DG discretizations in space.
Computational advantages of the PCEXP scheme for inviscid flows,1,2 steady viscous flows3 are consistently
verified. Large time steps with CFL number from 5 × 102 to 1× 103 are actually allowed for the test cases,
significantly relieving the geometric stiffness induced by the high-aspect-ratio boundary layer elements. Nu-
merical results exhibit that the PCEXP scheme can deliver time-accurate viscous flow solutions with correct
unsteady characteristic frequencies for two- and three-dimensional CFD problems, offering an alternative
method for the time discretization of high-order methods.
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