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Privacy-Preserved Data Sharing Towards Multiple
Parties in Industrial IoTs
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Abstract— The effective physical data sharing has been facil-
itating the functionality of Industrial IoTs, which is believed
to be one primary basis for Industry 4.0. These physical data,
while providing pivotal information for multiple components of
a production system, also bring in severe privacy issues for both
workers and manufacturers, thus aggravating the challenges for
data sharing. Current designs tend to simplify the behaviors
of participants for better theoretical analysis, and they cannot
properly handle the challenges in IIoTs where the behaviors are
more complicated and correlated. Therefore, this paper proposes
a privacy-preserved data sharing framework for IIoTs, where
multiple competing data consumers exist in different stages of the
system. The framework allows data contributors to share their
contents upon requests. The uploaded contents will be perturbed
to preserve the sensitive status of contributors. The differential
privacy is adopted in the perturbation to guarantee the privacy
preservation. Then the data collector will process and relay
contents with subsequent data consumers. This data collector
will gain both its own data utility and extra profits in data
relay. Two algorithms are proposed for data sharing in different
scenarios, based on whether the service provider will further
process the contents to retain its exclusive utility. This work
also provides for both algorithms a comprehensive consideration
on privacy, data utility, bandwidth efficiency, payment, and
rationality for data sharing. Finally, the evaluation on real-world
datasets demonstrates the effectiveness of proposed methods,
together with clues for data sharing towards Industry 4.0.

Index Terms— Industrial IoTs, differential privacy, data
sharing, Industry 4.0.

I. INTRODUCTION

TO SUPPORT the emergence and development of
next-generation industry, i.e., Industry 4.0, one essen-

tial condition is the communication interface for seamlessly
flow of information throughout the production system [1].
The involvement of IoTs has made significant facilitation to
this trend, where the production data could be ubiquitously
collected and shared. It brings together a novel eco system
noted as Industrial Internet-of-Things (IIoTs) [2]. A typical
IIoT system may involve categories of industrial data, ranging
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from the traffic records originated from the freight systems
or regular crowds [3], to the sophisticated production data
from the pipelines in factories and supplement chains. These
data can facilitate intelligentization for numerous industrial
decisions [4] including the smart logistics, scheduling and
supplement of resources, adaption of investment, etc. However,
the data also implicates private information and business
profits for data owners, significantly hindering the seamless
flow of information. Careless sharing strategies may disclose
the sensitive status for workers, or providing extra information
where subscribers can apply for maliciously commercial pur-
pose. Therefore, this work studies the communication interface
for privacy-preserved data sharing within industrial domains,
considering the existence of parties in multi stages.

The data sharing has been a pivotal aspect for IIoTs.
Generally, a typical IIoT includes some data generators, like
the factories, the workers, or individual contributors. They
actively contribute contents of different categories. For exam-
ple, the scales of freight and traffic flows within different
regions of a city. These contents can benefits multiple aspects
of IIoTs, like the adaptive deployment of new logistic capa-
bilities, the real-time scheduling of product transportation, the
decision of locations for new factories, and also the strategies
of production for upstream and downstream parties. However,
the data may also correlate with the privacy issues, referring
to the sensitive status of contributors. For example, it may link
to the daily movement of a driver [5], the behavior patterns
for people in a community, or the potential plans of some
companies. These threats have been challenging the adoption
of IIoTs.

Furthermore, the applications on IIoT data could also be
more complicated [6] than basic IoT systems. The implemen-
tation of the new era industrial system requests a continuous
chain of data sharing in different stages, starting from the
material supplier all the way to the the final retailers. There-
fore, data will usually be flown among multiple parties. For
example, freight companies apply the traffic loads for service
deployment and real-time scheduling, while the upstream and
downstream subscribers may further apply the information to
allocate their resource for production and retailing. In this
case, the data is leveraged for multiple applications, thus
involving both more utilities and the extra leakage of privacy in
the data.

Unfortunately, current study for sensitive data sharing in
IoTs mainly focuses on data perturbation and data trading.
The perturbation mechanisms conceal the sensitive status like
the locations or attributes. The trading mechanism usually tries
to achieve a balanced payment [7], where the privacy in data
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could be evaluated and the objective is usually to maximize
the social welfare. However, these works usually ignore the
multiple applications of data, where service providers and
subscribers all rely on the data while service providers also
trade the data for extra profits.

Actually, there are two major challenges for data sharing in
aforementioned IIoTs. The first one is to achieve the balance
among the privacy, the profits, and the utility of data. Workers
will not wish to yield their privacy too much upon unrea-
sonable profits, while the service provider and subscribers
try to maximize their benefits under constrained budgets,
i.e., to retain the utility in the collected results. Furthermore,
the service provider itself has to make a balance between the
ratios of data and the accuracy of data collected from workers,
to make the estimated results more applicable. Therefore,
there is another inherent trade-off under limited budgets. Both
trade-offs request a comprehensively designed scheme for data
sharing. Secondly, during the data sharing between the service
provider and subscribers, the service provider also expects to
both benefit from the data relay and retain its trade secret
toward subscribers, which could potentially be its rivals. The
service provider also has to make sure the subscribers will
not bypassing them and directly collect data from workers.
In this circumstance, workers are higher paid, but they are
considered as less trustworthy as no authorization are provided
by the service provider. The subscribers are lower-charged
as no extra cost are charged by the service provider, while
also suffering relatively low utility on the unreliable data.
Consequently, the service provider must carefully design the
data sharing strategy to avoid this potential collusion. As far
as we know, none existing results can properly cover both
challenges.

