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Adaptive Exponential Time Integration of the

Navier-Stokes Equations

Shu-Jie Li∗
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Hang Si‡
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In this paper, exponential time integration methods are assessed in a solution adaptation
frame with a model discontinuous Galerkin (DG) method for high-order simulations of
realistic, three-dimensional viscous flows. The adaptive cell order of accuracy is determined
dynamically by a local cell error indicator. The adaptive algorithm starts up with the first
order of accuracy globally and then is locally refined up to its desirable highest order of
accuracy in a fully multigrid like procedure. Compared with the uniformly high-order
exponential DG method, the adaptive framework requires much less memory and leads to
nearly three-fold times speedups for the cases tested while maintaining the same level of
accuracy.

I. Introduction

The development of an efficient high-order computational fluid dynamics (CFD) solver is one of the
most concerned problems towards industrial applications. While various high-order methods have been
gaining popularity for their accuracy and flexibility on unstructured grids, the computational efficiency of
any high-order method could be enhanced by using a fast time marching method. In this context, a class
of exponential time integration methods has been developed for fast time stepping of three-dimensional,
high-order flow simulations governed by the compressible Navier-Stokes equations. Our previous work shows
that the predictor-corrector exponential (PCEXP) time scheme3 implemented in a high-order DG framework
HA3D1,3 can eliminate the Courant-Friedrichs-Lewy (CFL) restriction while maintains low absolutely tem-
poral errors. The PCEXP scheme has been successfully applied to inviscid flows,2–4 viscous steady flows,5

and viscous unsteady flows,6 showing a particular capability of achieving fast time stepping for both steady
and unsteady flows.

The basic idea of exponential time discretizations is fundamentally different from traditional explicit
and implicit methods, which stems from the matrix exponential expression of the exact solution of ordinary
partial differential equations. And such type of schemes owns an inherent feature of having low absolutely
temporal errors thanks to their essential connections to the exact matrix-form integral solutions of linear
or nonlinear equations.3 Like fully implicit methods, the exponential methods are of global coupling nature
and the flow transport information can propagate through the whole computational domain with large time
steps. The price to pay for efficiency, accuracy, and flexibility offered by the exponential methods is their
relatively high computational cost per step and storage requirement.

In this work, we exploit the possibility of reducing the computational cost and storage requirement
of the exponential methods in a high-order solution adaptation frame. In which cell order of accuracy is
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dynamically determined with a local cell error indicator in a modal discontinuous Galerkin method, resulting
in a cell-wise adaptive distribution of cell orders and reduced computational cost and storage requirement.

The remaining parts of this abstract are organized as follows. Section III presents numerical results
obtained by the adaptive exponential DG method, including detailed numerical studies with analytical and
experimental results. Finally, the Caradonna-Tung rotor in hover22 is simulated with the adaptive method
for demonstrating its applicability to real-world problems.

II. Predictor-Corrector EXPonential time integrator scheme (PCEXP)

Consider a semi-discretized ordinary differential equations (ODEs) obtained from a high-order spatial
discretization such as the discontinuous Galerkin methods

du

dt
= R(u) (1)

where u = u(x, t),x ∈ Ω ⊂ R3 denotes the solution vector, and R(u) the right-hand side term of the spatial
discretization used. Without loss of generality, we focus on a single time step t ∈ [tn, tn+1]. Splitting the
R(u) into the following form

du

dt
= Jnu+N(u), (2)

where Jn = DuR(un) denotes the Jacobian matrix of R, N(u) = R(u) − Jnu is the remainder. The
PCEXP scheme is used to solve the equation (2), which is written as

u∗ = un +∆tΦ1(∆tJn)R(un). (3)

un+1 = u∗ +
1

2
∆tΦ1(∆tJn) [(N(u∗)−N(un)] . (4)

Where a new function φk(∆tJn) is defined as

Φ1(∆tJn) :=
J−1
n

∆t
[exp (∆tJn)− I] , (5)

In this scheme, only the current solutions at the tn is required so that it is a one-step method. The tn solution
is advanced by the first-order formula (3) to obtain the a predicted solution u∗, and then the solution un+1

can be obtained with the predicted u∗ plus a nonlinear correction term using the frozen Jacobian Jn. The
scheme only use the one-time Jacobian evaluation which leads to efficient implementations.

