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Cosmic muon spallation backgrounds are ubiquitous in low-background experiments. For liquid scintillator-
based experiments searching for neutrinoless double-beta decay, the spallation product °C is an important
background in the region of interest between 2-3MeV and determines the depth requirement for the
experiment. We have developed an algorithm based on a convolutional neural network (CNN) that uses
the temporal and spatial correlations in light emissions to identify '°C background events. Using a simple
Monte Carlo simulation of a monolithic liquid scintillator detector like KamLAND, we find that the algorithm
is capable of identifying 61.6% of the 1°C at 90% signal acceptance, with a total uncertainty of 2.7%.
A detector with perfect light collection can identify 98.2% at 90% signal acceptance. The algorithm is
independent of vertex and energy reconstruction, so it is complementary to other frequently-used methods
and can be expanded to other background sources. This work forms the foundation for more in depth studies

of detector-dependent effects and more advanced CNN-based algorithms.

1. Introduction

Neutrinoless double-beta (Ovpf) decay is a hypothetical decay pro-
cess by which a nucleus ejects two electrons and no neutrinos, therefore
violating lepton number by two units. The observation of this pro-
cess would demonstrate that neutrinos are Majorana fermions, yield
valuable insight into the mechanism behind neutrino mass generation,
and support a theoretical framework for matter-antimatter asymme-
try in the early universe. Experiments currently being planned will
instrument up to a few tons of isotope aiming for Ovpg-decay half-life
sensitivities between 1027-10?8 years [1-3].

Large liquid scintillator detectors are attractive for these searches
because they offer cost effective scaling to large volumes and effective
background reduction through self-shielding, spatial and temporal co-
incidence analyses, and pulse shape discrimination. The KamLAND-Zen
experiment has shown the effectiveness of this technique by setting the
most stringent limit on the Ovpp-decay half-life independent of isotope
T}, > 1.07 x 10% for '3°Xe [4].

Due to the size of these detectors, the typical 20% photocathode
coverage, and >1ns timing resolution, all energy depositions are as-
sumed to originate from a single point in space and in time. However,
we know that different particle species have characteristic topologies
which change in time. Even with current detector performance, these
could be used for particle identification and background reduction in a
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variety of analyses. Recent advancements in photodetector technology,
with the advent of Large Area Picosecond Photodetectors (LAPPDs) [5,
6], decrease the photon arrival time uncertainty to < 100 ps. This allows
for particle identification by topology [7] and may also permit the
reconstruction of particle direction through the separation directional
Cherenkov light from the abundant isotropic scintillation light [8].
This has been demonstrated with muons [9-11] and recently with %0Sr
p-decays [12].

One of the primary cost drivers of Ovpp-decay experiments is the
depth at which they must be located in order to minimize back-
grounds due to cosmic muon spallation. In liquid scintillator detectors
doped with Ovpp-decay isotopes with endpoints below 3 MeV, such
as 139Xe(Q = 2.458 MeV), the critical long-lived light isotope is
10C(Q@ = 3.648 MeV, 71, = 1929 5). In the current KamLAND-
Zen result, the largest background is the two-neutrino double-beta
decay (2vfgp) of 135Xe, which is only reducible with improved energy
resolution. In the absence of scintillator or photodetector upgrades,
10C is the largest reducible background [4]. Looking at future multi-ton
scintillator experiments, the increased size and shallower depth make
10C the largest background for a Ovpp-decay search with the JUNO
experiment [13,14]. The 1°C background will also inform the choice
of the depth and location of the proposed THEIA experiment [15]. For
these reasons, we concentrate this study on 19C before exploring the
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other significant backgrounds in KamLAND-Zen, such as 214Bi, or the
dominant contribution to the background in SNO+ coming from &B
solar neutrino-electron elastic scattering.

