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Motivated by our experimental observations of nanofibre formation via the centrifugal
spinning process, we develop a string model to study the behaviours of a Newtonian,
viscous curved jet, in a non-orthogonal curvilinear coordinate system including both air
drag effects and solvent evaporation for the first time. In centrifugal spinning a polymeric
solution emerges from the nozzle of a spinneret rotating at high speeds around its axis
of symmetry and thins as it moves away from the nozzle exit until it finally lands
on the collector. Except for the Newtonian fluid assumption, our model includes the
key parameters of the curved jet flow, e.g. viscous, inertial, rotational, surface tension,
gravitational, mass diffusion within the jet, mass diffusion into air, and aerodynamic
effects, via Rossby (Rb), Reynolds (Re), Weber (We), Froude (Fr), Peclet (Pe), air
Reynolds (Re∗), and air Peclet (Pe∗) numbers, and the collector radial position (R). Our
results including comparison to experiments reveal that the aerodynamic effects must be
considered to enable a correct prediction of the jet trajectory and radius. Decreasing Rb
not only renders the jet thinning much faster, but also forces the jet to wrap tighter
around the rotation axis. Increasing Re, Re∗ and R leads to a longer jet. Decreasing We
causes the jet to wrap tighter around the spinneret but it shows trivial effects on the
solvent evaporation. Changes in Pe and Pe∗ do not significantly affect the jet trajectory.
Finally, we propose simple relations to estimate the jet radius and the jet breakup length.

1. Introduction
Large surface-to-volume ratio, high porosity and special mechanical properties such as

mechanical strength make nanofibres highly attractive in a broad spectrum of medical
and industrial applications (Huang et al. (2003)). Therefore, there has been much interest
to produce nanofibres via a number of methods, such as electrospinning, melt blowing and
bicomponent fibre spinning (Nayak et al. (2011)). However, common nanofibre production
methods suffer from limitations such as low throughputs and restrictions on the nanofibre
material choice. The centrifugal spinning (CS) process has recently been used to produce
nanofibres with production rates that are hundreds of times larger than those of other
methods (such as electrospinning). In addition, CS provides the possibility of working
with both polymer solutions and melts (Nayak et al. (2011)), a feature that is absent in
many nanofibre production methods. The CS procedure is a simple approach in which
fibres emanate from rotating nozzles under centrifugal force, forming highly curved jets.

† Email address for correspondence: Seyed-Mohammad.Taghavi@gch.ulaval.ca
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These curved jets are stretched during the process until they arrive at the collector
that are placed away from the rotation centre. However, due to jet instabilities, jet
breakup and bead formation may occur during the CS process. While CS is still being
improved, a complete understanding of the process has been limited due to the presence
of many parameters that control the flow dynamics, e.g. inertial, viscous, centrifugal,
surface tension, and aerodynamic forces, as well as solvent evaporation effects, polymer
rheological properties, etc.
To date, several researchers have experimentally attempted to characterize the CS

process for producing nanofibres, while considering the effects of different parameters:
polymer solution temperature (Sedaghat et al. (2006) and Wang et al. (2011)); polymer
concentration (Lu et al. (2013) and Ren et al. (2013)); rotational speed and orifice
diameter (Weitz et al. (2008), Badrossamay et al. (2010), Vazquez et al. (2012), Mary
et al. (2013) and Padron et al. (2013)); solution thermal treatment (Andrade et al.
(2017)). Experimental work has also documented the effects of polymer rheological
behaviours on CS. For example, Zhmayev et al. (2015) and Ren et al. (2015) have studied
the effect of the polymer solution viscoelasticity on the fibre radius and trajectory and the
latter publication has also considered the effects of viscoelasticity and surface tension on
the jet breakup. Although experimental methods can be used to study CS parametrically,
one needs to devote a large amount of time and effort to deliver a comprehensive
understanding of the process. Additionally, by relying only on experiments, analyzing the
effects of certain parameters such as air-drag and solvent evaporation can be extremely
difficult (if not impossible). This is where mathematical modelling can be employed as a
promising alternative and an additional research method.
There are several mathematical techniques that can be pursued to model CS, among

which the asymptotic methods (or the string models) are common, thanks to their
simplicity. The asymptotic methods are based on the zeroth-order slender body theories,
providing a simple framework to capture the jet† behaviours. Using the asymptotic
methods to model a slender curved jet, sets of governing equations (consisting of mass
and stress balances along with kinematic and dynamic conditions at the jet interface) are
represented in a curvilinear coordinate system to track the jet. The asymptotic methods
have been developed by several authors, including Wallwork et al. (2002), Decent et al.
(2002), Panda (2006), Părău et al. (2007), and Marheineke & Wegener (2009), to name
but a few. Through these studies the effects of gravity, surface tension and polymer
solution viscosity on the jet trajectory, radius and instability have been considered for
different applications, e.g. prilling or glass particles production processes, which share
similarities with CS in that they produce microfibres or nanofibres. Furthermore, shear
thinning and viscoelastic effects have been investigated on the curved jet instability by
Uddin et al. (2008), Uddin & Decent (2009, 2010), Hawkins et al. (2010), Alsharif et al.
(2015), Alsharif & Uddin (2015) and Marheineke et al. (2016). Despite their simplicity
and popularity, however, the asymptotic methods suffer from near-orifice singularities,
strictly limiting their applications to parameters ranges corresponding to low-viscosity
jets in slow rotations, as shown in detail by Götz et al. (2008) and Arne et al. (2010).
In fact, there are no physically relevant stationary solutions for curved jets if ReRb2 < 1
(where Re is the Reynolds number and Rb the Rossby number), which is likely the
operating range of any CS process.
To avoid singularities in the string models and predict the jet behaviours for a wide

range of key parameters, one can rely on the rod model in which fully coupled conservation
equations including mass, linear and angular momentum are solved (see e.g. Mahadevan

† Throughout this work, the terms “fibre” and “jet” are used alternatively.
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& Keller (1996), Ribe (2004) and Ribe et al. (2006)). For glass wool spinning applications,
Arne et al. (2010) developed a Cosserat rod theory to model a curved jet in a 2D
stationary frame, which they later extended to a 3D transient problem (Arne et al.
(2015)). In another attempt to remove the string model singularity, Arne et al. (2011b)
used an interface condition at which the solver switched from the rod to string model to
eliminate the fibre angle boundary condition. Alternatively, to remove the near-nozzle
singularity for CS applications, one can also use a regularization approach yielding a
stable solution (Noroozi et al. (2017), Taghavi & Larson (2014b,a)).
When using the asymptotic methods to derive the curved jet equations, most of the

previous studies assumed that the jet baseline torsion can be ignored, making it possible
to use the orthogonal curvilinear coordinate system. Alternatively, Shikhmurzaev &
Sisoev (2017) considered the effect of torsion when deriving the equations, leading to
non-orthogonal basis vectors the terms of which they projected onto the orthonormal
Frenet basis. Ignoring the jet cross section deformation due to torsion, Panda (2006)
and Marheineke & Wegener (2009) used the Bishop frame (Bishop (1975)) to provide
coordinates of the curved jet and thereby avoid a cumbersome derivation of the governing
equations in the non-orthogonal curvilinear coordinate system. On the other hand, Decent
et al. (2018) mathematically showed that when torsion is of O(1) or less, it has no effect
on the jet behaviour when the jet is slender. In a recent study, Alsharif et al. (2018)
analytically showed that, even at large rotation speeds, torsion is important only near
the nozzle.
In this novel work, we rely on our experiments using a home-made CS setup to fabricate

polymer nanofibres at high rotation speeds. The input parameters in our experiments
include, for example, the polymer properties (viscosity, surface tension coefficient, etc.)
and the CS setup operational and geometrical parameters (e.g. the rotation speed), while
the output parameters are mainly the trajectory and radius of a curved viscous jet
produced in the CS process, obtained via image processing techniques. Inspired by our
experiments, we attempt to derive a rigorous, comprehensive string model to predict the
behaviours of a viscous jet, in a non-orthogonal curvilinear coordinate system. Although
our model is based on Newtonian fluid assumptions, it considers all the other key
operational and geometrical parameters in a typical CS process. Our model analyzes the
main flow parameters including viscous, inertial, rotational, surface tension, gravitational,
solvent evaporation, and aerodynamic effects, using the key dimensionless groups that
govern the flow.

The outline of the paper is as follows. In §2 we present the material and methods used
to perform our CS laboratory experiments and we explain our observations; furthermore,
we introduce the phenomena and forces involved in our CS process. In §3, inspired
by our experimental observations, we formulate our mathematical model, including
the governing equations, the assumptions and the asymptotic method to simplify the
equations. In §4, we first successfully compare our experimental and model results, and
then we proceed to explore parametrically the effects of various flow parameters on the
jet flow. Finally in §5, we conclude the paper with a brief summary of the main findings.

2. Experiments
In this section, we briefly discuss our experimental setup, and the materials and meth-

ods of our experiments. Then, we briefly review our general experimental observations,
which we will later use to motivate the development of an appropriate asymptotic model.
We also present the key parameters and their ranges in our experiments, which will later
serve as the inputs for the asymptotic model.
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Figure 1. Left image: A schematic view of our CS process along with the accessories. The
fibre, nozzle, and collector are marked by arrows. The nozzle inner diameter is marked by a, the
spinneret radius by s0 and the radial position of the collector with respect to the rotation centre
by Rcollector. Right image: A closer view of the fibre showing the forces and the phenomena
involved. In the left and right images, there are several other parameters related to the model
so they are referred to and explained in the model section.

2.1. Experimental description, setup and methods
To systematically explain the CS process and the phenomena involved, let us divide a

typical CS process into three stages. In the first stage, a polymeric solution is placed into a
rotating chamber, known as a spinneret, whose rotation speed about its symmetry axis is
Ω rad/s. Under the so-called centrifugal force due to the spinneret rotation, the polymer
solution is pushed towards the nozzle exit. During this stage, the polymer solution flow
is affected by various effects, such as the spinneret and nozzle wall friction, as well as
viscous and surface forces. In stage two, due to the large Ω, creating strong centrifugal
forces that overcome the surface and viscous forces, the polymer solution emanates from
the nozzle and it is extended as a curved fibre jet. As the fibre moves away from the
nozzle, it significantly thins until it meets the collector that are placed away from the
rotation centre (Figure 1). During this stage, centrifugal, viscous, inertial, gravitational,
as well as aerodynamic (air-drag) and evaporation effects act on the fibre trajectory and
the thinning process. Finally, in stage three, the fibre sits on the collector, while the
evaporation continues. The fibre is then gathered from the collector. In the current work,
we focus on analyzing stage two of the CS process.
In practice, spinnerets with many nozzles are used to increase the CS device perfor-

mance, producing nanofibres in large quantities. However, for simplicity in this study, a
CS device based on a two-nozzle system with straight nozzles is employed, as schemati-
cally sketched in Figure 1. As can be seen, stationary rods are placed at an adjustable
distance acting as collector arranged in a circle around the rotation centre.
The experiments are performed using polymer solutions made of Poly(ethylene oxide)

(PEO, Aldrich). To obtain a homogeneous solution, a stock solution of each sample is
prepared, first by dissolving PEO in deionized water at room temperature and then
mixing it for 5 days. Then, several solutions are prepared by diluting the stock solution
sample. Different sets of experiments are performed using PEO solutions with different
molecular weights and at different concentrations, named sample (I), sample (II), and
sample (III), as shown in Table 1.
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Sample Polymer solution
(I) 2.5%wt PEO (with Mv = 4× 106 (gr/mol))
(II) 5%wt PEO (with Mv = 9× 105 (gr/mol))
(III) 6%wt PEO (with Mv = 1× 106 (gr/mol))

Table 1. Polymer solution samples used in our work. Mv denotes the molecular weight. Data
for sample (III) is extracted from Bahlouli et al. (2013).

Parameter Name Range or value in this work (unit)
a Nozzle inner diameter 5.8× 10−4 (m)
s0 Spinneret radius 0.08 (m)

Rcollector Collector radial distance 0.2− 0.4 (m)
Unoz Polymer solution exit velocity at nozzle 0.3− 1.5 (m/s)
Ω Rotation speed 210− 2100 (rad/s)
ρ∗ Air density 0.57− 1.27 (kg/m3)
ρnoz Polymer solution density at nozzle 1000− 1070 (m/s)
µ∗ Air viscosity 1.8× 10−5 − 2.2× 10−5 (Pa.s)
µnoz Polymer solution viscosity at nozzle 50− 125 (Pa.s)
σnoz Surface tension coefficient 0.036 (N/m)
RH∗ Relative humidity in air 40− 75 (%)

(Ms,M
∗) Molecular weight (solvent, air) (18, 29) (gr/mol)

D∗
s Solvent diffusion coefficient in air 2.38× 10−5 (m2/s)

pvap Solvent vapour pressure 3.14× 103 (Pa)
Ds Solvent diffusion coefficient in solution 2.29× 10−9 (m2/s)

Table 2. Experimental parameters (dimensional) and their ranges in our work. The ranges are
based on the ambient temperature (θ = 298 (K)) and pressure (p̂ = 105 (Pa)). The subscript noz
marks the polymer solution jet parameters at the nozzle exit. These parameters are assumed to
be uniform within the cross section at the nozzle exit. The asterisk (∗) marks the parameters
that are associated with the surrounding air. These parameters are also assumed to remain
constant for each experiment.

Our experimental parameters (in dimensional form) and their relevant ranges are given
in Table 2. The geometrical parameters, i.e. a, s0 and Rcollector, are directly measured.
Unoz is calculated based on the mass flow rate of the jet flow from the nozzles. Ω is
monitored and measured via a data acquisition box (USB-6002). RH∗ is measured by a
simple hygrometer, ρnoz by a high-precision density meter (Anton Paar DMA 35), µnoz by
an advanced rheometer (DHR3 TA Instrument), and finally σnoz by a tensiometer (K100,
KRUSS GmbH). Here, the subscript “noz” marks an estimation of the experimental
fluid property at the nozzle exit. Note that the experimental fluid has nearly a constant
viscosity over a wide range of shear rates (at a fixed concentration), which allows one
to ignore shear-thinning and rely on the measured viscosity at small shear-rates as a
representative value for µnoz. To estimate the other parameters in Table 2, e.g. ρ∗, D∗s ,
pvap, etc., literature data or the existing empirical correlations are used, as detailed in
Appendix A.

