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Molecular dynamics (MD) simulations generate valuable all-atom resolution trajectories of complex systems, 
but analyzing this high-dimensional data as well as reaching practical timescales even with powerful 
supercomputers remain open problems. As such, many specialized sampling and reaction coordinate 
construction methods exist that alleviate these problems. However, these methods typically don’t work directly 
on all atomic coordinates, and still require previous knowledge of the important distinguishing features of the 
system, known as order parameters (OPs). Here we present AMINO, an automated method that generates such 
OPs by screening through a very large dictionary of OPs, such as all heavy atom contacts in a biomolecule. AMINO 
uses ideas from information theory and rate distortion theory. The OPs learnt from AMINO can then serve as an 
input for designing a reaction coordinate which can then be used in many enhanced sampling methods. Here we 
outline its key theoretical underpinnings, and apply it to systems of increasing complexity. Our applications 
include a problem of tremendous pharmaceutical and engineering relevance, namely, calculating the binding 
affinity of a protein-ligand system when all that is known is the structure of the bound system. Our calculations 
are performed in a human-free fashion, obtaining very accurate results compared to long unbiased MD 
simulations on the Anton supercomputer, but in orders of magnitude less computer time. We thus expect AMINO 
to be useful for the calculation of thermodynamics and kinetics in the study 
of diverse molecular systems. 

I. INTRODUCTION 

Molecular Dynamics (MD) has become a routine tool for 
simulating and understanding the various structural, 
thermodynamic and kinetic properties of complex 
realworld molecular systems. MD simulations make it 
possible to study these systems comprising millions of 
atoms reaching timescales of microseconds and beyond, 
while maintaining all-atom spatial and femtosecond 
temporal resolutions. In spite of this staggering success of 
MD over the decades, one is faced with two central and 
interconnected problems. First, these long simulations 
with the aforementioned high spatial and temporal 
resolution can easily produce an overwhelming amount of 
data (easily into terabytes). How do we make sense of this 
data? Second, even these long simulations are not long 
enough, as currently in spite of the best available 
supercomputing resources MD can reach at best a 
microsecond in practical wall-clock time. Thus specialized 
so-called “enhanced sampling” algorithms1 have been 
developed that allow us to reach much longer timescales 
of seconds, minutes and beyond in a statistically accurate 
manner. 

While these two challenges to MD might appear 
disconnected, they share a commonality – namely, the 

need for dimensionality reduction. The complex, often 
bewildering dynamics that seems to happen in an 
extremely high-dimensional configuration space, can 
often be reduced to certain key variables that capture the 
underlying physics or chemistry. The other remaining 
variables are then either irrelevant or can simply be 
mapped into noise. These key variables, which we refer to 
as “order parameters (OP)” can then serve to form a data-
efficient low-dimensional picture of complicated 
molecular systems and processes. These OPs serve as 
internal coordinates that are useful as a basis set for the 
description of the processes of interest.2 Through one of 
many available methods3–7, they can then also be mixed 
into an even lower-dimensional reaction coordinate (RC). 
By then enhancing fluctuations along this RC, enhanced 
sampling methods such as metadynamics8 and umbrella 
sampling9 can tackle the second challenge mentioned 
above, i.e. assessing processes that happen far slower than 
the capabilities of unbiased MD. From the above 
discussion it should thus be clear that the proper selection 
of OPs is crucial for analysis and enhancing of MD 
simulations.5,8 

In this work we propose a new fairly automated 
computational scheme for the selection of such OPs. 
Previously, selection of OPs has relied purely on 
biophysical intuition or knowledge of the system and 
processes of interest.5 However, for novel systems of 
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interest, there may not be enough information about the 
system to make claims about which OPs are relevant to a 
particular chemical process. Creating a robust, flexible 
algorithm to screen for OP redundancy is thus a problem 
of great interest to the field of MD simulations. Selecting 
noisy OPs that are not pertinent to the process of interest 
or OPs that provide redundant information can slow down 
calculations or even yield misleading results. For instance 
consider the case where the selected OPs are used to 
construct a RC for metadynamics simulation (or other 
biased simulations).8 Providing redundant, correlated or 
noisy OPs can lead to an inefficient biasing protocol that 
might end up being even slower than unbiased MD. While 
the developed formalism and algorithms should be quite 
generally applicable to a variety of real-world molecular 
systems, here we consider as an illustrative test-case the 
calculation of absolute binding affinity of a protein-ligand 
system in explicit water. 

Our algorithm, which we name “Automatic Mutual 
Information Noise Omission (AMINO)”, uses a mutual 
information based distance metric to find a set of 
minimally redundant OPs from a much larger set, and then 
uses Kmeans clustering with this distance metric, together 
with ideas from rate distortion theory10 to find 
representative OPs from each cluster that provide 
maximum information about the given system. We 
demonstrate the effectiveness of our method on analytical 
model systems and the much larger FKBP-BUT protein-
ligand system. In each example we begin with absolutely 
no prior information on the system other than an initial 
set of coordinates for each atom. We apply AMINO to 
generate a set of OPs from an unbiased trajectory of the 
system, then we generate a reaction coordinate using 
SGOOP to run metadynamics, enhancing the dissociation 
process and accurately calculating the absolute binding 
free energy. 