To mitigate the gap, this paper propose a novel framework
for data sharing in IIoTs. Specifically, the three-party model is
applied, where workers, one service provider, subscribers are
involved. The workers hold multiple contents in the system.
The service provider collects contents from workers, retains
them for own benefits, and re-trades the data to subscribers
for extra profits. The subscribers request the data for their
own production process, and pay for the data according to
the charge of the service provider. This model could also
be extended for more parties. Furthermore, the contents are
considered as private information for each worker. In this
paper, the differential privacy is adopted to preserve the
sensitive information for workers. which allows the adversaries
with strongest background knowledge. Specifically, the ser-
vice provider and subscribers concern on the counting and
the histogram distribution on underlying contents, which are
essential and major requests for IIoTs as they can both provide
a meaningful sketch for underlying systems.

Specifically, we assume the workers are paid according to
the accuracy and ratio of uploaded contents, i.e., the privacy
and the bandwidth consumption. They will sample, perturb and
upload the contents under local differential privacy, according
to the received privacy budget and payments. Then the service
provider calculates the results according to the collected data,
and will further process and share the data with subscribers.
The goal for the service provider is to first derive a proper

strategy for data collection by achieving good data utility. This
is studied in our first scenario, where the service provider and
subscribers are tied in the data sharing. In the second scenario,
the service provider will further perturb the result and relay
it with subscriber. Then the goal also includes the retaining
of exclusive profits for service provider, while workers and
subscribers are fairly treated. In this case, the subscribers may
bypass the service provider and collude with workers. The
service provider guarantees that subscribers will not achieve
better utility by collusion with workers. This paper propose
two corresponding algorithms designed for two scenarios,
each with comprehensive analysis on performance Finally,
the framework are validated on real-world datasets. The results
validate the effectiveness of proposed algorithms. As far as
we know, this is the first study combing the privacy, utility,
the fairness, the payment among multiple parties in IIoTs. The
main contribution of this work includes:

• A novel framework for privacy-preserved data sharing is
proposed for IIoTs.

• The problem of data sharing by joint consideration on the
utility, privacy, and the rationality is formulated.

• Two algorithms are proposed for different scenarios of
data sharing, covering major situations for IIoTs.

• Corresponding analysis is proposed to demonstrate the
utility of data sharing.

• Extensive evaluation is conducted on real-world dataset,
and the results reveal the effectiveness of the proposed
methods.

The remainder of this paper is organized as follow.
Section II overviews the literature on corresponding research
topics. Section III gives our problem formulation, addressing
two scenarios. Section IV provides the algorithm and analysis
for the first scenario. Section V introduces the algorithm
designed for the second scenario. Section VI provides the
evaluation results. Finally, section VII concludes the whole
paper.

II. RELATED WORK

The data sharing has long been considering as a primary
requirement for facilitating the functionality of IIoTs [8]. For
example, it is believed that the freight and taxi flows could
work as a reference for traffic loads and freight capabilities
for urban area [9]–[11], and to continuously tracking packages
in logistics system will be critical to learn the life cycle of
a product [12]. Owing to these benefits, numerous studies
are conducted to investigate the data sharing within IIoT
systems. These works focus on the novel applications of
shared data [13], the resource allocation during the data
exchange [14], and the design of integrated system [15] where
data can be freely shared. However, one common drawback
of these studies is the ignorance of privacy issues, which is
even more serious due to the involvement of agnostic physical
data [16].

There has also been a long study history for privacy preser-
vation in IoTs [17]. The location information, as an inherent
attribute for many physical data, has been thoroughly studied
to thwart attacks from different adversaries. Both the sensitive
positions and the private knowledge beneath these locations
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are investigated and properly handled [18]. Meanwhile, other
types of physical data has also been treated, and potential
threats are suggested. For example, the gesture data could
reveal the pin number for a mobile phone users [19], as well
as reveal the application a user is currently focusing on.
Meanwhile, the efficiency has usually be jointly considered
with privacy preservation for IIoTs [20], [21]. However, this
situation is even more urgent for IIoTs, as this kind of systems
involves huge domains of physical data [22], [23]. and the
correlations among multiple parties are more sophisticated,
which makes existing solutions inappropriate for data sharing
in IIoTs.

As for the privacy-preserved data sharing in distributed
environment [24], LDP [25] is believed to achieve the optimal
performance by allowing an arbitrary background knowledge
for adversaries. Google proposed Basic RAPPOR [26] and
RAPPOR [26], both of which provide LDP for participated
users. These two methods are based on the idea of random
response, and differ in their bandwidth efficiency. Subsequent
studies apply the LDP for multiple purpose of data sharing.
For example, the histogram distribution [27], the general graph
structures [28], and the frequent items [29], [30]. There are
even some works [31] trying to conclude current studies on
LDP and providing guidelines for applications. Another body
of studies try to involve the links among multiple parties [32]
during the IoT data sharing. They either consider the privacy
preservation [33] or the utility maintenance [34] as a common
task among participants. However, the cases for data sharing
in IIoTs is usually more complicated, where multiple parties
may compete and hold diverse purposes for data.

Finally, the crowd-sensing has also been treated as a promis-
ing approach for data sharing in IIoTs, where workers are
allowed to voluntarily participate in the systems for data
sharing and rewarding. Current studies aim at deriving plans
where data utility, fairness, and social welfare can be jointly
optimized. As for the privacy concerns, both the location
privacy [35] and the privacy within the uploaded data [36]
have been studied for the crowd-sensing systems. However,
there is still a gap between crowd-sensing systems and the
scope of IIoTs, where the service provider may also make
use of the collected contents, and compete with subscribers
on markets. Therefore, algorithms and strategies designed for
crowd-sensing systems will be inapplicable.

III. PROBLEM FORMULATION

This section gives basic settings in the framework.
It includes the definition on workers, service providers, and
subscribers. The second part gives the description of different
scenarios. The third part introduce preliminaries for differen-
tial privacy.

A. Basic Settings

There are three parties in the framework: the workers,
the service provider, and the subscribers. The workers are also
named as data contributors, while the service provider and the
subscribers are also combined as data consumers.

