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Molecular dynamics (MD) simulations generate valuable all-atom resolution trajectories of complex systems,
but analyzing this high-dimensional data as well as reaching practical timescales even with powerful
supercomputers remain open problems. As such, many specialized sampling and reaction coordinate
construction methods exist that alleviate these problems. However, these methods typically don’t work directly
on all atomic coordinates, and still require previous knowledge of the important distinguishing features of the
system, known as order parameters (OPs). Here we present AMINO, an automated method that generates such
OPs by screening through a very large dictionary of OPs, such as all heavy atom contacts in a biomolecule. AMINO
uses ideas from information theory and rate distortion theory. The OPs learnt from AMINO can then serve as an
input for designing a reaction coordinate which can then be used in many enhanced sampling methods. Here we
outline its key theoretical underpinnings, and apply it to systems of increasing complexity. Our applications
include a problem of tremendous pharmaceutical and engineering relevance, namely, calculating the binding
affinity of a protein-ligand system when all that is known is the structure of the bound system. Our calculations
are performed in a human-free fashion, obtaining very accurate results compared to long unbiased MD
simulations on the Anton supercomputer, but in orders of magnitude less computer time. We thus expect AMINO

to be useful for the calculation of thermodynamics and kinetics in the study

of diverse molecular systems.

INTRODUCTION

Molecular Dynamics (MD) has become a routine tool for
simulating and understanding the various structural,
thermodynamic and kinetic properties of complex
realworld molecular systems. MD simulations make it
possible to study these systems comprising millions of
atoms reaching timescales of microseconds and beyond,
while maintaining all-atom spatial and femtosecond
temporal resolutions. In spite of this staggering success of
MD over the decades, one is faced with two central and
interconnected problems. First, these long simulations
with the aforementioned high spatial and temporal
resolution can easily produce an overwhelming amount of
data (easily into terabytes). How do we make sense of this
data? Second, even these long simulations are not long
enough, as currently in spite of the best available
supercomputing resources MD can reach at best a
microsecond in practical wall-clock time. Thus specialized
so-called “enhanced sampling” algorithms! have been
developed that allow us to reach much longer timescales
of seconds, minutes and beyond in a statistically accurate
manner.

While these two challenges to MD might appear
disconnected, they share a commonality - namely, the

need for dimensionality reduction. The complex, often
bewildering dynamics that seems to happen in an
extremely high-dimensional configuration space, can
often be reduced to certain key variables that capture the
underlying physics or chemistry. The other remaining
variables are then either irrelevant or can simply be
mapped into noise. These key variables, which we refer to
as “order parameters (OP)” can then serve to form a data-
efficient low-dimensional picture of complicated
molecular systems and processes. These OPs serve as
internal coordinates that are useful as a basis set for the
description of the processes of interest.2 Through one of
many available methods3-7, they can then also be mixed
into an even lower-dimensional reaction coordinate (RC).
By then enhancing fluctuations along this RC, enhanced
sampling methods such as metadynamics® and umbrella
sampling® can tackle the second challenge mentioned
above, i.e. assessing processes that happen far slower than
the capabilities of unbiased MD. From the above
discussion it should thus be clear that the proper selection
of OPs is crucial for analysis and enhancing of MD
simulations.58

In this work we propose a new fairly automated
computational scheme for the selection of such OPs.
Previously, selection of OPs has relied purely on
biophysical intuition or knowledge of the system and
processes of interest.> However, for novel systems of
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interest, there may not be enough information about the
system to make claims about which OPs are relevant to a
particular chemical process. Creating a robust, flexible
algorithm to screen for OP redundancy is thus a problem
of great interest to the field of MD simulations. Selecting
noisy OPs that are not pertinent to the process of interest
or OPs that provide redundant information can slow down
calculations or even yield misleading results. For instance
consider the case where the selected OPs are used to
construct a RC for metadynamics simulation (or other
biased simulations).8 Providing redundant, correlated or
noisy OPs can lead to an inefficient biasing protocol that
might end up being even slower than unbiased MD. While
the developed formalism and algorithms should be quite
generally applicable to a variety of real-world molecular
systems, here we consider as an illustrative test-case the
calculation of absolute binding affinity of a protein-ligand
system in explicit water.