We believe that the current work is arguably one of the 
first illustrations of a fully automated pipeline where 
starting with a known protein data bank (PDB) structure 
of a bound protein-ligand system, a force-field, and a short 
MD run exploring the bound pose (but not necessarily 
showing dissociation), one performs enhanced sampling 
of the dissociation and obtains binding free energy in 
order of magnitude speed-up relative to unbiased MD. The 
OPs generated by AMINO can be used in any other 
procedure of choice for generating reaction coordinate, 
such as TICA,3 RAVE,6 or VAC7, followed by use in an 
enhanced sampling protocol not limited to metadynamics. 
The OPs identified by AMINO also form a most concise 
dimensionality reduction of an otherwise gargantuan MD 
trajectory. Selecting OPs has been a major barrier toward 
creating a fully automated enhanced sampling procedure, 
and now, AMINO can serve as an automated protocol for 
selecting OPs on an information theoretic basis. We thus 

expect AMINO to be useful to a wide range of practitioners 
of molecular simulations. 

II. THEORY 

We start this section by summarizing the key steps in 
our algorithm, and then gradually go through every step in 
detail. Our ultimate goal is to construct clusters of similar 
OPs and choose a single OP from each cluster that best 
describes its parent cluster as a whole. The number of 
clusters or equivalently the number of OPs is learned on-
the-fly through a formalism based on rate distortion 
theory. The key input to our algorithm is a large set of OPs 
and their time series in a short unbiased trajectory. Note 
that AMINO does not need temporal information on the 
OPs, as such the time series could be coming from 
independent unbiased simulations, appropriately 
reweighted biased simulations, or could even be 
temporally scrambled. Given this input, AMINO involves 
the following sequential procedure: 

1. Cluster the input OPs using a mutual 
informationvariant that serves as a distance metric. 
The idea here is that not all OPs carry significantly 
different information, and with an appropriate 
distance function, we can identify groups of OPs 
carrying similar information. 

2. Select a single OP from each cluster to describebest 
all of the OPs within the cluster. This OP is thus most 
representative of the information carried by all OPs 
in the cluster that it belongs to. 

3. Finally, determine the appropriate total numberof 
clusters, or equivalently the number of OPs to use to 
describe the entire set of OPs that AMINO started 
out with. 

In step 1, we use a mutual information based distance 
function to measure the similarity of any two OPs.11 In step 
2, we apply a variation on the well-known K-Means 
clustering algorithm,12 and finally in step 3, apply a recent 
implementation of rate distortion theory to clustering in 
order to find the ideal number of clusters or OPs.13 

A. A Distance Function based on Mutual Information 

Any clustering procedure requires a relevant distance 
metric. In Cartesian coordinate systems, the most 
commonly used metric is the Euclidean distance between 
two points.12 However, there is no easily identifiable 
lowdimensional space that OPs lie upon in which the 
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Euclidean distance between two OPs would shed 
meaningful information about the similarity of the OPs. 
Thus, we need to define a new metric where the distance 
between two OPs would correlate with how similar they 
are to each other in terms of information they carry. 

More rigorously speaking, a useful distance metric for 
this setting satisfies all of the relevant properties of any 
other distance metric in addition to requirements specific 
to this system. Together these requirements are detailed 
below for a distance metric D(X,Y ) for any given pair of 
OPs X and Y . 

1. Non-negativity: D(X,Y ) ≥ 0 

2. Symmetry: D(X,Y ) = D(Y,X) 
3. OPs X,Y that are close to each other, as determined 

by small D(X,Y ), should be “redundant”. This would 
mean that knowledge of one OP’s time series 
provides substantial information about the time 
series of the other OP. In the clustering scheme, 
these parameters should be clustered together so 
that only one of the two is likely to be chosen for the 
final set. 

4. OPs X,Y that are far from each other, as determined 
by large D(X,Y ), should be relatively independent. 
This would mean that they are not redundant and 
should not be clustered together. 

The Mutual Information (MI) based distance metric 
proposed by Kraskov and co-workers satisfies all of the 
above requirements.11 This distance function is a variant 
of Mutual Information normalized over the range [0, 1]. 

In the continuous setting, 

  (1) 

where I is the mutual information between X and Y 

and H is the joint entropy of X and Y , which are 
welldefined terms in information theory detailed for 
instance Ref. 10. For binned probability distributions over 
the OP’s time series, Eq. 1 can be expressed as: 

 

Eq. 1 and Eq. 2 are equivalent formulations of the 
MIbased distance between two OPs X and Y . Inspection of 
Eq. 2 gives an intuitive reasoning about the meaning of D. 
The denominator of the fraction component of Eq. 2 
contains the joint probability distribution of X and Y while 
the numerator is the joint probability distribution 
assuming independence between X and Y . The core 
purpose of this equation is to compute how different the 

true join probability distribution is from the 
independence assumption. 