To analyze the trajectory and the thinning of the fibre jet, top-view images of the
process are taken using a high-speed camera (Photron FASTCAMMini UX100, resolution
up to 800,000 fps) along with powerful LED lamps (A-LED-W150 High Intensity). See
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Figure 2. Trajectory of a single fibre at four different times: (a) experimental image sequence
at the time interval of approximately 4 (ms); (b) superposition of the corresponding fibre
trajectories in a frame of reference moving with the spinneret. The field of view in all the
images on the left and the figure on the right is 149 × 42 (mm2). The solution is sample (I),
and the experimental parameters are Ω = 628 (rad/s), Rcollector = 20 cm, a = 0.58 (mm) and
RH∗ = 50%.

Figure 1 for the position of the camera and the lights. As significant fibre thinning is
expected near the nozzle exit, our camera’s field of view is focused on this region.
To obtain the fibre trajectory and fibre radius at different positions, a quantitative

image analysis based on the light intensity is implemented. To provide homogeneous
illumination for better visualization of the curved fibres, the LED lamps are located at
two different positions over the spinneret safety box equipped with diffusive sheets. To
ensure the accuracy of extracted data, only high portions of images with high contrast
are used. To capture the fibre boundary, a modified Canny edge detector is coded in
Matlab. In this method, an image is first smoothed using a Gaussian filter to reduce
noise. Afterwards, the intensity gradients in the image are located and the fibre edges
are determined using a threshold set to a conventional value of 0.9. Spurious edges with
no connection with the main continuous edges are subsequently removed. Finally, the
trajectory and the radius of the fibre jet as it travels through the surrounding air are
determined.

2.2. Key experimental observations and parameters to develop an appropriate model
As mentioned before, our experiments are focused on analyzing the jet flow outside the

nozzle, especially at longer times after the jet end has reached the collector. An example
of the time dependent jet trajectory is shown in Figure 2a, where an image sequence
(top-view) of the process can be seen. The trajectory of the jet is highly curved due
to the rotational forces, as the jet moves away from the rotation centre, in a direction
opposite that of the spinneret rotation. The jet quickly thins under the action of various
forces into a fibre, which is then collected on the collector (outside the field of view). In
a frame rotating with the spinneret, Figure 2b depicts the jet trajectories of Figure 2a
(at four different times). Interestingly, the trajectories at long times superimpose and
the fibre in the rotating frame seems to follow the same path at different times. This
implies that the behaviour of the fibre at long times is nearly steady-state in the rotating
frame. Our examinations of the fibre trajectory at long times for different samples and
with different operating conditions reveal the same behaviours (omitted for brevity).

Based on these experimental observations, it is clear that the development of a steady-
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Parameter Name Definition Range in this work
ε Nozzle aspect ratio a/s0 0.1− 0.01
Rb Rossby number Unoz/(Ωs0) 10−3 − 5× 10−2

Re Reynolds number ρnozs0Unoz/µnoz 10−2 − 10
We Weber number ρnozaU

2
noz/σnoz 0.2− 100

Fr Froude number Unoz/
√gs0 0.1− 5

Pe Peclet number Unoza/Ds 103 − 107

Pe∗ Air Peclet number (solvent in air) Unoza/D
∗
s 2− 103

Re∗ Air Reynolds number ρ∗aUnoz/µ
∗ 10− 80

c∗
sa Solvent dimensionless concentration in air RH∗

100
pvap

p̂
Ms

M̂∗ 0− 0.072
R Dimensionless collector distance Rcollector/s0 2− 4

Table 3. Definitions of dimensionless groups along with their ranges of values in our
experiments. The dimensional parameters used to define the dimensionless ones are given in
Table 2. The dimensional and dimensionless parameters describing properties in the air are
marked with an asterisk (∗).

state thin-fibre model is appropriate to gain a deeper understanding of our experiments,
by delivering predictions of the fibre trajectory, radius, etc., as well as the fibre features
that are not accessible during a typical experiment (e.g. fibre viscosity or polymer
concentration). The first step, however, is to introduce the phenomena and forces that are
important in our experiments (as schematically depicted in the right image of Figure 1).
Various internal and external forces affect the fibre; the fibre internal forces balancing the
external ones are inertial, surface tension and viscous forces. The latter two act to reduce
the fibre velocity and its thinning while the former one acts to increase the fibre velocity
and its thinning. In addition, centrifugal, Coriolis, aerodynamic, and gravitational forces
also affect the fibre trajectory and radius. Throughout the thinning domain, polymer
solvent evaporation occurs, making the fibre radius smaller, while increasing the overall
viscosity of the fibre without much affecting its density.
Based on the forces and phenomena involved in our experiments, Table 3 introduces

several relevant dimensionless numbers. In this table, Rb, Re, We and Fr are related
to the polymer solution and denote the ratios, of inertial to, respectively, rotational,
viscous, surface tension and gravitational forces. On the other hand, Re∗ describes
the ratio of inertial to viscous terms in air. In addition, Pe and Pe∗ express the
advective to diffusive transport rate of the polymer in the solvent and the solvent in air,
respectively. Similarly, Sc and Sc∗ are Schmidt numbers, expressing the ratios of viscous
to molecular diffusion rates, defined as Pe/εRe and Pe∗/Re∗, respectively. R denotes the
dimensionless collector distance with respect to the rotation centre. Finally, c∗sa in our
work mainly depends on the relative humidity in air, and quantifies the dimensionless
concentration of water in air. Based on our experimental parameters (see Table 2), the
range of each dimensionless number is also presented in Table 3.
For practitioners and experimentalists, the dimensionless groups introduced above can

also be described as dimensionless physical quantities, highlighting the most natural
variables. For example, given a constant flow rate, density and geometrical parameters in
an experiment, Rb, Re, We, Pe, Re∗, and Pe∗ may be interpreted as the inverse dimen-
sionless numbers for rotation rate, polymer solution viscosity, surface tension, solvent
diffusivity in polymer solution, air viscosity and solvent diffusivity in air, respectively.
In the next section, we will develop an appropriate mathematical thin-fibre model
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which relies on our experimental observations, and the dimensionless groups and their
ranges discussed above.

3. Problem formulation
In this section, motivated by the experimental observations in the previous section,

the governing equations describing the CS process for a viscous jet are laid out. Inspired
by our experiments, a single curved jet is considered to emerge from a nozzle, thinning
through the computational domain. The jet fluid is considered to be incompressible,
and it is described as a mixture of two components, solvent and polymer, which are
assumed as interpenetrable continua. Considering a rotating reference frame in Cartesian
coordinates (x, y, z) in which the nozzle is fixed, one can write the motion, continuity
and convection-diffusion equations at steady-state as (Bird et al. (2007))

v.∇v︸ ︷︷ ︸
finertial

= −∇p︸ ︷︷ ︸
fpressure

+ 1
Re
∇.Π︸ ︷︷ ︸

fviscous

+ g
Fr2︸︷︷︸

fgravity

− 2
Rb

Ω × v︸ ︷︷ ︸
fCoriolis

− 1
Rb2Ω × (Ω × d)︸ ︷︷ ︸

fcentrifugal

, (3.1)

∇.v = 0, (3.2)

v.∇c = 1
Pe
∇2c, (3.3)

in which v = (v1, v2, v3) is the velocity field, p the pressure field, g = (0,−1, 0) the gravity
acceleration vector, Ω = (0, 1, 0) the angular velocity vector, d the position vector, and
Π the deviatoric stress tensor. For clarity, the forces associated with the different terms
in equation (3.1), are labeled by f with appropriate subscripts. In addition, c denotes
the polymer scaler concentration. Hereafter, all the variable/parameters are presented
in dimensionless form, using s0 as length scale (except for the fibre radius which is
scaled with a), Unoz as velocity scale and ρnozU2

noz as stress/pressure scale. While the jet
density and the surface tension coefficient are assumed to be constants, the jet viscosity
is assumed to vary along the jet, so its value is normalized by the nozzle value, i.e. µnoz.
The definitions of the dimensionless parameters are given in Table 3.
Using the full set of equations (i.e. equations (3.1)-(3.3) along with the boundary

conditions presented later), describing the jet dynamics via a direct numerical simulation
of a long 3D nanosized jet is extremely costly (if not impossible). Therefore, to make the
numerical procedure feasible, it is typical to use a one-dimensional uniaxial two-phase
flow model, arising from cross-sectional averaging of the key quantities. However, since
the radial diffusion controls the solvent mass transfer in our case, equation (3.3) requires
a two-dimensional solution involving axial and radial variables. Thus, in this work we will
first derive equations (3.1) and (3.2) in the axial direction, based on the cross-averaged
values of various quantities, and then develop the concentration-diffusion equation (3.3)
in the radial-axial plane.

3.1. Coordinate system and basis vectors
To render our set of equations one-dimensional and to ease the solution method, we rely

on the curvilinear coordinate system (s, r, ϕ) to track the jet behaviours. Here, s is the
arc length through the jet baseline and (r, ϕ) are the plane polar coordinates in the radial
and azimuthal directions, respectively, describing the jet cross section. As our curvilinear
coordinate system is non-orthogonal due to non-zero baseline torsion assumptions, we
need some basic relations to derive the differential terms in our set of equations, using the
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differential geometry approach. The basis vectors in our coordinate system are defined
as g1, g2 and g3 corresponding to s, r and ϕ directions, respectively. To present the
baseline of the jet, we choose the Cartesian coordinate system as a fixed reference frame.
We derive our set of equations in each direction and then represent the projection of each
one onto the Frenet basis (i.e. orthonormal) as final equations. The coordinate systems
and the corresponding basis vectors are sketched in Figure 1.
The jet baseline position vector, D(s) in the Cartesian coordinate system can be

expressed as follows:
D(s) = X(s)x̂ + Y (s)ŷ + Z(s)ẑ, (3.4)

in which x̂, ŷ, ẑ are the Cartesian basis vectors. Based on equation (3.4), the Frenet basis
vectors, i.e. tangential T(s), principal normal N(s) and binormal B(s) can be defined as

T = dD
ds

= X,s x̂ + Y,s ŷ + Z,s ẑ, (3.5)

N = dT
ds

∣∣∣∣dTds
∣∣∣∣−1

= X,ss x̂ + Y,ss ŷ + Z,ss ẑ√
(X,ss)2 + (Y,ss)2 + (Z,ss)2

, (3.6)

B = T×N = (Y,sZ,ss − Y,ssZ,s) x̂ + (Z,sX,ss − Z,ssX,s) ŷ + (X,sY,ss −X,ssY,s) ẑ√
(X,ss)2 + (Y,ss)2 + (Z,ss)2

.

(3.7)

The derivatives of the Frenet basis with respect to the arc length, s, can be computed as
dT
ds

= κN, dN
ds

= −κT + τB, dB
ds

= −τN, (3.8)

in which κ and τ stand for the baseline curvature and torsion expressed as

κ(s) =
√

(X,ss)2 + (Y,ss)2 + (Z,ss)2
, (3.9)

τ(s) = X,sss (Y,sZ,ss − Y,ssZ,s) + Y,sss (X,ssZ,s − Z,ssX,s) + Z,sss (X,sY,ss −X,ssY,s)
(Y,sZ,ss − Y,ssZ,s)2 + (X,ssZ,s − Z,ssX,s)2 + (X,sY,ss −X,ssY,s)2 .

(3.10)

Whenever appropriate we use k,s as the ordinary derivative of an arbitrary function
k and k|s as the covariant derivative of k with respect to s. We note that if k is a
differentiable scalar function, its ordinary partial derivative is equal to its covariant
derivative. We also define 〈k〉T as the projection of a given vector k onto an arbitrary
base vector such as T.
To find the flow field of the jet, we need to define the radius vector of an arbitrary

point in the Cartesian and curvilinear coordinate systems as (see Figure 1)

d(x, y, z) = x x̂ + y ŷ + z ẑ, (3.11)
d(s, r, ϕ) = D(s) + εr cos(ϕ)N + εr sin(ϕ)B, (3.12)

where ε = a/s0 is the aspect ratio. Using equation (3.12), we can find the basis vectors
in the curvilinear coordinate system as

gi = ∂d
∂si

(i = 1, 2, 3) & (s1 = s, s2 = r, s3 = ϕ ), (3.13)

and therefore,

g1 = ∂d
∂s

= (1− εr cos(ϕ)κ)T− (εr sin(ϕ)τ )N + (εr cos(ϕ)τ)B, (3.14)
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g2 = ∂d
∂r

= (ε cos(ϕ))N + (ε sin(ϕ))B, (3.15)

g3 = ∂d
∂ϕ

= (−εr sin(ϕ))N + (εr cos(ϕ))B. (3.16)

To define whether we are dealing with an irregular basis, i.e. one that is non-orthogonal,
non-normalized and/or non-right handed, we need to define the metric tensor using
gij = gi.gj , which can be represented in matrix form as

(gij) =

(1− εrκ cos(ϕ))2 + (εrτ)2 0 (εr)2
τ

0 ε2 0
(εr)2

τ 0 (εr)2

 , (3.17)

|gij | = ε2(1− εrκ cos(ϕ))2(εr)2
,

in which |gij | stands for the determinant of the metric tensor. As it can be seen, our local
bases are neither orthogonal (due to existence of off-diagonal elements) nor normalized
(due to non-unity of diagonal elements) as pointed out by Shikhmurzaev & Sisoev (2017).
It is noted that some of the relations presented in this and the next subsections have
been derived with alternative methods by Shikhmurzaev & Sisoev (2017), which we re-
derive for the sake of completeness and verification. Using equation (3.17), we can simply
compute the conjugate metric tensor gij so that gik.gkj = δij , in which δij is the Kronecker
delta; therefore, we find

(gij) = ε2

|gij |

 (εr)2 0 −(εr)2
τ

0 r2(1− εrκ cos(ϕ))2 0
−(εr)2

τ 0 (1− εrκ cos(ϕ))2 + (εrτ)2

 . (3.18)

Using (3.18) and (3.17) we can define the gradient operator ∇ in our curvilinear coordi-
nate system as

∇ = gikgk
∂

∂si
= ( 1

h2 g1 −
τ

h2 g3) ∂
∂s

+ ( 1
ε2 g2) ∂

∂r
+ ( ξ2

ε2r2h2 g3 −
τ

h2 g1) ∂
∂ϕ

, (3.19)

in which h = 1− εrκ cos(ϕ) and ξ =
(
h2 + (εrτ)2

) 1
2 .