A. Adaptation control strategy

In this adaption framework, the solution starts up with the first order of accuracy globally and then is
locally refined to a higher order of accuracy in a cell-wise manner, similar to a fully multigrid procedure.
The adaptive strategy defines variable DG polynomial order p locally so that higher-order approximations
can be placed in key flow regions such as those of near body and wake flows. To identify these regions,
a so-called spectral delay error (SDE) indicator21 is used which was originally designed for locating shock
waves. The SDE indicator can also measure how well-resolved the approximation is, thus it can also be used
for p-adaptive refinement. For a given solution variable u, a modal DG expansion reads

u =

N(p)∑
j=1

ûjψj(x) (6)

where the dimension of the polynomial space N(p) is computed as (p+ 1)(p+ 2)(p+ 3)/6 for 3D problems.
For a given cell polynomial degree p in the Pp polynomial space, the truncated expansion for a lower degree
can be obtained as

ū =

N(p−1)∑
j=1

ûjψj(x) (7)
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The truncated expansion applying the total energy variable ρE = ρe+ 1
2ρv

2 to the indicator, namely

CE =

∫
(u− ū)2 dx∫

u2 dx
=

∫
(ρE − ρE)2 dx∫

(ρE)2 dx
(8)

The cell error indicator CE (8) is computed in each cell at the end of each level of adaptation. The adaptation
process starts with the P0 approximation globally and then refines hierarchically until the maximum order
Pmax. We remark that Pmax can be estimated automatically by checking the CE error such that the solution
is considered well resolved when the error decreases to a given error tolerance, e.g., 10−9, alternatively it
can be supplied as a user-defined parameter. The cell polynomial order p is updated individually with the
following criterion

p =


0, CE ∈ [10−1,+∞)

p+ 1, CE ∈ [10−9, 10−1)

p, CE ∈ [0, 10−9)

(9)

In each order level, the above criterion is applied only when the variation of global maximal Mach number
is within 10−5 to prevent occurring premature adaptive solutions that are still in the process of dynamic
evaluations. As such, the solution process is similar to a cell-wise, fully multigrid evaluation which is also
observed in the test cases.

B. Definition of time step

The time step ∆t of the adaptive exponential DG is dynamically determined via a residual monitoring
strategy (10). In which, the convection time step ∆tc and the diffusion time step ∆td are given as

∆tc =
CFLh3D

(2p+ 1) (‖v‖+ c)
;

∆td =
CFLh23D

(p+ 1)
2
(

2µM∞
ρRe max( 43 ,

γ
Pr )

) . (10)

where h3D represents a characteristic size of a cell in 3D defined by the ratio of its volume and surface area.
To support 2-D computations via the 3-D solver HA3D, a quasi-3D mesh is obtained by extruding the 2-D
mesh by one layer of cells, and h2d has to be computed by eliminating the effect of z dimension for obtaining
a truly 2-D time step. Given the cell size ∆z in the z direction, h2D is determined by

2

h2D
=

3

h3D
− 1

∆z
. (11)

The cell-wise time step is defined as ∆t = min{∆tc,∆td} and the globally minimal ∆t is used instead as the
final time step for maintaining better stability.

C. Variable order residual Jacobians

The global residual Jacobian J = ∂R/∂u of the PCEXP scheme is composed of cell-wise, variable order
elemental Jacobians in the current adaptation framework. When different order exists in two adjacent cells,
no special interface order coupling26 is required, since the modal based DG method is compatible with
variable accuracy implementation without the need of introducing new interfacial nodes.

The dimension of global residual Jacobian is dynamically composed of elemental residual Jacobians, and
the elemental Jacobian has a dimension of N(p) = (p+ 1)(p+ 2)(p+ 3)/6. The global Jacobian is obtained
analytically for performance consideration.3,5 We first manually derive the Jacobians as possible as we can
until to the hard-bone parts such as the evaluation of the Riemann flux Jacobians and the Bassi-Rebay 2
(BR2) viscous discretization,25 wherein we use auto-differentiation (AD) tools are used instead to generate
error-free Jacobians for accurately incorporating the information of viscous flow propagation. To minimize
memory usage, the dynamic array of FORTRAN language is used which permits larger scale computations
than those of nonadaptive computations.
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III. Numerical results

A. Rotating flow between two concentric cylinders

The implementation of adaptive exponential discontinuous Galerkin discretization for the moving boundary
Navier-Stokes equations is firstly verified on the rotating flow between two concentric cylinders or Taylor
Couette flow. The fluid is driven by two concentric cylinders which are rotating with constant angular
velocities of ω0 and ω1. A low Reynolds number Re = 10 for maintaining a laminar state is used which is
defined by the tangential velocity and the radius of the inner cylinder. Constant viscosity is used in this case
for allowing comparisons with the analytical solution shown below

uθ = r0ω0
r1/r − r/r1
r1/r0 − r0/r1

+ r1ω1
r/r0 − r0/r

r1/r0 − r0/r1
(12)

where uθ is the tangential velocity, r0 = 1 and r1 = 2 are the inner radius and the outer radius. The
isothermal boundary condition is set on the inner cylinder with angular velocity ω0 at Mach numberM0 = 0.2.
The outer cylinder is stationary with ω1 = 0 and uses the adiabatic wall boundary condition. The front and
the back faces of z-direction use the symmetric boundary condition for conducting quasi-2D computations.
Quadratic curved elements are used on the curved boundary surfaces. The convergence order of the viscous
flow is computed on a sequence of three meshes, using first- to fifth-order (P0 – P4) DG schemes with the
HLLC flux for the convection term. The L2 norms of velocity errors are detailed in Tab. 1. The expected
order of convergence is observed for all the order levels, thereby verifying the high-order implementation of
DG viscous discretization and also the use of curved elements.