Clustering using the mutual information based distance 
metric results in clusters of OPs with low mutual 
distances, where knowing the time series of a single OP in 
a cluster would give significant information about the 
trajectories of the other OPs in the cluster. Any two OPs 
from different clusters, however, would be fairly 
independent, and knowledge of either OP’s time series 
would provide little information about the other time 
series. 

B. Dissimilarity Matrix and Clustering 

Now that we have defined a suitable distance metric in 
Sec. IIA, we are ready to complete the first step in AMINO, 
namely clustering of different OPs by how similar or 
dissimilar they are. K-Means clustering provides a 
powerful approach to group a set of data points into k 
clusters for some provided number of clusters k. An 
overview pseudocode for K-Means clustering is provided 
in Algorithm 1. We stress that Algorithm 1 must be 
provided with the number of clusters k and that 
determining the optimal k for a given set of data is a 
separate (yet extremely) important concern. In Sec. IIC, we 
discuss this problem in detail along with our solution to it. 

As stated in Algorithm 1, the initial centroids for 
KMeans clustering are randomly generated points in the 
same space as the elements of S, the set of data points to 
be clustered. For traditional K-Means clustering, this 
initial randomization is acceptable due to the flexible 
nature of the centroids. For a proper selection of k, even if 
two of the randomly generated initial centroids are very 
close to each other, some other cluster in the data set that 
is unrepresented by a centroid will “pull” one of the 
centroids towards itself over time, as demonstrated in Fig. 
1. Fig. 1 (a)-(c) show the time evolution for a set of data 
points using traditional K-Means clustering. In the first 
iteration (Fig. 1(a)), the centroids µ1,...,k were chosen as a 
random set of k points in the same space as the points in 
the data set S. It is important to note that the centroids 
µ1,...,k are not directly sampled from S itself, so there is no 
guarantee that these points will be near any of the clusters 
in S. 

In the K-Means clustering example provided, two of the 
randomly chosen initial centroids are closest to the same 
cluster show in Fig. 1(a), yet by the second iteration (Fig. 
1(b)), one of the centroids is beginning to move to the 
unrepresented cluster. In traditional KMeans clustering, 
the centroids do not need to take on values from the 
original data set S, so centroids are flexible and can move 
from one cluster to the other. This transition of a centroid 
from one cluster to another allows for traditional K-Means 
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Clustering to converge to a reasonable solution, which is 
shown in Fig. 1(c). 

However, now consider the problem in this work, where 
the points to be clustered represent OPs. Initial centroids 
cannot be generated randomly from the space of OPs, as 
all centroids must be points within the set of provided OPs. 
The same restriction applies to successive iterations - the 
updated centroid for a given cluster should be the element 
of the cluster that is closest to the remaining points. We 
thus need to revisit the definition of a centroid itself, and 
here we use the internal distortion of a cluster for a given 
candidate centroid to measure how well the candidate 
centroid represents the entire cluster, and by minimizing 
the distortion, we get the centroid of a given set of points. 
More formally, the centroid of some cluster z in the 
original set of data points can be defined as: 

  (3) 

A pseudocode for K-Means clustering with restricted 
centroids is provided as Algorithm 2. 

As a result of the requirement that the centroid must 

(Algorithm 2) on the initial centroids from (e). 

be an actual element of a cluster, we lose on the ability of 
K-Means where to transition a centroid from one cluster 
to another. In other words, centroids can become “stuck” 
within dense clusters of OPs. The resulting k clusters may 
fail to accurately represent clusters that are not captured 
by the initial set of randomly-generated starting centroids. 

As an example, consider the initial centroids given in 

Fig. 1(d). These initial centroids are the final solution 

Algorithm 1 K-Means Clustering 

1: function KMeansCluster(S,k) . Where S - set of data 

points to be clustered, k - number of clusters 
2: µ := random set of k unique elements 
3: repeat 
4: for i in S do 
5: ci := nearest centroid in µ 

6: end for 

 

FIG. 1: (a)-(c) Traditional K-Means clustering (Algorithm 1) over multiple iterations for a dataset. (d)-(f) Important 

figures for Restricted Centroid K-Means clustering (Algorithm 2) Red circles represent centroids, while blue points 

represent points in the dataset. (a) The initial random centroids. The two rightmost centroids are closest to the same 

cluster. (b) An intermediate state where one of the centroids is moving from one cluster to another. Note that the 

bottommost centroid is far from any of the points in the original data set. (c) The final set of centroids that the K-

Means algorithm converges to. (d) An example initial distribution of centroids where the centroids would stay“stuck” 

in a cluster if a restricted centroid approach is used. The provided centroids are the final centroids using the restricted 

centroid K-Means algorithm, meaning that additional iterations will return the same set of centroids and simply not 

give 3 centroids in 3 clusters. (e) An initial distribution of centroids that have been chosen to maximize internal 

distance, or dissimilarity. (f) The result of running restricted centroid clustering 

( a ) ( b ) ( c ) 

( d ) ( e ) ( f ) 
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7: for each cluster j do 
8: µj = mean of all points assigned to cluster 
9: end for 
10: until µ converges to a single set 
11: return µ 

12: end function 

of restricted centroid K-Means clustering, meaning that K-
Means algorithm has already converged to its solution. 
There is clearly a cluster that is unrepresented by any of 
the 3 centroids, yet due to the decreased centroid 
flexibility, neither of the centroids that share a cluster will 
cross the gap between the clusters in the data set. 