1) Workers: The workers, denoted as {u1, u2, · · · , uM},
participate in the system and generate contents about differ-
ent applications. For example, the traffic data uploaded by
each drivers, or the category of daily manufacturing data by
different workshops. Each worker ui separately generates a
set of contents Ci = {ci1, ci2, · · · , ciKi}, which could be
daily visited positions of a drivers, the types of manufacturing
products, etc. All contents are selected from a content pool
F = {f1, f2, · · · , fK0}, which includes all distinct contents.
The data will be transmitted in the whole system for further
utility.

2) Attacking Model: The workers will concern on their
private contents, which may correlate with their personal
status. For example, the mobility patterns for drivers, or some
specific types of products. In this work, the adversaries are
malicious data viewers who try to infer the personal status of
workers. They are both honest and curious, and can be either
the service provider or subscribers. Our framework involves
the idea of differential privacy, which achieve the state-of-the-
art guarantee for privacy preservation. Generally, this metric
allows a data owner to publish a perturbed statistic for her
contents, without disclosing any one of her individual con-
tents. Differential privacy assumes the strongest background
knowledge for adversaries, i.e., they are allowed to know
all contents except for the target one, and none meaningful
information will be disclosed from the statistics. Furthermore,
this paper adopt the local differential privacy, where data can
be collected in distributed manners. The formal definition of
local differential privacy is shown as follow:

Definition 1 (Local Differential Privacy [25]): An
algorithm or an encoding function Q satisfies ε-local
differential privacy (ε-LDP) where ε ≥ 0, if and only if for
any contents Ti and Tj , we have

∀y ∈ Range(Q) : Pr[Q(Ti) = y] ≤ eεPr[Q(Tj) = y],

where Range(Q) denotes the set of all possible outputs of the
algorithm or encoding function Q.

In LDP, εi is the privacy budget or privacy factor for
data sharing. Workers accept larger εi by admitting a loose
preservation on their contents, and less noise will be added.
Furthermore, we also introduce the parallel properties for
differential privacy.

Theorem 1 (Parallel Composition [37]): Let
{ti1, ti2, · · · , tiKi} be the contents held by user ui, and fis be
a set of Ki encoding functions each providing εi-differential
privacy. Then applying all fis to their corresponding contents
tij can guarantee a max{εi}-differential privacy for ui.
This properties indicates that content from one worker will not
affect the privacy for others when they are merged, as their
contents are disjoint.

3) Profits: Finally, workers share their data for profits. The
service provider requests the ratio of uploaded contents and
the scales of injected noises for each worker. Workers process
and upload contents for the rewards accordingly. The charge
for each content is defined as R(εi), where a larger εi leads
to larger charge since more privacy is disclosed.

4) Subscribers: The subscribers S = {S1, S2, · · · } act as
the data consumers in the system. There could be multiple
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subscribers, and their correlations could be either identical
or in sequential manners. In the later case, a subscriber
could be both data consumers and data owners for subsequent
subscribers [38]. In our framework, the subscribers expect to
retrieve knowledge about the contents within the production
system.

Due to the concern on privacy and profits, subscribers need
to pay for the data. Subscribers will pay according to the
accuracy of the data. Therefore, they will pay more to achieve
better data utility. Assume the query to be Q(C ), where C
is the combination of all data generated in the system, and
Q(·) is the function deriving the necessary information for
subscriber. For example, Q(·) could be the histogram or the
counting of each distinct categories of contents. Subscribers
will not receive the accurate results, due to the limited budget
and the privacy concerns. Therefore, the utility of the retrieved
result is determined by the expectation and the variance, where

E(Q(C ′) − Q(C )) = 0, (1)

meaning the results are unbiased, and V ar(Q(C ′) should be
minimized.

5) Service Provider: To maintain the functionality of the
data flow for IIoTs, one service provider should be adopted to
coordinate the data sharing among workers and subscribers.
The service provider could be some dominating third parties
like the power companies within the supply chain. The service
provider will request the data from workers, and trade it with
other subscribers. Meanwhile, the service provider will also
take the data for their own profits, as they are also involved
in the IIoTs. Specifically, assume the total budgets received
from subscribers to be B0. Then the service provider will
directly apply the budget to collect a proportion of contents
from workers, with some degree of privacy constraints. The
received contents will be processed to derive the necessary
knowledge, denoted as Qsp(C ′). Finally, the service provider
will forward the results to subscribers, or further process the
results before forwarding, to retain their own profits against
potential rivals.

B. Scenarios

Two major scenarios of data sharing are considered for
IIoTs. The first one is the coalitional model, where the service
provider and following subscribers will be tied and share
identical information. This is the case where the service
provider is just a basic platform for data fusion in IIoTs [39],
and will not participate in the functionality of the production
system. This scenario also holds when the service provider
serves different departments of a large enterprise. The second
scenario is the independent model, where the service provider
and subscribers are independent parties and potential rivals.
The service provider processes the received results before
sharing it with subscribers.

1) Coalitional Model: This scenario assumes there is one
service provider and one subscriber to simplify the under-
lying data flow. The two parties are tied with each other,
such that they will share exactly the same information. The
service provider SP0 will first receive the budget B0 from the

subscriber S0. The budget will be paid to different workers,
and these workers will upload their contents to the service
providers. Finally, the service provider processes the received
contents and shares the results with subscribers.

The service provider needs to decide the strategies for
data collection among workers. Specifically, two parameters
should be considered: the acquisition ratio β0 and the privacy
factor ε0. The acquisition ratio β0 indicates the scales of
contents uploaded to SP0, and the privacy factor ε0 indicates
the degree of differential privacy adopted by each worker.
Generally, a larger β0 means more workers will participate in
the data sharing, while a larger ε0 means workers will provide
more accurate contents. However, the payment R(·) for each
worker is also determined by ε0, where a larger ε0 leads to
higher cost. Therefore, the service provider has to decide the
ratio of contents and the payment for corresponding workers
under the limited budget.