We then use the adaptive (P0→4) accuracy to simulate this case again. The computed results are shown
in Fig. 1, where the polynomial order distribution on the mesh (80× 8 × 1) is shown in Fig. 1(a) and the
velocity magnitude is shown in Fig. 1(b), where the boundary layer is automatically adapted to the highest
P4 accuracy. The L2 error of the P0→4 solution is also given in the Tab. 1, which is very close to the
uniform P4 solution with only 38.5% of the total 640 elements solved in P4 accuracy. The results show good
accuracies when employing the uniform and adaptive exponential DG methods.

(a) (b)

Figure 1. Rotating flow between two concentric cylinders: (a) adaptive distribution of polynomial order with
mesh 80× 8. (b) velocity magnitude contour of the P0→4 adaptive solution.
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Table 1. Rotating flow between two concentric cylinders: uniform and adaptive order results of the L2 error
expressed in the log10 scale. #P4(%) denotes the percentage of the number of P4 cells of all the cells obtained
with the adaptive method using cellwise polynomial refinement from P0 to P4 order (P0→4).

Ncell 20× 2 40× 4 80× 8 order

P0 -7.962E-01 -1.109E+00 -1.435E+00 1.07

P1 -1.828E+00 -2.378E+00 -2.880E+00 1.75

P2 -2.394E+00 -3.459E+00 -4.418E+00 3.36

P3 -3.292E+00 -4.542E+00 -5.752E+00 4.09

P4 -4.112E+00 -5.559E+00 -6.941E+00 4.70

P0→4 -4.112E+00 -5.559E+00 -6.066E+00 n/a

#P4(%) 100% 100% 38.5% n/a

B. Lid-driven cavity flow

The strategy of the adaptive exponential framework is evaluated on the lid-driven cavity flow. Quasi-3D
adaptive solutions are assessed with the baseline results of Ghia20 at a high Reynolds number Re = 104. In
this computational condition, secondary vortices show up in the corners of the cavity so that high-resolution
simulations are required. Instead of using a fine mesh to increase resolution, a very coarse mesh (20× 20) is
used along with the high-order adaptive framework.

We start by studying the impacts of discrete accuracy on the flow structures. The top-up order of
accuracy from P1 to P4 is used and the streamline plots are given in Fig. 2. From this, we can see that
higher-order adaptations help capture secondary vortices in the corners. The P0→1 adaptation is too diffusive
to capture the corner vortices, even if the adaptive procedure of P0→1 leads to a 100% P1 cell fill-in. The
situation is improved when employing uniform P4 approximation which recovers all the corner vortices and
shows an increased resolution of flow structures, as shown in Fig. 3 (left). Interestingly, when employing
adaptation, the polynomial refinement occurs primarily in the boundary layer and strong shear regions,
where the energy cascade transfers energy from large scale to small scale flow structures, as shown in Fig. 3
(right). Notice that the P0→4 adaptive solution (Fig. 2 bottom right) is essentially similar to the uniform
P4 solution (Fig. 3 right). Convergence histories are given in Fig. 4 in which the adaptive P0−4 converges
even faster than the uniform P4. To compare the results, Fig. 5 gives horizontal (u) and vertical (v) velocity
profiles along the central lines of x and y axis. The P0→4 and P4 solutions are in good agreements with the
reference solutions of Ghia,20 while the low-order, P0→1 solution fails to match the velocity profiles. Tab. 2
lists the computational cost and memory requirement of the cases. From which, we find that the adaptation
procedures offer significant cost reduction in terms of the total degree of freedoms (DOFs) and CPU time.
The P0→4 solution offers a two-fold reduction in DOFs and a three-fold speedup compared with the uniform
P4 solution. The memory usage of the global Jacobian matrix is also given, the P0→4 saves half of the
memory of P4. This case shows that the adaptive exponential frame is effective and accurate for viscous
flows.