To surmount this problem, we begin our K-Means 
clustering scheme with a non-randomly chosen set of OPs 
to act as the vector of initial centroids. These centroids 

Algorithm 2 K-Means Clustering (Restricted 

Centroids) 
1: function KMeansCluster(S,k) . Where S - set of data 

points to be clustered, k - number of clusters 
2: µ := random set of k unique elements from S 
3: repeat 
4: for i in S do 
5: ci := nearest centroid in µ 
6: end for 
7: for each cluster j do 
8: µj = element that best describes j (Eq. 3) 
9: end for 

10: until µ converges to a single set 
11: return µ 

are chosen as to maximize the dissimilarity between the 
selected OPs. We achieve this by constructing a 
dissimilarity matrix A of k OPs that tracks the distance 
between every pair of OPs within its set. This procedure is 
summarized in Algorithm 3, and we now describe it in 
detail. For any dissimilarity matrix A of size k, which is 
defined for a given set of k OPs, x1,...,xk, we set any element 
in the matrix Ai,j ≡ D(xi,xj). As a result of this definition a 
few noteworthy properties arise: 

1. A is a hollow matrix with all diagonal terms 0, since 
D(xi,xi) = 0 ∀i. 

2. A is a symmetric matrix, since D(xi,xj) = 

D(xj,xi) ∀i. 

3. The geometric mean of all non-diagonal elementsof 
a row corresponding to an OP gives a measure of 
how “dissimilar” the OP is to the rest of the set of OPs 
described by the dissimilarity matrix. 

To further elaborate on the third point above, consider 
an OP i and a set S of OPs containing i and other OPs. The 

geometric mean t(i,S) defined in Eq. 4 is a measure of how 
dissimilar an OP i is from the rest of the OPs in the set S: 

 ) (4) 

We choose the geometric mean over the arithmetic 
mean so that OPs that are very similar to other OPs as per 
the dissimilarity matrix are strongly favored against. As an 
example, consider the case where two identical OPs are in 
the full set of OPs. These two OPs would have a distance of 
0, yet if the arithmetic mean were to be used, both of these 
OPs may be included in the dissimilarity matrix if they are 
very different from the other dissimilarity matrix OPs. 
However, the geometric mean of the rows corresponding 
to these OPs would be 0 as long as they are both included, 
so this procedure would strongly favor removing one of 
them, which is exactly what we seek. 

When considering whether an OP should be added to 
the dissimilarity matrix, t(i,S) from Eq. 4 can be used to 
determine whether the candidate OP should replace an 
existing OP. Refer to the pseudocode in Algorithm 3 for a 
description of how the dissimilarity matrix is constructed. 
It should be noted that this approach is a so-called greedy 
algorithm14 and is not guaranteed to find the k most 
dissimilar OPs. However, this approach does generate a 
set of OPs that is extremely likely to have higher internal 
dissimilarity than a randomly chosen set of the provided 
OPs. Thus, these OPs serve as a good starting point for 
clustering in the constrained centroid context. 

To reiterate, we begin with a very large set S of OPs. To 
determine the k best OPs to describe S for some k, we start 
by constructing a dissimilarity matrix of size k for the set 
S (Algorithm 3). We then use the resulting k OPs as the 
starting centroids for restricted centroid KMeans 
clustering (Algorithm 2), and the final set of OPs that the 
solution converges to is the final set of OPs for the given k. 
The approach described up to this point relies on a user 
input for k, the number of output OPs. However, the 
procedure we have outlined thus far makes no claims 
about what the best k is for a given set S. To estimate the 
optimal k, which is the final aspect of 
AMINO, we turn to rate distortion theory.10,13 

C. Jump Method for Determining Number of Clusters 

Sugar and James introduced a method for finding the 
ideal number of clusters for a given dataset using rate 
distortion theory.10,13 An outline pseudocode of their 
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approach is provided in Algorithm 4. The basis for their 
approach is that once a distortion function is constructed 
for a data set (a function that captures the error in using 
some subset of the full dictionary of order parameters to 
describe the full set), the maximal jump in distortion alone 
is not the best factor in determining the ideal number of 
clusters. However, with a proper selection of negative 

exponent  (where p is the dimensionality of the 
system) applied to the distortion function, the largest 
jump in such an exponentiated distortion corresponds to 
the optimal number of clusters k for the data set. We now 
explain and quantify this intuitive idea. 

