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Incentive Mechanisms for Crowdblocking
Rumors in Mobile Social Networks

Yaguang Lin"”, Zhipeng Cai

Abstract—Mobile social networks (MSNs) have become an indis-
pensable way for people to access information, express emotions,
and communicate with each other. However, the advent and ex-
tensive use of MSNs has also created fertile soil for the breeding
and rapid spread of rumors. Therefore, blocking the spread of
rumors in MSNs has always been a hot topic in this field. With
the idea of crowdsourcing, we propose a novel rumor control
framework, called Crowdblocking, in which users can implement
control schemes in a collaborative and distributed way, so that
the rumors can be controlled more effectively. With the proposed
framework, the main problem that arises is how to motivate more
users to actively participate in rumor blocking activities. To this
end, we design two effective incentive mechanisms in this paper.
First, we propose an incentive mechanism based on the Stackelberg
game for homogeneous control tasks. We theoretically analyze the
Stackelberg equilibrium to maximize the utility of the network
manager and users involved in blocking rumor tasks, and ensure
that no user can improve its own utility by unilaterally changing
the current strategy. Second, for heterogeneous control tasks, we
design a real-time reverse auction incentive mechanism, which
allows users to have more autonomy and freely customize their
own plans to participate in control tasks. Also, we prove that
the mechanism possesses the desired properties of task timeliness,
computational efficiency, user rationality, manager profitability,
and price truthfulness. Finally, we validate the efficiency of the
proposed mechanisms through extensive simulation experiments
on the real datasets.

Index Terms—Mobile social networks, rumor blocking, incen-
tive, auction, Stackelberg game.

I. INTRODUCTION

HANKS to the rapid proliferation of mobile intelligent
devices and the quick development of instant messaging
services, Mobile Social Networks (MSNs) have become the
most important way for people to access information, express
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emotions and communicate with each other [1], [2]. Many pop-
ular mobile social networking platforms, such as Twitter, Face-
book, WeChat and Sina Weibo, demonstrate the unprecedented
power of MSNs in information dissemination and sharing [3],
[4]. Compared to the traditional way of information interaction,
MSNs provide certain benefits such as low transmission delay,
high real-time performance and no space limitation, etc. Inrecent
years, MSNs have attracted increasing attention in academia and
industry due to their potential value [5], [6].

The development of MSN’s provides a continuous impetus for
the flow of information. Because of its ubiquitous and accessible
characteristics, MSNs not only improve the scope of information
sharing, but also speed up the information dissemination [7], [8].
However, it may also become a fertile breeding ground for gen-
erating and disseminating malicious rumors or misinformation
[9]. When people use MSNs to enjoy convenient and high-speed
information services, some unauthenticated information or ru-
mors will flow into it and may spread widely. This poses a serious
threat to normal social network activities, such as harming the
interests of others, disturbing public order and threatening social
stability [10], [11]. Next, let’s introduce a motivating scenario.
In September 2018, a powerful hurricane ‘“Hurricane Florence”
caused severe damage in the Carolinas of America. However,
there were rumors on MSNs that “the Brunswick nuclear power
plant is in danger due to nearby flooding”, “the environmental
protection agency does not have the budget to respond to natural
disasters”, etc [12]. These have led to serious panic among the
public and made the rescue even more difficult.

Rumors spreading in MSNs have been a critical threat to
our society. Therefore, how to effectively block the spread of
rumors has become a research hotspot. In the recent years,
many researchers have devoted themselves to this problem and
proposed a variety of control methods [9], [13]-[17]. These
methods can be divided into two categories. The first is to
identify or infer the source nodes of rumor diffusion based on
the network topology and the information flow records, and
block or isolate the source nodes to prevent them from further
spreading rumors to the network [10], [18], [19]. Although this
type of method can uncover the source of rumors and implement
corresponding control measures, it ignores other users who are
being infected by rumors, leading to the emergence of new
sources. Thus, rumors cannot be completely eradicated from the
network. The second method is to inject correct information into
the network to fight rumors, so as to block the spread of rumors
[13]-[15]. For example, some information can be released by
authoritative departments or managers. Then this authoritative
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information can be spread to the whole network to maximize its
influence, so that the users who may be misled will no longer
believe the rumors that come to them. Meanwhile, there are
two ways to spread authoritative information: continuance and
pulse [11], [20]. The continuance method is to continuously send
authoritative information to users, while the pulse method is to
disseminate authoritative information to users at intervals. In re-
cent years, inspired by the optimal control theory, some optimal
control strategies for blocking rumors based on continuance and
pulse forms have been proposed [15], [21], [22]. That is, calcu-
lating the optimal control intensity (sending different quantities
or different contents of authoritative information against rumors)
at each time or period under cost constraints, so as to achieve
the optimal control effect.

However, some new problems arise in the implementation of
the control methods mentioned above, especially in a wide-area
network scenario. It is not difficult to find that most of the current
control measures are implemented by managers in a centralized
way. The direct result of this is that the managers take on all
the workloads of control tasks. The workloads are so heavy that
the managers can’t finish their work. Following that, based on the
concept of maximizing influence by selecting 7op-k seed nodes
in social networks [23], some scholars proposed an improved
scheme to assist managers to perform control tasks by selecting
some specific users (e.g., users with a high degree of sociality)
[13], [24], [25]. Although this relieves the pressure of executing
users to some extent, it still does not fundamentally solve the
problem of overload. At the same time, a method was proposed
for all users to perform tasks in turn, that is, to select different
users as executors of tasks at different times [26], [27]. The
advantage of this method is to further balance the workloads
among users. However, in the network with diverse users and
complex structure, the efficiency and quality of tasks are not high
due to the difference of social attributes among users. In addition,
some users are reluctant to perform control tasks because of
selfishness or resource consumption [28], [29].

Different from the existing control methods, we propose a
novel control framework inspired by the idea of crowdsourcing
[30]-[32], called Crowdblocking, that is, users can participate in
the activities of control rumors more flexibly and autonomously,
and all users can cooperate to implement the whole control
scheme. Furthermore, on the basis of the Crowdblocking rumor
control framework, if more capable users in the network can
be motivated to spontaneously participate in the Crowdblocking
rumors and forward the authoritative information, it will be faster
to block the spread of rumor information.

Toward this end, we further design incentive mechanisms to
encourage more users in MSNSs to take an active part in blocking
the spread of rumors, so as to achieve distributed and cooperative
implementation of all control tasks among more users, and
to control rumors faster and more efficiently. Considering the
attributes of control tasks, we establish homogeneous control
task model and heterogeneous control task model. Then, based
on the Stackelberg game theory [33] and the reverse auction
theory [34], we establish efficient incentive mechanisms for the
above models, respectively. The multi-fold contributions of this
paper are summarized as follows:
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® We put forward a new Crowdblocking framework for con-
trol rumors in MSNs by using crowd intelligence. Besides,
we propose incentive mechanisms to encourage more users
to actively participate in rumor blocking activities. More
importantly, to the best of our knowledge, this paper pio-
neer the concept of Crowdblocking and incentive mecha-
nisms for control rumors in MSNs.

e For homogeneous control tasks, we design an incentive
mechanism based on the Stackelberg game, called HTIM.
We solve the Stackelberg equilibrium, and theoretically
analyze the optimal strategies of users which can maximize
their utilities when other users’ strategies are fixed, and
ensure that no user can improve its utility by unilaterally
changing the strategy. In addition, we propose a method for
calculating the optimal budget of the manager to maximize
its utility.