The service provider and the subscriber try to extract the
counting of each categories of contents exists in the whole
system. This kind of information will provide overview of
the situation in the system, like the distribution of trucks in
different regions, or the types of products for manufacturing
factories. Therefore, we have Q(·) = {Co1, Co2, · · · , CoK0}.
Assume the original counting for each types of contents
as {Co0

1, Co0
2, · · · , Co0

K0
}. Then the utility of the service

provider and subscriber is defined in equation (2).
∑K0

i=1 |Coi−Co0
i

Co0
i

|
K0

, (2)

which is the mean of relative errors on all categories.
As the data collection is one snapshot query, the distribution

of the derived results will be applied to evaluate the effective-
ness of the results. Therefore, our objective is to determine
the set of acquisition ratio β0 and privacy factor ε0, by given
a fixed budget B0, such that the strategy can minimize the
variance for the results.

2) Independent Model: The second scenario assumes that
the service provider and the subscriber are independent parties.
The subscriber will first propose its budget to the service
provider, which will apply the budget to acquire contents from
workers and extract corresponding results. Then this service
provider further process the results and conceal some private
business information, before sharing it with the subscriber.
To simplify and clarify the analysis, we still consider the case
with one service provider S0 and one subscriber SP0.

In this scenario, the service provider SP0 still collects the
counting for different categories of contents, and estimates the
utility of the results according to the accuracy. Meanwhile,
the subscriber S0 will request for the histogram distribution
of the counting QS(·), which will also provide some clues
for the system. Therefore, SP0 will further process the results
for counting query, and share the processed histogram graph
to S0. To be general, our framework assumes SP0 concerns
on the counting for each category, and treats it as the private
information. The total utility of SP0 is USP = Ucontent +
Urelay , where Ucontent refers to the accuracy of results, and
Urelay refers to the retained information towards S0, which is
determined by the scale of noise injected in the results.
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A second objective for SP0 is to also ensure a reasonable
benefits for the subscriber S0, where S0 cannot bypass SP0

and gain better results by directly collecting data from the
workers. Assume the payment for selling data to SP0 as R(·),
the charge for SP0 from S0 as RSP (·), and the payment for
selling data to S0 as RS(·). For a fixed ε0,

R(·) ≤ RS(·) ≤ RSP (·), (3)

which follows the general rules in real-world data trading.
Meanwhile, the subscriber S0 possibly suffers the low data
utility when directly requesting data from workers, owing to
the absence of a trustable data platform SP0. Our framework
formulates the general data utility factor as γ0, meaning
the data directly requested from workers could amplify the
expected variance by γ0.

Generally, in the second scenario, the objective is as follow:
SP0 applies the budgets from S0 to collect the data from
workers, i.e., determines the acquisition ratio β0 and privacy
factor ε0. Then SP0 adopts another privacy factor ε′0 for
result perturbation before exchanging the results with S0. The
corresponding strategies guarantee the subscriber S0 cannot
bypass SP0 for better utility, while the utility for SP0 is
maximized, i.e., a minimum ε′0.

C. Preliminaries

This part addresses the randomized response mechanism,
which is a typical method for data collection under LDP.

Assume there is a L-bits vector with binary entry, denoted
as V = (v1, v2, · · · , vL).

Then V ′ can be generated by randomized response:

Pr[V ′[i] = 1] =

⎧⎪⎨
⎪⎩

1 − 1
2
f, if V [i] = 1

1
2
f, if V [i] = 0.

(4)

Actually, this mechanism of perturbation achieves LDP
property for vector V , which is proved by previous work [31]:

Theorem 2: For an arbitrary vector V = (v1, v2, · · · , vL),
the randomized response achieves ε-LDP for ε =
ln((1− 1

2 f
1
2 f

)2).

IV. SOLUTIONS FOR UTILITY-OPTIMIZED

DATA COLLECTION IN IIOTs

This section provides the algorithm for data collection in the
first scenario, where the service provider and the subscribers
are tied in the data sharing. It first introduces the details of
the proposed algorithm, and proposes corresponding analysis
demonstrating the effectiveness of the algorithm.

A. Algorithm for Data Collection

In the first scenario, the service provider and the sub-
scriber are jointly considered for one objective. Therefore,
this part applies SP0 to indicate both sides for simplicity.
Initially, SP0 collects contents from M individual workers
{u1, u2, · · · , uM} with a total budget B0. The overview of the
procedure is as follow. SP0 first determines the ratio and the

set of contents to be upload. Then workers with selected con-
tents will receive the payment and corresponding requirements
ε0 on privacy. These selected workers upload the perturbed
contents to SP0. Finally, SP0 aggregates the contents and
estimates the final results. To be clear, the algorithm is denoted
as the Joint Optimized Data Collection algorithm (JODC for
short).

In the first step, SP0 derives the acquisition ratio β0 and
privacy factor ε0. Upon the budget B0, the cost function
R(·), and the scale of content

∑
Ki, SP0 determines the

corresponding β0 and ε0 such that

{β0, ε0} = argmin
β,ε

V ar(
K0∑
i=1

Coi), (5)

where the derived results achieve minimum variance for the
estimation.

In the second step, SP0 will randomly pick
∑

Ki · β0

contents without knowing the details of them, and the owner
of these contents are selected as the data contributors. SP0

distributes the request containing ε0, together with the payment
to these workers. In JODC, SP0 will iteratively sample one
content and add the worker into the candidate set, until∑

Ki · β0 distinct contents are selected.
In the third step, the selected workers in the candidate set

receive the privacy factor ε0. Each selected worker ui will first
locally process their contents. Each content will be perturbed
with random response introduced in formula (4). Therefore,
the selected content set Ci = {ci1, ci2, · · · , ciK′

i
} will be

obfuscated to C′
i = {c′i1, c′i2, · · · , c′iK′

i
} and uploaded to SP0.

