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Abstract—Research has shown that caregivers implementing
pivotal response treatment (PRT) with their child with autism
spectrum disorder (ASD) helps the child develop social and
communication skills. Evaluation of caregiver fidelity to PRT in
training programs and research studies relies on the evaluation
of video probes depicting the caregiver interacting with his
or her child. These video probes are reviewed by behavior
analysts and are dependent on manual processing to extract
data metrics. Using multimodal data processing techniques and
machine learning could alleviate the human cost of evaluating
the video probes by automating data analysis tasks.

Creating an ’Opportunity to Respond’ is one of the categories
used to evaluate caregiver fidelity to PRT implementation. A
caregiver is determined to have successfully demonstrated cre-
ating an opportunity to respond when they have delivered an
appropriate instruction while she or he has the child’s attention.
Automatically determining when the caregiver has correctly
provided an opportunity to respond requires classifying the audio
and video data from the probes. Combining the modalities into a
single classification task can be undertaken using feature fusion
or decision fusion methods. Two decision fusion configurations,
and a feature fusion model were evaluated. The decision fusion
models achieved higher accuracy, however the feature fusion
model had a higher average F1 score, indicating more reliable
prediction capability.

Index Terms—Attention Detection, Pivotal Response Treat-
ment, Multimodal Data, Autism Spectrum Disorder, Machine
Learning

I. INTRODUCTION

Pivotal response treatment (PRT) is an applied behavior
analysis (ABA) technique that focuses on presenting learning
objectives in a natural context [1]. Research involving PRT
has primarily explored using the technique to aid children
with autism spectrum disorder (ASD) in developing social
and communication skills [2]–[4]. For these sessions, the
interventionist observes the child to determine an activity the
child is interested in engaging in. The interventionist can
capitalize on the child’s natural motivation to continue the
desired activity to ensure compliance with learning objectives.
To do this, the interventionist needs to be able to gain control
of the activity to be able to integrate learning objects into
it, or stop the activity to elicit the child’s attention. Once
the interventionist has the child’s attention, he or she should
deliver an instruction that is at an appropriate language level
for the child. After the child response, the intervention will
continue the motivating activity if the child has demonstrated

a legitimate attempt at the prompted skill. If the child did not
demonstrate an appropriate attempt, the interventionist should
hold the activity contingent on adequate compliance. In PRT,
the process of gaining the child’s attention and delivering an
instruction is often referred to as creating an ’Opportunity to
Respond’.

Evaluation of the caregiver’s performance as the interven-
tionist in PRT is often assessed using video probes of the
caregivers interacting with their child [5]–[7]. These videos
are scored based on four meta-categories including identifying
the natural reinforcer for the child, creating an opportunity to
respond, varying instructions and targeted skills, and being
contingent on an appropriate response from the child. The
opportunity to respond category is composed of gaining the
child’s attention, and issuing a clear instruction at the child’s
language level. To assess these categories, the clinician divides
the video into one or two minute increments and provides a
binary score for each subsection. The caregiver is expected to
provide at least two opportunities to respond per minute to
gain a positive score for that interval.

Automatically assessing if the caregiver has provided an
opportunity to respond depends on detecting if the child is
attentive to the caregiver, and if the caregiver vocalizes during
this period of attention. Determining the attention state of
the child utilizes computer vision techniques to classify the
visual cues of attention. Likewise, evaluating the caregiver’s
instruction involves identifying the adult speaker in the audio.

The research presented below will focus on detecting seg-
ments of PRT video probes that could contain opportunities
to respond. This is defined by the child being attentive or in
a joint attentive state with the caregiver while the caregiver is
speaking. For this work, evaluating the language usage in the
adult instruction will not be included.

There are two basic methodologies for detecting candidate
segments for opportunities to respond that will be employed.
First, using decision fusion, the audio and visual modalities
will be classified separately, and the predictions will be
combined to infer if an opportunity to respond has occurred.
Secondly, using feature fusion, the features from the modalities
will be combined and used to train a model directly on a
binary classification task based on whether or not a sample is
a candidate for an opportunity to respond.
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II. RELATED WORK

The problem addressed in this work required examining
human behavior in video image data and detecting adult
vocalizations from an audio track. The approach undertaken
for video processing involved extracting spatio-temporal (ST)
graphs of the individuals in the video frames [8]. Audio
processing aims at performing voice activity detection (VAD)
and speaker separation. These separate modalities are fused to
classify intervention intervals from the dataset.