¢ For heterogeneous control tasks, we propose an incentive
mechanism based on the real-time online reverse auction
called RTA to assign tasks to active participants at the earli-
est. Meanwhile, we theoretically prove that RTA possesses
the desired properties of task timeliness, computational
efficiency, user rationality, manager profitability, and price
truthfulness.

e We evaluate the performance of the proposed incentive
mechanisms on the real dataset. The effect of the HTIM is
very close to that of the theoretical optimal strategy, which
can create maximum utility for the manager and users. In
addition, compared to existing mechanisms, the proposed
RTA can speed up the task allocation by 20%.

The remainder of the paper is organized as follows. In Section
II, some previous works are reviewed. We present the system
model and problem formulation in Section III. Then, in Section
IV and V, we propose HTIM and RTA for homogeneous task
model and heterogeneous task model, respectively. After evalu-
ating the performance our proposed models and mechanisms in
Section VI. We conclude this paper in Section VII.

II. RELATED WORK

Rumor blocking has become a research hotspot in the field
of MSNss in the recent years [25]. Scholars have realized the ur-
gency of blocking and controlling rumors, and proposed various
control schemes from the perspective of network managers [10],
[11], [13]-[21].

One of the representative methods is to find the source of
rumors and block it. In [18], Luo et al. studied the problem
of exploring the source of rumors. According to the cascade
relationship of rumor propagation, they established a compu-
tational model to estimate the probabilities of users who are
most likely to be the source of rumors. Then the problem
is transformed into a mixed integer quadratic programming
problem with quadratic constraints. The optimal solution of
the above problem is obtained by using standard optimization
toolboxes. In addition, considering the constraints of algorithm
complexity, they also proposed an improved algorithm based
on the heuristic optimization to estimate the sources (users) of
rumors more quickly. Jiang et al. [10] proposed that identifying
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the sources of rumors and isolating them in time play a vital
role in reducing the harm caused by rumors in social networks.
They used a back-propagation strategy to identify suspects who
spread rumors, and established a microscopic rumor spreading
model to calculate the maximum likelihood for each suspect.
Their work can more accurately identify the sources of rumors.
However, adopting the method of blocking some users to control
the spread of rumors will inevitably affect the experience of some
users and the quality of service of the network, and to some
extent disturb the normal communication order of the network.
Wang et al. [14] realized this realistic problem and proposed a
model of dynamic rumor influence minimization with the user
experience. They regarded user experience as a constraint of
network services and set a threshold of maximum blocking time
for each user. Once the maximum blocking time was exceeded,
the normal communication activities of the blocked user were
restored immediately.

Another mainstream approach to effectively control the
spread of rumors in MSNs is that sending positive information
corresponding to rumors. Wang et al. [15] explored the impact of
user mobility on information diffusion, and proposed a computa-
tional model to describe the process of rumor propagation. Then,
a double pulse control strategy is proposed to dispel rumors by
sending two kinds of positive information regularly in the net-
work. Besides, considering cost constraints, an optimal control
method for epidemic information diffusion in social networks
is proposed [21]. They modeled real-time control measures as
time-varying dynamic functions, and solved the optimal distri-
bution of dynamic functions through dynamic programming,
thus minimizing the control cost in the network. He et al. [11]
paid attention to the heterogeneity of users in social network,
and designed a control method which combines the real-time
control with pulse control to suppress the spread of rumors.
They also calculated the implementation intensity of control
strategies for different victims to ensure cost effectiveness. In
summary, all of the above works have designed effective control
measures, providing a feasible solution for rumor control in
MSNs. However, none of these efforts addressed the issue of
how to implement control strategies.

Inspired by the problem of how to select Top-k seed nodes
to maximize the impact of information in social networks,
Tong et al. [13] explored how to select k seed users under a
given budget to maximize the number of unaffected users by
disseminating positive information. They proposed a sampling
method based on the reverse tuple to select seed users to per-
form tasks, and proved that the proposed method has low time
complexity. In order to solve the problem of user selection in
rumor blocking, Zhu et al. [24] studied how to use the least
cost to select the least positive seed user, so that the effect of
positive seed can reach the preset threshold. At the same time,
considering the disturbance of rumor information to seeds and
the time-effectiveness of information, they proposed a scalable
greedy algorithm to determine the positive seed nodes. Both
methods can find the users set of task execution under a certain
budget, but the premise is that all users are willing to participate
in the task execution. So, they only focus on the selection of
users, not the design of incentives.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 9, SEPTEMBER 2019

With the increasing scale of MSNs, the types of users in
the network become more and more complex. Scholars have
proposed some incentive mechanisms to encourage users to
participate in the task execution independently [30], [35], [36].
These incentives are mostly common in the field of crowdsensing
and so on. Referring to the auction theory in economics, Gao
et al. [35] proposed a Lyapunov-based Vickrey Clarke groves
auction mechanism to motivate users to perform tasks, which
greatly improves the proportion of user participation. Similarly,
an incentive mechanism called LSB is proposed to motivate
users to participate in the crowdsourcing tasks [30]. The authors
designed a reverse auction mechanism, proved the submodule
property of its objective function, and proposed a greedy strategy
to select the user who performs the task. However, the LSB
mechanism has been proved to be inconsistent with the truthful-
ness property.

In addition, participating in sensing tasks may expose users’
privacy information, in order to motivate privacy-sensitive users
to perform sensing tasks. Koh ez al. [37] proposed an incentive
mechanism based on the Stackelberg game, which can meet
the privacy requirements of users, and increase the range of
sensors and the diversity of data. Then the unique solution of
Stackelberg equilibrium is derived and the stability of the mech-
anism is proved. Nevertheless, aforementioned mechanisms are
all offline, and cannot be applied to real-time task allocation envi-
ronment. Lin et al. [38] designed an online incentive mechanism
called SOS, which can make assignment decision immediately
when a user or task arrives, and proved that it can overcome the
Sybil attack in the network. However, they assume that only one
user can be assigned to tasks in a period of time. When multiple
tasks or users come at the same time, the mechanism allocates
tasks slowly.

The design of incentive mechanisms has also been studied in
many other fields, such as cooperative communication, spectrum
trading, network routing, etc [39], [40]. These incentive mecha-
nisms provide a theoretical basis on how to make users actively
participate in the execution of tasks, and the proposed methods
are worthy of our reference. However, because of the different
objectives and different nature of the scenarios, the proposed
incentive mechanism cannot be directly applied to the scenario
of blocking rumor spreading in MSNs.

For all this, we will design new incentive mechanisms to
encourage users to actively participate the task of controlling
the spread of rumors. Considering different types of tasks, we
will propose incentive mechanisms for homogeneous tasks and
heterogeneous tasks, respectively.