Finally, SP0 will sum up each category of contents within
the collected data. Assume the accumulated numbers to be
{Co′1, Co′2, · · · , Co′K0

}. SP0 will scale up each counting by

Coi =
Co′i − N · β0 · 1/2f

(1 − f) · β0
, (6)

where N is the total number of contents in the system. Finally,
SP0 gets the outputs

{Co1, Co2, · · · , CoK0}. (7)

The pseudo code for JODC is shown in algorithm 1.

B. Analysis

This subsection first analyzes the temporal, spatial, and
bandwidth efficiency of JODC. Then the privacy preservation
for each worker is demonstrated. The third part discusses the
accuracy for the derived results, and the last part analyzes the
effectiveness of the extracted results for the service provider.

1) Efficiency: The time for the first step is O(1), where
SP0 extracts the necessary parameters. In the second phase,
the time for selecting contents is O(N · β0) = O(N), as
SP0 takes N · β0 rounds to pick up contents. In the third
phase, each worker ui consumes O(Ki) to perturb all her
contents. Therefore, the time complexity for the third phase
it O(max Ki). Finally, the last phase requests SP0 to scale
up the counting for all categories, which is O(K0). Generally,
the time complexity for JODC is O(N + K0).
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Algorithm 1 Joint Optimized Data Collection
1: SP0 derives the sampling ratio β0 and privacy budget ε0

according to equation (5).
2: for Each ui do
3: Sort contents in Ci in an arbitrary order.
4: Upload Ki to SP0.
5: end for
6: SP0 arranges a unique number within [1,

∑
Ki] to each

content.
7: SP0 randomly picks

∑
Ki · β0 samples.

8: SP0 distributes numbers of selected contents to uis.
9: for Each ui do

10: for Each selected content cij do
11: Set f according to Theorem 2.
12: Execute random response on cij with f .
13: end for
14: Upload C′

i to SP0.
15: end for
16: for Each Coi do
17: SP0 estimates Coi according to equation (6)
18: end for

The spatial complexity for SP0 is O(M · N), as it needs
to store the contents for all selected workers. However, JODC
can further apply the incremental strategy to reduce the spatial
complexity to O(K0), where the counting is added upon each
received content set. The spatial complexity for each worker
is O(N), where the worker needs to keep a record for each
of her contents.

Finally, the total bandwidth consumption for JODC is
O(M+M ·N ·K0), where SP0 distribute the requests to M ·β0

workers, and each worker consumes O(NK0) bandwidth to
return the content set.

2) Privacy Preservation: As JODC follows the typical ran-
dom response mechanism, it can preserve each worker under
differential privacy within the uploaded contents. Furthermore,
the sequential property guarantees the aggregated results will
reveal no extra information for workers. Therefore, JODC can
preserve each worker under the following theorem.

Theorem 3: Within JODC, each worker will be preserved
under ε0-differential privacy, where ε0 is the privacy factor set
by SP0.

3) Accuracy: The accuracy of the results mainly comes in
two folds. First, the estimated results should be an unbiased
estimator, i.e., the service provider requests the expectation of
the results to be an unbiased estimation for the ground truth:

E(Coi) = |Co0
i |, ∀i ≤ K0 (8)

where |Co0
i | indicates the true number of contents belonging

to the category Coi. Second, the service providers hope to
extract the results with strong stability, which means the results
should be likely distributed around the ground truth. As for
the second property, the variance will be adopted to show the
stability.

As for SP0, the uncertainty of results are introduced by
two steps: the content selection, and the content perturbation.

Actually, both steps follow the basic idea of Bernoulli sam-
pling, and they are independent variables. The following
theorem guarantees the unbiased results for SP0.

Theorem 4: For each category of content Coi, JODC can
provide an unbiased estimation under given β0 and ε0.

Proof: Initially, the estimation for each category of content
follow the equation below.

Coi =
Co′i − N · β0 · 1/2f

(1 − f) · β0
, (9)

where Co′i indicates the total number of contents collected
from workers, which belong to category fi, i.e., the total
number of vectors with ith entry equals 1.

We further denote Ni as the total size of contents belonging
to category fi in the system. According to the definition fo
random response, we have

Co′i = Ni · Vs · Vr + (N − Ni) · Vs · V ′
r , (10)

where Vs is the sampling variable for whether a content is
selected, Vr and V ′

r indicates whether the random response
will retain or reverse the corresponding bit standing for the
content in fi.

Now we define the following symbol:

Φ = Coi − Ni. (11)

Then we have

E(Φ) = E(Coi − Ni)

= E(
Co′i − N · β0 · 1/2 f

(1 − f) · β0
) − Ni

=
E(Co′i) − N · β0 · 1/2 f

(1 − f) · β0
− Ni

=
E(NiVsVr + (N − Ni)VsV

′
r ) − Nβ01/2 f

(1 − f) · β0
− Ni,

As Vs, Vr and V ′
r are independent variables,

E(NiVsVr + (N − Ni)VsV
′
r )

= NiE(Vs)E(Vr) + (N − Ni)E(Vs)E(V ′
r )

= Niβ0(1 − 1
2
f) + (N − Ni)β0

1
2
f.

Therefore,

E(Φ) = Niβ0(1−f)
(1−f)·β0

− Ni = 0. (12)

Then we have

E(Coi) = Ni,

which means Coi is an unbiased estimator.
According to Theorem 4, JODC provides an unbiased

estimation for each category of contents. Therefore, the final
outputs {Co1, Co2, · · · , CoK0} will also be an unbiased esti-
mator, as the sampling on different contents is independent.