ST graphs are a common method of feature extraction for
machine learning models for detecting human activity from
video data. The graph represents a skeletal representation of
the figure through the frames, with the graph nodes repre-
senting major body landmark or articulation points. This has
been used for activity detection and motion casting using
machine and deep learning methodologies, including support
vector machines (SVM) [9] and recurrent neural networks
(RNN) [10], [11]. Extending ST graphs for multiple person
interactions has been explored in [12]–[14].

Detecting joint attention and social engagement in videos
has focused on gaze estimation and proximity [15], [16].
Engagement between a child and clinician were examined by
[17], [18]. These sessions focused on pre-specified activities,
and utilized multiple stationary camera perspectives.

VAD consists of techniques for discerning human vocaliza-
tion from other sounds in an audio track. Commonly employed
techniques focus on discriminatory features, such as frequency
[19], [20], and statistical approaches focusing on modeling
noise signals [21]. SVM classification models have been used
for binary VAD [22]–[24]. Dyadic speech classification for
children and adults has focused on domain adaptation [25].

Multimodal classification involves incorporating data from
different sources into a single model. Incorporating the differ-
ent modalities can occur at different places in the classification
process. Feature fusion, or early feature fusion, refers to
instances where the data from the modalities is merged prior
to training the classifier. Decision fusion, or late feature fu-
sion, involves training classification models on each modality
independently before merging the classifier output to infer a
final prediction. The classifier output could be a transformed
representation of the features, the soft-max probabilities for
different classes, or a predicted label. Merging the output could
utilize various methods, including additional classification
models [26]. Research involving multimodal models using
audio and visual data have focused on speech recognition [27],
speech prediction [28], and video descriptions [29].

The application of audio and visual machine learning for
children with autism has largely focused on detection, diag-
nosis, and emotion recognition. Regarding activity detection
in video data, identifying self-stimulating behaviors has been
examined [30]. Exploring speech-based emotion recognition,
Marchi et al. [31] trained a classification model to detect a
child’s affective state based on a story prompt. Their study
focused on a child diagnosed with ASD, and a child with-
out. The LENA recording system was developed to analyze

vocal data for children with autism. The system focuses on
evaluating language skills and social interactions [32]–[34]. A
multimodal audio-visual approach to affect and engagement
classification for children with autism was presented in [35].
For this approach, the researchers used feature fusion to
train a classification model model using audio, visual, and
electrodermal signal data in addition to contextual information.

III. METHODOLOGY

The dataset for the project consists of a baseline and a
post-treatment video for seven caregiver-child dyads, giving
14 videos total. The videos are approximately 10 minutes
long, and depict the caregiver and child engaging in varied
activities including playing with toys, watching a movie on a
mobile phone, and spinning in a chair. The videos illustrate
a challenging, ’in-the-wild’ dataset. Each video was filmed
with a hand-held device and include periods of instability,
and full or partial occlusion of either the caregiver or child.
Thirty-frame segments, representing one second of video, were
labeled based on three states of attention: attentive, inattentive,
and shared attention. The child was considered attentive if
they were actively focused on the caregiver. The segment was
labeled as inattentive when the child was engaged in a solitary
activity, such as playing with a toy or moving about the room.
The shared attention state was indicated when the caregiver
and the child were engaged in a joint activity, such as playing
a game or watching a video. More information regarding video
processing on the dataset is presented in [36].

For evaluating attention, features were extracted from the
videos using OpenPose [37] as described in [36]. This pro-
cess involved extracting body articulation points and facial
landmarks for the individual identified in each frame of the
video. Using the points, along with inferred information, such
as gaze estimation, a ST graph of the dyad was constructed
for the caregiver-child dyad.

The audio track also posed a challenge for classification
tasks. The activities and toys recorded in the video would
obscure caregiver and child vocalizations. When not obscured,
the caregiver vocalizations could be difficult to detect due
to the use of child-directed speech patterns. Additionally, the
children depicted in the videos exhibited varying vocal com-
munication abilities. As attempts at words consisting of only
phonemes are acceptable in vocalizations in PRT, every vocal
sound made by the child should be classified appropriately.
The audio data was examined in detail in [38]. The dataset was
labeled as adult speech, child vocalization, or noise at 250 ms
intervals. Each interval was converted to a 68 element vector
including midterm features using pyAudioAnalysis [39]. The
feature vectors consist of values for zero cross rate (ZCR),
energy, energy atrophy, spectral spread, spectral flux, spectral
runoff, mel-frequency cepstrum coefficients (MFCC), chroma
and chroma standard deviation.