III. SYSTEM MODELS AND PROBLEM FORMULATION

Firstly, we introduce the Crowdblocking rumor control frame-
work. Secondly, considering the attributes of control tasks, we
establish the homogeneous control task model and the heteroge-
neous task model. In the homogeneous task model, the manager
publishes the same control tasks. For example, the manager
wants to refute rumors by sending the same correct information
to users. On the contrary, in the heterogeneous task model, the
content of control tasks released by the manager is different. For
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Fig. 1. The diagram of Crowdblocking framework.

instance, the manager needs to send specific control information
to prevent or correct users according to the degree of rumor
infection. In addition, in the homogeneous task model, users
receive the same payment for each task because all tasks are the
same, whereas, in the heterogeneous task model, the payment
of each task is different as the content and value of tasks are
different.

Therefore, the above two models are different but complemen-
tary. The design of incentive mechanism in the homogeneous
task model can provide task assignment scheme for homoge-
neous networks or scenarios with the same control measures.
On the contrary, the design of incentive mechanism in hetero-
geneous task models can be applied to heterogeneous networks
and scenarios where more flexible control measures are adopted.
In addition, the two models proposed can also be applied to
information maximization scenarios with minor modifications.

A. Crowdblocking Framework

We consider the Crowdblocking rumor control framework to
have a manager M and n network users S = {1,2,...,n —
I,n}, where n > 2. As shown in Fig. 1, all users can com-
municate with the manager in the cloud. Firstly, the manager
broadcasts some tasks for rumor control to uninfected neighbor
users according to the rumor blocking plan (step (1). After
considering the factors of cost and energy consumption, etc.,
the users receiving broadcast messages may select some tasks
from M to make their own execution plans and carry out the
corresponding tasks (step (2)). After users complete the selected
tasks, the execution results are submitted to the manager (step
(3)). Then, the manager checks the results of users and pays them
a certain amount of rewards (we call payments) to compensate
for their loss in energy consumption and so on (step (4)), and the
task assignment of this round is completed. It is worth noting that
the manager can identify whether the users in the network are
infected by rumors or not, and it will not assign tasks to users who
have been infected by rumors. In fact, some effective methods
for identifying the nodes (users) infected by rumors through the
analysis of user activity records, have been proposed in recent
years [10], [11], [15], [18]. Note that although the method of
identifying infected nodes is beyond the scope of this work,
the proposed Crowdblocking framework is compatible with any
existing method.

In addition, we assume that the manager and users in the
network are selfish and rational. The goal of the manager is to
assign tasks to network users in a timely manner with minimal
cost. For network users, the goal is to earn benefits to themselves
by participating in the control tasks. Undoubtedly, users will not
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actively participate in control tasks without guaranteed profits.
Therefore, while completing the control tasks, it must be guar-
anteed that a user will be paid no less than its cost, otherwise
the user will refuse to participate in the control tasks. Similarly,
in each round of task assignment, the manager must ensure that
the payment allocated to all users is less than the budget, that is
to say, its own income is positive.

B. Homogeneous Task Model

In the homogeneous task model, the manager publishes some
homogeneous control tasks and announces that the total budget
for the tasks is R, where R > 0. If the user ¢ is not infected
with rumors and it decides to participate in the execution of
tasks, we use n; to represent the number of tasks that user @
decides to perform, where n; is a positive integer, i.e.,n; € NT.
Undoubtedly, a user needs to spend a certain amount of cost to
execute tasks. Here, we define the total cost of user 7 to execute
n; tasks as the following non-linear function:

ci :a—I—fymi—i-/ﬁnf-. (1)

Where, o > 0 is the cost of receiving messages from the man-
ager. As all tasks are the same in the homogeneous task model,
each user only needs to receive messages once. y; > 0 is the
unit cost caused by channel occupancy, energy consumption
and other factors when user 4 forwards a message. xn? is used
to represent the additional cost to users due to bad phenomena
such as message retransmissions caused by signal interference or
poor channel quality, where x > 0. Note that, we do not impose
a strong assumption on the ¢; since any other form of non-linear
function could also be used here to derive the solution. Further,
we assume that R > ¢;, and when users finish their selected
tasks, the manager will divide R proportionally according to the
number of tasks each user performs as its payment. If the user ¢
performs n; tasks, the payment of user ¢ is p; = ﬁni, and
the utility of user 1 is: '
R

> jes Ty

It is worth noting that each user in the network is selfish, and
users make decisions before participating in the tasks to ensure

u; > 0. Then, if > B oyt

jes™d !
task is less than thJeEScost of each task performed by the user
1), user ¢ will not participate in the n;-th task. For the manager
with the budget I?, the more control tasks completed by users, the
greater the benefits created for it. Here, we represent the number
of tasks completed by all users as mg, thenmg = > n;, and
we define the utility of the manager as follows:

U= f(mo) — R, 3)

where f is the manager’s valuation function of the number of
tasks completed by all users. We assume that f is a strictly
convex function and increases monotonously with the increase
of my. It is worth noting that this assumption is feasible and
realistic, and has been accepted and adopted in the previous
works [30], [35], [37], [40].

Under the above model, the problems and challenges we faced
in designing incentive mechanism are:

U; = n; — (a + vin; + mnf) . 2)

: (i.e., the payment for each

jeS
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Problem I: max u; (n;), that is, how to determine the strat-
egy of user ¢ so as to maximize its utility w; when the budget R
and other users’ strategies are fixed.

Problem 2: max U (R), thatis, how to determine the budget
R to maximize the manager’s utility U.

C. Heterogeneous Task Model

In heterogeneous task model, the manager publishes m dif-
ferent control tasks ' = {7, 72, . .., Tin—1, T } Within time step
t €[1,---,T]. Because of the heterogeneity of tasks, the costs
for completing different tasks are different. Moreover, due to
different network structures, the cost for performing the same
task varies with different users. We use ¢] to represent the cost
for user ¢ to complete task 7;. In addition, by implementing
control tasks, users are no longer misled by rumors. Therefore,
for managers, performing each task can create a certain value.
We define the value created by completing the task 7; as v;.
Besides, each user has its own working time [t;, t';], in which
ti,t'; €[1,---,T) and t; < t/;. Users can only perform tasks
during their working time, and when ¢ ¢ [t;, '], the cost of user
1 performing any task is +o00. Users can select tasks they want
to perform during their working time independently and form
their own tasks set. Assuming that user 7 selects a set of tasks
I';, where I'; C I

Then, the user ¢ will submit a bidding information B; =
(ti,t's, T4, b;) to the manager, where b; is the bid for the user
i to perform the tasks set I';, and b; > ann cl. We call B;
the time-task-bid, to express its willingness and requirements to
participate in the control tasks. After receiving users’ time-task-
bid pair, the manager will select some users as the executors to
form a set of winners S, where S C S. If 4 € S, the manager
will pay the user ¢ a certain amount of payment p; after all
the selected tasks have been performed, where p; > b;. By this
stage, the utility u; of user ¢ by participating in these tasks is as
follows:

i = pi_ZTJEF,;Cz7 if ie‘g; 4)
! 0, otherwise.