In order to apply this approach, a distortion function for 
a set of centers describing a dataset must be defined. In 
Euclidean spaces, the Root-Mean-Square-Deviation 
(RMSD) of distances is typically used.15 In a similar fashion 
using a RMSD built on the distance metric for OPs we just 
defined (Sec. IIA), a distortion function dk for a set of OPs S 
with centroids c1, c2, ..., ck can be written as follows: 

  (5) 

Algorithm 3 Dissimilarity Matrix Construction 
1: function BuildMatrix(S,k) . Where S - set of data 

points, k - size of dissimilarity matrix 
2: M initialized to empty k x k matrix 
3: for i in S do 
4: if size(M) < k then 
5: Add i to M and update M 
6: else 
7: n := row of M with smallest product 
8: row := [D(i,j) for (j ∈ M where j 6= n)] 
9: if product(n) < product(row) then 

10: Replace n in M with i 
11: end if 
12: end if 
13: end for 
14: return M 
15: end function =0 

 
For each value of k being tested, k OPs are selected using 

the clustering procedure detailed in Sec. IIB. Then, the 
distortion is calculated as specified in Eq. 5. This distortion 
represents how well the k OPs characterize the entire set 
of OPs. Then, using Eq. 6, we find the value of k that 
maximizes the jump in the distortion with a negative 
exponent applied: 

  (6) 

with 

  (7) 

where in Eq. 7, p is the dimensionality of the data. 
However, as stated earlier, OPs lie in an arbitrary 
higherdimensional space, and all we have defined so far is 
a distance function between OPs, not a low-dimensional 
coordinate system to uniquely identify OPs. Here we 
would like to highlight that the original work of Ref. 13 
recommends setting p as the number of independent 
components contributing to the data. For a protein -ligand 
system in explicit water comprising, we can say with 
confidence that 1 . That is however not a very 
useful statement and leaves us guessing regarding the 
choice of p. Indeed recent work has suggested that the 
degrees of freedom for protein systems is likely fewer 
than 5.16–18 In AMINO, after applying negative exponents 

corresponding to , a conservative 
selection is made by choosing the largest k for which a 
maximal jump is seen in any of these dimensions. Thus, by 
testing multiple values of Y , a value for k, the number of 
clusters, is chosen. Thankfully, as will be shown in the 
Results section, most selections of Y yield fairly consistent 
results for the best k, demonstrating the robustness of 
AMINO with respect to the precise choice of p. 

III. RESULTS 

We now provide a series of examples demonstrating 
clearly how AMINO works as well as its potential 
usefulness. The examples are systematically constructed, 
including analytical model potentials and computing 
binding free energy for a drug fragment and FKBP protein. 
In the analytical systems we know the true “best” set of 
OPs beforehand, as they were used to generate the data. 
To these we then add a large number of decoy OPs and 
then use AMINO to see if we recover the true OPs. For the 

Algorithm 4 Jump Method to Find k 

1: function JumpMethod(d,p) . Where d - array of 

distortions, p - dimensionality of system 
2: Y := −p/2 

3: ci := dYi 

4: ji := ci − ci−1 
5: return i with largest j 

6: end function 

 
protein-ligand system, we consider all possible 
proteinligand carbon atom contacts, and then apply 
AMINO. We use the OPs from AMINO as an input in the 
reaction coordinate optimization method SGOOP.4,5 The 
RC from SGOOP is then used in metadynamics simulations 
for binding free energy estimation. 
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A. Five Order Parameter Analytical Model System 1. 

Description 

The first analytical model system begins with a 
collection of 48 OPs, including true OPs and decoy OPs. 
Each of the 48 OPs fall in one of the following categories: 

1. 5 independently sampled random values A,B,C,D, 
and E from different distributions with varying 
numbers of local maxima, all spanning the range 
[−1,1]. These are our true OPs and everything else 
here onward for this system is a decoy OP. 

2. 30 linear combinations (including scalar multiples) 
of these independently-sampled values. 

3. 24 versions of one of the random values with 
random noise added. For clarity, take the example 
“noisy” OP A1 ≡ A + q1, where q1 is a randomly 
sampled value in the range [−0.05,0.05]. Each value 
A,B,C,D, and E has 3 to 5 different noisy versions of 
themselves within the set of 48 OPs, and the noise qi 

of each noisy version is independent from the noise 
qj of any other noisy version. 

The end goal is that AMINO should be able to return the 
original 5 values A,B,C,D, and E or their scalar multiples. 
However, noisy versions should not be returned. Although 
A and Ai give the same amount of information about each 
other, Ai gives less information about Aj than A does (for 
some i 6= j), since both Ai and Aj were derived from A, but 
their added noises are uncorrelated. This is not true for 
scalar multiples, since knowing any scalar multiple of an 
OP is equivalent to knowing the original OP itself. To help 
develop intuition for this system, a few distance values are 
provided in Table I. It can be seen here that A has 0 
distance from A and from −2A, but is increasingly more 
distant from its noisy version A3 and from the completely 
different OP B. 