The production of neutrons and light isotopes in muon spallation is
an active area of study [16-19]. In muon spallation, the propagation
of high energy muons through both the passive and active detector
components leads to a shower of secondary particles including y’s,
neutrons and pions and the breaking up of nuclei into lighter nuclei.
10C is a relatively common spallation product in scintillator detectors,
predominantly made through (z*,np) [16]. Results from the Borexino
experiment suggest a three-fold-coincidence of muon, neutron, and
11C decay can be used to tag the 11C decay relative to the neutron
capture vertex and muon track [20,21]. This three-fold-coincidence,
accompanied by a neutron in the final state, is also used to tag 1°C in
the KamLAND-Zen analysis [4]. However, muon spallation is inherently
chaotic and the copious number of neutrons produced through this
process lead to frequent periods of detector dead-time which reduce the
efficiency for identifying neutron events. This is especially true for the
highest energy events with many secondary particles, which produce
most of the light isotopes. This problem can be addressed with im-
proved electronics, but due to the large dynamic range between muon
events (volt-level signals) and neutron events (millivolt-level signals),
difficulties remain. The challenge of tagging 1°C is further amplified by
theoretical uncertainty in the fraction of 1°C production with neutron
final states, and the spatial distribution relative to the muon track. For
these reasons, a method independent of the progenitor muon event for
identifying 1°C is useful for both reducing the background and verifying
our understanding of the spallation process.

In this work, we show that an algorithm based on a ten-layer
convolutional neural network (CNN) developed for machine vision
applications can effectively separate 1°C from Ovpg-decay events in a
kilo-ton scale liquid scintillator detector, like the current KamLAND
detector, without relying on muon or neutron coincidences. Since the
technique is spatially invariant, it goes a step farther and is also inde-
pendent of vertex reconstruction. We then perform a series of studies
to understand what information the CNN is using in its discrimination
and how the performance of the algorithm changes as we improve the
KamLAND-like detector’s performance.

The paper is organized as follows. Section 2 describes the topolog-
ical differences between Ovfp-decay and 1°C events that allow them
to be distinguished by the algorithm. Section 3 provides the details
of the detector Monte Carlo (MC) simulation and Section 4 provides
the details of the algorithm. These are followed by the results and
conclusions in Sections 5 and 6.

2. Topology of Ovpp-decay and 1°C events

In a liquid scintillator detector, charged particles deposit energy
which excites organic molecules. These molecules subsequently de-
excite by releasing photons which are detected by single photon de-
tectors like photomultiplier tubes (PMTs). The intrinsic timing of these
processes is on the order of ns. Neutrino detectors with large volumes
(diameters >10m) are typically instrumented with large PMTs with the
capability to resolve photon arrival times on the order of 1-5 ns.

Given the similarity between the time scales of the scintillation
process and PMT readout, energy deposits are usually assumed to
be point-like when reconstructing energies and vertices of physics
events. This assumption neglects two effects. Gamma-rays at 13°Xe (Q =
2.458 MeV) Ovpp-energies scatter multiple times with a mean free path
on the order 10 cm which leads to a smearing of the vertex in time and
space. By comparison, electrons travel <1 cm at these energies, but they
are above Cherenkov threshold. Therefore, the electrons produce some
directional light which is not absorbed by the scintillation process. The
information from both of these processes is encoded in the pattern of
photons arriving at the PMTs and can be used to identify different
categories of events. Furthermore, an algorithm like a CNN which is

Nuclear Inst. and Methods in Physics Research, A 947 (2019) 162604

0* T1=~278s
10~ B*: 100%
Q(gs)=3648 keV

"
~ 7 fs
1.5% 9 T 740 keV
1021 keV
* v T=1ns
98.5% — 718 keV
718 keV
3+ v
IOB

Fig. 1. Decay scheme of 1°C [23]. The final state of °C events consists of a positron
and either one gamma with energy of 718 keV (98.5%) or two gammas with energies
of 718 keV and 1021 keV (1.5%).

independent of the assumptions of the vertex reconstruction would
avoid the issues with the topology algorithm of Ref. [7] or direction
reconstruction in Ref. [8].

In a large fraction of Ovpp events, the electrons exit the nucleus
at large angle with each electron getting roughly half of the avail-
able energy. We simulate the kinematics of Ovpf-decay events using
the same custom Monte Carlo as in Ref. [7] with momentum and
angle-dependent phase factors from Ref. [22]. For 136Xe, this leads to
two electrons each with a kinetic energy of roughly 1.23 MeV. The
Cherenkov threshold for electrons in this liquid scintillator is 0.16 MeV.
Examining the path of these electrons in MC, see Section 3, we find
that they travel 7.1 + 0.9 mm with a total distance from the origin
of 5.6 + 1.0mm in 26+4 ps and drop below Cherenkov threshold after
24 + 3 ps. We also find that the final direction of the electron before it
stops does not match the initial direction, however, the total scattering
angle is small while Cherenkov light is emitted.