To find the variations of the basis vectors in space, we need to find the connection
coefficients or the Christoffel symbols of the second kind (Γ kij). To this goal, we use the
general relation that can be found in standard textbooks (e.g. Brannon (2004)) as

Γ kij = gkl

2

(
∂gjl
∂si

+ ∂gil
∂sj
− ∂gij

∂sl

)
. (3.20)

in which i, j, k and l are dummy indices. Using equations (3.17), (3.18) and (3.20), we
have

Γ 1
11 = εr

h
(− cos(ϕ)κ,s + κτ sin(ϕ)) ,

Γ 2
11 = 1

ε

(
h cos(ϕ)κ− εrτ2) ,

Γ 3
11 = εrτ

h
(cos(ϕ)κ,s − κτ sin(ϕ))− h

εr
κ sin(ϕ) + τ,s,

Γ 1
12 = Γ 1

21 = −εκ
h

cos(ϕ), Γ 2
12 = Γ 2

21 = 0, Γ 3
12 = Γ 3

21 = τ

(
εκ

h
cos(ϕ) + 1

r

)
,
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Γ 1
13 = Γ 1

31 = εrκ

h
sin(ϕ), Γ 2

13 = Γ 2
31 = −rτ, Γ 3

13 = Γ 3
31 = −εrκτ

h
sin(ϕ),

Γ 1
22 = Γ 2

22 = Γ 3
22 = 0, Γ 1

33 = Γ 3
33 = 0, Γ 2

33 = −r, Γ 1
23 = Γ 1

32 = 0,

Γ 2
23 = Γ 2

32 = 0, Γ 3
23 = Γ 3

32 = 1
r
.

(3.21)

From (3.21) we can now find the gradients of the basis vectors in our curvilinear
coordinate system using

∂gi
∂sj

= Γ kijgk.

In the next step, we will derive the governing equations that describe the curved jet
dynamics in the uniaxial frame.

3.2. Governing equations
To compute the physical components of the velocity vectors (Malvern (1969)), we need

to normalize each basis vector by dividing it by its magnitude as

v = vigi = vi |gi|
gi

|gi|
= vi |gi| ĝi, (3.22)

in which ĝi are the normalized basis vectors. Therefore, the physical components of the
velocity vector (u, v, w) are

u = v1 |g1| = ξv1, v = v2 |g2| = εv2, w = v3 |g3| = εr v3. (3.23)

In the next step, we will derive the uniaxial equations to describe the jet dynamics and
then the axial-radial convection-diffusion equation to consider the solvent evaporation.
Afterwards, we will present the boundary conditions, followed by the solution algorithm
needed to solve our sets of equations.

3.2.1. Continuity equation
Equation (3.2) in our curvilinear coordinate system for an incompressible fluid flow

can be written as
∂

∂si
(
Jvi
)

= 0, (3.24)

in which J = |gij |1/2 is the mapping Jacobian. It is noted that to obtain equation (3.24)
from equation (3.2), one should use Γ jij = Γ jji = J−1∂iJ , the proof of which can be
obtained from equation (3.20) or it can be found in any standard textbooks such as
Synge & Schild (1978) and Sochi (2016). After some algebra, we arrive at

∂

∂s

(
u

ξ

)
+ 1
ε

(
∂v

∂r
+ 1
r

∂w

∂ϕ

)
− εr cos(ϕ)κ,s

h

(
u

ξ

)
+
(

1− 2εrκ cos(ϕ)
εrh

)
v +

(
κ sin(ϕ)

h

)
w = 0. (3.25)

3.2.2. Equations of motion
Here, we systematically derive each term in the equations of motion (3.1), i.e. finertial,

fpressure, fviscous, fgravity, fCoriolis, and fcentrifugal. To calculate the left-hand side of equation
(3.1), we can make use of the definition of acceleration in a general coordinate system as

v.∇v =
(
vj
(
∂vi

∂sj
+ vkΓ ijk

))
gi. (3.26)
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Using equations (3.14-3.16) in combination with equation (3.26) and then projecting the
resultant terms onto the Frenet basis, we have

finertial = v.∇v = h

[
u

ξ

∂

∂s

(
u

ξ

)
+ 1
ε

(
v
∂

∂r

(
u

ξ

)
+ w

r

∂

∂ϕ

(
u

ξ

))
+ (κτ sin(ϕ)− cos(ϕ)κ,s)

εru2

hξ2 − 2 (v cos(ϕ)− w sin(ϕ)) κu
hξ

]
T

+
[
cos(ϕ)

(
u

ξ

∂v

∂s
+ 1
ε

(
v
∂v

∂r
+ w

r

∂v

∂ϕ

))
− sin(ϕ)

(
u

ξ

∂w

∂s
+ v

ε

∂w

∂r
+ w

εr

∂w

∂ϕ

)
− εrτ sin(ϕ)

(
u

ξ

∂

∂s

(
u

ξ

)
+ v

ε

∂

∂r

(
u

ξ

)
+ w

εr

∂

∂ϕ

(
u

ξ

))
+
(
hκ− εrτ2 cos(ϕ)− εr sin(ϕ)τ,s

) u2

ξ2 − 2τ (v sin(ϕ) + w cos(ϕ)) u
ξ

− (w cos(ϕ) + v sin(ϕ)) w
εr

]
N

+
[
sin(ϕ)

(
u

ξ

∂v

∂s
+ 1
ε

(
v
∂v

∂r
+ w

r

∂v

∂ϕ

))
+ cos(ϕ)

(
u

ξ

∂w

∂s
+ v

ε

∂w

∂r
+ w

εr

∂w

∂ϕ

)
+ εrτ cos(ϕ)

(
u

ξ

∂

∂s

(
u

ξ

)
+ v

ε

∂

∂r

(
u

ξ

)
+ w

εr

∂

∂ϕ

(
u

ξ

))
−
(
εrτ2 sin(ϕ) + εr cos(ϕ)τ,s

) u2

ξ2 + 2τ (v cos(ϕ)− w sin(ϕ)) u
ξ

− (w sin(ϕ)− v cos(ϕ)) w
εr

]
B. (3.27)

Next, we derive the pressure gradient terms as

∇p = gij
∂p

∂sj
gi, (3.28)

and after projecting onto the Frenet basis, we find

fpressure = −∇p = −
[(

1
h

∂p

∂s
− τ

h

∂p

∂ϕ

)
T

+ 1
ε

(
cos(ϕ)∂p

∂r
− sin(ϕ)

r

∂p

∂ϕ

)
N

+ 1
ε

(
sin(ϕ)∂p

∂r
+ cos(ϕ)

r

∂p

∂ϕ

)
B
]
. (3.29)

To derive the viscous terms in equation (3.1), we need to first derive the deviatoric
stress tensor Π terms defined as

Π = πijgigj = 2ηεijgigj ,

εij = 1
2
(
gik vj

∣∣
k

+ gjk vi
∣∣
k

)
= 1

2

(
gik
(
∂vj

∂sk
+ Γ jklv

l

)
+ gjk

(
∂vi

∂sk
+ Γ iklv

l

))
,

(3.30)
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where η is the viscosity ratio of the polymer (yet to be determined), explained in more
detail in §3.11, and εij are the contravariant components of the strain tensor, which can
be expressed in our curvilinear coordinate system as

ε11 = 1
h2

∂

∂s

(
u

ξ

)
− τ

h2
∂

∂ϕ

(
u

ξ

)
− εr cos(ϕ)κ,s

h3

(
u

ξ

)
− κ

h3 (v cos(ϕ)− w sin(ϕ)) ,

ε22 = ∂v

ε∂r
,

ε33 =
(

1
(εr)3 + τ2

εrh2

)
∂w

∂ϕ
−
( τ

εrh2

) ∂w
∂s

+
(

1
(εr)3 −

κτ2 cos(ϕ)
h3

)
v

+
(
κτ2 sin(ϕ)

h3

)
w −

(
εrτ2 cos(ϕ)κ,s

h3 + ττ,s
h2

)(
u

ξ

)
,

ε12 = ε21 = 1
2

(
1
h2
∂v

∂s
+ ∂

ε∂r

(
u

ξ

)
− τ

h2
∂v

∂ϕ

)
,

ε13 = ε31 = 1
2ε2r2h2

(
ξ2 ∂

∂ϕ

(
u

ξ

)
+ εr

∂w

∂s

)
+ τκ

h3 (v cos(ϕ)− w sin(ϕ))

− τ

2h2

(
1
εr

∂w

∂ϕ
+ ∂

∂s

(
u

ξ

))
+
(
εrτ cos(ϕ)κ,s

h3 + κ,s
2h2

)(
u

ξ

)
,

ε23 = ε32 = 1
ε2

(
ξ2

2r2h2
∂v

∂ϕ
+ 1

2r
∂w

∂r
− w

2r2

)
− τ

2h2
∂v

∂s
.

We now derive the contravariant components of the viscous force in equation (3.1) as

f iviscous = 1
Re
∇.Π = 1

Re

(
1
J

∂

∂sj
(
J πij

)
+ Γ ijkπ

kj

)
gi, (3.31)

and after lengthy algebra, we obtain each term of the viscous force in our curvilinear co-
ordinate system and then their projections onto the Frenet basis (〈fviscous〉T , 〈fviscous〉N ,
〈fviscous〉B). These lengthy terms are presented in Appendix B. Note that equation (3.31)
includes the viscosity ratio gradient terms, in the form of 2

Reε
ij ∂η
∂sj gi. Also note that here

the jet viscosity is assumed to depend on the polymer concentration c, changing due to
the solver evaporation.
Now let us formulate the external forces involved in our CS process, appearing in

equation (3.1). We initially calculate all the external forces using the outer basis (here
Cartesian) and then we derive their projections onto the Frenet basis.

For gravity, having g = −ŷ, we only need to calculate its projection onto the Frenet
basis, arriving at

fgravity = g
Fr2 = 1

Fr2

(
(−Y,s) T−

(
Y,ss
κ

)
N−

(
Z,sX,ss − Z,ssX,s

κ

)
B
)
. (3.32)

Now, we calculate the rotational forces, i.e. centrifugal and Coriolis. For the centrifugal
force, given Ω = ŷ and using equation (3.12), we arrive after algebra at

− 1
Rb2Ω × (Ω × d) =

ωx︷ ︸︸ ︷
1
Rb2

(
X + εr cos(ϕ)X,ss

κ
+ εr sin(ϕ)

κ
(Y,sZ,ss − Y,ssZ,s)

)
x̂

+ 1
Rb2

(
Z + εr cos(ϕ)Z,ss

κ
+ εr sin(ϕ)

κ
(X,sY,ss −X,ssY,s)

)
︸ ︷︷ ︸

ωz

ẑ = ωxx̂ + ωz ẑ,
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(3.33)

and by projecting onto the Frenet basis, we find

fcentrifugal = − 1
Rb2Ω × (Ω × d)

= (ωxX,s + ωzZ,s) T

+
(
ωx
X,ss

κ
+ ωz

Z,ss
κ

)
N

+
(
ωx

(Y,sZ,ss − Y,ssZ,s)
κ

+ ωz
(X,sY,ss −X,ssY,s)

κ

)
B. (3.34)

To derive the Coriolis force, we first calculate the velocity vector projection onto the
Frenet basis:

v = vigi = v1g1 + v2g2 + v3g3 = v1 (hT− (εr sin(ϕ)τ )N + (εr cos(ϕ)τ)B)
+ εv2 ((cos(ϕ))N + (sin(ϕ))B) + v3 ((−εr sin(ϕ))N + (εr cos(ϕ))B)

=
(
h
u

ξ

)
T

+
(
−εrτ sin(ϕ)u

ξ
+ εv cos(ϕ)− εw sin(ϕ)

)
N

+
(
εrτ cos(ϕ)u

ξ
+ εv sin(ϕ) + εw cos(ϕ)

)
B

= 〈v〉TT + 〈v〉NN + 〈v〉BB. (3.35)

According to equation (3.1), we calculate the Coriolis force using

fCoriolis = − 2
Rb
Ω × v = − 2

Rb
(〈v〉T (Ω ×T)− 〈v〉N (Ω ×N)− 〈v〉B (Ω ×B)) . (3.36)

Afterwards, we only need to project the Coriolis force components onto the Frenet basis:

〈fCoriolis〉T = − 2
Rb

(〈v〉N (Ω ×N) .T− 〈v〉B (Ω ×B) .T) , (3.37)

〈fCoriolis〉N = − 2
Rb

(〈v〉T (Ω ×T) .N− 〈v〉B (Ω ×B) .N) , (3.38)

〈fCoriolis〉B = − 2
Rb

(〈v〉T (Ω ×T) .B− 〈v〉N (Ω ×N) .B) . (3.39)

Given Ω = ŷ, X2
,s + Y 2

,s + Z2
,s = 1 and consequently X,sX,ss + Y,sY,ss + Z,sZ,ss = 0, we

have

fCoriolis = − 2
Rb
Ω × v = 2

Rb

(
〈v〉N

(Z,sX,ss − Z,ssX,s)
κ

− 〈v〉B

(
Y,ss
κ

))
T

+ 2
Rb

(
−〈v〉T

(Z,sX,ss − Z,ssX,s)
κ

+ 〈v〉B (Y,s)
)

N

+ 2
Rb

(
−〈v〉T

(
Y,ss
κ

)
+ 〈v〉N (Y,s)

)
B. (3.40)

3.3. Dynamic boundary conditions
Due to the existence of stresses at the jet free surface, we have stress balance equalities

known as dynamic boundary conditions or jump conditions at the air-jet interface.
Ignoring the variations of the surface tension coefficient due to temperature and species
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concentration, the dynamic boundary condition in its vector form can be expressed as
(Leal (2007))

Σ̂.n−Σ.n = 1
We

nH, (3.41)

where n is the unit normal vector to the interface pointing outwards from the jet surface
and H denotes the mean local curvature of the interface. Moreover, Σ = −pI + Π
and Σ̂ = −p̂I + Π̂ are the stresses exerted by the liquid jet and air on the interface,
respectively; the latter is responsible for the aerodynamic drag force (see Batchelor (1967)
and Klettner et al. (2016)). It is worth mentioning that the first and second terms on the
LHS of equation (3.41) represent the forces per unit area exerted by air and the jet on
the interface, respectively; the term on the RHS stands for the normal curvature force
related to the local curvature of the air-jet interface. The jump in the normal component
of the stress due to the interface deformation, causing the surface curvature to change,
can then be represented as

n.Σ.n = − 1
We
H+ n.fdrag, (3.42)

where fdrag = Σ̂.n is the drag force per unit area. Defining the jet free surface function
as R(s, ϕ), where R is the jet radius, it follows that R(s, ϕ) − r = 0 at the jet surface.
At this surface H and n can be calculated as

