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C omputational modeling of cryoEM data is rooted in—but
also has emancipated itself from—both experimental
microscopy and theoretical chemistry and has become an
important field in its own right. The reconstruction of 3D
cryoEM maps and their interpretation are part of the
Integrative Structural Biology workflow, which aims to
combine different experimental techniques with computational
modeling to build structural models of macromolecular
complexes.1 As purely computational approaches, the model-
ing and simulation of cryoEM data are independent of the
experimental constraints of biological specimen preparation,
instrumentation, and physical location, and they can be
performed with relatively inexpensive hardware from any
location with Internet access. The methods facilitate the
solving and functional interpretation of biological structures at
the tertiary and quaternary level. Therefore, the application is
predominantly utilitarian and motivated by structural biology,
without necessarily referring to classical theoretical chemistry
approaches such as quantum and statistical mechanics,
combinatorial chemistry, or kinetics.

Avoiding the hardship of experimental data collection,
computer modeling and simulation were once relegated to
the bottom of the scientific food chain. But through the allure
of virtual immersion, modeling and information technology
have become dominant in many scientific fields of cultural
importance, and in fact, they have now changed our way of
looking at the world.” Examples of the disruptive and even
dominant power wielded by modeling include the prediction of
the paths of destructive storms,” computer simulations of
volcanic ash clouds (that forced a shut down of 100,000 airline
flights in 2010, although authorities had little idea of the real
situation), SARS-CoV-2 pandemic infection forecasts,” or
simulating the air flow of human cough droplets to inform
social distancing.’ For better or worse, major political and
public health decision authority is now given over to models
and simulations.

In the cryoEM field, the importance of the biological
specimen and the quality of the recorded images are still
controlled by experimental scientists, but as in many other
areas of science, the practical values of computational
technology are increasingly driving the progress. For example,
the 2014 resolution revolution that was enabled by new direct
detection device camera technology and digital image
stabilization that eliminated specimen drift culminated in the
2017 Nobel prize shared by our contributor Joachim Frank”®
for his fundamental work in single particle cryoEM.

Several other contributions in this issue provide perspectives
on the value of contemporary cryoEM modeling ranging from
the potential impact of cryoEM in structure prediction
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approaches by Abriata and Dal Peraro,” to assessing the
impact of computational modeling at the atomic level by
Fraser, Lindorff-Larsen, and Bonomi,'° and how cryoEM
stands to impact cellular-scale structural-omics type studies by
McCafferty and colleagues.'' A review by Sengupta and
coauthors > covers advances in sample preparation and
molecular modeling, whereas one by Ivanov and colleagues'”
discusses recent advances and applications of flexible-fitting
approaches for data refinement. Cossio discusses the need for
and challenges related to cross-validation for developed
models.'* Sanbonmatsu and colleagues, as well as Kellogg
and Cianfrocco, present thoughtful contributions on potential
cryoEM-modeling workflow pitfalls and best practices.'>'

Methodological advances in integrative modeling cover a
wide range of aspects and related experimental approaches.
Wriggers and colleagues present a template-based deconvolu-
tion and denoising approach that corrects for missing wedge
artifacts in tomograms of cytoskeletal filaments.'” Tama and
co-workers present an in-depth look at pixel-size parameters
for improving cryoEM maps.'® Winn and Joseph and
colleagues demonstrate a novel method for calculating
differences between a cryoEM map and a fitted model that
uses amplitude matching in resolution shells, as well as show its
utility in highlighting conformational and compositional
differences.'” Cole and colleagues develop ImageDataExtrac-
tor, which identifies and extracts microscopy images from the
scientific literature, presenting them for use in data-driven
materials discovery-type approaches.”” Kihara and co-workers
develop new software, MAINMASTseg, to improve map
segmentation and results for cryoEM data sets with multiple
chains.”’ He and colleagues establish a cylindrical F1 score
similarity metric for alpha-helices in cryoEM maps that
provides a classifier for database validation studies as well as
a criterion to assess the local quality of maps and their
associated atomic models.”

Several groups present new tools to improve the end-to-end
cryoEM working procedures. Shen and co-workers present a
fully automated toolkit, SPREAD, for 3D reconstruction that
uses a network-based image clustering algorithm.”® Marabini
and colleagues present a major update to their framework
Scipion that improves model building and provenance of the
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complete workflow.”* Schenk and co-workers present Cryo-
FLARE, an open-source platform for integrating various
processing algorithms and development of automated work-
flows.”

Molecular dynamics flexible fitting remains a popular
approach for fitting atomic resolution models into density
maps, as also reviewed by Ivanov and colleagues.'” A number
of groups present extensions and improvements to the method.
Lindert and Leelananda demonstrate how integrating NMR
chemical shifts into cryoEM density restraints improves
refinement results.”® Singharoy and co-workers present a new
method that integrates neural network potentials together with
quantum mechanical/molecular mechanics methods to im-
prove on fitting small molecules into cryoEM maps.”’ A related
method presented by Costa and colleagues, MDeNM-EMfit,
extends molecular dynamics with excited normal modes in a
way that directs sampling toward conformations that have high
correlations with the density maps.”®

Finally, several groups contributed applications to interesting
biological systems. Magistrato and colleagues show how MD
together with cryoEM provides never before seen insight into
splicing modulators.”” Ravelli and co-workers show how
processing algorithm improvements improved size limits for
cryoEM using hen egg white lysozyme.*” Llorca and colleagues
present their strategy for modeling the medium-density
RUVBL2-binding domain, as well as subsequent simulations
to explore biological hypotheses about its interactions with
RNA polymerase IL*' Worrall and co-workers provide a
historical perspective of cryoEM studies of the type III
secretion system needle complex as well as describe their own
workflow that enabled the successful determination of the
whole complex.*”

Overall, the diversity and complexity of the 26 contributions
we solicited demonstrate the engrossing nature of cryoEM
modeling and information.” They also showcase the intriguing
ways that cryoEM developers have matured in recent years
from shop-class theorists and technicians to influential
directors of this new digital frontier.
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