The decay of '°C is more complicated than Ovpp-decay. 1°C is a
p* decay that proceeds through one of two excited states as shown
in Fig. 1. The event observed by the detector is a combination of a
positron, the two subsequent 511 keV annihilation gammas, and either
one gamma with energy of 718 keV (98.5%) or two gammas with
energies of 718 keV and 1021 keV (1.5%). In addition, the 718 keV
excited state is long-lived with a lifetime of 1 ns. This is significant on
the time scale of events in liquid scintillator detectors.

One defining feature of Ovpp-decay is the two electrons above
Cherenkov threshold that algorithms, either traditional algorithms
based on spherical harmonics or those based on machine learning,
should pick out. Since the number of Cherenkov photons is low, the
positron from 1°C could mimic some of these features such as one of
the ring-like hit pattern. In the region of interest for 13°Xe, the positron
spectrum produced by the 1°C decay therefore has a mean energy of
~0.7 MeV. Examining the path of the positron in the MC, we find that
it travels 3.6 + 0.6 mm for a total offset from the origin of 2.5 + 0.6 mm
in 13 + 2 ps. It takes 11 + 2 ps for the positron to fall below Cherenkov
threshold. However, the 1°C vertex is significantly smeared in time
and space by the three or more gammas in the final state and a more
detailed investigation revealed that the scintillation topology and hit
time distribution play an even more critical role.

3. Detector simulation

These studies are performed using a simple spherical liquid scintil-
lator detector Monte Carlo based on GEANT4 [24,25] version 10.3.1
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Fig. 2. The detected photoelectrons, assuming 100% photocathode coverage and QE,
for 136Xe Ovpp-decays and °C g+ decays generated inside a sphere with 3m radius.
The gray band indicates the energy region of interest for Ovpp-decay.

with a custom physics list that includes standard GEANT4 modeling of
electromagnetic, optical, and radioactive decay processes. The sphere
has a radius of 6.5m and the outer surface is assumed to be 100%
efficient at collecting photons. In post processing, we account for
any additional propagation to the photodetectors, the details of the
photodetector quantum efficiency, transit time spread and coverage,
and the electronics digitization.

Although inspired by KamLAND, the goal of this MC was not to
reproduce any particular detector, but to make a fast light-weight MC
that is highly configurable and easily interpretable for the study of
new algorithms and different detector configurations. This simulation
is the same as that used in Refs. [7] and [8]. The basic scintillator
properties are chosen to roughly match a KamLAND-like scintillator:
80% n-dodecane, 20% pseudocumene and 1.52 g/1 PPO [26], density
(p = 0.78 g/ml), the wavelength-dependent attenuation length [27]
and refractive index [28], the scintillation emission spectrum [27],
emission rise time (z, = 1.0 ns) and emission decay time constants (z,,
= 6.9 ns and 7, = 8.8 ns with relative weights of 0.87 and 0.13) [29],
scintillator light yield (9030 photons/MeV), and the Birks constant (kB
~ 0.1 mm/MeV) [30]. The attenuation length at 400 nm, the position
of the peak standard bialkali photocathode efficiency, is 25 m with a
large decrease between 370 nm and 360 nm from 6.5 m to 0.65 m.

There are several effects that we are explicitly not modeling which
affect mainly the late light component of the scintillator. Since the
simulation is based on GEANT4, it does not simulate the re-emission
of absorbed photons. The absorption is stronger at short wavelengths,
so this affects Cherenkov light more than scintillation. The re-emitted
photons will follow the scintillation timing, so this will appear as an
additional isotropic component with a longer time constant. Similarly,
GEANT4 does not model the formation of positronium in the case of
p* emission. In vacuum, positronium decays in 0.125ns and 142 ns for
para-positronium and ortho-positronium, respectively. In scintillator,
the lifetime of ortho-positronium is shortened to ~3ns [31] leading
to p* gaining an additional late light component. Raleigh scattering
was studied in Ref. [8], and found to contribute a small late light
component. Finally, there are no detector specific support structures
such as balloons or acrylic vessels, so detector specific reflections are
missing, which also leads to a deficit of late light.