H = I1J3 + I3J1 − 2I2J2

I1I3 − I2
2

,

where

I1 = ∂d
∂s
.
∂d
∂s
, I2 = ∂d

∂s
.
∂d
∂ϕ

, I3 = ∂d
∂ϕ

.
∂d
∂ϕ

at r = R(s, ϕ),

J1 = ∂2d
∂s2 .n, J2 = ∂2d

∂s∂ϕ
.n, J3 = ∂2d

∂ϕ2 .n at r = R(s, ϕ),

n =
(
∂d
∂s
× ∂d
∂ϕ

) ∣∣∣∣∂d
∂s
× ∂d
∂ϕ

∣∣∣∣−1
at r = R(s, ϕ),

in which {I1, I2, I3} and {J1, J2, J3} are the first and second fundamental forms
(Marheineke & Wegener (2007), Nguyen-Schäfer & Schmidt (2014) and Shikhmurzaev &
Sisoev (2017)). It is noted that to obtain the deviatoric stress tensor Π, one has to use
the projection of the stress tensor components (equation (3.30)) onto the Frenet basis.
The jump in the tangential components of the stress can be similarly computed as

ti.Π .n = ti.fdrag, at r = R(s, ϕ), i = s, ϕ, (3.43)

in which ti is the unit tangent vector to the interface in two directions, i.e. s and ϕ. The
unit tangent vectors can be obtained using

ts =
(
∂d
∂s

) ∣∣∣∣∂d
∂s

∣∣∣∣−1
, tϕ =

(
∂d
∂ϕ

) ∣∣∣∣∂d
∂ϕ

∣∣∣∣−1
at r = R(s, ϕ). (3.44)

3.4. Asymptotic analysis
Assuming the jet is a slender object with aspect ratio ε, we can expand the equations

in a traditional way and use the leading order terms as a reasonable approximation to
the jet behaviour. Therefore, we expand velocities, stresses and pressure in powers of εr
and R,X,Z, Y in powers of ε (see Eggers (1997) and Hohman et al. (2001)) so that

u(s, r, ϕ) = u0(s) + (εr)u1(s, ϕ) + (εr)2u2(s, ϕ) + ...,
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v(s, r, ϕ) = (εr)v1(s, ϕ) + (εr)2v2(s, ϕ) + ...,

w(s, r, ϕ) = (εr)w1(s, ϕ) + (εr)2w2(s, ϕ) + ...,

p(s, r, ϕ) = p0(s, ϕ) + (εr)p1(s, ϕ) + ...,

R(s, ϕ) = R0(s) + εR1(s, ϕ) + ...,

X(s) = X0(s) + εX1(s) + ...,

Z(s) = Z0(s) + εZ1(s) + ...,

Y (s) = Y0(s) + εY1(s) + ... . (3.45)

Also, as the air stresses at the jet surface (r = R) must approach zero when ε→ 0, the
leading order terms of the air stresses at the jet surface, Σ̂, are of order εr. This implies
that the drag force at the leading order becomes ((εr)2〈fdrag〉T , εr〈fdrag〉N , εr〈fdrag〉B),
with 〈fdrag〉T ,〈fdrag〉N , and 〈fdrag〉B being the leading order terms of the drag force
components projected onto the Frenet basis.
Now, we proceed to evaluate the leading order terms to simplify our equations. First,

substituting the expressions in equation (3.45) into the continuity equation (3.24), we
have

O (εr) : u0,s + 2v1 + w1,ϕ = 0, (3.46)

O
(

(εr)2
)

: u1,s + 3v2 + w2,ϕ − 3v1κ cos(ϕ) + w1κ sin(ϕ) = 0. (3.47)

From the second tangential stress condition, i.e. equation (3.43) in which i = ϕ, we have

O (εr) : R0v1,ϕ = 0, (3.48)

O
(

(εr)2
)

: (R0κ cos(ϕ)− 2R1) v1,ϕ −R2
0(w2 + v2,ϕ) + 2R1,ϕw1,ϕ

−
(
R2

0τκ cos(ϕ) +R0κ sin(ϕ)R0,s
)
u0 +R0R0,su1,ϕ −R2

0τu1 = 0. (3.49)

Having v1,ϕ = 0 and differentiating equation (3.46) with respect to ϕ, we end up with
w1,ϕϕ = 0, showing the independency of w1 on ϕ; hence, we have v1 = −u0,s/2. Similarly
from the first tangential stress condition (equation (3.43) in which i = s), we find

O (εr) : u1 = −u0κ cos(ϕ), (3.50)

O
(

(εr)2
)

: u2 = 3
2u0,s

R0,s

R0
+ u0,ss

4 + 1
2τ

2u0 + 1
4η̄ Re〈fdrag〉T , (3.51)

where η̄(s) is the mean viscosity ratio, given in §3.11. Knowing that v1,ϕ = w1,ϕ = 0 and
by substituting equation (3.50) into (3.49), we have

w2 + v2,ϕ = 0. (3.52)

By differentiating equation (3.52) with respect to ϕ, we arrive at

w2,ϕ = −v2,ϕϕ, (3.53)

and consequently equation (3.47) can be written as

v2,ϕϕ − 3v2 = u1,s − 3v1κ cos(ϕ) + w1κ sin(ϕ). (3.54)

Substituting the expressions u1 and v1, we find

v2,ϕϕ − 3v2 =
(u0,s

2 κ− u0κ,s

)
cos(ϕ) + w1κ sin(ϕ). (3.55)

Finally using a periodic solution for w2 and v2 results in

v2 = 1
4

((
u0κ,s −

u0,s

2 κ
)

cos(ϕ)− w1κ sin(ϕ)
)
, (3.56)
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w2 = 1
4

((
u0κ,s −

u0,s

2 κ
)

sin(ϕ) + w1κ cos(ϕ)
)
. (3.57)

The normal stress condition, equation (3.42), at the leading and εr order can be written,
respectively, as

p0 =
(
− η̄u0,s

Re
+ 1
R0We

)
, (3.58)

p1 = − 1
R0We

(
R1,ϕϕ +R1

R2
0

+ κ cos(ϕ)
)

+ 4η̄v2

Re

− 〈fdrag〉N cos(ϕ)− 〈fdrag〉B sin(ϕ). (3.59)

Now, substituting the related expressions for the velocity and pressure terms, we can
represent the equations of motion as a polynomial series in ε; keeping only the leading
order terms and assuming that ε approaches zero, we can present the equations of motion
as

u0u0,s = − 1
We

(
1
R0

)
,s

+ 3
ReR2

0

(
η̄R2

0u0,s
)
,s

+ 1
Rb2 (X0X0,s + Z0Z0,s)−

Y0,s

Fr2 + 〈fdrag〉T , (3.60)

κu2
0 = κ

(
1

WeR0
+ 3η̄u0,s

Re

)
+ 1
Rb2

(
X0X0,ss + Z0Z0,ss

κ

)
− 2u0

Rb

(
Z0,sX0,ss − Z0,ssX0,s

κ

)
− Y0,ss

κFr2 + 〈fdrag〉N , (3.61)

0 = 1
Rb2

(
X0 (Y0,sZ0,ss − Y0,ssZ0,s)

κ
+ Z0 (X0,sY0,ss −X0,ssY0,s)

κ

)
− 2u0Y0,ss

κRb
− 1
Fr2

(
Z0,sX0,ss − Z0,ssX0,s

κ

)
+ 〈fdrag〉B . (3.62)

Equations (3.60)-(3.62) form our final set of equations at the leading order.

3.5. Aerodynamic drag force
To calculate the aerodynamic drag force fdrag, we follow the approach proposed by

Marheineke & Wegener (2011), in which the effect of the fibre on the surrounding air
velocity profile is ignored, i.e. we assume a one-way coupling. Note that determining
the drag terms for air flowing over a fibre at intermediate Reynolds numbers would be
complicated using the asymptotic analysis (see for instance Hormozi & Ward (2017),
Kaplun (1957) and Tomotika & Aoi (1951)); therefore, for simplicity we approximate the
leading order drag force terms (i.e., 〈fdrag〉T , 〈fdrag〉N , 〈fdrag〉B) using the cross-averaged
values Fdrag proposed by Marheineke & Wegener (2011). In this sense, we consider the
drag force to be a function of the dimensionless relative velocity between air and the jet,
V∗rel, of the local tangent vector to the fibre baseline, T̂ (not to be confused by tangent
base vector T), and finally of the air and polymer solution physical properties. Therefore,
we can express the dimensionless drag force as

Fdrag = F(T̂, Re∗w
V∗rel∥∥V∗rel

∥∥ ), (3.63)
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where Re∗w = RRe∗ ‖V∗rel‖, in which R denotes the dimensionless fibre free surface radius.
To compute V∗rel, we use

V∗rel = − 1
Rb

(Ω ×D)− v.T̂, (3.64)

in which we assume that the air velocity in our rotating frame is equal to the velocity
of the rotating frame (i.e. the velocity is zero in a stationary frame). This assumption
becomes approximately valid if the shaft driving the rotating spinneret is very thin, so
that the free vortex generating by the rotating spinneret in the air decays rapidly with
increasing radial distance from the shaft. It is noted that the first term on the right hand
side of equation (3.64) accounts for the velocity of the rotating frame (or air) and the
second term is for the jet velocity. Considering the local tangent vector to the jet curve,
T̂, and the relative velocity, V∗rel, whose direction is not necessarily perpendicular to T̂,
we can introduce the normal vector n̂ to the tangent T̂ in a way that it is always in the
T̂-V∗rel plane; having this, we arrive at

n̂ =
V∗rel − 〈V ∗rel〉T̂ T̂

〈V ∗rel〉n̂
, 〈V ∗rel〉T̂ = V∗rel.T̂, 〈V ∗rel〉n̂ =

√(
V∗rel

)2 −
(
〈V ∗rel〉T̂

)2
. (3.65)

Introducing WT = Re∗w〈V ∗rel〉T̂ ‖V
∗
rel‖
−1 and Wn = Re∗w〈V ∗rel〉n̂‖V

∗
rel‖
−1, we can then

compute the drag force as a function of the tangent and relative velocity as follows:

F(T̂, Re∗w
V∗rel∥∥V∗rel

∥∥ ) = Fn(Wn)n̂ + FT (WT ,Wn)T̂, (3.66)

with

Fn(Wn) = (Wn)2
cn, (3.67)

FT (Wn,WT ) = WnWT cT , (3.68)

where cn and cT stand for the drag coefficients in the normal and tangential directions,
which are functions of the normal velocity Wn, calculated following Arne et al. (2011a)
(see Appendix C). Next, we compute the drag force as

Fdrag = F1x̂ + F2ŷ + F3ẑ,

and then its projection onto the Frenet basis. Using the same procedure as for the external
forces, we can write the drag force components as

〈fdrag〉T = F1X,s + F2Y,s + F3Z,s, (3.69)

〈fdrag〉N = F1
X,ss

κ
+ F2

Y,ss
κ

+ F3
Z,ss
κ
, (3.70)

〈fdrag〉B = F1
Y,sZ,ss − Y,ssZ,s

κ
+ F2

Z,sX,ss − Z,ssX,s

κ
+ F3

Y,ssX,s − Y,sX,ss

κ
.

(3.71)

More details about the drag model that we are extending here can be found in Marheineke
& Wegener (2011).

3.6. Projection approach
Since all the terms are of leading order, henceforth the subscript 0 will be dropped for

simplicity. Having the two fibre angles α and β in the horizontal and vertical planes (see
Figure 1), we can write the derivatives of the centreline functions, i.e. X(s), Y (s) and
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Z(s), as  X,s = cos(α) sin(β),
Z,s = − sin(α) sin(β),
Y,s = cos(β).

(3.72)

Using equation (3.72), we can rewrite our set of equations to ease the solution and
automatically satisfy the arc length condition, i.e. X2

,s+Y 2
,s+Z2

,s = 1. Note that choosing
a positive sign for Z,s, i.e. Z,s = sin(α) sin(β), does not affect the solution and it only
changes the rotation direction of the spinneret. In the next step, we just need to substitute
the expressions of (3.72) into (3.60) and in doing so we arrive at

1
Re

Nt,s = uNt
3η̄ −

R2 sin(β)
Rb2 (X cos(α)− Z sin(α)) (3.73)

+ R2

We

(
1
R

)
,s

+ R2 cos(β)
Fr2 − 〈fdrag〉T

u,s = Nt
3η̄R2 , (3.74)

in which Nt is the tensile force. Now, following the same procedure for equation (3.61)
and introducing κ1 = α,s and κ2 = β,s we find(

sin (β)2
κ2

1 + κ2
2

)(
u2 − Nt

R2Re
− 1
RWe

)
= 2κ1u sin (β)2

Rb
+ κ2 sin(β)

Fr2

− κ1 sin(β)
Rb2 (X sin(α) + Z cos(α))

+ κ2 cos(β)
Rb2 (X cos(α)− Z sin(α))

− fd1κ1 + fd2κ2, (3.75)

where fd1 and fd2 are the corresponding drag coefficients for κ1 and κ2, i.e.