Labeling the dataset for an opportunity to respond was based
on combining the labels for attention and speaker separation.
This is a binary classification problem with a positive label
being attached to a sample where the attention state is either
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attentive or shared, and the audio label is adult speech. To map
the modalities, the one-second segments labeled for attention
are divided into four subsegments, retaining the original label,
and associated with corresponding labelled audio segments.
Table I displays the number of opportunity to respond candi-
date segments identified in each validation set in the dataset.

Three experiments were run to detect opportunity to respond
segments - two decision fusion methods and one feature fusion
method. Each method used the SVM implementation provided
by [40]. The SVM used a C value of 10, a gamma value of
0.01, and a radial basis function kernel. First, the predictions
from three class classification models for attention and speaker
separation where aggregated to infer when a segment was a
candidate for an opportunity to respond. The classification
models were based on [36], [38]. Next, two class models
were trained on attention and speaker separation separately.
For these models, the attentive and shared attention labels were
merged to form the true class for the attention classifier. Simi-
larly, the child and noise labels for the audio data were merged
to form the negative class to train a model for selecting adult
speech samples. The average accuracy for the classification
models of the decision fusion methods is displayed in table
II. For these two methods, an opportunity to respond label was
predicted when the attention state was attentive or shared, and
the corresponding audio segment indicated adult speech.The
final experiment trained a model directly on samples with an
opportunity to respond label. This classifier was trained using
a concatenated vector consisting of both the video and audio
features as the input. This vector had 133 elements consisting
of 68 audio features and 65 video features.

Each of the three approaches were validated using a ’leave-
one-dyad-out’ method for creating a test set. The data from
the base and post-videos for a single caregiver-child dyad were
retained to validate the classification models. The remaining
12 videos were used to form a training set. Prior to training
the model, the training set was randomized and balanced by
randomly undersampling over represented classes.

TABLE I
NUMBER OF OPPORTUNITY TO RESPOND (OTR) 250MS SEGMENTS FOR

EACH DYAD IN THE DATASET.

Dyad OTR Seg Total Seg OTR Seg Time (sec)

Dyad1 336 2982 84.00
Dyad2 642 4022 160.50
Dyad3 1043 4141 260.75
Dyad4 691 3445 172.75
Dyad5 524 4716 131.00
Dyad6 452 3968 113.00
Dyad7 834 3846 208.50

IV. RESULTS AND DISCUSSION

The results from detecting opportunity to respond candidate
samples from the data set are displayed in table III. The
decision fusion accuracy was similar for both the two and three
class models, averaging 79% and 80% respectively. These
scores are influenced by the data imbalance. The classification

TABLE II
AVERAGE VALIDATION ACCURACY OF TWO AND THREE CLASS
ATTENTION AND AUDIO-SPEAKER SEPARATION SVM MODELS.

2-C Attn 3-C Attn 2-C Audio 3-C Audio

Accuracy 0.55 0.43 0.81 0.72

models predict that a sample is false, and due to the majority of
samples being false, has an inflated accuracy. This is shown
in the disparity between the true and false F1 scores. The
F1 scores for the true class are below fifty percent for both
decision fusion methods. This illustrates the classifier could
not adequately distinguish when true samples were present.

The feature fusion results did not produce the same accuracy
as the decision fusion methods, however, the improvement
in the F1 score for the true class predictions provokes more
confidence in the model’s learning power. The average F1
score for the true class in the feature fusion method was
70%, while the F1 score for false predictions was 73%. This
shows that the classification model is not defaulting to false
in a majority of cases, as it was with the decision fusion
methods. This indicates that it has learned some features for
distinguishing the two classes, however, the problem is still a
challenge for the model.

The greater accuracy of the speaker separation models over
the attention models used in decision fusion methods domi-
nated the aggregated classification for determining opportunity
to respond candidates. This caused the samples that were false
due to the audio being noise or child vocalization to be easy to
detect. When the speech was identified as from an adult, the
prediction was left to the less accurate attention classification
label to determine a final class label, causing the low metrics
for the true class. The improvement in the F1 scores for the
true class for the feature fusion method over the decision
fusion methods is likely due to the classification model using
the audio features to overcome some of the ambiguity in the
video data used for the attention classification. This indicates
that the audio features may be useful in improving the attention
classification.