Two types of events are generated for this study: Ovpp decay of
136Xe and the f* decay of 19C background. The kinematics of Ov4g de-
cay events are simulated using a custom MC event generator with mo-
mentum and angle-dependent phase space factors from [22]. 19C events
are simulated using the default isotope decay generator in GEANT4.
This correctly accounts for the long-lived first excited state of 1B, but,
as stated above, does not include the formation of positronium.
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Fig. 3. TOP: Timing Profile of incoming photons for signal and background events.
BOTTOM: Signal/Background ratio of timing profile histograms. Each bin represents
a 1.5ns detector snapshot, taken from the detector’s sampling rate. The gray band
indicates the period of major discrepancy, thus the characteristics of signal/background
learned by the network. The dashed line represents a signal/background ratio equal to
unity.

The energy spectrum of both event types is shown in Fig. 2 in terms
of detected photo-electrons for a detector with perfect light collection.
Since 1°C has a much broader spectrum comparing to 13¢Xe signal, an
energy cut is placed from 2.2 MeV to 2.7 MeV prior to training in order
to remove background events outside region of interest.

The simulated events are positioned either at the exact center of
the detector, or distributed uniformly within a 3 m-diameter spherical
volume located at the center of the detector.' The latter matches the
dimensions of the KamLAND-Zen mini-balloon, which contains the
136Xe-doped scintillator. Fig. 3 compares PE arrival times between
Ovpp-decay and 1°C events. The time smearing has been included but
the PMT quantum efficiency is added in later steps. In the events at
the center, the excess early light from Ovpp-decay and late light from
10C is evident. This pattern is repeated in the 3 m sphere events but the
shift in arrival time due to the vertex positions washes out some of the
features. We note that the inclusion of positronium in the model would
further increase the late light contribution in 1°C decays, improving the
results of this study.

3.1. Post processing and clock latching algorithm

The photon arrival time is an important parameter of the simulation.
When an optical photon is produced in liquid scintillator, it first travels
to the 6.5m simulation boundary, where the MC simulation records its
arrival time and wavelength. For a detector like KamLAND, the photon
needs to propagate through about 1.8 m of buffer oil to reach the actual
PMT. In order to take this extra flight path into account, we calculate
the group velocity of this process with the following equation:
SR w

i
The index of refraction with respect to wavelength in Eq. (1) is extrap-
olated by fitting a measurement from the MiniBooNE experiment [32].
This equation is used to calculate the Time of Flight (ToF) from the
6.5m simulation boundary to each PMT. The sum of the time to reach
the 6.5m boundary and the ToF form the actual arrival time of the
photon at the face of the PMT.

Next we modeled the digitization of the signal using a clock latching
algorithm. When the first photon reached a PMT a clock started ticking

1 Unless otherwise specified, the two types of event distributions will be
referred as center and 3 m sphere in this text.
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Fig. 4. Time evolution of the PMT hit-map over four example time bins for a Ovff-decay event and a '°C event at the center of the detector, normalized to have the same total

energy.

at a 1.5ns interval to reproduce the sampling time of the KamLAND
electronics. We observed that the choice of starting the clock on the
first photon introduces a relatively small (1.9%) systematic uncertainty
toward our final result. To model the time resolution of the PMTs, the
arrival time of each incoming photon, including the first photon, is
smeared by a Gaussian probability density function with a 1 ns standard
deviation. The smeared time is latched to the ticking clock such that
any photon that arriving after the current clock tick, but prior to next
tick, is latched to the current tick. A total of 30 clock ticks, 45ns after
the first photon, were used to record the input event. Furthermore, four
additional 1.5 ns time intervals are added prior to zero time in order to
take into account that some photons are smeared backward in time. A
2D representation of the PMT hit pattern is then formed for each tick.
We call each of these images a channel, analogous to the RGB channels
in a photograph or a digital image.