The variance of the estimated results are calculated in
lemma 1. The main idea of the lemma is to combine the
variance from two steps of sampling, and derive the correlation
between the variance and the two parameters β0 and ε0.
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Lemma 1: For each kind of contents Coi, with parameters

β0 and ε0, the variance follows V ar(Coi) ≤ N2
i +N2 1

2 f

(1−f)2β0
+

1
4

Nf2

(1−f)2 + 2NNif
(1−f)2

Proof:
First of all, we have

V ar(Φ) = V ar(Coi − Ni) = V ar(Coi), (13)

as Ni is a constant. Since E(Φ)2 = 0, we have

V ar(Φ) = E(Φ2) − E(Φ)2 = E(Φ2)

= E[(
Co′i − Nβ01/2 f

(1 − f) · β0
− Ni)2]

= E[(
Co′i − Nβ01/2 f

(1 − f) · β0
− Ni)2]

= N2
i + E(

(Co′i − Nβ01/2 f)2

(1 − f)2 · β2
0

)

− 2Ni · E(
Co′i − Nβ01/2 f

(1 − f) · β0
).

As Vs is a Bernoulli samplings,

E(V 2
s ) = E(Vs). (14)

The same conclusion also holds for Vr and V ′
r .

Therefore,

V ar(Φ)

= N2
i +

E(Co′i − Nβ01/2 f)2

(1 − f)2 · β2
0

− 2Ni · Ni.

=
E(Co′2i ) − N2β2

01/4 f2−Nβ0 fE(Co′i))
(1 − f)2 · β2

0

− N2
i

=
Nβ0 f

(1 − f)2 · β2
0

(Niβ0(1 − 1
2
f) + (N − Ni)β0(

1
2
f))

−N2
i − N2β2

01/4 f2

(1 − f)2 · β2
0

+
N2

i β0(1− 1
2f)+(N−Ni)2β0

1
2f

(1−f)2 · β2
0

+
Ni(N − Ni)β2

0(1 − 1
2f)f

(1 − f)2 · β2
0

≤ N2
i + N2 1

2f

(1 − f)2β0
+

1
4

Nf2

(1 − f)2
+

2NNif

(1 − f)2

Finally, the following theorem demonstrates the total vari-
ance for the final outputs, which can be directly derived by
accumulating the variance as they are independently deter-
mined.

Theorem 5: totalvar) The total variance for all categories

of contents in the final output is less than
�

N2
i +K0N2 1

2 f

(1−f)2β0
+

K0Nf2+8N2f
4(1−f)2

4) Effectiveness: Finally, the service provider expects high
utility for the final output, which makes the algorithm more
effective. Generally, this requirement could be achieved by
reducing the total variance. This is same with the following
problem:

Problem 1: Given a fixed budgets, how to derive the
corresponding acquisition ratio β0 and privacy factor ε0, such
that the total variance could be minimized.

With all the information available, JODC could iteratively
derive the optimal results via the comparison on the combi-
nations of different parameters. Intuitively, larger β0 and ε0
lead to better utility, as well as higher cost. Therefore, JODC
may tune the parameters under the budget constraint, and the
optimal performance can be achieved as the variance is a
monotonic function for both parameters.

However, the design of optimal factors are in fact non-trivial
as the variance is also correlated with the ground truth for each
category, which is exactly a dilemma for the service providers.
To mitigate this gap, one potential solution is to apply an
approximation for the total variance, and then estimate the
parameters accordingly. For example,

V ar(
∑

Coi) ≤
(K0 + 1)N2 1

2f

(1 − f)2β0
+

K0Nf2 + 8N2f

4(1 − f)2
,

(15)

where all information could be available for SP0, and JODC
solves the following problems:

Problem 2:

min
(K0 + 1)N2 1

2f

(1 − f)2β0
+

K0Nf2 + 8N2f

4(1 − f)2
(16)

s.t. R(ε0) · β0 · N ≤ B0. (17)

This problem could be solved by multiple methodologies like
the Lagrange multiplier [40].

V. SOLUTIONS FOR MULTI-PARTY

DATA SHARING IN IIOTs

This section provides the algorithm for data collection
in the second scenario, where the service provider and the
subscribers are independent in the data sharing. It also starts
with the details of the proposed algorithm, and proposes
corresponding analysis demonstrating the effectiveness of the
algorithm.

A. Algorithm for Multi-Party Data Sharing

In the second scenario, the service provider will first collect
contents from workers, and relays the processed results to the
subscriber. The general input for SP0 is same with the first
scenario. The output includes the derived counting for distinct
contents for SP0 and the histogram distribution for S0. The
overview of the algorithm is as follow. Initially, SP0 receives
the budgets B0 from S0. Then the service provider will follow
the steps of JODC, and derive the results for itself. According
to this results, SP0 estimates the scales of information it
can retained, and further processes the results to derive the
final outputs, which will be forward to the subscriber S0. The
proposed algorithm is denoted as the Independent Optimized
Data Collection algorithm (IODC for short).

In the first part, IODC processes exactly same with the
JODC, where the budgets B0 are distributed to different
workers, and SP0 gathers the contents to estimate the counting
for different contents.

In the second part, SP0 processes and relays the results to
subscriber S0.
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The service provider first considers the case where S0

directly collect data from workers. In this case, S0 can
retrieve contents with lower cost, which is RS(ε), and R(ε) ≤
RS(ε) ≤ RSP (ε). However, S0 also suffers the unreliability
of contents, which is formulated by the amplifier γ0 on the
variance. Generally, SP0 will apply the analysis for JODC to
draw clues on the performance of direct data collection by S0,
where RS(·) and γ0 are considered.

Based on the derived results, SP0 further estimates the
gap between the current results and the optimal results for
subscribers, which is shown in equation (18)

G = V ars(
∑

C0i) − V ar(
∑

C0i)

= (γ0 − 1)V ar(
∑

C0i), (18)

where V ars(
∑

C0i) is the variance when S0 performs direct
data collection. Then SP0 further perturbs the histogram distri-
bution according to the gap. The perturbation is implemented
by a second random response on all its data with parameter
ε′0, where the variance brought by ε′0 in the random response
is (γ0 − 1) times of the original one.