OP 1 OP2 MI-Based Distance 

A A 0 

A −2A 0 
A A3 0.3293 

A B 0.9957 

TABLE I: Typical distance values between some of the 
OPs in the first analytical model system 
2. Dissimilarity Matrix 

It is important to note that dissimilarity matrices were 
computed for different numbers of clusters, denoted k, in 
the range [1, 30], but only certain dissimilarity matrices of 
interest are shown. The most interesting cases are for k = 

4,5,6, because these are the values of k in a close range of 
the true value of k, which is k = 5. The results of the 
dissimilarity matrix construction (Algorithm 3) are shown 
in Table II. These OPs are not the final OPs for each k, 
rather, they are the starting points for the restricted 
centroid K-Means clustering that will be run next. For k = 
4, the distribution of E is not captured by the selected OPs, 
whereas for k = 6, a linear combination of three original 
OPs was selected by Algorithm 3 as the extra cluster. 

Number of clusters k OPs resulting from Algorithm 3 

4 A1, B2, C5, D5 
5 A1, B1, C3, D5, E5 

6 A3, B1, C5, D3, E8, A + 4B + E 

TABLE II: Result of dissimilarity matrix construction 
(Algorithm 3) for k = 4,5,6 

3. Clustering 

For each value of k, the OPs resulting from dissimilarity 
matrix construction (Algorithm 3) were used as the 
starting centroids in restricted centroid K-Means 
clustering (Algorithm 1). The final solution that Algorithm 
1 converged to for k = 4,5,6 is presented in Table III. 

Number of clusters k Post-Clustering OPs 

4 2A, −2B, C, 5D 

5 2A, −2B, C, 5D, E 

6 2A, −2B, C, 5D, E, A + 4B + E 

TABLE III: Result of clustering (Algorithm 1) using 
starting point from dissimilarity matrix for k = 4,5,6 

As Table III shows, clustering did return the intended 
OPs. To clarify why returning scalar multiples falls under 
intended behavior, consider if the scalar multiple 2A was 
in fact the originally sampled value and that all other 
scalar multiple and noisy versions were based off of this 
value instead of A. It is impossible to distinguish exactly 
which of these two explanations is correct (without 
looking at the code used to generate the distributions of 
course), and thus, this should fall under intended 
behavior. 

4. Jump Method 

Now, using the resulting clusters from running these 
two steps for different number of clusters k in the range 
[1,30], we will apply the ideas of Sugar and James13 

(Algorithm 4) to determine what is the best number of 
clusters, or equivalently, the number of OPs for this 
system is. From the description of the system, the answer 
should be 5. As stated earlier, we do not know the 
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dimensionality of the OP space, so multiple exponents (Y 
in Eq. 6) will be applied. The results can be seen in Fig. 2. 

 

FIG. 2: Jumps in distortion with various negative 
exponents Y (indicated with different colors) applied for 
the 5 OP model system. The black dashed line shows the 
location for maximum jump at 5 OPs, which is robust 
with choice of Y in Eq. 6. 

There is clearly a significant jump at k = 5 that 
corresponds to the correct number of OPs, thus, the k = 5 
clustering results are used. As stated in Sec. IIC, Sugar and 
James’s results13 show that this largest jump in distortion 
once a negative exponent is applied corresponds to the 
optimal number of clusters for the data. 

B. Ten Order Parameter Analytical Model System 1. 

Description 

A similar model system as Sec. IIIA was set up with 10 
originally-sampled OPs among a total of 120 OPs. We will 
refer to the 10 originally sampled values as A,B,C,...,I,J, and 
we will use the same conventions described in Sec. IIIA to 
describe the noisy versions of these values. 

The OPs in this data set consisted of: 

1. 10 independently sampled random values A,B,C,...,I,J 
from different distributions with varying numbers 
of wells, all spanning the range [−1,1]. 

2. 110 “noisy” versions of one of the random values 
with random noise added. 

For this system, we did not add any linear combinations 
and instead focused solely on noisy versions of the original 
OPs, since these are more similar to what would be 
encountered in an experimental system. Similar to Sec. 
IIIA, we find that AMINO recovers the originallysampled 
10 OPs, since these 10 give the most information about the 

entire system, or equivalently, the originallysampled 10 
OPs provide the most information about the full set of 120 
OPs. Since there are no scalar multiples in this system, 
there are no pairs of OPs with a distance of 0 (as 
determined by Eq. 2), unlike in the 5 OP model system 
from Sec. IIIA. 

2. Dissimilarity Matrix 

Dissimilarity matrices were computed for k in the range 
[1,30], and the values provided in Table IV are the results 
of dissimilarity matrix construction algorithm (Algorithm 
3) for the values of k near the true number of clusters, k = 
10. 

Number of clusters k Dissimilarity Matrix OPs 

9 A13, B1, C4, D4, E13, 

G3, H2, I11, J1 
10 A11, B8, C6, D4, E8, F8, 

G12, H2, I9, J1 
11 A9, B1, C4, D3, E12, F5, G8, H2, 

I3, J1, J8 

TABLE IV: Result of dissimilarity matrix construction 
(Algorithm 3) for k = 9,10,11. 