〈fdrag〉N = fd1κ1 + fd2κ2,

and can be written as

fd1 = −F1 sin(α) sin(β)− F2 cos(α) sin(β),
fd2 = F1 cos(α) cos(β)− F2 sin(α) cos(β)− F3 sin(β). (3.76)

A particular condition to satisfy equation (3.75) can be obtained by setting

κ1 = 1
q

(
− 2u
Rb
− (X sin(α) + Z cos(α))

sin(β)Rb2 + fd1

sin (β)2

)
, (3.77)

κ2 = 1
q

(
sin(β)
Fr2 + cos(β)

Rb2 (X cos(α)− Z sin(α)) + fd2

)
, (3.78)

q =
(
u2 − Nt

R2Re
− 1
RWe

)
, (3.79)

where q stands for the dimensionless internal energy (i.e. sum of kinetic, viscous and
surface tension energies). Substituting equation (3.72) and then the expressions for κ1
and κ2 from (3.77) and (3.78) into (3.62), we can see that the right hand side of (3.62)
becomes zero, implying that equation (3.62) is not an independent equation and can be
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decoupled from our final set of equations. Equations (3.72-3.74), (3.77) and (3.78) form
our final set of equations and they are usually referred to as the “string” equations.
It is worth mentioning that if the gravitational effect is ignored, β becomes π/2 and

equation (3.72) is reduced to {
X,s = cos(α),
Z,s = − sin(α), (3.80)

and in this case, κ = κ1 = α,s and the solvability condition equation can be written as

κ = 1
q

(
− 2u
Rb
− 1
Rb2 ((X) sin(α) + Z cos(α)) + 〈fdrag〉N

)
. (3.81)

3.7. Regularization approach
It is well known that the string equations suffer from a singularity or non-physical jet

behaviours when q is negative (or zero), which is the case near the nozzle for viscous
flows with small Rb (Götz et al. (2008), Arne et al. (2010) and Arne et al. (2011b)).
The singularity problem of the string equations arises from ignoring the higher order
terms that determine the curvature of the jet at the near nozzle region. To deal with
the near-nozzle singularity and make a physically relevant solution possible, we extend
the solvability condition equations by employing the regularized asymptotic method of
Noroozi et al. (2017). Note that the terms that are responsible for bending and twisting
the fibre originate from the shear components of the stress tensor, i.e. π12, π21, π23,
π32, π13 and π31 in equation (3.30). On the other hand, the most relevant terms in the
solvability condition equation are π12 and π21, whose derivatives, i.e. π12

,s and π21
,s , include

κ1,sss, κ2,sss and τ,ss. These terms have large values in regions near the nozzle, and thus
they cannot be ignored at least for small s. Therefore, to cope with the singularity of
the string model, we must retain and take into account these higher-order terms in the
solvability condition equations, via regularization terms, which are critical near the nozzle
to stabilize the jet against Coriolis and centrifugal forces but can be ignored slightly away
from the nozzle. Expanding π12

,s projections onto the N base vector and then using the
asymptotic expressions, this term can be represented as a series of higher order derivatives
of κ1, κ2 and τ as

− η̄(εr)3

4Re u cos(2ϕ)

− κ1 sin (β)2
κ1,sss√

sin (β)2
κ2

1 + κ2
2

− κ2κ2,sss√
sin (β)2

κ2
1 + κ2

2

+ ...


+ η̄(εr)3

Re
u sin(2ϕ)

(
−τ,ss

√
sin (β)2

κ2
1 + κ2

2 + ...

)
+O(ε4). (3.82)

To find a simple regularization term, the above relation can be simplified by putting
r = 1 and ϕ = 0, leading to a regularization coefficient of δ = ε2/4, the use of
which incorporates the third derivatives of the curvature components in the solvability
condition, i.e. equations (3.77) and (3.78), to cope with the limitation of the asymptotic
method. In doing so, we have

0 = η̄δ

Re
κ1,sss + q

u
κ1 + 2

Rb
+ (X sin(α) + Z cos(α))

u sin(β)Rb2 − fd1

u sin (β)2 , (3.83)

0 = η̄δ

Re
κ2,sss + q

u
κ2 −

sin(β)
uFr2 −

cos(β)
uRb2 (X cos(α)− Z sin(α))− fd2

u
. (3.84)

The solution away from the nozzle exit becomes independent of the choice of a
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sufficiently small δ. For simplicity, in this work, we set δ = 0.0025 based on ε = 0.1,
as we have found our results to be insensitive to modest changes in this value of δ.

3.8. Radial equation
The solvent evaporation during the CS process affects the mixture viscosity and it may

cause the jet radius to decrease and the jet trajectory to change throughout the process.
Here, we model the effects of the solvent evaporation on the curved jet behaviours, by
solving the concentration-diffusion equation (3.3), while assuming that only the solvent
evaporates into the air phase, i.e. there is no polymer mass loss. Knowing that diffusion
in the radial direction controls the mass transfer, we need to solve this equation both in
the radial direction, r, and the arc length direction, s (see Wieland et al. (2019)). For
simplicity, let us assume that the concentration field is axisymmetric (i.e. independent
of ϕ) and take c(s, r) as the local polymer concentration. Expanding the concentration-
diffusion equation (3.3) while ignoring the effects of diffusion in the s direction, we arrive
at

u
∂c(r, s)
∂s

+ v

ε

∂c(r, s)
∂r

= 1
εPe

1
r

∂

∂r

(
r
∂c(r, s)
∂r

)
. (3.85)

Using equation (3.45) to expand v, equation (3.46) to find v = −u,s/2 and using the
homogeneous kinematic boundary condition in which we assume a comparatively small
evaporation term (see Mellado et al. (2011)), we can write in the leading order

v ≈ εru∂sR(s)
R(s) .

Therefore, equation (3.85) in the leading order can be expressed as

u
∂c(r, s)
∂s

+ ru

R(s)
∂R(s)
∂s

∂c(r, s)
∂r

= 1
εPe

1
r

∂

∂r

(
r
∂c(r, s)
∂r

)
. (3.86)

Now, rescaling r ∈ (0, R(s)) by introducing r̃ ∈ (0, 1) so that

r̃ = r/R(s),

we can change the variables (r, s) to (r̃, s) and, via the Jacobian of the transformation,
transform equation (3.86) to

u
∂c(r̃, s)
∂s

= 1
εPeR(s)2

1
r̃

∂

∂r̃

(
r̃
∂c(r̃, s)
∂r̃

)
. (3.87)

The equation above implicitly includes the convection term in the radial direction, via
the transformation presented.

3.9. Jet radius
To predict the jet radius, we can assume the mixture density to be constant, reducing

the cross-sectional averaged mass balance laws for the polymer and the solvent, respec-
tively, to

(uc̄A),s = 0, (3.88)
(u (1− c̄)A),s = j, (3.89)

wherein c̄(s) is the cross-averaged polymer concentration computed as

c̄(s) = 2
1∫

0

c(s, r̃)r̃dr̃. (3.90)
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Moreover, j in equation (3.89) denotes the solvent mass flux due to evaporation, measured
as

j = − ˜̃ρ∗sγ∗ (c|r̃=1 − cr) , (3.91)

cr = 1− c∗lg
ρ∗

ρ̃s
,

where ρ̃∗s and ˜̃ρ∗s are the dimensional and dimensionless concentration-scaled solvent
densities in air ( ˜̃ρ∗s = ρ̃∗

s

ρnoz
, see Appendix A), and cr is the reference concentration, deter-

mined by the solvent density in air. Additionally, c∗sa stands for the solvent concentration
in the surrounding gas (here air). In equation (3.91), γ∗ is the dimensionless mass transfer
coefficient and can be expressed as

γ∗ = 1
2R

Sh∗(~∗, Re∗w, Sc∗)
Pe∗

, (3.92)

in which Sh∗ is the Sherwood number, ~∗ is the air attack angle, and Re∗w is the air local
Reynolds number. To compute Sh∗, ~∗ and Re∗w, we extend the model of Wieland et al.
(2019) for a straight fibre to our curved fibre in the CS process (see Appendix D). Using
equation (3.89) in combination with equation (3.88) and after some manipulations, we
arrive at

c̄,s
c̄

= − 1
uR2 j. (3.93)

Integrating equation (3.88) with respect to the arc length s and knowing the polymer
concentration at the nozzle exit, cnoz, we arrive at

R =
√
cnoz
c̄u

. (3.94)

Moreover, having equations (3.88) and (3.93), we can now write equation (3.73) as

1
Re

Nt,s = uNt
3η̄ −

R2 sin(β)
Rb2 (X cos(α)− Z sin(α))

+ 1
WeRu

(
Nt
3η̄ − j

)
+ R2 cos(β)

Fr2 − 〈fdrag〉T . (3.95)

3.10. Domain length
Solving the final steady-state set of equations, i.e. (3.72), (3.74), (3.83), (3.84), (3.87)

and (3.95), is only possible via prescribing the domain length (i.e, the fibre jet length),
which is not known a priori. In other words, although the position of the collector are
known, as the fibre is curved with an unknown trajectory, its length is therefore also an
unknown of the problem. Denoting the fibre length as `, we can write our final set of
equations with ` as a free unknown parameter. Using this approach, we need to have an
extra boundary condition to solve the equations (which we explain later). After rescaling,
we can represent our momentum equations as

1
`
X,s = cos(α) sin(β), 1

`
Z,s = − sin(α) sin(β), 1

`
Y,s = cos(β),

1
`
α,s = κ1,

1
`
β,s = κ2,

1
`
u,s = Nt

3η̄R2 ,
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1
`
Nt,s = Re

3η̄ uNt −
ReR2 sin(β)

Rb2 (X cos(α)− Z sin(α))

+ Re

2WeRu

(
Nt
3η̄ − j

)
+ ReR2 cos(β)

Fr2 −Re〈fdrag〉T ,

0 = η̄δ

Re`3κ1,sss + q

u
κ1 + 2

Rb
+ (X sin(α) + Z cos(α))

u sin(β)Rb2 − fd1

u sin (β)2 ,

0 = η̄δ

Re`3κ2,sss + q

u
κ2 −

sin(β)
uFr2 −

cos(β)
uRb2 (X cos(α)− Z sin(α))− fd2

u
.

(3.96)

Similarly, the concentration-diffusion equation (3.87) can be written after rescaling as

1
`
u
∂c

∂s
= 1
εPeR2

1
r̃

∂

∂r̃

(
r̃
∂c

∂r̃

)
. (3.97)

It should be mentioned that in rescaling the problem, the arc length s now changes from
zero to one.

3.11. Viscosity ratio
To calculate the deviatoric stress in equation (3.30) used in the uniaxial set of equa-

tions, we need to calculate the mixture viscosity at any axial position. In dimensionless
form, this viscosity is made dimensionless with the mixture viscosity at the nozzle exit
and, therefore, it can be called a viscosity ratio. At a fixed temperature, the local polymer
solution viscosity changes with the polymer concentration, which varies both in the axial
and radial directions. Thus, we calculate the mean viscosity ratio, η̄, based on the radial
profile of the viscosity at each axial position:

η̄(s) = 2
1∫

0

η(s, r̃)r̃dr̃, (3.98)

where the viscosity profile in the radial direction is taken to be exponentially dependent
on the polymer concentration, which is justified by our experimental data (see also Upson
et al. (2017)), as

η(s, r̃) = eb1(c(s,r̃)−cnoz), (3.99)
where b1 = (170.47, 54.28, 72.46) for the three samples in Table 1, respectively.

3.12. Boundary conditions
Here, we first present the boundary conditions needed to solve the cross-averaged

equations and then we consider the boundary conditions to solve the concentration-
diffusion equation.

The boundary conditions used to solve our set of momentum equations (3.96) are
defined here based on the geometry of our experimental setup, which gives us the data
that will be exploited to verify the model results. It should be noted that having a total
of nine equations, two of which have third order derivatives of the curvature, and also
one free parameters, i.e. `, fourteen boundary conditions are needed to solve our set of
equations. Figure 1 sketches the different boundary conditions used in this study. At
the nozzle, the fibre emerges from the nozzle exit under the centrifugal force, defined
as the inlet boundary, and it eventually terminates at the collector, defined as the end
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boundary. Based on the scaling parameters, the velocity at the nozzle is unity, i.e.

u (0) = 1,

and the fibre curvatures at the nozzle are zero, i.e.

κ1 (0) = κ2(0) = 0.

In addition, assuming that the nozzle is placed at the x − z plane and it is fixed in the
x direction, the fibre’s two angles at the inlet are

α (0) = 0, β (0) = π/2.

The centreline position also can be presented at the nozzle is defined through

X(0) = 1, Z(0) = Y (0) = 0.

The end boundary condition is a number of static rods creating a cylindrical surface
whose centreline is the y axis. At the end boundary (s = 1), we can consider that the
fibre arrives at the collector that are located on a circular cylinder with radius R with
respect to the rotation centre (point C in Figure 1), for which we have√

X2(1) + Z2(1) = R.

We also know that at the end boundary, the tangent to the centreline, i.e.
(X,s, Y,s, Z,s)|s=1, is perpendicular to the position vector CE in Figure 1. Thus,
we have

X cos(α) sin(β) + Y cos(β)− Z sin(α) sin(β) = 0 at s = 1.
From the constant radius of the end boundary, we know that

κ1(1) = −1/R,

from which we can conclude that

κ1,s(1) = κ1,ss(1) = 0.

Finally, because of the fixed nozzle assumption in a moving frame of reference, the velocity
at the end boundary is the velocity of the reference frame at R, which can be written in
dimensionless form as

u(1) = R
Rb

,

which is that of an inviscid flow, valid for a sufficiently long fibre. In fact, in a recent work
relevant to the CS process, Noroozi et al. (2017) have shown that as the fibre reaches an
inviscid flow regime at large distances from the nozzle, the fibre key features in the main
flow domain become less sensitive to the end boundary conditions. In the case that the
fibre end does not sit on a collector and it has a free end with a specific length, the end
boundary condition can be set as a free fibre end, i.e.

Nt (1) = κ1,s (1) = κ2,s (1) = κ1,ss (1) = κ2,ss (1) = 0.

In this case, we only need thirteen boundary conditions in place of fourteen since ` would
be a known parameter.
Now, we derive the corresponding boundary conditions for the concentration-diffusion

equation (3.97). First, at the jet interface the diffusion flux normal to the interface in the
r direction is equal to evaporation flux so that

− 1
Pe

1
R

∂c

∂r̃

∣∣∣∣
r̃=1

= j.
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Second, we also assume a symmetric profile in the radial direction, i.e.

∂c

∂r̃

∣∣∣∣
r̃=0

= 0,

and finally an initially uniform polymer concentration at the nozzle exit (s = 0), i.e.

c(0, r̃) = cnoz.

3.13. Solution algorithm and methods
To solve our set of equations, we need to couple the cross-averaged equations (3.96)

and the radial equation (3.97). However, to start the iterations, we first solve the cross-
averaged equations using an initial averaged polymer concentration, i.e. c|r̃=1 = c̄. In
the next step, using the resultant velocity field, we obtain a solution for the radial profile
equation by exploiting Green’s functions and the Volterra integral equations of the second
kind at each axial position. Then, at each arc length position, we compute the cross-
averaged polymer concentration and viscosity based on the radial profile of the polymer
concentration. Afterwards, we again solve the cross-averaged equations using the new
values for c. We continue this procedure until a desirable accuracy is met at each iteration.
In the next subsections, we briefly describe the different methods and techniques used

to solve the cross-averaged and axial-radial equations.

