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Abstract
Growth and remodeling (G&R) of biological tissues is an
inherently multiscale and multiphysics process. In the past two
decades, computational models of G&R have been developed
to improve our fundamental understanding of how tissues
adapt to mechanical cues. Models focused on tissue me-
chanics have successfully captured G&R of tissues but lacking
a detailed description of the biological control at the cell level.
In contrast, systems biology models of mechanotransduction
and cellular processes associated to G&R events have been
developed often without coupling to the tissue mechanical
behavior at multiple scales. Here, we review novel approaches
to fuse the systems biology approach to cell mechanobiology
with the continuum mechanics descriptions of G&R.
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Introduction
Growth and remodeling (G&R) of biological tissues

is inherently multiscale and controlled by complex cell-
signaling networks. Biological tissues serve specific
mechanical functions at the macroscopic scale, on the
order of centimeters or millimeters. In response to
mechanical cues at this scale, tissues adapt mechanically
through G&R [1,2]. This process, although evident at
the tissue level, is actually driven by cellular activity at
the microscopic scale, on the order of micrometers.
Therefore, mechanical cues at the tissue level need to
be transmitted to cells in their local extracellular matrix
www.sciencedirect.com
(ECM) and transformed into chemical signals through
the process of mechanotransduction [3]. Signaling cas-
cades inside cells and also between cells through direct
cellecell junctions or diffusible cytokines and growth
factors coordinate how cells change their local ECM to
maintain homeostasis [4]. Eventually, these microscopic
G&R events are reflected upscale as mechanical adap-
tation observed at the tissue level [5,6] (Figure 1).

Toward better understanding of G&R in tissues,
theoretical and computational models within a contin-

uum mechanics framework have become extremely
popular and useful in the past two decades [7].
Rodriguez et al. [8] introduced the split of the defor-
mation gradient, akin to plasticity, to describe volu-
metric growth of soft tissues. Humphrey and Rajagopal
[9] proposed a model for tissue adaptation based on
constrained mixture theory. These two strategies have
shed light on tissue-level G&R across many organ
systems [10]. Yet, the emphasis of these models, up
until recently, has been on the mechanical behavior of
tissues but lacking a detailed description of the bio-

logical control at the cell level.

Paralleling the advances in tissue mechanics, in the
context of systems biology, models of mechano-
transduction and subsequent cellular processes associ-
ated to G&R events have been developed [11].
Computationally, cell-level events have been captured
with ordinary differential equations, partial differential
equations (PDEs), agent-based models (ABMs), or lat-
tice approaches such as cellular Potts models [12e14].
Although these efforts have shed light on the dynamics

of cell-signaling networks, they have often lacked a
detailed coupling to tissue mechanics.

In the past few years, the systems biology approach to
cell mechanobiology and the continuum mechanics
descriptions of G&R started to fuse in computational
models. This perspective article is precisely centered on
the most recent examples of multiphysics models of
G&R that explicitly incorporate chemoebioemechani-
cal couplings.
Modeling G&R across organ systems with
multiphysics approaches
Wound healing is a quintessential example of G&R that
is closely dependent on a complex cell regulatory
network. Scar remodeling in the skin, which occurs
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Figure 1

Growth and remodeling (G&R) of tissues involves coupling across spatial scales. Mechanical cues at the tissue scale lead to tissue-level G&R.
However, the control of this process is driven by cell and ECM interactions at the microscopic level. ECM, extracellular matrix.
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toward the end of the healing process, shares many
similarities with the repair of other connective tissues,
such as tendons or the heart [15,16]. Thus, skin has
served as a model system to study the fibrotic response
to injury. The commonalities in scar formation across
connective tissues stems from a common inflammatory
signaling network implicated in tissue remodeling. The
computational simulation of dermal wound healing has
a rich history [17]. Upon injury, the inflammatory
response is characterized by an initial influx of neutro-
phils, followed by proinflammatory macrophages. These

macrophages transform into an alternative macrophage
phenotype and create the milieu for infiltration,
collagen deposition, and wound contraction by fibro-
blasts. Therefore, recent wound healing models have
improved our understanding of tissue regeneration by
accounting for such multiphysics features. In a study by
Buganza Tepole et al. [18], the mechanical behavior of
skin was described as a hyperelastic material with a
microstructure-based strain energy function. G&R of
the healing tissue was modeled in two ways. First,
kinematically, the multiplicative split of the deforma-

tion gradient described permanent volume changes and
an evolving vector field described collagen reorientation.
Second, changes in collagen mass fraction were consid-
ered. The inflammatory cascade and the ensuing
fibroblast response were captured with a set of nonlinear
reactionediffusion PDEs. Cell populations obeyed
logistic-type equations with nonlinear interaction terms
modeled as Hill functions. A two-way coupling between
the mechanical and biological fields was considered.
The state of stress directly affected inflammation
and collagen deposition, and the fibroblast population
Current Opinion in Biomedical Engineering 2020, 15:75–80
changed the mechanical environment by controlling
collagen turnover and exerting an active stress. The
model was discretized with a custom finite element
program that solved the coupled system in a monolithic
manner. This model was able to capture key mechanical
fingerprints of cutaneous wound healing, such as the
wound contracture in response to inflammation.