Our algorithm, which we name “Automatic Mutual
Information Noise Omission (AMINO)”, uses a mutual
information based distance metric to find a set of
minimally redundant OPs from a much larger set, and then
uses Kmeans clustering with this distance metric, together
with ideas from rate distortion theory!® to find
representative OPs from each cluster that provide
maximum information about the given system. We
demonstrate the effectiveness of our method on analytical
model systems and the much larger FKBP-BUT protein-
ligand system. In each example we begin with absolutely
no prior information on the system other than an initial
set of coordinates for each atom. We apply AMINO to
generate a set of OPs from an unbiased trajectory of the
system, then we generate a reaction coordinate using
SGOOP to run metadynamics, enhancing the dissociation
process and accurately calculating the absolute binding
free energy.

We believe that the current work is arguably one of the
first illustrations of a fully automated pipeline where
starting with a known protein data bank (PDB) structure
of abound protein-ligand system, a force-field, and a short
MD run exploring the bound pose (but not necessarily
showing dissociation), one performs enhanced sampling
of the dissociation and obtains binding free energy in
order of magnitude speed-up relative to unbiased MD. The
OPs generated by AMINO can be used in any other
procedure of choice for generating reaction coordinate,
such as TICA,3 RAVE,® or VAC?, followed by use in an
enhanced sampling protocol not limited to metadynamics.
The OPs identified by AMINO also form a most concise
dimensionality reduction of an otherwise gargantuan MD
trajectory. Selecting OPs has been a major barrier toward
creating a fully automated enhanced sampling procedure,
and now, AMINO can serve as an automated protocol for
selecting OPs on an information theoretic basis. We thus

2
expect AMINO to be useful to a wide range of practitioners
of molecular simulations.

II. THEORY

We start this section by summarizing the key steps in
our algorithm, and then gradually go through every step in
detail. Our ultimate goal is to construct clusters of similar
OPs and choose a single OP from each cluster that best
describes its parent cluster as a whole. The number of
clusters or equivalently the number of OPs is learned on-
the-fly through a formalism based on rate distortion
theory. The key input to our algorithm is a large set of OPs
and their time series in a short unbiased trajectory. Note
that AMINO does not need temporal information on the
OPs, as such the time series could be coming from
independent unbiased simulations, appropriately
reweighted biased simulations, or could even be
temporally scrambled. Given this input, AMINO involves
the following sequential procedure:

1. Cluster the input OPs wusing a mutual
informationvariant that serves as a distance metric.
The idea here is that not all OPs carry significantly
different information, and with an appropriate
distance function, we can identify groups of OPs
carrying similar information.

2. Select a single OP from each cluster to describebest
all of the OPs within the cluster. This OP is thus most
representative of the information carried by all OPs
in the cluster that it belongs to.

3. Finally, determine the appropriate total numberof
clusters, or equivalently the number of OPs to use to
describe the entire set of OPs that AMINO started
out with.

In step 1, we use a mutual information based distance
function to measure the similarity of any two OPs.11In step
2, we apply a variation on the well-known K-Means
clustering algorithm,!2 and finally in step 3, apply a recent
implementation of rate distortion theory to clustering in
order to find the ideal number of clusters or OPs.13

A A Distance Function based on Mutual Information

Any clustering procedure requires a relevant distance
metric. In Cartesian coordinate systems, the most
commonly used metric is the Euclidean distance between
two points.!2 However, there is no easily identifiable
lowdimensional space that OPs lie upon in which the
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Euclidean distance between two OPs would shed
meaningful information about the similarity of the OPs.
Thus, we need to define a new metric where the distance
between two OPs would correlate with how similar they
are to each other in terms of information they carry.

More rigorously speaking, a useful distance metric for
this setting satisfies all of the relevant properties of any
other distance metric in addition to requirements specific
to this system. Together these requirements are detailed
below for a distance metric D(X,Y ) for any given pair of
OPsXandY.

1. Non-negativity: D(X,Y) = 0

2. Symmetry: D(XY) = D(V,X)

3. OPs X,Y that are close to each other, as determined
by small D(X,Y ), should be “redundant”. This would
mean that knowledge of one OP’s time series
provides substantial information about the time
series of the other OP. In the clustering scheme,
these parameters should be clustered together so
that only one of the two is likely to be chosen for the
final set.

4. OPs XY that are far from each other, as determined
by large D(X,Y ), should be relatively independent.
This would mean that they are not redundant and
should not be clustered together.

The Mutual Information (MI) based distance metric
proposed by Kraskov and co-workers satisfies all of the
above requirements.!! This distance function is a variant
of Mutual Information normalized over the range [0, 1].