3.13.1. Collocation method
To solve our uniaxial set of equations defined as ∂sY = F(s,Y) with boundary values

as G(Y(0),Y(1)) = 0, we use a three-stage Lobatto IIIa formula as a collocation scheme
(Kierzenka & Shampine (2008)), which is in fact an implicit fourth order integration
Runge-Kutta method. We solve the resultant set of nonlinear equations by implementing
Newton’s method. Knowing that the efficiency of Newton’s method highly depends on
the initial guess, we use a continuation method to iteratively adapt the solution. To
implement such a method, we use the mesh refinement routines in which the number of
collocation points adaptively changes, depending on the stiffness of the equations at each
iteration.

3.13.2. Continuation method
The continuation method is based on defining a continuation parameter tuple P ∈

[0, 1]n, n ∈ N, in a way that

∂sY = F(Y ;P), G(Y(0),Y(1);P) = 0,
F(.; 1) = F1, G(., .; 1) = G1, F(.; 0) = F0, G(., .; 0) = G0,

in which F0 and G0 are chosen as known values from the analytical solution for P = 0.
Here, F1 and G1 are the desirable parameters or boundary conditions which are satisfied
when P = 1. Having the starting point, we solve for a sequence of parameters tuples, i.e.
P0 = 0, P1, ..., Pm = 1, so that the solution for the previous boundary value problem
furnishes the new solution with an appropriate initial guess. Using the continuation
technique, it is possible to gradually add different terms to the equations, for example
the drag force or an end boundary condition, step by step to guarantee the solution
convergency.
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Parameter Name
(X,Y, Z) Fibre baseline position components

R Fibre radius
(α, β) Fibre angles
c Polymer concentration
η̄ Mean viscosity ratio

(〈fdrag〉T , 〈fdrag〉N ) Tangent and normal drag force components
` Fibre length

Table 4. Main model output parameters. These parameters are at the leading order and they
are functions of the arc length (s) only, except for c, which is a function of s and r.

3.13.3. Green’s function
Here, we introduce the method applied to solve the radial equation, represented as a

boundary value problem, using the mapping function ψ(r, Λ) = c(s, r) in which Λ denotes

Λ(s) = 1
εPe∗

s∫
0

(
1
uR2

)
ds′.

Now, our boundary value problem can be presented in the following standard form

∂sψ −
1
r
∂r (r∂rψ) = 0, ∂rψ|r=0 = 0, ∂rψ|r=1 = Aψ|r=1 + B, ψ|s=0 = ψnoz, (3.100)

which can be solved analytically in terms of an implicit expression for constant A. For
non-constant A, on the other hand, an implicit solution expression for ψ can be obtained
using a Green’s function, G, as

ψ(s, r) = ψnoz + 2
∫ s

0
G (r − s′)z (s′, ψ(Λ(s′), 1)) ds′,

G(s, r) = 1 +
∞∑
m=1

J0 (ζmr)
J0 (ζm) exp

(
−ζ2

ms
)
, z (s, ψ) = A (s)ψ + B (s) , (3.101)

where Ji stands for the ith Bessel function of the first kind and ζm are the ascending
zeros of J1, i.e. J1(ζm) = 0, whose values can be found in the standard literature such as
Cole et al. (2010). More details about the Green’s function and its implementation here
can be found in Wieland et al. (2018).

3.14. Model output and input parameters
The solution of the model equations delivers various output parameters in dimension-

less form, the most important of which are given in Table 4. In the upcoming section, we
will quantify the effects of the input dimensionless groups given in Table 3 on the model
output of Table 4. To simplify the presentation of the results, we will fix c∗sa = 0.01 and
assume that Fr → ∞, since in our experimental range the gravitational force is very
small compared to the centrifugal one (Rb � Fr), causing the fibre to mainly flow in a
horizontal 2D plane. Unless otherwise stated, the air-drag force will be included in all the
model results presented in the following sections. Finally, unless otherwise specified, the
flow parameters are based on the polymer solution of sample (III), for which the initial
polymer concentration at the nozzle exit is fixed at 6%.



A comprehensive mathematical model for nanofibre formation 27

Z

-2 0 2

X

-2

0

2

(a)

−2 0 2−3

−2

−1

0

1

2

Z

X

(b)

Z

-2 0 2 4

X

-4

-2

0

2
(c)

Figure 3. Fibre trajectory results from our model (solid line) and experiments (dots): (a) results
for Rb = 0.011, Re = 0.2, We = 3.56, Re∗ = 18, Pe = 1.2 × 105, Pe∗ = 11.3, and R = 2.5,
the solution is sample (I) (with Unoz = 0.47 m/s, Ω = 550 rad/s); (b) results for Rb = 0.0375,
Re = 1.79, Re∗ = 40, We = 16, Pe = 2.53× 105, Pe∗ = 25.37, R = 2.5, the solution is sample
(II) (with Unoz = 1.05 m/s, Ω = 350 rad/s); (c) results extracted from Divvela et al. (2017) for
Rb = 0.1, Re = 23, We → ∞, Re∗ = 41 and the polymer solution is 8 ppm Polyisobutylene
with Mv = 1× 106 and Tricloroethylene as solvent, with a free end (R� 1) (with Unoz = 0.621
m/s, Ω = 217 rad/s).
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Figure 4. Fibre radius from our model (solid line) and experiments (dots): (a) results for
Rb = 0.011, Re = 0.2, We = 3.56, Re∗ = 18, Pe = 1.2× 105, Pe∗ = 11.3, R = 2.5, for solution
sample (I) (with Unoz = 0.47 m/s, Ω = 550 rad/s); (b) results for Rb = 0.0375, Re = 1.79,
Re∗ = 40, We = 16, Pe = 2.53× 105, Pe∗ = 25.37, R = 2.5, for sample (II) (with Unoz = 1.05
m/s, Ω = 350 rad/s).

4. Results and discussion
In this section, we first validate our model results against our experimental obser-

vations. We then study the effects of the key dimensionless groups on the CS process
performance, using our model results.

4.1. Simulation results versus experimental data
Before proceeding to a parametric study, let us validate our model results against

experiments. The main results to be compared between our model and experiments
are the fibre trajectory and radius, which are affected by inertial, viscous, centrifugal,
Coriolis, and surface forces as well as the solvent evaporation. To this end, we use the data
extracted from our experimental images as well as the results of Divvela et al. (2017).
Figure 3 illustrates the fibre trajectory produced using different experimental obser-

vations versus the model simulation results. As can be seen, our model can reasonably
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predict the fibre trajectory, not only for our experiments but also for those of Divvela
et al. (2017). The deviation of the numerical results from those of the experiments may be
attributed to excluding the effects of viscoelasticity or could be due to variations in the
flow rate of the polymer solution in the experiments. However, despite the simplifying
assumptions made in the model, the deviations between the model and experimental
results remain small. For Figure 3c, due to a lack of experimental data from Divvela
et al. (2017), evaporation was not included in our computation, which could also be a
source of error in that case.

With the aid of image processing techniques, explained in §2.1 in more detail, the
variation of the fibre radius along the fibre length is extracted from the experimental
images and compared with model results in Figure 4, showing a reasonable agreement.
At smaller Rb, however, the deviation of the model from the experimental results is
greater, especially at the regions near the nozzle exit. This deviation could perhaps be
due to the boundary layer effects near the nozzle exit.
A final note is that, to find the model fibre trajectories in Figure 3 (and consequently

the model fibre radii in Figure 4), the aerodynamic forces are included in the solution
of the model equations. If these terms were not considered, the model results would
significantly differ from the experimental ones. To provide a better understanding, §4.2.1
discusses the importance of considering the effects of the aerodynamic forces on the fibre
behaviour.

4.2. Parametric study
To gain a deeper understanding of the CS process, we consider the effects of the key

dimensionless parameters on the fibre trajectory, length, radius, viscosity, and polymer
concentration. The fibre radius and viscosity are critical as they affect the resultant fibre
quality. The viscosity also controls fibre instabilities during the formation process: if the
viscosity is low, the fibre may break into droplets.

4.2.1. Effects of aerodynamic forces
Here, we investigate the effect of the jet-air interaction on the fibre jet flow by

simulating the fibre with and without the drag terms in our momentum equations with
all the other terms kept the same. In our simulations throughout the paper, we assume
that the surrounding air is stagnant in the stationary frame of reference.

Figure 5 shows that inclusion of the drag force, causes the fibre to spiral more tightly
and move towards the rotation centre. As the drag force keeps the fibre close to the
rotation centre and away from the collector, the fibre travels much farther when there
is air-drag than when there is not (Figure 5a). This allows the fibre to become thinner
(Figure 5b), as it has more time for the evaporation to act, which is essential to increase
the fibre viscosity (Figure 5c) and produce stable fibres.

Figure 6 shows the variations of the drag force components, i.e. normal 〈fdrag〉N and
tangential 〈fdrag〉T , along the fibre. As depicted, although the magnitude of 〈fdrag〉N is
very high near the nozzle exit, it is significantly reduced in downstream regions. The
magnitude of 〈fdrag〉T , on the other hand, is zero right at the nozzle exit but it shows an
abrupt increase in the vicinity of the nozzle exit. Afterwards, the magnitude of 〈fdrag〉T
shows a gradual change towards the fibre end. These results are due to the fact that the
fibre is initially perpendicular to the rotating frame at the nozzle exit, causing 〈fdrag〉T
to be zero and 〈fdrag〉N to be maximum. Further downstream, as the fibre is eventually
forced to move with the rotating frame, reducing the relative velocity and the attack
angle, the drag force components decrease until they finally become zero at the collector.
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Figure 5. Model results for (a) fibre trajectory, (b) fibre radius and (c) fibre viscosity ratio
versus the scaled arc length, with Rb = 0.01, Re = 0.6, Re∗ = 18, We = 40, Pe = 1.2 × 104,
Pe∗ = 12, and R = 3. The results are shown including (solid line) and excluding (dashed line)
the drag force.

Figure 6. Predicted contours of the absolute values of (a) normal drag force, (b) tangential
drag force along the fibre trajectory, with Rb = 0.01, Re = 0.6, Re∗ = 18, We = 40,
Pe = 1.2 × 104, Pe∗ = 12, and R = 3. The colourbars show the variation of drag force
components (〈fdrag〉N , 〈fdrag〉T ). The thickness of the fibre trajectories represents the scaled
fibre diameter at each axial position, here and elsewhere.

In addition, 〈fdrag〉N is higher than 〈fdrag〉T , implying a greater effect of the drag force
on the fibre trajectory than on the fibre baseline velocity.
Note that in this study the surrounding air is assumed to be stagnant, implying that

in the moving frame of reference, the surrounding air is rotating with the negative frame
velocity. Therefore, in this study the effects of the free vortex flow created by the spinneret
head motion and any turbulent flow are ignored. However, the former effect could be
included in our model, for example by incorporating a free vortex angular velocity vector
estimated via

VFV = − 1
Rb

(
Ω × D

‖D‖2

)
,

in dimensionless form, by which one can modify V ∗rel in equation (3.64) to take into
account the air velocity created by the spinneret. The accuracy of such an approach
would need experimental verification. Furthermore, in industrial applications of the CS
process where there are many nozzles, the flow analysis must include a porous medium
of many fibres, creating a Brinkman type flow (Ali et al. (2013)), the effects of which
are not considered here.
Before we proceed, we should mention that, although the analysis of air-drag in the
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Figure 7. Effect of Rb on the model predictions of (a) fibre trajectory, (b) fibre radius and
(c) fibre viscosity ratio versus the scaled arc length, with Re = 0.6, Re∗ = 18, We = 40,
Pe = 1 × 104, Pe∗ = 12, and R = 3, for Rb = 0.04 (dashed line), Rb = 0.01 (dotted line) and
Rb = 0.005 (solid line).

current work can be perhaps improved, the air-drag model proposed in Marheineke &
Wegener (2011) (and extended in this work) is one of the most advanced models in the
literature that is notably superior to the existing models, by including the attack angle
into the analysis. Moreover, the fact that the fibre is not straight in our case is accounted
for in a low curvature approximation in our model and computations, since the attack
angle of air towards the fibre is computed locally, for each discretized element. The key
assumption is that the radius of curvature of the fibre is large compared to the fibre
diameter, which is an assumption already necessary for the string theory to be valid.

4.2.2. Effects of rotation rate
Figure 7 shows the effects of Rb (or inverse dimensionless rotation rate) on the fibre

trajectory, radius and viscosity ratio along the scaled arc length (s). By decreasing Rb
(increasing the rotation speed), the fibre trajectory is affected, due to both inertial
effects and higher air-drag on the fibre. The latter causes the fibre to wrap more tightly
towards the spinneret, which in turn results in a longer fibre before it meets the collector.
Consequently, as seen in Figure 7b, the final fibre radius is smaller when Rb is small. On
the other hand, for the resultant longer fibre for small Rb, the solvent evaporation gives
rise to a drier fibre, for which the viscosity increases accordingly (Figure 7c). Moreover,
increasing the rotation speed brings about a rapid change in the fibre radius, resulting
in a larger surface force and thereby a higher chance of instabilities, all implying the
existence of an optimum working rotation speed for a given polymer solution.

4.2.3. Effects of polymer solution viscosity
The effect of Re (or inverse dimensionless polymer solution viscosity) on the fibre

features is considered in Figure 8. For higher Re the fibre curves more towards the spin-
neret, due to smaller viscous resistance against the inertial force (Figure 8a). However,
as viscous forces fade away rapidly and inertial forces take over as the fibre moves away
from the spinneret, the fibre radius converges to almost the same value at the collector for
all Reynolds numbers (Figure 8b). Meanwhile, the solvent evaporation is enhanced when
the fibre length increases, resulting in a more viscous fibre (Figure 8c); nevertheless, the
variation in the viscosity ratio is not very large.