After post-processing each event contains 34 channels, 33 from
—6ns to 45ns, in 1.5 ns increments and one larger bin for the remaining
late photons. Fig. 4 contains four example channels for Ovpp-decay
and 1°C. The distinctive double Cherenkov rings from Ovfgp-decay are
visible in the first channel. Shortly after the first channel, the abundant
scintillation light quickly dominates for the remainder of the event. The
events in Fig. 4 were carefully selected to demonstrate the Cherenkov
pattern. Due to limited spatial and time resolution, the Cherenkov
pattern for most events is much fuzzier and more difficult to extract.

3.2. Gray disk PMT model

The photo-coverage of the detector is introduced by circumscribing
a circular region around each PMT location, known as a gray disk. We
used the KamLAND PMT locations for the 1325 17-inch PMTs as a
representative PMT layout [33]. The total gray disk area was adjusted
to yield the desired photo-coverage. When a photon is produced in the
MG, it is associated to the closest PMT. If this photon passes through
the gray disk region of the associated PMT, one photon hit is recorded

for that PMT position; otherwise, the photon is rejected. This method
limits the total photocathode coverage to 40%, since at that point the
gray disk of PMTs start overlapping.

3.3. Quantum efficiency

The PMT quantum efficiency (QE) is wavelength dependent and is
another important simulation input. The QE dependence is accounted
for during the event generation. In GEANT4, a QE bit associated with
each photon is introduced to indicate whether or not it was recorded
by the PMT. However, in this study, we need a varying QE to act as
a pressure’ parameter in order to demonstrate the neural network’s
performance. A stepwise QE cut is introduced to accommodate this
requirement. If the QE bit indicates that a photon was detected, then
the photon always passes the QE cut. Otherwise, photons are randomly
rejected based on the desired QE pressure. In the ideal situation the
QE is 100% and all photons will be indiscriminately recorded. In this
study, we only allow QE to vary up to a reasonable value, namingly
56% in Fig. 8.

For our baseline KamLAND-like detector model, the current model,
we assume a QE of 23% and photocathode coverage of 19.6%. We de-
fine an example upgrade scenario where these parameters are roughly
doubled to a QE of 36.2% and photocathode coverage of 42%.

4. Event classification algorithm

CNNs are a type of deep neural networks commonly used in the
field of computer vision. To perform classification tasks using CNNs,
a pixelized image is processed through several so-called layers, each
containing a linear transformation step, followed by a non-linear activa-
tion. Among these layers, convolutional layers play the most important

2 In this context, the term pressure refers to the level of difficulty for a
neural network to classify events. See also Section 4.2.
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role. As the name implies they involve the application of a convolution
operation between two functions. For continuous functions, it repre-
sents the Fourier transform of the products. Applying this procedure to
a 2D discrete surface gives rise to the convolutional layer.

The convolutional filter, the kernel for the convolutional layer, is a
fix-sized grid with specific values assigned to each block. The filter is
scanned throughout the image body, and each image pixel is multiplied
by a filter weight. Finally, the convolution operation is completed by
summing the element-wise multiplications.

The convolutional layer is also capable of taking information from
multiple channels. In this case, the convolution operation is conducted
separately over each channel, and the output values are summed and
fed into the next layer. For example, when a CNN is used to classify
photographs, the input contains four channels: Red (R), Green (G), Blue
(B), and Gray Scale. For this work, we have 34 time-based channels as
described in Section 3.1.

The output of the convolutional layer contains features that are
fed into the fully connected layer. This layer is where the high level
decisions are made, ending with an image being classified into one
of several categories with an assigned probability. Other layers in
the network structure include pooling layers and dropout layers. A
pooling layer reduces the image dimensionality by extracting only the
maximum value from each pooling filter to represent the image. It
significantly increases the processing speed with almost no sacrifice
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of classification accuracy. The dropout layer prevents overfitting by
randomly disabling neurons in the hidden layer with a predefined
dropout rate [34]. For extensive details on the functionality of CNNs,
we refer the reader to Ref. [35].

4.1. Network design

The CNN used in this work is implemented in Keras [36] with a
Tensorflow backend [37]. The general outline of the network is shown
in Fig. 5. It can be divided into a convolutional part and a fully
connected part.

The convolutional part contains 5 sets of layers where each set
includes a convolutional layer, a batch normalization layer, a pooling
layer, and a dropout layer. For simplicity, one such set of layers is often
simply referred to as a convolutional layer. Each time a pooling layer
is introduced, the image reduces to 25% of it’s original size. Therefore,
the convolution part is confined to five iterations.