In the continuous setting,

B

where [ is the mutual information between X and Y
and H is the joint entropy of X and Y , which are
welldefined terms in information theory detailed for
instance Ref. 10. For binned probability distributions over
the OP’s time series, Eq. 1 can be expressed as:

Eg. 1 and Eq. 2 are equivalent formulations of the
MIbased distance between two OPs X and Y. Inspection of
Eq. 2 gives an intuitive reasoning about the meaning of D.
The denominator of the fraction component of Eq. 2
contains the joint probability distribution of X and Y while
the numerator is the joint probability distribution
assuming independence between X and Y . The core
purpose of this equation is to compute how different the
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true join probability distribution is from the
independence assumption.

Clustering using the mutual information based distance
metric results in clusters of OPs with low mutual
distances, where knowing the time series of a single OP in
a cluster would give significant information about the
trajectories of the other OPs in the cluster. Any two OPs
from different clusters, however, would be fairly
independent, and knowledge of either OP’s time series
would provide little information about the other time
series.

B. Dissimilarity Matrix and Clustering

Now that we have defined a suitable distance metric in
Sec. IIA, we are ready to complete the first step in AMINO,
namely clustering of different OPs by how similar or
dissimilar they are. K-Means clustering provides a
powerful approach to group a set of data points into k
clusters for some provided number of clusters k. An
overview pseudocode for K-Means clustering is provided
in Algorithm 1. We stress that Algorithm 1 must be
provided with the number of clusters k and that
determining the optimal k for a given set of data is a
separate (yet extremely) important concern. In Sec. IIC, we
discuss this problem in detail along with our solution to it.

As stated in Algorithm 1, the initial centroids for
KMeans clustering are randomly generated points in the
same space as the elements of S, the set of data points to
be clustered. For traditional K-Means clustering, this
initial randomization is acceptable due to the flexible
nature of the centroids. For a proper selection of k, even if
two of the randomly generated initial centroids are very
close to each other, some other cluster in the data set that
is unrepresented by a centroid will “pull” one of the
centroids towards itself over time, as demonstrated in Fig.
1. Fig. 1 (a)-(c) show the time evolution for a set of data
points using traditional K-Means clustering. In the first
random set of k points in the same space as the points in
the data set S. It is important to note that the centroids
U1,k are not directly sampled from S itself, so there is no
guarantee that these points will be near any of the clusters
inS.

In the K-Means clustering example provided, two of the
randomly chosen initial centroids are closest to the same
cluster show in Fig. 1(a), yet by the second iteration (Fig.
1(b)), one of the centroids is beginning to move to the
unrepresented cluster. In traditional KMeans clustering,
the centroids do not need to take on values from the
original data set S, so centroids are flexible and can move
from one cluster to the other. This transition of a centroid
from one cluster to another allows for traditional K-Means
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Clustering to converge to a reasonable solution, which is
shown in Fig. 1(c).

However, now consider the problem in this work, where
the points to be clustered represent OPs. Initial centroids
cannot be generated randomly from the space of OPs, as
all centroids must be points within the set of provided OPs.
The same restriction applies to successive iterations - the
updated centroid for a given cluster should be the element
of the cluster that is closest to the remaining points. We
thus need to revisit the definition of a centroid itself, and
here we use the internal distortion of a cluster for a given
candidate centroid to measure how well the candidate
centroid represents the entire cluster, and by minimizing
the distortion, we get the centroid of a given set of points.
More formally, the centroid of some cluster z in the
original set of data points can be defined as:

_ (3)
A pseudocode for K-Means clustering with restricted
centroids is provided as Algorithm 2.
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As aresult of the requirement that the centroid must
(Algorithm 2) on the initial centroids from (e).

be an actual element of a cluster, we lose on the ability of
K-Means where to transition a centroid from one cluster
to another. In other words, centroids can become “stuck”
within dense clusters of OPs. The resulting k clusters may
fail to accurately represent clusters that are not captured
by the initial set of randomly-generated starting centroids.