After all winners complete their tasks, the utility that the man-
ager will gain is shown as follows:

> v pi )

Tj€Uiesls ieS

U:

Another problem and challenge we face are:

Problem 3: How to design an effective incentive mechanism
to motivate more users to participate in heterogeneous control
tasks more autonomously, while satisfying the following condi-
tions:

® Task timeliness: the mechanism can assign tasks to users

at the earliest time.

e Computational efficiency: the mechanism can determine

winners and calculate payment in polynomial time.

® User rationality: the mechanism can guarantee that no

user’s utility is negative.

® Manager profitability: the mechanism can ensure that the

utility of the manager is non-negative.
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TABLE I
NOTATIONS IN HOMOGENEOUS TASK MODEL

Symbols Description
R,n budget of the manager and number of users
mo, S number of all tasks performed and set of winners
S,S5_; set of all users and set of all users excluding user ¢
ng,n; strategy of user ¢ and optimal strategy of user @
N set of all users’ strategies
N_; set of all all users’ strategies excluding user ¢
« cost of users receiving a message
Yi cost of user 7 sending a message
K additional cost weight for users to perform tasks
Ci, Di total cost of user ¢ and payment of user %
ui, U utility of user 4 and utility of the manager

® Price truthfulness: None of the users can get more payment
by raising the bid that is different from its cost.

IV. INCENTIVE MECHANISM FOR HOMOGENEOUS TASKS

From the homogeneous task model we established in
Sub section I1I-B, there is a obvious conflict of interest between
the manager and users (that is, users want the budget as much
as possible, while the manager wants the budget as little as
possible). From the perspective of Game Theory [33], we build
the strategic interaction between the manager and users as a
non-cooperative game. Each user’s strategy is to determine the
number of tasks n;, it has to perform so as to maximize its utility
when the other users’ strategies are fixed. The manager’s strategy
is to determine the budget R to maximize its own utility. Since
the Stackelberg game can solve the conflict of interests between
users and manager, and find out their optimal strategy [33], [40],
we model the Homogeneous Tasks Incentive Mechanism as a
Stackelberg game, called HTIM. Both users and manager are
players in HTIM, and the manager is the leader and the users
are the followers, where both users and manager only seek to
maximize their own utilities. We use S to represent the set of
all users in the network, and S_; to represent the set of all users
excluding user i, we have S = S_; Ui. Then, we use N and
N_; to denote the set of all users’ strategies and the set of all
users’ strategies excluding user ¢, respectively. So, we also have
N = N_; Un,. For clarity, we list the frequently used notations
in homogeneous task model and their respective descriptions in
Table I.

A. Theoretical Optimal Strategies of Users

First, we calculate the optimal strategy n; to maximize the
utility of user 7 in case of a fixed budget R and a strategies
set N_;, where n; > 0 and n; € N. We calculate the first and
second derivatives of the utility function Eq. (2), respectively:

8u1- R Z icg .My
s = SIS 2k, (6)
(Zjes nj)
O, 2R} jes 1
- SRic A 7Y
o2 K (7

(Zjes nj)3
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For each user j € S, we have nn; > 0. Besides, we have R >
0 and x > 0. So, the second-order derivative of u; is always
negative. Thus, the utility function wu; is strictly convex, which
means that if the optimal strategy n; of user ¢ exists, then n] is
unique. Next, by setting Eq. (6) to 0, we have:

R - Rn;
2 jes i (Zjes ”j)

If user ¢ participates in the tasks, then ¢ is winner and n; > 0,
otherwise n; = 0. We define the set of winners as .S, and S =
{7 € S|n; > 0}. Let ky be the number of winners, and ko =
|S|. Then, considering that Y°,_gn; = >, g n;, we have:

R Rn,,
quﬁ Nq (qug nq)

For above equation, we sum all the elements in S and get:

koR R
z:onq — 5 —va—2ﬁ2nq20.

an < pt
q€5 7 pes qes

5 — 7% —2kn; =0,i€ S (8)

s —Yp—26n,=0,peS. (9

(10)
qes

Further, we solve the > qe5 Tg- By discarding the meaning-
less negative value, we can get the following result:

VKZMSMJ?+M%W%—1N—ZM§%

Z ng = ym . (1)
qes
Letd = qug ng, and bring 6 into Eq. (9), we have:
0 (R —p0) g
=" S. 12
" T TRyoner P S 12)
Hence, the optimal strategy of user ¢ can be obtained as:
B0 if jc §
n;k _ R+2K62 ? (13)
0 otherwise.

It is worth noting that the calculated n; is a positive number,
not a positive integer, that is, n} € N and n} ¢ N™.

B. Nash Equilibrium

In this subsection, we explore whether a stable state can be
achieved in HTIM when all users adopt the optimal strategies,
so that no user can improve its utility by unilaterally changing
the current strategy in this stable state. As we all know, this state
is the Nash equilibrium in the non-cooperative game [41]. Next,
we define Nash equilibrium for HTIM.

Definition 1: All users’ strategies (n]¢,n}c,...,nn°%,,
n¢) in HTIM are the Nash equilibrium state. Then for any user
1, the strategy n['® satisfies:

i

7
Given a budget R, if the Nash equilibrium exists and is unique
in HTIM, we can determine the unique optimal strategy for
each user to maximize its utility when other users’ strategies are
fixed. Next, we analyze the existence and uniqueness of Nash
equilibrium in HTIM. We have:
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Theorem 1: For a given budget R, if the set of strategies
N* = (nj,n3,...,n},_,,n;) for all users is the unique Nash
equilibrium of HTIM, then it satisfies the following conditions:

i) let S = {i € S|n; >0}, then |S| > 2;

0(R-v;0) .. .

11) nr = { R+(2)»<92 otlkfe;\iie;

iii) if v, < max;.5{v;}. thenp € S;

iv) The cost of user ¢ to perform a homogeneous task is
¢} = a +v; + k. We rank the costs of n users in a non-
decreasing sequence i, %2, -- -, Yn—1,Yn- Let h be the
largest positive integer less than n and satisfy ~;, < % <
Yhit,then S ={1,2,...,h —1,h}.

We prove the condition (i) as follows.

Proof: Let’s first assume that |5’ ] = 0, and no user currently
involves in the control tasks. So, any user 7 in the network
can unilaterally change its strategy from n; =0 to n; > 0 to
participate in the control tasks and gain utility. This is contrary
to the definition of the Nash equilibrium, so ’5‘ ‘ # 0.

Then, we assume that if |S| =1, user i will involve in the
control tasks, and we consider it in the following two Cases:

Case 1: If n; > 1, the utility that the user ¢ gets from the
manager is u; = R — o — y;n; — kn?. At this point, the user
can gain more utility by changing the strategy fromn; ton; — 1,
which is contrary to the definition of the Nash equilibrium.

Case 2: If n; = 1, because R > c;, any other user j except ¢
in the network can unilaterally change its strategy from n; = 0
to n; > 0 to participate in control tasks and gain more utility. It
still contradicts the definition of the Nash equilibrium.