4.2.4. Effects of mass diffusivities
The ability of the solvent to diffuse through the solution and then into the air is

characterized by two different Peclet numbers, namely Pe (or inverse dimensionless
solvent diffusivity in the polymer solution), for diffusion within the fibre, and Pe∗ (or
inverse dimensionless solvent diffusivity in air), for diffusion into the surrounding air
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Figure 8. Effect of Re on the model predictions of (a) fibre trajectory, (b) fibre radius and
(c) fibre viscosity ratio versus the scaled arc length, with Rb = 0.02, Re∗ = 18, We = 40,
Pe = 1 × 104, Pe∗ = 12, and R = 3, for Re = 10 (dashed line), Re = 1 (dotted line) and
Re = 0.1 (solid line).
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Figure 9. Effect of Pe∗ on the model predictions of (a) fibre trajectory, (b) fibre radius and (c)
fibre viscosity ratio versus the scaled arc length, with Rb = 0.04, Re = 1, Re∗ = 60, We = 40,
Pe = 4× 104, and R = 3, for Pe∗ = 2 (dashed line), Pe∗ = 4 (dotted line) and Pe∗ = 40 (solid
line). The inset in subfigure b is focused on the fibre end.

from the fibre surface. The effect of Pe∗ on the fibre radius and morphology is depicted
in Figure 9. At small Pe∗, the solvent evaporation from the fibre surface is higher than
that at larger Pe∗. This, on the one hand, leads to a more viscous fibre (Figure 9c) and
consequently more fibre resistance against bending. On the other hand, due to a higher
mass loss at small Pe∗, the fibre becomes thinner (Figure 9b), resulting in decreasing drag
force and accordingly increasing velocity leading to wrapping slightly tighter towards the
spinneret. However, the fibre trajectory is not much affected (Figure 9a). Changing Pe to
4×103 would only result in very small changes in the fibre trajectory and radius, implying
that the solvent diffusion coefficient has a negligible effects on the fibre dynamics (results
omitted for brevity).
Figure 10 illustrates the axial and radial profiles of the polymer concentration along the

fibre length for two different Peclet numbers, Pe. As seen, decreasing Pe mitigates the re-
sistance against polymer solution self-diffusion, resulting in a more uniform concentration
profile in the radial direction. Thus, the fibre viscosity becomes uniform in different fibre
cross sections (results omitted for brevity), which in practice guarantees the formation
of higher quality fibres on the collector. We remind the reader that, if Pe is high, the
fibre jet is much more prone to breaking due to jet instabilities at small viscosities. From
Figure 10, it can be also interpreted that, for higher Pe, the viscosity gradient is higher
along the fibre radius, causing the fibre to have a smaller mean viscosity, because of which
the fibre deformation is more likely to continue after the fibre has reached the collector.
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Figure 10. Polymer concentration profile along (a) fibre trajectory and (b) fibre cross section
at the middle of the fibre and (c) fibre cross section at the fibre end, with Rb = 0.04, Re = 1,
Re∗ = 60, We = 40, Pe∗ = 2, and R = 3. The first row is for Pe = 4 × 103 and the second
one is for Pe = 4× 104. The colourbars show the variation of the polymer concentration, c. The
thickness of the trajectory shows the scaled fibre diameter at each position.

4.2.5. Effects of surface tension
Understanding the effects ofWe (or inverse dimensionless surface tension) on the fibre

behaviour is rather complicated, as both the tensile force and the solvent evaporation
seem to affect the fibre surface force (see equation (3.95)). For this reason, in Figure 11,
the effect of We on the fibre trajectory is considered at two different Pe∗. According to
this figure, decreasing We, i.e. increasing the fibre surface tension, causes the fibre to
bend more towards the spinneret, resulting in an increase in fibre length (Figure 11a).
Although a longer length implies more evaporation, the change in the fibre radius or
fibre viscosity ratio is not remarkable (Figure 11b and Figure 11c). It is also seen that
increasing the mass transfer rate five-fold does not affect the fibre behaviour, suggesting
a trivial impact of the evaporation rate.
Let us remind the reader that at small Weber numbers, the fibre is prone to breaking

due to Plateau-Rayleigh type instabilities although we are not allowing for these insta-
bilities in our analysis. When perturbations in fiber radius due to surface tension are
allowed for, the breakup length of the fibre is typically a function of We, Re and Rb
numbers (Alsharif & Uddin (2015), Alsharif et al. (2015) and Părău et al. (2007)). Also
note that by increasing the surface force over a critical value, it may be expected that
the polymer solution would even not emanate from the nozzle as a jet but rather as an
array of drops.

4.2.6. Effects of air viscosity
Here, the effects of Re∗ (or inverse dimensionless air viscosity) on the fibre behaviour

is considered. Variations in Re∗ represent a change in the air physical properties (e.g. air
kinematic viscosity), which not only affect the mass transfer rate but also the air-drag
force. Figure 12 shows the model results for three different Re∗, from which an increase of
the fibre length is seen as Re∗ increases, mainly due to the increase in air-drag. According
to Figure 12b, the fibre radius does not change significantly at the collector in all cases.
This is because, on the one hand, increasing Re∗ causes the fibre to be longer and, on
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Figure 11. Effect ofWe on the model predictions of (a) fibre trajectory, (b) fibre radius and (c)
fibre viscosity ratio versus the scaled arc length, with Rb = 0.02, Re = 1, Re∗ = 18, Pe = 4×104,
and R = 3, for We = 5 (dashed line), We = 0.5 (dotted line) and We = 0.2 (solid line). The
first row is for Pe∗ = 40 and the second row is for Pe∗ = 8.
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Figure 12. Effect of Re∗ on the model predictions of (a) fibre trajectory, (b) fibre radius and (c)
fibre viscosity ratio versus the scaled arc length, with Rb = 0.04, Re = 1,We = 40, Pe = 4×104,
Pe∗ = 4, and R = 3, with Re∗ = 50 (dashed line), Re∗ = 60 (dotted line) and Re∗ = 80 (solid
line).

the other hand, it attenuates the solvent evaporation from the fibre surface, resulting in
a thicker fibre. From our observations here, it can be concluded that either too high or
too small Re∗ can lead to producing thicker fibres.
Figure 13 shows the change in the polymer concentration along the fibre (Figure 13a)

and at several cross sections (Figure 13b) for two air Reynolds numbers. As observed,
the radial and axial gradients of the polymer concentration are much higher in the fibre
with Re∗ = 60, than in those with Re∗ = 80, despite the fact that the fibre with the
smaller Re∗ has a smaller length. This is because of the higher solvent evaporation when
Re∗ is small, giving rise to a higher polymer solution viscosity. According to this figure,
the solvent content for Re∗ = 60 is smaller than that for Re∗ = 80, at almost every
cross section; thus, it is expected that the resultant fibre would not deform much after
reaching the collector. Therefore, it can be concluded that a longer fibre does not always
guarantee a higher quality fibre or even a thinner fibre on the collector.
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Figure 13. Polymer concentration profile along (a) fibre trajectory, (b) fibre cross section at
different arc length positions along fibre length, with Rb = 0.04, Re = 1,We = 40, Pe = 4×104,
Pe∗ = 4, and R = 3. The first row is for Re∗ = 60 and the second one is for Re∗ = 80. The
colourbars show the variation of the polymer concentration, c.

4.2.7. Effect of collector distance
The effect of the distance of the collector from the spinneret rotation centre is examined

in Figure 14. By increasing the collector distance, the fibre length obviously increases,
leading to a higher fibre velocity and accordingly a smaller fibre radius. However, a
higher mass transfer can also enhance the thinning of the fibre. It is furthermore added
that, due to a small change in the evaporation rate, the effect of fibre drying on the
fibre dynamics remains small, as the three fibres in Figure 14 follow almost the same
trajectory, albeit with different lengths. If the collection distance is too large, however,
the fibre is more likely to be disturbed leading to breakup, suggesting the existence of an
optimal operating collector distance. It is also seen that the gap between the spiral loops
becomes smaller when R becomes large, from which it can be inferred that by increasing
R over a certain value the fibre may never reach the collector.

4.3. Fibre radius at large arc lengths
To estimate fibre radius at the collector without performing simulations, we here

develop a simple scaling formula that includes the effect of aerodynamics.
Noroozi et al. (2017) have studied nanofibre formation using the CS method, analyzed

the flow regimes of nanofibre formation, and developed formulas for the fibre radius as
a function of the arc length. In particular, they have shown that, for We� 1, the fibre
at large arc lengths reaches an inviscid limit, with a slow thinning of the fibre radius
as a function of the arc length. Here, we attempt to extend their results by including
the air-drag effects. Since our results have already shown that the surface tension and
evaporation do not significantly affect the fibre radius, for simplicity we ignore their
effects. We also focus on small Rb, which is most relevant to the CS process. In this case,
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Figure 14. Effect of R on the model predictions of polymer concentration, jet trajectory and
radius variations for Rb = 0.04, Re = 0.6, Re∗ = 18, We = 40, Pe = 1× 104, and Pe∗ = 12: (a)
R = 3, (b) R = 3.5 and (c) R = 4. The purple circles mark the collector positions. The colorbar
shows the variation of the polymer concentration, c.

introducing the dimensionless rescaled arc length as L = s × `, the inviscid solution for
the dimensionless fibre radius without aerodynamic forces, Ri, can be simply found as
(Noroozi et al. (2017)):

Ri = 4

√
Rb2

2L , (4.1)

which is a function of Rb and L. On the other hand, the fibre radius including aero-
dynamic forces,

;

Ri, is also a function of Re∗ (here, the superscript “;” symbolizes
aerodynamic forces). Therefore, we may consider that Ri is simply a leading term in an
expansion of

;

Ri at the limit of small Re∗:
;

Ri(Re∗) =
;

Ri(0) +Re∗
;

R
′
i(0) + ... , (4.2)

where
;

Ri(0) = Ri. For simplicity, we assume that
;

R
′
i(0) is only a function of Rb in the

form of m1Rb
m2 , which results in

;

Ri ≈ Ri +m1Re
∗Rbm2 , (4.3)

in which m1 and m2 are coefficients yet to be determined. To properly calculate m1 and
m2, we use all our simulation results of the final fibre radius (at the collector) and adopt
a sequential quadratic programming (SQP) iterative method as a nonlinear algorithm,
to minimize the difference between the output of the numerical simulations and that of
equation (4.3). From this, we find m1 = 1/400 and m2 = 1/5 as the best fit parameters
for the final fibre radius prediction. Using the values found for m1 and m2, equation (4.3)
can be written as

;

Ri ≈
4

√
Rb2

2L + 1
400Re

∗Rb
1
5 . (4.4)

Figure 15 shows an example of the simulation results of the fibre radius versus the
arc length L. On this graph, Ri from equation (4.1) and

;

Ri from equation (4.4) are also
superimposed. As can be seen, Ri does not succeed in predicting the final fibre radius,
while

;

Ri not only predicts the final fibre radius but it also reasonably predicts the fibre
radius over a wide range of large L (i.e. the region near the collector).
Let us now use the results obtained so far to roughly estimate the effect of the air-

drag force on the jet breakup length. We may expect that the fibre is subject to break
up or beading by Plateau-Rayleigh type mechanisms. The dimensionless characteristic
time that a stationary fibre can survive before perturbations take over, causing the fibre
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Figure 15. An example of the comparison between the simulation fibre radius (thick line), Ri

(4) and
;

Ri (©) versus L. The simulation is performed using Rb = 0.01, Re = 0.6, Re∗ = 18,
We = 40, Pe = 1× 104, Pe∗ = 12, and R = 3.

Figure 16. Predictions of the jet breakup length using equation (4.6). Breakup length variations
(a) in the Rb-Ca plane for constant Re∗ = 18 and (b) in the Rb-Re∗ plane for constant Ca = 10.
For both cases ε = 0.1.

to rupture, scales as εCaRi in which Ca = We/Re is the capillary number. Using this
characteristic time, a capillary length associated with the breakup point can be estimated
as `c ∼ εCaRiu, whose combination with equation (4.4) eventually gives

`c ∼
εCa

4
√

Rb2

2L + 1
400Re

∗Rb
1
5

. (4.5)

Now if we self-consistently take `c ∼ L and solve equation (4.5) for `c, while keeping only
the leading order terms concerning Re∗, we arrive at

`c ∼
(

4
√

2 εCa
Rb

1
2

) 4
3
(

1− Re∗

1200

(
2εCa
Rb

1
2

) 1
3
)4

. (4.6)

Figure 16a shows the jet breakup length with changing Rb and Ca (for constant Re∗
and ε) based on equation (4.6). As seen, increasing the capillary force (smaller Ca)
causes the breakup length to be smaller, while increasing the rotation speed (smaller Rb)
delays the jet breakup. In addition, at small Rb the breakup length becomes very large,
implying that the jet would never rupture in practice. According to Figure 16b, on the
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other hand, increasing Re∗ causes the breakup length to be shorter and, consequently,
the jet to be more unstable. In addition, the effects of Rb become less significant when it
is large. From equation (4.6), one can also realize that increasing the nozzle diameter, i.e.
increasing ε, causes the jet to breakup faster (results omitted for brevity). The scaling
formula, equation (4.6), or better ones that might be derived in future work, show how
simulations such as those performed here might guide development of rotary centrifugal
spinning technology for fibre production.