The fully connected part also contains 5 sets of layers. Each set
includes a fully connected layer, a batch normalization layer and a
dropout layer. Again, this set of layers is often collectively referred
to as a fully connected layer. With respect to the overall depth, the
fully connected part is not limited by the image size or pooling layers.
However, going too deep with the fully connected part will complicate
the model and lead to overfitting. Dropout layers are inserted through-
out the network in order to prevent this effect while decreasing the
processing time [34].

Normalization of data plays an important role in classification tasks.
Without normalization, the neural network will reveal some anomalous
behavior, including non-convergence and high probability of misclas-
sification. During a pre-training stage, each pixel is scaled to a value
below unity. During the network design stage, several different nor-
malization schemes were considered, including vector normalization,
channel-wise standard scalar normalization, and batch normalization.
For this work, batch normalization was chosen. This means that the
normalization is performed for each incoming batch, transforming the
input data, or the PMT hit patterns shown on 4, such that the mean is
zero with a standard deviation of one.

Hyperparameters refer to parameters in the network that are pre-
defined before training, and stay constant throughout the training
stage. Hyperparameters of neural networks define the structure of the
network, and changing these parameters turns the neural network into
a different model. Typical hyperparameters include, but are not limited
to, the number of layers in the network, the number of nodes in each
layers, the size of the filters, and the dropout rate.

A hyperparameter search can result in a significant improvement
of performance [38]. For our model, we performed the search with
hyperopt [39]. Three hyperparameters are tuned to achieve the best
performance, including number of nodes, number of fully connected
layers, and dropout rate. The accuracy, a.k.a the percentage of events
being correctly classified into its labeled class, is chosen as the criteria
to evaluate network performance. We selected a preliminary training
data set of 20,000 3 m sphere events with the current detector con-
figuration. We then search across a continuous range for the dropout
rate between O and 1 and several discrete values for the number
of fully connected layers and nodes. A random search [38] of 50
attempts is executed to determine the best accuracy. The 50 trials are
evaluated and compared for the best background rejection capability.
After tuning, the validation accuracy increases from 49.7% to 77.3%.

4.2. Training

The algorithm is trained and validated on MC data sets, gener-
ated according to Section 3. We study two different data sets: 70,000
centered events, and 50,000 3 m sphere events. All events are stored
in an 6 dimensional array. The six dimensions are correspondingly:
photocoverage pressure, QE pressure, event index, time channel, polar
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angle and azimuthal angle. The algorithm is trained and validated
independently for each data set and each category contains equal
amounts of Ovfp-decay signal and 1°C background events.

The data sets are separated into training and validation subsets with
a 3:1 ratio. The network is trained on batches of 10 events over 30
training cycles. An RMSProp optimizer [37] is used to apply backward
propagation optimization based on binary cross entropy [40]. Due to
the large data volume, sparse matrix and batch generator technology
is applied to reduce memory consumption. During training stage, a
learning rate decay scheduler is incorporated to reduce systematic
fluctuation. After training, the CNN is applied to the validation data
set to study the out-of-sample performance. A bad validation rate in
the presence of good training accuracy is indicative of overfitting and
we do not see this effect.

While training the CNN on each event category, the photo-coverage
and PMT QE were scanned over a wide range of values to better
understand the CNN performance under different levels of classifica-
tion difficulty. These levels of difficulty are referred to as pressure.
The photo-coverage was allowed to vary from 20% to 40% and QE
from 23% to 56%. The lower bounds of the photocoverage and QE
comes from current KamLAND Zen PMT configurations. The maximum
photocoverage was calculated by expanding the Gray disk PMT radius
until they start to overlap, while the PMT QE upper limit was chosen
empirically as the highest possible QE in the near future. A total of 99
CNN models were trained and evaluated for the pressure maps.

5. Results

The well-trained neural network outputs a single floating point
number between 0 and 1 for every input event. This number is the
sigmoid output, since it comes out of a sigmoid activation function.
The sigmoid output serves as the probability or metric for event classi-
fication. If the sigmoid output of a given event is close to 1, it means
the event is likely to be a signal event. The value of the sigmoid output
used for the classification can be more or less stringent depending on
the required signal purity versus signal acceptance. Fig. 6 shows the
sigmoid output for the current detector configuration and a possible
detector upgrade scenario.