To sum up, we prove that ‘1\7| > 2. [ |

Then, we prove the condition (ii) as follows.

Proof: From Eq. (13), we can see that if i € S, i participates
in the control tasks. At this time, the optimal strategy taken
by user i is n] = %, which can ensure that ¢ can get the
greatest utility when other users’ strategies are fixed. In addition,
when i ¢ S, then i is not involved in the control task, there is no
doubt that the strategy of ¢ is n; = 0.

Next, we prove the condition (iii) as follows.

Proof: Undoubtedly, if i € S, then n; > 0. From (ii) we
know that if n; > 0, there is R — ;6 > 0. So, we have:

R _
vi < Yk 1€8 (14)
Further, we can draw the following conclusion:
maxqy; < —. (15)
€S 0

Assuming that 7y, < max;.5{v;}, and p ¢ S. From (ii) it is
known that the strategy of pis n, = 0. At this point, we take the
strategy n,, = 0 and substitute it in Eq. (6) and get the following:

> ma, >0
e ———— = — — XY; — .
> jes T =g T e 2 T e =

Then, we can conclude that if 7, < max;c5{7;} and p & S,

user p can increase its utility to u, > 0 by unilaterally changing

the strategy ton,, > 0, which s contrary to the Nash equilibrium.

Therefore, the condition (iii) is proved. [ |
Finally, we prove the condition (iv) as follows.

(16)
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Algorithm 1: HTIM.
Input: R, S, {7}
Output: {n;},{p:}
Set S« 0, {ni} + {0}, {p:} + {0}

Sort i € S by the order v1 < 72 < -+ < yp—1 < Vi3
S« Su{1,2};j+«3;
while j < k and v; <

BOWON -

4k R dO
o V(S0 +8Ru|S| =55y
| S« Su{jhji++;:
6 end

wm

\/(ZPES' 'YP)2+8R'€(|§|71)721265‘ b,

7 60« .

8 foreach i € S do

e Q ) O(R—v;0) |.
9 1fz€Sthennze{R+2N92J,

10 else n; < 0;
11 end

12 N < ZieSni 5
13 foreach i € S do

14 ifn¢>0thenpi<—m%;
15 else p; < 0;
16 end

Proof: The n users are sorted in a cost non-decreasing order
Y1sV2, - - s Yn—1, Yn- Because h is the largest positive integer that
satisfies 7, < &, it is known h € S from Eq. (14). From (iii)
we can get that if p is the largest positive integer that satisfies
vp <max;cs {7}, then pe S and S={1,2,....,p— 1,p}.
So, we have p < h. Assume that p < h, then there is v, < %
andp+ 1 ¢ S. Similarly, we take the strategy n,,; = 0 of user
p + 1into Eq. (6) and get:

R R

= " T+1 =7 —Yp+1 > 0. (17)
> jes Ty ! 0 g

The above equation shows that user p+ 1 can gain more
utility by increasing the number of tasks performed, which
i§ contrary to the Nash equilibrium. So, we have p = h, and
S={1,2,...,h—1,h}. [ |

C. Incentive Mechanism

In the above subsections, we calculate the optimal strategy set
N* = (nj,n},...,n;,_,,n;) for all users with a given budget
and prove that the strategy set N * is the unique Nash equilibrium
for HTIM.

Next, we design the detailed steps of HTIM, as shown in
Alg. 1. It is worth noting that the theoretical optimal strategy
n; is a decimal value. Here, we have to consider an important
scenario constraint that the number of tasks n; that user 7 chooses
to perform must be an integer value. In order to ensure user utility
u; > 0, the n} is rounded down as the number tasks n; of user
i in HTIM, that is, n; = [n}].

In Alg. 1, we initialize the winners set S, the winners’ task
number set {n;} and the winners’ payment set {p;} (line 1).
Then we sort all the users belonging to S in a non-decreasing
order in accordance with the cost 7;, and add the first two users to
the set S as winners (lines 2-3). Next, we add other eligible users
(i.e., users get more payments than their costs for participating
in tasks) as winners to the set S (lines 4-6). We calculate the
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number of tasks performed by each user (lines 8-11). Finally,
we calculate the payment for all users according to the number
of tasks they performed (lines 13-16).

The time complexity of Alg. 1 is analyzed as follows. Sorting
all users (lines 4-6) takes O (nlog,n), The time required to
determine the winners (lines 4-6), calculate the number of tasks
for all users and calculate the payment for all users is equal to
O (n). Therefore, the overall time complexity is dominated by
sorting, and is O (nlog,n).

D. Optimal Strategy of the Manager

In HTIM, both users and manager are players, in which the
manager is the leader and the users are the followers. In the
case of any budget R, all users’ strategies have the unique Nash
equilibrium state. So, the manager can determine the value of
R to maximize its own utility. We bring the optimal strategy
calculated by Eq. (12) into Eq. (3) and conclude that:

U=f<Zn;‘> - R, (18)
€S
where

e [OEER it ieS.

‘ 0 otherwise.

Theorem 2: There is a unique optimal strategy R*, which
constitutes HTIM’s unique Stackelberg Equilibrium (R*, N*),
where N* is the set of all users’ optimal strategies calculated
by Eq. (12) when the budget is R*. And, under the condition of
(R*, N*), the manager’s utility is maximized.

Proof: As can be seen from Eq. (3), the manager’s utility
function U (n;) is a strictly concave function related to n; under
a fixed R. From the Subsection IV-A, we can conclude that
HTIM can determine the unique optimal strategies set N* for
all users at any value of R. Therefore, we can conclude that
the manager’s utility function U (R, N*) is still strictly convex
at any R. There must be the unique R*, so that the manager’s
utility can be maximized under the condition of (R*, N*), and
the unique R* can be calculated by using either bisection or
Newton’s method [42]. | |

V. INCENTIVE MECHANISM FOR HETEROGENEOUS TASKS

The auction-based mechanism is considered to be an effective
solution to motivate users to participate in the execution of
tasks. In this section, we propose a Real-Time reverse Auction
mechanism, called RTA with the aim of motivating users to
participate in heterogeneous tasks. We consider the manager
to be the auctioneer and the users as bidders. Table II lists the
frequently used notations and descriptions in heterogeneous task
model while the meanings of symbols n, S, S, p; are the same
as that in Section IV.

A. Objectives of RTA Mechanism

The RTA must satisfy task timeliness, computational effi-
ciency, user rationality, manager profitability, and price truth-
fulness. Task timeliness is used to ensure that RTA can assign
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TABLE II
NOTATIONS IN HETEROGENEOUS TASK MODEL

Symbols Description
t, T current time step and maximum time step
F task, set of tasks and number of tasks
[t i) set of tasks selected by user ¢ and active period of user ¢
cz cost of user 4 performing task 7;
b; bid of user ¢ for executing selected tasks set
B; time-task-bid pair submitted by user % to the manager
Vrj, U5 value of the task 7; and marginal value of user %
@y, U utility of user ¢ and utility of manager
St St set of active users and set of winners in time step ¢
St i set of active users in time step ¢ excluding user ¢

Algorithm 2: RTA Mechanism.