C. Caradonna-Tung rotor in hover

A real-world problem is considered in this case corresponding to the experimental model hover test conditions
of Caradonna and Tung.22 The experimental model consists of a two-bladed rigid rotor with rectangular
planform blades with no twist or taper. The blades are made of NACA0012 airfoil sections with an aspect
ratio of 6. The computational condition uses the case of tip Mach number Mtip = 0.4395, collective pitch
θ = 8◦, and the Reynolds number is based on the blade tip speed and chord, Re = 1.92 × 106. Other
parameters are given in Tab. 3. The P0→2 adaptive solution is computed on a coarse mesh of 96,222 curved
elements. Fig. 6 (left) shows the polynomial order distribution. Notice that the higher-order cells are all
placed in key flow regions such as the ones of near body, vortex trajectory, and wakes. The computed
vortex contour is also displayed in the right picture of Fig. 6. Detailed comparisons to experimental data
are given in Fig. 7, where sectional pressure coefficients and vortex position are all in fair agreements with
the experimental data, demonstrating the feasibility of applications to practical problems.
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Figure 2. Lid-driven cavity flow at Re = 104: streamline plots with P0→1 to P0→4 adaptations ( from left to
right, from top to bottom). The secondary vortices in the corners gradually become apparent and smooth.

Table 2. Results statistics of the lid-driven cavity flow at Re = 104. The CPU time is normalized by the one of
P0→4. #Pk denotes the number of the k-order cells in the percentage of total cells. Nearly three-fold speedups
are gained when comparing to the P0→4 and P4 results. The memory usage of the global Jacobian is expressed
in Megabytes (M).

#P0 #P1 #P2 #P3 #P4 DOFs CPU time Storage (M)

P0→4 0 0 56.25% 27.50% 16.25% 6,581 1.00 0.52

P0→3 0 0 63.00% 37.00% - 5,480 0.46 0.45

P0→2 0 2.75% 97.25% - - 3,934 0.17 0.36

P0→1 0 100% - - - 1,600 0.02 0.05

P4 uniform - - - - 100% 14,000 2.70 0.92
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Figure 3. Lid-driven cavity flow at Re = 104: reference uniform P4 solution (left); order distribution, P0→4

(right). Notice that only 65 cells marked with red color are solved in P4 accuracy
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Figure 4. Lid-driven cavity flow at Re = 104: convergence comparison. Notice that the convergences are similar
to full multigrid methods due to the hierarchically adaptive refinement of the cell order. The P0−4 solution
converges faster than the uniform P4 solution.

7 of 11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 S

hu
-J

ie
 L

i o
n 

Ja
nu

ar
y 

7,
 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
20

-2
03

3 



0.0

0.2

0.4

0.6

0.8

1.0

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

y

u

P0-1

P0-4

P4-4

Ghia

0.0

0.2

0.4

0.6

0.8

1.0

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

x

v

P0-1

P0-4

P4-4

Ghia

Figure 5. Lid-driven cavity flow at Re = 104: comparison of the velocity profiles. u-velocity profile along the
line x = 0.5 (left); v-velocity profile along the line y = 0.5 (right).

Table 3. Computational conditions of the Caradonna-Tung rotor in hover.

Parameter Value

Rotor diameter D 2.286 m

Angular velocity, Ω 1250 rpm

Tip Mach number, Mtip 0.439

Reynolds number, Re 1.92× 106

Blade chord length, c 0.1905

Blade aspect ration, AR 6.0

Blade twist, θt 0◦

Blade collective pitch, θc 8◦

Blade profile NACA0012

Figure 6. Caradonna-Tung rotor in hover: adaptive polynomial order (left); vorticity contour (right).
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Figure 7. Caradonna-Tung rotor in hover: pressure coefficients computed at Mtip = 0.4395, θ = 8◦ and Re =
1.92 × 106 (� 96,222 cells) compared with the experimental data (N) at different sectional locations r/R. The
bottom right figure shows the trajectory of vortex core compared with the experimental data.
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IV. Conclusion

An adaptive high-order DG framework has been developed with the PCEXP exponential time marching
scheme. By using the adaptive residual Jacobian, the performance of the PCEXP scheme is shown to
be enhanced in terms of computational cost and memory usage. The correctness of the variable order
implementation of PCEXP is firstly validated in the case of rotating flow between two concentric cylinders.
While uniform order solver can deliver formal convergence rates, the adaptive P0−4 solution can even give
a comparable error to the uniform P4 solution. In the cavity flow case, it is found that the use of spectral
decay error indicator is effective for capturing key flow structures such that the secondary corner vortices can
be captured. Performance statistic shows that a three-fold reduction in CPU time and a two-fold reduction
in memory usage are gained. Finally, the adaptive solver is applied to the Caradonna-Tung rotor in hover,
where 3D wake flows are adaptively captured with the coarse mesh. The results are in good agreement to
the experimental data22 which demonstrates its applicability to practical 3D complex flows.
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