3. Clustering 

As was done in Sec. IIIA, the results of Algorithm 3 in 
Table IV were used as input to Algorithm 2 in order to find 
the final centroid OPs that AMINO will return. The results 
of clustering for the interesting values of k are in Table V. 
Just as in Sec. IIIA, the original OPs are returned for the 
correct value of k, which in this case is k = 10, and deviating 
from the correct value of k either leads to missing an 
original order parameter or selecting a noisy version. 

Number of clusters k Post-Clustering OPs 

9 A, B, C, D, E, G, H, I, J 

10 A, B, C, D, E, F, G, H, I, J 

11 A, B, C, D, E, F, G, H, I, J, J3 

TABLE V: Result of clustering (Algorithm 1) using starting 
points from dissimilarity matrix for k = 9,10,11 

4. Jump Method 

Now, we look at the resulting jumps in distortion from 
using different values of k for the 10 OP model system. 
Fig. 3 shows that the selected number of OPs as 
determined by Eq. 6 is k = 10, as expected given that there 
were 10 initial OPs. 
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FIG. 3: Jumps in distortion with various negative 
exponents Y (indicated with different colors) applied for 
the 10 OP model system. The black dashed line shows the 
location for maximum jump at 10 OPs, which is robust 
with choice of Y in Eq. 6. 

As shown here in Sections IIIA and IIIB, this approach 
appears robust in handling these kinds of model systems. 
Now, we consider OPs extracted from unbiased MD 
trajectories of real systems to determine whether this 
procedure remains successful. 

C. FKBP/BUT System 

Metadynamics8,19 is a popular sampling method used to 
bias MD simulations in order to visit states separated by a 
large energy barrier that would rarely be traversed in an 
unbiased MD simulation. The biasing is performed along a 
pre-selected low-dimensional RC. The typical output of a 
metadynamics simulation is the equilibrium probability 
distribution of the system along the RC or along any other 
low-dimensional coordinate through a reweighting 
scheme.19 There also exist variations of metadynamics 
useful to construct not just static probabilities but also 
unbiased kinetic observables such as the rates for moving 
between different metastable states.20,21 In any of its 
formulation, metadynamics benefits from a suitably 
chosen RC that adequately characterizes the different 
states of interest.8 While of late many methods have been 
developed that generate a RC from a set of OPs3,4,6,7,22, as 
stated earlier, the input set of OPs is usually still chosen 
based on prior knowledge of the system. However, by 
applying AMINO, this set of OPs can be automatically 
selected with minimal prior knowledge of the system, 
except the bound pose structure and a short unbiased MD 
run where we do not rely on the dissociation event being 
sampled even once. In order to compute the free energy of 
binding/unbinding, 

Protein 
Atom 

Ligand 
Atom 

Weight in SGOOP 
RC 

86GLY Cα 3 1.000 

106LEU Cα 2 0.946 

39SER Cα 3 -0.973 

23VAL Cα 1 -0.862 

87HIS Cα 2 -0.903 

61GLU Cα 3 -0.951 

10GLY Cα 2 -0.974 

80TYR Cα 1 -0.846 

TABLE VI: List of OPs that were output from AMINO for 

FKBP/BUT protein-ligand system. Ligand carbon 

numbers are shown in Fig. 4 

several dissociation and re-association events need to be 
observed in order for the free energy to converge. 
However, using metadynamics with a properly-
constructed RC, unbinding events can occur more quickly 
(in terms of simulation time), decreasing the total time 
needed to compute the free energy. 

We begin with a short 10 nanosecond trajectory of the 
protein-ligand system of the protein FKBP and one of its 

 

FIG. 4: Image of the bound FKBP/BUT 
protein-ligand system, with inset showing the atom 
numbering for ligand carbons used in Table VI. Carbons 
are in blue, oxygens are in red, and the only polar 
hydrogen is in white. The dashed lines show the 8 
different OPs detailed in Table VI, out of input 428 
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options, resulting from AMINO that were then used to 
construct a RC through SGOOP4 

 

FIG. 5: Results of the jump method (Algo 4)) when 
applied to the FKBP/BUT system. The different lines 
correspond to different choices for Y in Eq. 6, specified in 
the legend. The maximum jump occurs at 8 OPs for all 
choices of Y . 

ligands, 4-hydroxy-2-butanone (BUT). The trajectory is 
expressed in terms of a dictionary of 428 OPs (Fig. 4) that 
consists of every combination of distances between alpha 
carbons in the protein (107 atoms) and carbons in the 
ligand (4 atoms). These 428 OPs were used as input to 
AMINO to yield a reduced dictionary of 8 OPs, shown in 
Table VI. The output of using the jump method for this 
system is illustrated in Fig. 5 where irrespective of the 
precise value of p we can identify 8 OPs as the robust 
choice. Table VI also provides the weights obtained for 
these OPs when considered in a 1-dimensional RC in 
SGOOP4 expressed as a linear combination of these OPs. 
Now that a reaction coordinate has been constructed 
using the AMINO-selected OPs, a biased metadynamics 
runs was conducted to calculate the free energy of binding 
(∆G) for the system. We provide the results from the 
metadynamics run as well as for an unbiased run for 
comparison in Fig. 6. 