Input: 7, 5,1, {B;}
Output: {S “Vopi}
1 Set S < 0,5 + 0,5 «
2 Winner Selection (A, t,
3 foreach i € S do
4 {pi}(—{0}7t<—ti;
5
6

1,A<T;

I

0,t
7T7{ Z}

Winner Pricing(t, S, S, {5}, {B:});
end

eﬂf @ release tasks
Qm —Oa O 2 submit bids
@* @) select winners }Alg. 3 » Alg. 2
’ - *@—’ \(\‘3 @ perform tasks
Users | | Manager | (® payment 1Alg. 4

Fig. 2. The schematic diagram of RTA.

tasks to users in a timely manner. Computational efficiency is
used to ensure that RTA can be executed in polynomial time.
User rationality is used to ensure that each user can benefit from
participating in tasks. Similarly, manager profitability is used
to ensure that the manager’s utility is non-negative. In addition,
price truthfulness is used to ensure the fairness and robustness of
RTA. We use the following theorem to ensure that RTA possesses
the property of price truthfulness.

Theorem 3: [43] If RTA ensures price truthfulness, the fol-

lowing two conditions must be satisfied.

e The winner selection rule must be monotonous, that is, if
user 4 wins the auction by B; = (t“ t';,T;,b;), user ¢ can
also winitby submitting alower bid b; orabroader working
time #;, #;, where b; < b; and £; < ti, U >t

e The payment p; to each winner must be the critical value,
and if the user ¢ changes the bid to ZA)l > p;, the user ¢ will
not win the auction.

B. Design of RTA Mechanism

We design the implementation steps of RTA, as shown in
Alg. 2. It consists of two parts. The first part is the winner
selection (line 2). The second part is the calculation of each
winner’s payment (lines 3-6). In addition, we show the functions
and relationships of the Algorithms in Fig. 2.

The detailed steps of winner selection are shown in Alg. 3.
In each time step, we first calculate the active users set St at
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Algorithm 3: Winner Selection.
Input: A,t,S,T,{B;}
Output: {S'}, S
Set S« 0,5 «— 0,5 « 0, t 1, A< T ;
while A # (0 and t < T do
foreach i € S do
| ift; <tandt'; >t then S* + S*U {i};
end
if S*\S # () then
i 4= argmax;ege g (vj 5') )
while v; (S) > b; and St\S‘
S+ Su{i}, S« S U{z}, Ae A\Ty;
10 if S*\S # () then
14— argmax;cgi\ g (Uj (S) - bj);

o N N AR W N

11 end

12 end

13 t+—t+1;
14 end

Algorithm 4: Winner Pricing.

Input: ¢, 5%, S, {S'}, {B;}
Output: {p;}

1 while ¢t < ¢'; do

2 St; = S\ {i}, C" ¢ Uiy S

3 it S,\C" # 0 and max;egt \ ot (v; (C)
4 repeat '
5
6

—b;) > 0 then

i +— argmax;cgt \ct ('U]' (Ct) — bj);
pi <

max{p;, min{v;(C") — (vi,(C") = b, ), vi(C*)} }:
7 Ct+ C'u {ij};

8 until v;; <b, or SEAC = 0;

9 end

10 pi < max{p;,v;(C")};

11 t+—t+1;

12 end

t time step (lines 3-5), and then we assign tasks to users in a
greedy manner according to the marginal value (we will show
the definition of marginal value in Theorem 5) created by users
and the bid of users (lines 6-12).

We show detailed steps of winner pricing in Alg. 4. For each
user ¢, at each time step ¢ in its working time, we first calculate
St ., which is the set of active users in time step ¢ excluding
user ¢ (line 2). Then, we compute the maximum bid of user @
such that ¢ can be selected instead of other users in S*; in time
step t. Finally, we use the maximum bid of the user ¢ during the
working time as the critical value of its payment (lines 3-10).

C. Theoretical Analysis of RTA Mechanism

In this subsection, we will theoretically prove that RTA has the
properties of task timeliness, computational efficiency, user ra-
tionality, manager profitability, and price truthfulness. As shown
in the following theorems:

Theorem 4: RTA achieves computational efficiency with a
time complexity of O(nm?).

Proof: In winner selection stage, the worst case is that only
one task is assigned in each while-loop (lines 2-14 of Alg. 3).
Calculating the active users set S* takes O(n) time (lines 3-5
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of Alg. 3). It takes O(nm) to compute the user with the largest
marginal value. Because the number of tasks is m, each winner
gets assigned at least one task, and the maximum number of
winners is m. Thus, the time complexity of winner selection
stage is O(nm?). When calculating the payments for each user
i, the worst case is to re-select the winners from all users
excluding user ¢ (this process is similar to Alg. 3), and it takes
O(nm?) time. Since the maximum number of winners is m, the
for-loop (lines 3-6 of Alg. 2) takes O(nm?) time. To sum up,
the time complexity of RTA is dominated by this for-loop, and
is O(nm?). [ |

Theorem 5: RTA is rational for all users.

Proof: From the line 8 of Alg. 3, if ¢ can become winner,
there must be v;(S) > b;, where v;(S) is the new added utility
created by user ¢ for the manager on the basis of the selected
winners set S, thatis, v;(S) = ijen\ukegpk v, Wecall v (S)
themarginal value created by the user ¢ to the manager. From line
6 of Alg. 4, we can get p; > min{v; — (vij - bz:]. ), v; }, where
user ¢; is the j-th winner after removing user ¢ at ¢ € [t;,t';]. At
this point, we consider two Cases:

Case 1: If i; exists, then we have p; > min{v; — (v;, —
b, ),v;}. Because the order of winners is determined by the
Gfeedy method, we have v; —b; > v;, —b, . So, by <v; —
(vi; —b, ). Then we can get b; < min{v; - (vi, = b, ), vi}
< pi

Case 2: If i; does not exist, it means that the user who replaces
user ¢ at the ¢-th position does not exist when user ¢ is removed,
that is, the condition of line 3 of Alg. 4 is not satisfied. According
to line 10 of Alg. 4, we have b; < v; = p;. [ |

Therefore, RTA has been proved to be rational for users.

Theorem 6: RTA can ensure manager profitability.

Proof: As can be seen from Alg. 3, each user i € S sat-
isfies b; < v;. Therefore, the utility of the manager is U=
> icg (vi — pi). Next, we prove that p; < v; is satisfied for any
user i € S.