After the CNN is applied to the validation data set, the value of
the sigmoid output cut can be varied to generate a Receiver Operating
Characteristic (ROC) curve. For our application, the result is simply
the signal acceptance as a function of the background rejection. Fig. 7
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Fig. 7. ROC curves from simulated events isotropically distributed within a
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shows the ROC curves for the current configuration and the upgrade
scenario. We find that at 90% signal acceptance we can reject 61.6% of
the 19C. For the scenario with increased coverage and QE this increases
to 81.3%. The central events with the standard KamLAND configuration
have a 97.7% rejection at 90% signal acceptance.

Fig. 8 shows the pressure maps which scan different QE and photo-
coverage configurations for both the central and the 3 m sphere events.
As expected, the CNN performs best for centrally located events and for
higher QE and photo-coverage. The results also indicate that increasing
the total light collected, whether by increasing in QE or photocathode
coverage, leads to improved performance.

Within the parameters of this study, we find that it is possible to
reach >99.98% discrimination for central events. This indicates that
higher isotope concentrations that lead to more centrally distributed
Ovpp-decay events are advantageous and this motivates future design
studies. We also studied the algorithm with the 3 m sphere events
and perfect light collection and find 98.2% rejection at 90% signal
acceptance.

We use the fluctuations observed Fig. 8 to understand the un-
certainty in the algorithm. This is estimated by calculating at each
point in the grid the standard deviation relative to the 4 adjacent
neighbors and averaging this value over the pressure map. For central
events, the uncertainty is 0.16%, while the 3 m sphere events give an
1.9%. Combined with the 1.9% systematic uncertainty from the Clock
Latching Algorithm described in Section 3.1, the final uncertainty for
3 m sphere events becomes 2.7%.

In order to understand what feature the CNN is using to dis-
criminate, we produced a data set where the Cherenkov light was
removed. The results for central events with the standard KamLAND
detector configuration indicated a 4% decrease in the rejection. The
3 m sphere events show a 2% increase in the rejection. This could
indicate that Cherenkov light is interfering with the network’s inter-
pretation of the rise-time of the scintillation light, however this is also
within our estimated uncertainty for the algorithm. As a whole, we
find that the Cherenkov signal is not the dominant feature and that
the scintillation light topology is driving the event separation. Within
the scintillation light topology the photon timing information contains
significant discriminating power. Removing spatial information and
using a one-dimensional fully-connected network with timing as an
input we found background rejection drops from 61.6% to 55.0% at
90% signal acceptance.

6. Conclusion

Liquid scintillator detectors have been at the heart of many of
the great discoveries in neutrino physics and have been a leading
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technology in the search for Ovpp-decay. Their data is effectively a
time series of images projected onto a sphere and therefore modern
image processing algorithms may provide new insight into this data.
In this work, we apply an algorithm from computer vision based on
a CNN to extract the fundamentally different physics processes that
take place in 19C background events and Ovpp-decay signal events.
With a standard detector configuration similar to the current KamLAND
detector, we find we can reject 61.6% of the 19C background with 90%
acceptance of the Ovpg-decay signal. A detector with the same geometry
and perfect light collection could achieve 98.2% rejection. We also
find that the performance can be increased to better than 99.98% for
centrally located events. The overall uncertainty of the algorithm is
2.7%.

These results are a basis for future studies combining machine
learning techniques based on CNNs with liquid scintillator detectors.
In short order, we intend to move to a spherically symmetric CNN [41]
and a Bayesian classification that provides a posterior distribution for
the classification. In future studies, this algorithm will be applied to
other backgrounds with topologies distinct from Ovpp-decay. These
include 214Bi decays on KamLAND-Zen’s 3 m-diameter inner balloon
and elastic scattering of 8B solar neutrinos. Solar neutrinos are expected
to be the dominant background in SNO+ [42]. We are also exploring
algorithms which could move beyond simple classification to particle
position and direction reconstruction. These studies are benefiting from
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an abundance of work being done for other applications both inside and
outside of particle and nuclear physics and there are many new avenues
to explore.
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