Similar to dermal wounds, healing in the cardiovascular
system follows common mechanisms to scar formation
in the skin. For example, the work by Rausch and

Humphrey was the first to model key chemoebioe
mechanical interactions during venous thrombus matu-
ration [19]. Deep vein thrombosis starts with the for-
mation of a fibrin clot which is slowly degraded at the
same time that incoming fibroblasts produce and
compact a new collagen matrix. The interplay between
fibrin degradation and new ECM formation is key to
understand and eventually predict thrombus fate. In a
study by Rausch et al. [19], a constrained mixture model
was used to describe the evolving mass fraction of fibrin
and collagen. The composition of the tissue, in turn,

determined its mechanical behavior through a struc-
turally based strain energy function. Cells and chemicals
were considered as continuous fields obeying reactive
transport PDEs. The constitutive models for fibrin
degradation and collagen deposition were explicitly
dependent on the concentration of the biological fields,
thus coupling the two branches of the model.

A fibrotic response in the heart after infarct is yet
another example of healing gone awry. Hence, recent
computational models of heart remodeling have also
www.sciencedirect.com
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explored the relationship between tissue-level G&R
and the underlying cellular control. Rouillard and
Holmes proposed the first multiscale model that
coupled a finite element simulation of heart mechanics
with an ABM of fibroblast-driven collagen remodeling
[20]. Their two-way coupling consisted of: (i) fibroblast
migration and collagen turnover in response to both
chemical and mechanical cues, (ii) change in tissue

mechanical properties based on changes in the collagen
mass fraction and orientation by cells. Following this
initial article, the same group has continued to refine
their modeling approach [21,22]. Notably, the systems
biology models of cardiac fibroblast signaling, specif-
ically the hypertrophic response, are among the most
detailed and validated [11,23].

Continuing in the context of wound healing, we switch
to wounds of epithelial rather than connective tissues.
In fetal wound healing, for example, multiphysics

modeling is able to reproduce hallmarks of scarless
healing [24]. In a study by Roldán et al. [24], the authors
multiplicatively split the deformation gradient to
describe wound contraction and use an active stress
term dependent on nonlinear reactionediffusion PDEs
of actin and calcium dynamics. The work by Sree et al.
[25] focused on epidermis necrosis in pressure ulcer
formation by coupling a multiscale model of the skin
with a set of PDEs describing the underlying inflam-
mation signaling network.

Bones also heal after injury. Although there are many
differences in the healing of bones compared with
connective or epithelial tissues, the combination of
G&R at the tissue level with a complex regulatory
network at the cell scale is key to improve treatment.
Ribeiro et al. [26] proposed a finite element model
of bone fractures under loading was coupled with
reactionediffusion PDEs for cellular activity and BMP2
signaling, a protein used clinically to promote bone
regeneration. A highlight of their work is the homoge-
nized mechanotransduction model derived from a study
Moreo et al. [27]. Other recent models of bone regen-

eration that explicitly couple a detailed mechanical
description of bone tissue with a PDE model of cell
signaling include [28,29].
Modeling choices for computational
systems mechanobiology
Based on the latest examples of G&R coupled to cell-
signaling networks, we review the important choices
within the two main components of such models d
tissue mechanics and systems biology componentsd as
well as their integration through two-way feedbacks. As
discussed in the introduction, one of the current chal-
lenges to capture G&R is the multiscale nature of
tissues. Although many recent G&R models are devel-
oped at the tissue scale, for example [18,30], or at the
www.sciencedirect.com
cell scale, for instance a study by Pastrama et al. [28],
coupling across scales remains a challenge. However,
multiscale modeling of tissues without G&R is well
established [31] for one example. Initial efforts to
couple models of G&R at multiple scales is ongoing
[22,25]. A popular choice is the creation of models of
representative volume elements coupled to a tissue-
scale model. Alternatively, homogenized responses or

micromechanics approaches are also suitable. Somewhat
independently of the multiscale coupling, there are two
popular choices for the underlying G&R framework. On
the one hand, the kinematic approach relies on the
multiplicative split of the deformation gradient into
growth and elastic contributions [24], whereas the other
common choice is to use constrained mixtures [19,32].
The third crucial decision in the tissue mechanics
modeling component is the numerical method. Perhaps,
the most common is the development of total
Lagrangian finite element formulations [33], but phase-

field and mesh-free methods are used within the tissue
mechanics community to simulate G&R [34e37].