Firstly, it can be concluded from line 6 of Alg. 4, that is:

—bi,)) avi(k+1)} (19)

where 4 is the j-th winner after removing user ¢ in t € [t;,t';],
and k is the number of winners. v;(;) represents the marginal
value of user ¢ at j-th position. Then we consider the following
two cases:

Case 1: If i; exists, we assume that after removing user 4, the
r — th winner in ¢ € [t;, ;] satisfies:

; — INax § max (V;5) — (V.
pi {KM( i) — (v

r=arg max min{v;; — (v;. —b. ), v 20
g max minfui) — (vg; = b)) vy 20)

Further, we have:
pi = min{vi(r) - (Uir - bi,,)ﬂ}i(r)} 2D

From the lines 4-8 of Alg. 4, we have v; > b, . Because the
order of winners is determined by the Greedy method, we also
have v;(,y < v;. Moreover, we can conclude that p; = v,y —
(vi, = b, ) < i) < v

Case 2: If i; does not exist, it means that the user who replaces
user ¢ at the j-th position does not exist when user ¢ is removed,
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that is, the condition of line 3 of Alg. 4 is not satisfied. According
to line 10 of Alg. 4, we have v; = p;.

Thus, the manager profitability of RTA is guaranteed. |

Theorem 7: RTA is truthful for all users.

Proof: We show that any user ¢ can’t make more utility by
submitting a false working time [f;, ] or a false bid b;.

We first demonstrate that the winner selection rule of RTA is
monotonic. If a false working time window [Z;, #,] submitted by
the user ¢ is narrower than the true working time window [¢;, t';],
the user 7 may lose the chance to be selected as the winner. At
the same time, the marginal value generated by submitting [£;, /]
will not be greater than that generated by submitting [¢;,';]. If
the [t;, )] submitted by the user 4 is wider than [t;,';], when
user i is selected to perform the task in t € [t;, #,]\[t;,t';], then
the cost is ¢; = co and the payment is p; = 0. Then, we can
conclude that by submitting a false working time [t;,.], the
user ¢ can neither be selected as a winner in advance nor increase
its payment. In addition, as we can see from Alg. 3 that in the
same time step ¢, the value of v; (S) — b; for each user j will
increase monotonously with a decreased bid b;. Therefore, the
winner selection rule of RTA is monotonic.

Next, we show that the payment to each winner is the critical
value. User i is selected as the winner by submitting bid b; in
time step ¢;, and the payment is p;. If user ¢ submits a false bid Bi
and b; > p;, then during the period of ¢ € [t;,t';), user ¢ will not
be selected as winner. This is because the winner selection rule
of RTA is monotonic and v; — 131 < v; — b;. FromEq. (19), there
is always a user who satisfies v; — b; < Vi, — bij int € [t;, 1]

Conversely, if b; < D, the user ¢ will be a winner in ¢ € [t;, t';].
Hence, the payment p; is a critical value for user ¢ to be winner.
To sum up, we can conclude that RTA can ensure truthfulness
for all users. u

Theorem 8: RTA is timely for all tasks.

Proof: From Theorem 7, we conclude that the winner selec-
tion rule of RTA is monotonic. In addition, from line 8 of Alg. 3,
we can know that in each time step ¢, as long as the candidate
user meets the criteria v; > b;, it can become a winner, and the
selected tasks can be executed in time at ¢. That is to say, RTA
guarantees task timeliness to the greatest extent on the basis of
platform profitability. |

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to validate
the performance of our proposed models and mechanisms.
Firstly, for homogeneous task model, we compare the number
of winners, the number of tasks executed and the user utility
while using the optimal strategy and HTIM, respectively, and
we compare the approximation between the optimal strategy and
HTIM mechanism. Secondly, for heterogeneous task model, we
analyze the speed of assigning tasks, the utility of user and the
utility of manager in RTA. In addition, we compare RTA with
LSB mechanism [30] and SMS mechanism [38] to illustrate
the advantages of RTA. Finally, we validate the adaptability
and effectiveness of the HTIM and RTA in large-scale network
scenarios.

Authorized licensed use limited to: Georgia State University. Downloaded on July 26,2020 at 02:08:25 UTC from IEEE Xplore. Restrictions apply.



LIN et al.: INCENTIVE MECHANISMS FOR CROWDBLOCKING RUMORS IN MOBILE SOCIAL NETWORKS

TABLE III
THE DEFAULT VALUES OF BASIC PARAMETERS

Parameter Description Value
b user cost parameter in HTIM 100
o user cost parameter in RTA 0.5
R total budget 1000000
K additional cost of user in HTIM 0.1
kmazx maximum number of selected tasks 5
[Vmin, Vmaz] value of task [10, 20]
[tmin, tmaz] working time window of user [0,300]
[tshorts tiong] working time length of user [10,20]

A. Experimental Scenario Setting

In order to get more objective and realistic experimental
results, we carry out experiments on the real Twitter dataset.
This dataset has the attributes of nodes and the relationships
among nodes in Twitter network [44]. In the original Twitter
dataset, we selected a connected subset of 10,000 users and
their relationships to conduct our experiments. It is worth noting
that the above users are not deliberately selected, hence the
experimental results are without loss of generosity.

In the homogeneous task model, we consider that the cost
for sending messages is related to the degree of a user on
the social network graph (i.e. the number of neighbors in an
undirected graph), and the higher the degree of users is, the
lower the corresponding cost will be. So, let’s assume that
~vi =b/In (1 + A;) + n, where A; is the degree of user ¢ on the
social network graph, the term In (1 + ;) is used to smooth
the degree differences among users. And b is a constant that
determines the magnitude of the v;, and 7 € [0, 1] is a random
value to add a perturbation to the ;. Note that we do not impose
a strong assumption on the ~y;, and any other forms of functions
that can reflect the above relationship could also be used here to
derive similar results.

In addition, in the heterogeneous task model, we have the
following settings: 1) The values of tasks are distributed evenly
in [Umin, Umaz)- 2) The working time of users is distributed
evenly in [tynin, tmaz] and the lengths of users’ working time
are distributed evenly in [tsnort, tiong]- 3) The number of tasks
selected by users is evenly distributed in [1, kpyqz]. 4) The
cost of user ¢ for executing the selected tasks set is c¢; =
(1- olog( s, (1+ Ai)) > et Vry» in which vr; is the
value of task 7;, A; is the degree of user ¢ on the social network
graph, and X,,,,4, is the maximum degree of users. The term
log(144,,,.) (1 + ;) is used to smooth the user’s degree and
get a normalized result, and o € [0,1] is a constant used to
determine the magnitude of the costs of all users. Similarly, the
form of ¢; we present here is not imposed by a strong assumption
either. Besides, we set the default values of basic parameters as
mentioned in Table III.

B. Simulation Results of Homogeneous Tasks

Number of winners: Fig. 3 shows the relationships between
the number of winners and the manager’s budget or parameter
b under the optimal strategy and HTIM. As we can see, with
the increase in the budget, more and more users will become
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Fig. 4. The number of tasks performed vs. the total budget.

winners. In addition, as the value of b increases, the cost of users
performing tasks increases, resulting in fewer winners. There-
fore, we can conclude that the larger the total budget or the lower
the cost of users performing tasks, the more likely users will
become winners. It is worth pointing out that the uneven trend
of the number of winners is due to the nonuniform distribution
of users’ degree in the Twitter dataset. More importantly, by
comparing Fig. 3(a) with Fig. 3(b), we can see that the number
of winners determined by the optimal strategy and HTIM is very
close in different scenarios. It is proved that the proposed HTIM
and the optimal strategy have a high approximation.