Finally, SP0 estimates the histogram based on the perturbed
contents, where the same strategy in JODC will be applied to
regulate the errors in random response. Then the results are
forwarded to S0.

B. Analysis

This subsection first analyzes the temporal, spatial, and
bandwidth efficiency of IODC. The second part discusses
the accuracy and rationality for the derived results. Finally,
the privacy preservation for each worker is demonstrated.

1) Efficiency: This part focuses on the efficiency for the sec-
ond phase of IODC, as the first part are similar with JODC
algorithm.

In the second phase, it takes O(1) to calculate the budget ε′0,
and takes O(NK0) to perform the second random response.
Therefore, the time complexity for the second phase of IODC
is O(NK0).

Meanwhile, the spatial complexity of IODC is same with
JODC, and it takes O(K0) bandwidth for SP0 to release the
results to S0.

2) Accuracy and Rationality: This part studies the accuracy
for SP0 and S0, and the rationality for S0.

The service provider SP0 follows the same strategies in
JODC. Therefore, the accuracy for the results and the utility
can be directly derived from the analysis in previous section.
However, the accuracy for S0 is more complicated as the
results will be further processed before releasing to SP0.
Theorem 6 indicates that S0 also receives unbiased results.

Theorem 6: Assume CoS
i to be the estimated number of

contents in category fi for S0, E(CoS
i ) = Ni.

Proof: The proof is straightforward. As both random
response mechanisms introduce correction steps to regulate
the extra contents in fi, and apply a scaling factor to recall the
flushed contents, they both provide unbiased estimation for the
counting. Furthermore, as two mechanisms are independent,
the final results are also unbiased.

Besides, we can also evaluate the variance for S0, which
is also a linear combination of variances introduced by two
mechanisms.

Finally, we briefly discuss the rationality for the sub-
scriber S0. Intuitively, subscriber S0 will get a lower cost and
higher risky when directly requesting contents from workers.
The service provider, as a trusted and trackable platform, can
act as a connector for content sharing. It collects the contents
from workers with a lower price, and exchange with S0 on
a relatively high price. However, as SP0 also acts as the
subscriber in the system, it will not wish to share exactly
the same information with S0 due to the concerns on profits.
Therefore, further process will be adopted on the received
contents before they are delivered to S0. Theorem 7 shows
the generated scheme for data sharing will be followed by
subscribers.

Theorem 7: Under the processing of IODC algorithm,
the subscriber S0 cannot violate the framework with SP0,
and achieve better utility by directly requesting contents from
workers.

Proof: Specifically, IODC is carefully designed such that
the subscriber cannot achieve better utilities by bypassing SP0.
In IODC, SP0 will first evaluate the performance when the
bypassing occurs, and the variance of results for S0 is evalu-
ated based on the pricing function RS(·) and the unreliability
function γ0. Then SP0 obfuscates the results of the histogram
distribution, such that the perturbed mechanism can guarantee
the total variance from two phases will not be larger than the
directly requesting. This property is achieved by equation (18)
Therefore, both workers and S0 will follow the frame-
work with SP0 in this case, and the rationality is achieved
for S0.

3) Privacy Preservation: The contents for each workers are
only requested once, with privacy factor ε0. The second ran-
dom response are conducted purely on the collected contents,
which will lead no more disclosure of privacy. Therefore, the
following principle could be guaranteed.

Theorem 8: Under the processing of IODC algorithm,
the contents for each worker is preserved with ε0-differential
privacy.

VI. EVALUATION

This section introduces the evaluation results for the pro-
posed methods. It starts with the introduction on adopted
dataset, the compared methods, and the metrics. Then it gives
the basic performance and the detailed evaluation for different
scenarios.

A. Dataset and Settings

1) FAF4 Freight Datasets: The original data includes the
transactions for freight happened within and outside United
State, and is released on October 31, 2015 as a fourth
version [41]. Each transaction includes the mode, the origin
state, and the destination state of the transportation. This
dataset may provide knowledge for the distribution and capa-
bilities of nationwide logistic systems. Specifically, we extract
transactions carried domestically from the whole dataset, and

Authorized licensed use limited to: Georgia State University. Downloaded on July 26,2020 at 02:03:45 UTC from IEEE Xplore.  Restrictions apply. 



976 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 5, MAY 2020

TABLE I

CENSUS REGIONS AND DIVISIONS OF UNITED STATES

Fig. 1. Region partition.

constitute the freight flow datasets. The extracted dataset
includes around 170K transactions. The census regions and
divisions of United States are applied to partition the data
into different categories. Table I shows the number and name
of each category.

2) NYC Taxi Datasets: We also conduct the evaluation on
the taxi traces in New York in the year of 2017 [42]. The
taxi data could be treated as a strong reference for the urban
traffic loads, thus being applied for numerous application like
planning real-time routes for goods transportation, deploying
extra capabilities for logistic systems, and selecting positions
for new factories or storages. Specifically, the evaluation is
conducted on daily traffic flows, and the regions are selected
within the Manhattan district. We further partition the whole
region into 15 sub-regions, each including a set of adjacent
blocks. The partition of urban region is shown in Figure 1.
The extracted dataset includes around 270K transactions.

3) Settings: The evaluation involves the scales of transac-
tions started and ended in each state or sub-region, where
the state and sub-region are the categories for transactions. In
the evaluation results, JODC refers to the results received by
service providers, and IODC refers the results received by sub-
scribers as further process is conducted by service providers.
To validate the effectiveness of the proposed algorithms, we
compares the performance of both algorithms under various
combinations of parameters. The involved settings majorly
include the ratio of collected contents β0, the privacy factor ε0,
and the perturbed factor ε′0. Knowing that our algorithms apply
the basic random response for privacy preservation, they can
be easily extended for other sophisticated methods to achieve
reduced variance.