For the component of G&R that addresses the cell
network dynamics, the first important choice is whether
to model cells as discrete entities or as continuum fields.
Discrete approaches include ABMs and lattice-based
models. An advantage of these types of models is the
ability to model intracellular signaling networks and to
compare directly the simulation to experimental data
[11,20,38]. The challenge is in the restriction to small

and often idealized domains, which is an issue that is
currently being addressed [22]. The alternative is to
consider cells as continuous fields, which facilitates
simulation at the tissue scale but loses the resolution of
cell-based models [25] (see Figure 2).

Extracellular soluble substances, such as nutrients,
growth factors, and other cytokines, are almost exclu-
sively modeled as nonlinear reactionediffusion PDEs.
The modeling challenges in this regard pertain to the
constitutive equations, the reaction terms that model
the interactions within the signaling network. The

choice of numerical method to simulate the systems
biology component of G&R models is driven primarily
by the choice of discrete cells or continuous cell fields,
which in turn tends to depend on the scale of interest.
For small scales, structured grids and agents are
preferred [20,38], whereas finite element methods are
more suitable for the nonlinear reaction PDEs in
complex geometries at larger scales [18,24].

Finally, the coupling of the two components of the
model is perhaps the most crucial. One of the directions

of coupling is from the cell regulatory network to the
tissue mechanics. The most natural way to include this
coupling is through changes in the ECM composition
and structure. At the macroscopic scale, the mechanics
of the tissue can be expressed in terms of microstructure
Current Opinion in Biomedical Engineering 2020, 15:75–80
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Figure 2

Modeling choices in computational systems mechanobiology. Within tissue mechanics, important considerations include: (i) how to deal with the
inherent multiscale nature of tissues, (ii) which theory of G&R to use, (iii) the numerical method to use for simulations. For the systems biology
component, important decisions are: (i) whether to consider cells as discrete entities or continuum fields, (ii) which ECM components to consider and
whether to model the structure in a continuum or a discrete manner, for example, distribution of fibers or discrete fiber networks (DFN), (iii) which
components of the cell-signaling network to include, (iv) the numerical method for simulation. Although models within either tissue mechanics or
systems biology have received more attention, how to couple these two approaches requires further developments. G&R, growth and remodeling; ECM,
extracellular matrix.
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components. At the same time, cellular activity can be
directly coupled to changes in ECM microstructure
through collagen deposition or reorientation [18,19].
Active stress by cells on their ECM is another coupling

from the systems biology component to the tissue
mechanics component [18,24]. The opposite coupling is
the modeling of mechanotransduction. Constitutive
models for mechanotransduction are being developed
[11,27,39], yet, this is clearly an area that requires
further research, as discussed next.
Future directions
As we have reviewed, there are well established theories
for G&R at the tissue scale. Although some multiscale
models are emerging [22,25,40], this is an area of
research for the near future. Specifically, new theory and
numerical schemes are needed to couple G&R models
at different scales in a rigorous manner. Similarly,
systems biology models are well established for inflam-
matory signaling, which underlines many G&R events,
especially scar formation and fibrosis of connective
Current Opinion in Biomedical Engineering 2020, 15:75–80
tissue. However, comprehensive mechanotransduction
models are still needed. The excellent methodology by
the Zeigler et al. [11] and Frank et al. [41] in this regard,
among others, is a good blueprint that should be

followed to improve G&R models across organ systems.

There are various modeling choices for computational
systems mechanobiology, each with its own advantages
and disadvantages. Therefore, modeling choices are very
much dependent on the question being investigated
with the model and the type of data available for
validation. In any case, it is clear that, although com-
ponents of the model that fall on the tissue mechanics or
the systems biology realms are more established,
coupling schemes between these two types of models
requires further investigation. Finally, owing to the many

different strategies available to model G&R coupled
with cell regulatory networks, validation is a challenging
task, but not less important. Comparison between
different models, benchmarks for new models, and
developing of open source codes is essential and lacking.
www.sciencedirect.com
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In summary, novel simulations of G&R have been
coupled with computational systems biology approaches
to better understand the fundamental mechanisms
behind tissue adaptation. There are many avenues
for future research at this intersection. Eventually,
computational systems mechanobiology of G&R could
help design better treatments based on modeling and
simulation.
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