Number of tasks performed: Fig. 4 shows the relationships
between the number of tasks performed and the manager’s
budget or parameter b under the optimal strategy and HTIM. We
can see that the number of tasks performed increases with an
increase in the budget or a decrease in the value of b. Therefore,
if the manager’s budget is bigger or each user’s cost is lower, the
more users are motivated to perform more tasks. By comparing
Fig. 4(a) with Fig. 4(b), it can be found that the number of tasks
in HTIM is slightly lower than that in the optimal strategy. The
reason is that HTIM adopts rounded down method on the basis
of the optimal strategy solution and abandons some tasks.

User utility: We randomly select three users (IDs are 8, 398
and 2026) to explore the relationship between the utility of user
and the manager’s budget under the optimal strategy and HTIM,
as shown in Fig. 5. The relationship of the selected three user
costs is cg < c398 < 6. With the increase of the budget R, the
utilities of three users keep increasing. In addition, we can also
detect that the user’s utility in HTIM is slightly greater than that
in the optimal strategy, because a small part of tasks is abandoned
in HTIM mechanism, resulting in fewer total number of tasks
to be performed, so the payment for a single task will increase,
and the user’s utility will increase accordingly.
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User strategy: We randomly select two users (IDs are 3121
and 963) to analyze the relationship between user utility and
the number of tasks performed with a fixed budget and fixed
other users’ strategies. Users 3121 and 963 are both winners.
From Fig. 6, we can see that with the increase of the number of
tasks performed, the utility of the corresponding user increases
first and then decreases. We can then verify that when the
budget and other users’ strategies are fixed, the user can get
the greatest utility by adopting the optimal strategy (45 and
57, respectively). Changing the strategy, whether increasing or
reducing the number of tasks, will lead to a decrease in the utility.
In addition, the results in the HTIM are very close to those in
the optimal strategy, which proves that the optimal strategy we
proposed can accurately calculate the optimal strategy for each
user. The proposed HTIM can make the user’s utility very close
to the theoretical optimal value under constraints.

C. Simulation Results of Heterogeneous Tasks

Speed of assigning tasks: Fig. 7 shows the trend of the number
of tasks assigned over time steps in RTA and SOS. As can be
seen, the number of tasks assigned in both mechanisms increases
over time steps. Obviously, the number of tasks assigned in RTA
is growing faster than that in SOS. Therefore, we can conclude
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Fig. 8. The bid of user vs. the utility of user.
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Fig. 9. The utility of the manager vs. the number of tasks.

that RTA can assign tasks to executing users more quickly. In
addition, we can also detect that the advantage of RTA is more
obvious in scenarios with more tasks. Because RTA allocates as
many tasks as possible to active users in each time step, while
SOS only chooses one user to allocate tasks in each time step.

Utility of user: We select two users (IDs are 105 and 271) to
analyze the changes of utilities obtained by submitting different
bids. The costs of user 105 and user 271 are 56 and 47, and the
value created by performing all tasks is 82 and 79, respectively.
From Fig. 8, we can see that with the increase of bids, the utilities
of users in LSB increase linearly, which means that users can
make more utility by submitting a bid higher than the cost.
However, in RTA and LSB, when the user increases the bid,
the utility will remain unchanged until it is greater than a certain
critical value. Then, the user will lose the chance to become a
winner, and the utility is 0. Thus, the critical values of user 105
in RTA and SOS are 66 and 81. When the bid is below the critical
value, user will become the winner. RTA and SOS regard 66 and
81 as the payment to user 105, and the corresponding utilities
are 10 and 25, respectively. A similar conclusion can be drawn
for user 271. Therefore, RTA and SOS are truthful.

Utility of the manager: Fig. 9 shows the relationship between
the utility of the manager and the number of tasks. As the number
of tasks increases, the utilities of the manager are increasing in
all three mechanisms with LSB having the greatest utility. This is
because the payments to users in LSB are determined by the bids
of users, and LSB can create maximum utility for the manager if
users’ bids equal to their costs. In RTA and SOS, the payments
are given according to the calculated critical values, and the
critical value will not be lower than the bid, so the utilities of
the manager in RTA and SOS are less than that in LSB. Thus,
RTA and SOS can guarantee the price truthfulness at the cost of
a certain amount of manager’s utility.
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D. Simulation Results on Large-Scale Scenarios

In order to evaluate the performance of the proposed HTIM
and RTA mechanisms in large-scale scenarios, we built a syn-
thetic dataset as the large-scale network scenarios used in the
experiments. In the synthetic dataset, the number of users is
different while the other parameters are consistent with the
settings in the Subsection VI-A. When the number of network
users varies from 10,000 to 200,000, we first investigate the
number of winners and the number of tasks completed in HTIM
mechanism, and then we simulate the number of tasks assigned
by RTA mechanism. The simulation results are shown in Figs. 10
and 11.

Performance of HTIM: Fig. 10(a) shows the relationships
between the number of winners with the number of users and
the budget under HTIM. We can see that as the number of users
increases, more and more users will be selected as winners. Also,
an increase in the budget can lead to an increase in the number
of winners. In addition, comparing Fig. 10(a) with Fig. 3(b), we
can find that they show the same trend when the number of users
is fixed. Fig. 10(b) shows the relationships between the number
of tasks with the number of users and the budget under HTIM.
Clearly, with the increase of the number of users or the budget,
the number of tasks performed increases. In addition, we can
still observe that the trends in the number of tasks as budget
changes in Fig. 10(b) and Fig. 4(b) are consistent. The above
results and conclusions show that our proposed HTIM can be
fully applicable to large-scale scenarios with satisfactory and
stable performance.

Performance of RTA: Fig. 11 shows the changing trend of the
number of tasks assigned with the number of users and time steps
when the total number of tasks is 1,000 and 10,000, respectively.
Similar to Fig. 7, the number of tasks successfully assigned to
executing users in both scenarios increases over time steps. In
addition, as the number of users increases, more and more users
participate in the task execution by submitting more bids, so the
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task allocation and execution speed will be faster. Importantly,
we can still conclude that RTA has robust performance in large-
scale scenarios and can still assign tasks to users faster.

VII. CONCLUSION

In this paper, we propose two effective incentive mechanisms
to encourage users to actively participate in the task of blocking
the spread of rumor information in MSNs. For homogeneous
control tasks, we focus on user fairness and propose an incentive
mechanism based on the Stackelberg game. For heterogeneous
tasks, we focus on user autonomy and timeliness of task alloca-
tion, and propose an incentive mechanism based on the real-time
online reverse auction. This paper can provide theoretical basis
and feasible technical approaches for the user motivation or the
task allocation in rumor blocking scenarios. The proposed meth-
ods can motivate more users to participate in the execution of
tasks independently, so the advantage of these mechanisms will
be more prominent in large-scale networks. In addition, the pro-
posed incentive mechanisms can be extended to other scenarios,
such as advertising, cooperative communication, maximizing
influence, etc. In future works, we plan on exploring other factors
such as the users’ interests on the impact of incentive measures.
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