Fig. 2. Observed traffic scales in different regions.

To measure the performance of each method, the relative
errors between the observed traffic flows and the ground truths
is applied as the metric. We further define the accuracy as
1 minus the the relative errors, to emphasize the positive
performance. Each group of evaluation has been repeated
twenty times to mitigate the influence from randomness. The
average performance of accuracy for twenty rounds is used
to indicate the stability of algorithms, and the accuracy for
20-round average traffic scale in each category is used to
indicate the unbiased results of algorithms.

B. Basic Performance

This part shows the basic information provided for service
providers and subscribers within both scenarios. The results
can reveal whether the data subscribers can gain useful knowl-
edge from the IIoT systems for further decision making. The
privacy factor is set as ε = ln 30, the collection ratio is
β0 = 0.3, and the extra perturbation executed by the service
provider in second scenario is ε′ = 10. Each algorithm has
been run once and the results are shown in Figure 2.

According to the results, we can see that the observed results
achieve a high consistency with the ground truth in both
datasets. The service provider receives results with approxi-
mately 90% accuracy for the freight flow dataset (80% for
the taxi flow dataset). The subscriber, even if its results is
perturbed a second time by the service provider, still achieves
around 85% (75% for the taxi flow dataset) accuracy on
the results. We find the taxi flow suffers a slightly larger
variance, as there are some minor regions with very small
number of traces, and their errors will be more significant.
Meanwhile, we also observe that regions with huge traffics
receives higher accuracy. The underlying reason is that the
impact of randomness will be alleviated as the number of
contents increase.

C. Comparison on Different Parameters

This part investigates the impact of different combinations
of β0 and ε0. Specifically, it studies the performance of
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Fig. 3. Accuracy under various ε0 and β0.

different parameter combinations when the total budget is
fixed. The budget for is set as B0 = ε0 ·β0 ≤ 1. The evaluation
sets ε0 = ln 10, ln 20, ln 30, ln 40, ln 50, respectively. The
results are shown in Figure 3.

As we see, the average accuracy for both cases first
increases as ε0 increases, indicating the scales of samples
and the injected noise for each sample are well-balanced.
Thus, the performance will be improved by approximately
5% to 10%. However, as ε0 keeps increasing, the size of
samples will be reduced, and leads to the reduction on per-
formance. Consequently, the service provider needs to make a
proper balance on the two factors, as is demonstrated in our
analysis. Furthermore, we also find that the subscriber receives
a little bit lower utility in IODC, due to the extra process by the
service provider. However, the difference is insignificant as the
adopted parameter ε′0, which is a relatively loose constraint.

Finally, we also find that the accuracy is approaching 1 for
both datasets, when we average the size of each category of
contents among twenty repeats (i.e., Region-based Avg.). This
observation reveals that both of our algorithms could actually
provide an unbiased estimation for the results. The barrier
here is that to repeatedly request contents from workers will
introduce both extra budgets and privacy issues.

D. The Impact of Samples and Privacy Concerns

This part studies the trend of the performance, as the ratio of
collected contents and the privacy budget increase. The major
objective for this part is to investigate whether it is worthy to
devote more budgets for better utilities.

In this first group, the privacy factor is fixed as ε0 = ln 30,
and the ratio of collected contents range from 0.2 to 0.6, and
incremented by 0.1. The results are shown in Figure 4.

As we see, the performance can be improved for both
freight and taxi flows when the sampling size is increased.
However, the speed for the improvement suffers a reduction,
which means simply increasing the ratio of contents will
not be a wise strategy for data collection. This is especially

Fig. 4. Accuracy under various β0.

Fig. 5. Accuracy under various ε0.

meaningful when the accuracy is already acceptable and the
sampling ratio is relatively small. For example, the accuracy
is approaching 85% for service providers and 80% for sub-
scribers in taxi flows when sampling ratio is 0.4, as is shown in
Figure 4(c) and Figure 4(d). However, the accuracy will be
increased by less than 5 percents when the sampling size is
increased to 0.5.

In the second group, the size of collected contents is fixed
to β0 = 0.3, and the privacy factors range from ln 10 to
ln 50. The results are shown in Figure 5. As we see, similar
conclusions can be drawn from the results. The effectiveness
of applying extra budgets for more reliable contents will be
insignificant. Generally, there will be a threshold where extra
budgets will not bring much more benefits.

E. Impact of Profits for Service Providers

This part studies the utilities for subscribers when the
service provider holds different opinions on its profits.
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Fig. 6. Accuracy under various ε′0.

Specifically, the parameters are ε0 = ln 30, and β0 = 0.3.
The scale of noise ε′0 introduced by the service provider
changes from 10 to 40, indicating the service provider are more
flexible. The performance is given in Figure 6. As is shown in
the results, subscribers receive better utilities as ε′0 increases
for both datasets, around 5% for freight flows and 3% for taxi
flows. However, the improvement is still insignificant. One
potential reason is that the service provider in this evaluation
is already flexible on their profits, and will not inject heavy
noise into the outputs.

VII. CONCLUSION

This paper investigates the problem of data sharing for
IIoT systems, where multiple data consumers exist in different
stages. These consumers request knowledge on the underlying
system for different utilities. One consumer, acting as the
service provider, will request data from workers, and relay
the contents with other subscribers. Meanwhile, the privacy
for workers are also considered, and they will perturb their
contents before uploading. The perturbation mechanism is
proved to provide differential privacy for workers. Two algo-
rithms are designed for the data sharing, depending on the
correlations between service providers and the subscribers.
Both algorithms achieve a balance among the data utility,
the payment, the privacy preservation, and the bandwidth
consumption. The rationality for subscribers is also considered
in the later case, where subscribers can rely on the service
provider to achieve optimal data utility. Finally, the evaluation
on real-world datasets has revealed the effectiveness of the
proposed methods.
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