5. Summary
Inspired by our experiments in using the CS process to produce nanofibres out of

polymer solutions, we developed and validated a string model for a highly viscous
curved jet (fibre), using a differential geometry method in a non-orthogonal curvilinear
coordinate system. We coupled the cross-averaged momentum equations with a two-
dimensional (axial-radial) concentration-diffusion equation, to account for the effects of
solvent evaporation on the fibre behaviour. To solve our differential equations, we further-
more proposed a unique set of boundary conditions, based on our common experimental
design of the CS process. Our model was fairly comprehensive as it included viscous,
inertial, rotational, surface tension, gravitational, solvent evaporation, and aerodynamic
(air-drag) effects. In fact, we found that the latter plays a crucial role in determining
the fibre trajectory, velocity and radius at very high rotation speeds and, therefore, it
cannot be ignored in such circumstances. Through a systematic parametric study, we
considered the effects of the key dimensionless groups, i.e. Rb, Re, We, Re∗, Pe and Pe∗
(see Table 3 for definitions), whose ranges were based on the controlling parameters of
our CS experimental setup. Decreasing Rb (e.g., by increasing spinning speed) results in
thinner and more viscous fibres. By decreasing Pe (e.g., by increasing solvent diffusivity
in the solution), the quality of the fibres is improved due to less diffusion resistance for
solvent evaporation. Reducing Pe∗ (increasing solvent vapor diffusivity), on the other
hand, results in more evaporation, which affects the fibre viscosity and radius, while it
shows no noticeable impact on the fibre trajectory. Variations in Re (fiber viscosity) and
We (fiber surface tension) also affect the fibre trajectory, but show no important effect on
the fibre radius and the solvent evaporation. Interestingly, variations in Re∗ indicate some
counter-intuitive behaviours; e.g. increasing Re∗ (decreasing viscosity of the air) leads to
a decrease in the solvent evaporation but an increase in the air-drag force, causing the
fibre to be longer, albeit less viscous. Furthermore, increasing the collector distance from
the spinneret leads to thinner fibres, whereas it has a small effect on the fibre viscosity.
Finally, considering the aerodynamic forces, we proposed simple estimations to predict
the fibre radius at the regions near the collector as well as the breakup length of the
fibre.
Future research directions should include development of a more sophisticated air-

drag model, the inclusion of viscoelasticity and development of a jet stability analysis
that includes the aerodynamical effects introduced in our model. Studies along these lines
are now ongoing in our research group.
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Appendix A. Experimental parameters
Here, the relations and correlations used to estimate the ranges of the experimental

parameters defined in Table 2 in §2 are introduced. These include D∗s , ρ̃s, pvap, and ρ∗.
The diffusion coefficient of the solvent in air is calculated using (Fuller et al. (1966))

D∗s = E
θ1.75

p̂
(
V

1/3
s + V ∗1/3

)2

(
1
Ms

+ 1
M∗

)0.5
, (A 1)

in which E is an empirical constant, and θ and p̂ denote the ambient temperature and
pressure.(Vs = 1.27×10−5, V ∗ = 2.42×10−5(m3/mol)) are the molar volumes and (Ms =
18, M∗ = 29 (gr/mol)) are the molecular weights of the solvent and air, respectively.
Furthermore, the concentration-scaled solvent density in air can be defined using (Bercea
et al. (2009))

ρ̃∗s = Ms

<θ
pvap(θ)

ρ(c, θ)
ρs(θ)

exp
(

1− ϕs(c, θ) + χ(1− ϕs(c, θ))2
)
, (A 2)

ϕs(c, θ) = (1− c) ρ(c, θ)
ρs(θ)

, (A 3)

in which < = 8.314 (j/(mol K) is the universal gas constant. χ ∈ [0, 1] is Flory-Huggins
interaction, which for simplicity is taken to be unity, ϕ is the solvent volume fraction,
and pvap is the solvent vapour pressure, obtained using the Antoine equation:

pvap = exp(A + B
θ + C

), (A 4)

where (A = 23.477,B = −3983.4,C = −39.7) are empirical parameters. Finally, the air
density is calculated as (Picard et al. (2008))

ρ∗ = p̂M∗

<θ

(
1− ϑ∗

(
1− Ms

M∗

))
, (A 5)

in which ϑ∗ is the mole fraction of the water vapour in the air, determined using the
relative humidity, RH∗, of the air as

ϑ∗ = fw
RH∗

100
pvap
p̂
, fw = P1 + P2p̂+ P3θ

2, (A 6)
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where fw is enhancement factor and (P1,P2,P3) are (1.00062, 3.14 × 10−8 Pa−1, 5.6 ×
10−7K−2).

Appendix B. Viscous terms
Here, we present the projection of the viscous stress terms onto the Frenet basis:

〈fviscous〉T = 1
Re

[
η

(
1
h

∂2
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(
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ξ
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(B 1)

〈fviscous〉N = 1
Re
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−
(

cos(ϕ)
(
τ,s
h2 + εrκτ2 sin(ϕ)

h3 + εrτ cos(ϕ)κ,s
h3

))
∂v

∂ϕ

− sin(ϕ) (2− 3εrκ cos(ϕ))
ε2r2h

∂v

∂ϕ
−
(

2 cos(ϕ)
ε2r2

)
∂w

∂ϕ

+ rτ sin(ϕ)2ετ
h2

∂2

∂ϕ∂s

(
u

ξ

)
+ ε cos(ϕ)

(
rκτ sin(ϕ)

h3 + r cos(ϕ)κ,s
h3

)
∂v

∂s
+ cos(ϕ)

(
1− 2εrκ cos(ϕ)

ε2rh

)
∂v

∂r

+
(
ε2 sin(ϕ)

(
r2τ2 cos(ϕ)κ,s

h3 + 3rττ,s
εh2 + κr2τ3 sin(ϕ)

h3

))
∂

∂ϕ

(
u

ξ

)

−
τ
(

3εrκ sin (ϕ)2 − 2 cos(ϕ)
)

εrh

∂

∂ϕ

(
u

ξ

)
−
(
ε2 sin(ϕ)

(
r2τ cos(ϕ)κ,s

h3 + 2rτ,s
εh2 + κr2τ2 sin(ϕ)

h3

)
− 2κ

h

)
∂

∂s

(
u

ξ

)
− τ sin(ϕ) (3− 4εrκ cos(ϕ))

εh

∂

∂r

(
u

ξ

)
−

(
κ sin (ϕ)2

εrh2 + cos(ϕ)
(

1
ε2r2 + κ2 cos (ϕ)2

h2

))
v

+ sin(ϕ)
(
κ2

h2 + (1− 2εrκ cos(ϕ))
ε2r2h

)
w +

(
κ,s (1− 2εrκ cos(ϕ))

h2 +

− ε2r2 sin(ϕ)τ,s (κτ sin(ϕ) + κ,s cos(ϕ))
h3 − εrτ,ss sin(ϕ)

h2

)(
u

ξ

))
+
((

cos (ϕ)
ε2r2 + cos (ϕ) τ2

h2

)
∂v

∂ϕ
+ εrτ sin (ϕ) τ,s

h2

(
u

ξ

)
+
(
− 2 sin (ϕ)

ε2r2 − τ2 sin (ϕ)
h2

)
∂w

∂ϕ
+ τ sin (ϕ)

h2
∂w

∂s
+ cos (ϕ)

ε2r

∂w

∂r

+
(
−εrτ

3 sin (ϕ)
h2 − τ sin (ϕ)

εr

)
∂

∂ϕ

(
u

ξ

)
− cos (ϕ) τ

h2
∂v

∂s

+ εrτ2 sin (ϕ)
h2

∂

∂s

(
u

ξ

)
−cos (ϕ)

ε2r2 w − 2 sin (ϕ)
ε2r2 v

)
∂η

∂ϕ

+ 1
ε2

(
2 cos (ϕ) ∂v

∂r
− sin (ϕ)

r

∂v

∂ϕ
− sin (ϕ) ∂w

∂r

+ sin (ϕ)
r

w − εrτ sin (ϕ) ∂

∂r

(
u

ξ

))
∂η

∂r

+
(

sin(ϕ)
((

εrτ2

h2 −
1
εr

)
∂

∂ϕ

(
u

ξ

)
− εrτ

h2
∂

∂s

(
u

ξ

)
+ τ

h2
∂w

∂ϕ
− 1
h2
∂w

∂s

)
+ cos(ϕ)

(
1
h2
∂v

∂s
− τ

h2
∂v

∂ϕ
+ 1
ε

∂

∂r

(
u

ξ

))
− εrτ,s sin(ϕ)

h2

(
u

ξ

))
∂η

∂s

]
N.

(B 2)
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Re

[
η

(
sin(ϕ)

(
∂2v

ε2∂r2 +
(

ξ2

ε2r2h2

)
∂2v

∂ϕ2 + 1
h2
∂2v

∂s2 −
2τ
h2

∂2v

∂ϕ∂s

)



A comprehensive mathematical model for nanofibre formation 41

+ cos(ϕ)
(
∂2w

ε2∂r2 +
(

ξ2

ε2r2h2

)
∂2w

∂ϕ2 + 1
h2
∂2w

∂s2 −
(

2τ
h2

)
∂2w

∂ϕ∂s

)
+ εrτ cos(ϕ)

(
∂2

ε2∂r2

(
u

ξ

)
+
(

ξ2

ε2r2h2

)
∂2

∂ϕ2

(
u

ξ

))
+ εrτ cos(ϕ)

(
+ 1
h2

∂2

∂s2

(
u

ξ

)
− 2τ
h2

∂2

∂ϕ∂s

(
u

ξ

))
+ ε cos(ϕ)

(
rτκ sin(ϕ)

h3 + r cos(ϕ)κ,s
h3

)
∂w

∂s
+ κ sin (ϕ)2

εrh

∂v

∂ϕ

−
(

cos(ϕ)
(
τ,s
h2 + εrκτ2 sin(ϕ)

h3 + εrτ cos(ϕ)κ,s
h3

))
∂w

∂ϕ

+
(

2 cos(ϕ)
ε2r2 − sin(ϕ)

(
τ,s
h2 + εrκτ2 sin(ϕ)

h3 + εrτ cos(ϕ)κ,s
h3

))
∂v

∂ϕ

− sin(ϕ) (2− 3εrκ cos(ϕ))
ε2r2h

∂w

∂ϕ
+
(

cos(ϕ) (1− 2εrκ cos(ϕ))
ε2rh

)
∂w

∂r

+ ε sin(ϕ)
(
rκτ sin(ϕ)

h3 − r cos(ϕ)κ,s
h3

)
∂v

∂s
+ sin(ϕ)

(
1− 2εrκ cos(ϕ)

ε2rh

)
∂v

∂r

−
(
ε2 cos(ϕ)

(
r2τ2 cos(ϕ)κ,s

h3 + 3rττ,s
εh2 + κr2τ3 sin(ϕ)

h3

))
∂

∂ϕ

(
u

ξ

)
+ sin(ϕ)τ (3rεκ cos(ϕ)− 2)

εrh

∂

∂ϕ

(
u

ξ

)
+ τ cos(ϕ) (3− 2εrκ cos(ϕ))

εh

∂

∂r

(
u

ξ

)
+ ε2

(
r2τ cos (ϕ)2

κ,s
h3 + 2rτ,s cos(ϕ)

εh2 + κr2τ2 sin(ϕ) cos(ϕ)
h3

)
∂

∂s

(
u

ξ

)
+
(
ε2r2 cos(ϕ)τ,s (κτ sin(ϕ) + κ,s cos(ϕ))

h3 + εrτ,ss cos(ϕ)
h2

)(
u

ξ

))
+
(
−εrτ cos (ϕ) τ,s

h2

(
u

ξ

)
− εrτ2 cos (ϕ)

h2
∂

∂s

(
u

ξ

)
− τ cos (ϕ)

h2
∂w

∂s

+ εrτ3 cos (ϕ)
h2

∂

∂ϕ

(
u

ξ

)
+ τ2 cos (ϕ)

h2
∂w

∂ϕ
+ τ cos (ϕ)

εr

∂

∂ϕ

(
u

ξ

)
+ sin (ϕ) τ2

h2
∂v

∂ϕ
− sin (ϕ) τ

h2
∂v

∂s
+ sin (ϕ)

ε2r2
∂

∂ϕ
v + sin (ϕ)

ε2r

∂

∂r
w

− sin (ϕ)
ε2r2 w + 2 cos (ϕ)

ε2r2
∂w

∂ϕ
+ 2 cos (ϕ)

ε2r2 v

)
∂η

∂ϕ

+ 1
ε2

(
2 sin (ϕ) ∂v

∂r
+ εrτ (s) cos (ϕ) ∂

∂r

(
u

ξ

)
+ cos (ϕ)

r

∂v

∂ϕ
− cos (ϕ)

r
w + cos (ϕ) ∂w

∂r

)
∂η

∂r

+
(

cos(ϕ)
(
εrτ

h2
∂

∂s

(
u

ξ

)
−
(
εrτ2

h2 −
1
εr

)
∂

∂ϕ

(
u

ξ

)
− τ

h2
∂w

∂ϕ
+ 1
h2
∂w

∂s

)
+ sin(ϕ)

(
1
h2
∂v

∂s
− τ

h2
∂v

∂ϕ
+ 1
ε

∂

∂r

(
u

ξ

))
+ εrτ,s cos(ϕ)

h2

(
u

ξ

))
∂η

∂s

]
B.



42 S. Noroozi, W. Arne, R.G. Larson and S.M. Taghavi

(B 3)

Appendix C. Drag coefficients
Here, we present the correlations used to compute the drag coefficients:

cn(Wn) =


4π
SWn

(
1−Wn

S2−S/2+5/16
32S

)
, Wn < v1

exp
(

3∑
j=0

pnj lnjWn

)
, v1 6Wn 6 v2

2√
Wn

+ 0.5, v2 < Wn

cT (Wn) =


4π

(2S−1)Wn

(
1− (Wn)2 2S2−2S+1
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)
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exp
(

3∑
j=0

pTj lnjWn

)
, v1 6Wn 6 v2

γ∗
√
Wn

, v2 < Wn

pn0 = 1.6911, pn1 = −6.7222× 10−1, pn2 = 3.3287× 10−2, pn3 = −3.5015× 10−3,

pT0 = 1.1552, pT1 = −6.8479× 10−1, pT2 = 1.4884× 10−2, pT3 = 7.4966× 10−3.

S = 2.0022− ln(Wn), γ∗ = 2, v1 = 0.1, v2 = 100, (C 1)

Appendix D. Sherwood number
In this study, we calculate the value of Sh∗ using a semi-empirical correlation expressing

(Wieland et al. (2019)):

Sh∗(~∗, Re∗w, Sc∗) = (1− 0.5G(~∗, Re∗w))
{
n1(Re∗w, Sc∗), Re∗wSc∗ > 7.3× 10−5

n2(Re∗w, Sc∗), Re∗wSc∗ < 7.3× 10−5 ,(D 1)

n1(Re∗w, Sc∗) = 0.462(Re∗wSc∗)
0.1 + f(Sc∗) (Re∗wSc∗)

0.7

1 + 2.79(Re∗wSc∗)
0.2 , (D 2)

n2(Re∗w, Sc∗) = m1(Sc∗)(Re∗wSc∗)
3 +m2(Sc∗)(Re∗wSc∗)

2 + 0.1, (D 3)
m1(Sc∗) = −3.5636× 1011 − 3.138× 109 × f(Sc∗), (D 4)
m2(Sc∗) = 4.0694× 107 − 3.9768× 105 × f(Sc∗), (D 5)

f(Sc∗) = 2.5(
1 + (1.25Sc∗1/6)2.5

)0.4 , (D 6)

G(~∗, Re∗w) =


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~∗Re−1

w

)2
, Rew > ξ = 10−7(

1−
(
Rewξ

−1)2
)2

+
(

3− 2
(
Rewξ

−1)2
) (

~∗Rewξ−2)2
, Rew < ξ.

(D 7)

Here, ~∗ and Re∗w denote the air attack angle and the air local Reynolds number
respectively, calculated as ~∗ = (RRe∗V∗rel) .T̂ and Re∗w = RRe∗ ‖V∗rel‖.
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