The results for dyad4 were an outlier among the validation
sets, having an accuracy score roughly ten points lower on all
three methods. This is likely due to difficulties with the audio
classification. The audio in both the base and post video is
relatively lower energy, due to the recording and the caregiver,
the child’s mother, speaking quietly. Despite speaking quietly,
the caregiver is animated during the play interactions with her
child, often making audible noises mimicking the toys and
using in child directed speech patterns. Additionally, a toy
being used in the post video emitted loud noises, and elicited
exaggerated excitement in the caregiver vocalizations. These
factors may not be significantly represented among the videos
for the other six dyads. Without similar samples in the training
set, the model was not able to classify the dyad4 validation
set at the same performance level as the other sets.
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TABLE III
ACCURACY AND F1 SCORES FOR CLASSING OPPORTUNITY TO RESPOND. THE TABLE DISPLAYS RESULTS FOR DECISION FUSION USING TWO AND THREE

CLASS MODELS, AND FEATURE FUSION.

2-Class Dec. Fusion 3-Class Dec. Fusion Feature Fusion
Dyad Accuracy F1 True F1 False Accuracy F1 True F1 False Accuracy F1 True F1 False

Dyad1 0.83 0.43 0.90 0.83 0.40 0.90 0.73 0.74 0.74
Dyad2 0.82 0.49 0.89 0.82 0.48 0.89 0.74 0.76 0.79
Dyad3 0.75 0.47 0.84 0.75 0.45 0.84 0.68 0.70 0.71
Dyad4 0.62 0.40 0.73 0.67 0.35 0.78 0.62 0.53 0.59
Dyad5 0.84 0.45 0.90 0.84 0.44 0.91 0.72 0.74 0.75
Dyad6 0.90 0.50 0.94 0.90 0.44 0.94 0.72 0.76 0.83
Dyad7 0.75 0.52 0.83 0.77 0.52 0.85 0.71 0.69 0.68

Average 0.79 0.47 0.86 0.80 0.44 0.87 0.70 0.70 0.73

V. LIMITATIONS AND OPPORTUNITIES FOR FUTURE WORK

This study was a preliminary investigation on how op-
portunities to respond could be detected in PRT videos and
has several limitations. The classifications in the experiments
above do not consider the language used by the caregiver in
issuing an instruction. This means that although the caregiver
spoke during a period of attention the instruction may not be
clear or at the child’s ability level, and thus a clinician would
not consider it a valid opportunity to respond. Additionally,
this methodology in this study did not consider cases where a
nonverbal instruction was given.

The experiments classified 250 ms samples. This is too
small of a sample size to be valuable to clinicians. For the
results to be usable in a real world scenario, techniques need
to be explored to aggregate the samples to encompass a
meaningful amount of time. This would also be necessary for
employing natural language processing techniques to evaluate
if the caregiver’s instructions are clear and concise.

The SVM parameters were standardized for each of the
classification tasks. Fine-tuning the parameters for each task
may have resulted in better performance.

From a signal processing perspective, the experiments
largely removed the temporal relationship between sample
sizes. The temporal relationship between events, body poses,
and language composition could be utilized to improve the
classification techniques.

VI. CONCLUSION

Exploring options for automatically gathering performance
metrics and classifying interactions in PRT videos would
alleviate the manual cost of training and supporting caregivers
learning to practice ABA intervention methods with their
child with ASD. The goal of this publication was to examine
multimodal methodologies for identifying video segments that
could potentially be scored as an acceptable opportunity to
respond based on PRT evaluation methodology. This involved
inferring the child’s attention state based on visual data, along
with identifying adult speech from the video’s audio track. The
data from both modalities was examined using both decision
fusion and feature fusion. Decision fusion on two and three
class classification models illustrated a high accuracy and low
F1 score for the true class, indicating poor performance on the

imbalanced data set. Concatenating the feature vectors for both
modalities and training a single classifier produced a higher
F1 score for the true class, reflecting that the model was able
to identify discernible features for each label class. This work
was limited by the small size of the dataset. In the future, the
PRT video probe dataset needs to be expanded to incorporate
more individuals and scenarios to ensure generalizations of ap-
proach. Additional datasets regarding dyadic interactions, such
as academic instruction, counseling, and interviews should also
be explored to determine how well this approach transfers to
similar domains.
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