Fig. 6 shows how the simulation that was biased using a 
RC constructed from AMINO-generated OPs gives a 
reasonably accurate estimate of ∆G in a very short time. 
Also illustrated is the reference value for this system from 
long Anton simulations reported in Ref. 23. The difference 
between our estimate and the Anton value is minuscule 
especially considering that we re-parameterized the 
ligand on our own. While we followed Ref. 23’s 
instructions, this can easily lead to the fraction of a kBT 
difference we find. On the other hand our unbiased MD 
simulation gives a much worse estimate of ∆G and as can 
be seen from Fig. 6 as well as Fig. 7, it would take much 
longer than 500 ns to converge to the correct value. Thus, 

the OPs selected by AMINO using absolutely no prior 
knowledge of the system were able to construct a 
meaningful reaction coordinate that led to enhanced 
sampling of this system. 

Although metadynamics does significantly increase the 
occurrence of unbinding events, re-binding is limited by 

 

FIG. 6: Absolute binding free energy ∆G in kJ/mol as a 
function of simulation time for the unbiased and biased 
runs of the FKBP/BUT protein-ligand system. The shaded 
regions denote a ±kBT/2 range from the final ∆G 
estimate. The horizontal solid blue and orange lines 
denote respectively to the final ∆G values after 500 ns in 
the unbiased and biased simulations, respectively. Solid 
black line shows the reference value from long unbiased 
MD simulations performed on 
Anton supercomputer by Pan et al.23 

 

FIG. 7: Time-series of reaction coordinate obtained from 
SGOOP as a linear combination of AMINO-outputted OPs. 
Blue lines show biased simulations with multiple 
dissociation and association events leading to quick 
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estimate of converged ∆G, while orange lines show 
unbiased simulation where the trajectory stays trapped 
for extended periods of time leading to poor estimates of 
∆G. The black dashed line indicates the boundary 
between bound and unbound considered by us to stay 
consistent with the definition of bound state in Ref. 23. 
entropy, thus traditional metadynamics8 cannot 
encourage re-binding, regardless of the reaction 
coordinate. This is illustrated in Fig. 7. The unbiased 
trajectory begins in the bound state, and the ligand only 
ever rebinds to the protein once. In the biased run, the 
simulation spends very little time in the bound state since 
it is biased away from remaining in the already-explored 
bound state. This allows the simulation to spend more 
time searching the other, unexplored states, so that it 
converges to a reasonable solution more quickly. 
However, this extended time spent in the unbound state 
presents an opportunity for further acceleration through 
approaches such as funnel metadynamics which help with 
the entropic problem.24 In combination with AMINO, 
SGOOP, and traditional metadynamics, funnel 
metadynamics can even further accelerate the procedure 
we have gone through here. 

IV. DISCUSSION 

In this work we have introduced an information 
theoretic approach to screening for OP redundancy by 
using a mutual information based distance function as a 
measure of dissimilarity between two OPs. In general, to 
select a set of OPs for a system, current approaches rely 
primarily on previous biophysical knowledge of the 
system. With the procedure we have presented, a set of 
viable OPs can be constructed with much less knowledge 
of the system. For the calculation of protein-ligand 
absolute binding free energy, this amounted to knowing 
the bound pose structure and a very short MD trajectory 
(10 ns) where the ligand did not have to dissociate even 
once. Having a trajectory with actual dissociation events 
would likely increase the accuracy of AMINO even further, 
but that is not a practical scenario for systems of real-
world interest invariably plagued with the sampling issue. 
The approach applied involves clustering the set of OPs by 
using the mutual information based metric as detailed in 
Algorithm 2, and using the resulting centroids as the 
output set of OPs. In order to overcome the problem of 
centroids becoming stuck in the same cluster, we initialize 
the K-Means clustering algorithm with centroids from the 
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construction of a dissimilarity matrix (Algorithm 3). The 
motivation for creating the dissimilarity matrix is to 
generate a set of k points out of the set of provided OPs 
that are internally dissimilar. To determine the best k, a 
rate distortion theory based Jump Method, described by 
Sugar and James,13 was employed on the results of 
clustering for various k. 

Our proposed algorithm eases the previous 
requirement of how well a system must be understood 
before selecting OPs. Selection of OPs is vital to all 
methods employed after unbiased MD simulations, such 
as reaction coordinate construction and enhanced 
sampling. In future work, we will be applying AMINO to 
different molecular systems in biology and beyond, with 
different classes of trial OPs, including bond torsion 
values, hydration states of specific constituents and many 
others. We believe that our algorithm provides significant 
progress towards the process of automating OP selection. 
A Python 3 implementation of this algorithm in Jupyter 
Notebook is available at 
https://github.com/pavanravindra/amino for public use. 
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