As an example, consider the initial centroids given in
Fig. 1(d). These initial centroids are the final solution

Algorithm 1 K-Means Clustering

1: function KMeansCluster(S,k) . Where S - set of data
points to be clustered, k - number of clusters

2: u :=random set of k unique elements
3: repeat
4: foriin Sdo
5: ci:= nearest centroid in u
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FIG. 1: (a)-(c) Traditional K-Means clustering (Algorithm 1) over multiple iterations for a dataset. (d)-(f) Important
figures for Restricted Centroid K-Means clustering (Algorithm 2) Red circles represent centroids, while blue points
represent points in the dataset. (a) The initial random centroids. The two rightmost centroids are closest to the same
cluster. (b) An intermediate state where one of the centroids is moving from one cluster to another. Note that the
bottommost centroid is far from any of the points in the original data set. (c) The final set of centroids that the K-
Means algorithm converges to. (d) An example initial distribution of centroids where the centroids would stay“stuck”
in a cluster if a restricted centroid approach is used. The provided centroids are the final centroids using the restricted
centroid K-Means algorithm, meaning that additional iterations will return the same set of centroids and simply not
give 3 centroids in 3 clusters. (e) An initial distribution of centroids that have been chosen to maximize internal
distance, or dissimilarity. (f) The result of running restricted centroid clustering

6: end for



bioRxiv preprint doi: https://doi.org/10.1101/745968. this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

7: for each cluster j do

8: uj= mean of all points assigned to cluster
9: end for

10: until 4 converges to a single set

11: return u

5
geometric mean t(i,S) defined in Eq. 4 is a measure of how
dissimilar an OP i is from the rest of the OPs in the set S:

12: end function
of restricted centroid K-Means clustering, meaning that K-
Means algorithm has already converged to its solution.
There is clearly a cluster that is unrepresented by any of
the 3 centroids, yet due to the decreased centroid
flexibility, neither of the centroids that share a cluster will
cross the gap between the clusters in the data set.

To surmount this problem, we begin our K-Means
clustering scheme with a non-randomly chosen set of OPs
to act as the vector of initial centroids. These centroids

Algorithm 2 K-Means Clustering (Restricted
Centroids)
1: function KMeansCluster(S,k) . Where S - set of data
points to be clustered, k - number of clusters
u :=random set of k unique elements from S
repeat
foriin Sdo
ci:= nearest centroid in p
end for
for each cluster j do
uj= element that best describes j (Eq. 3)
end for
until u converges to a single set
11 return u
are chosen as to maximize the dissimilarity between the
selected OPs. We achieve this by constructing a
dissimilarity matrix A of k OPs that tracks the distance
between every pair of OPs within its set. This procedure is
summarized in Algorithm 3, and we now describe it in
detail. For any dissimilarity matrix A of size k, which is
defined for a given set of k OPs, x1,.., Xk, we set any element
in the matrix Aij = D(x,x;). As a result of this definition a
few noteworthy properties arise:

O 0N w

-
@

1. A is a hollow matrix with all diagonal terms 0, since
D(xix;) = 0 VL.

2. Ais a symmetric matrix,
D(x;xi) Vi.

since D(x;x;) =

3. The geometric mean of all non-diagonal elementsof
a row corresponding to an OP gives a measure of
how “dissimilar” the OP is to the rest of the set of OPs
described by the dissimilarity matrix.

To further elaborate on the third point above, consider
an OP i and a set S of OPs containing i and other OPs. The

We choose the geometric mean over the arithmetic
mean so that OPs that are very similar to other OPs as per
the dissimilarity matrix are strongly favored against. As an
example, consider the case where two identical OPs are in
the full set of OPs. These two OPs would have a distance of
0, yet if the arithmetic mean were to be used, both of these
OPs may be included in the dissimilarity matrix if they are
very different from the other dissimilarity matrix OPs.
However, the geometric mean of the rows corresponding
to these OPs would be 0 as long as they are both included,
so this procedure would strongly favor removing one of
them, which is exactly what we seek.

When considering whether an OP should be added to
the dissimilarity matrix, t(i,S) from Eq. 4 can be used to
determine whether the candidate OP should replace an
existing OP. Refer to the pseudocode in Algorithm 3 for a
description of how the dissimilarity matrix is constructed.
It should be noted that this approach is a so-called greedy
algorithm4 and is not guaranteed to find the k most
dissimilar OPs. However, this approach does generate a
set of OPs that is extremely likely to have higher internal
dissimilarity than a randomly chosen set of the provided
OPs. Thus, these OPs serve as a good starting point for
clustering in the constrained centroid context.

To reiterate, we begin with a very large set S of OPs. To
determine the k best OPs to describe S for some k, we start
by constructing a dissimilarity matrix of size k for the set
S (Algorithm 3). We then use the resulting k OPs as the
starting centroids for restricted centroid KMeans
clustering (Algorithm 2), and the final set of OPs that the
solution converges to is the final set of OPs for the given k.
The approach described up to this point relies on a user
input for k, the number of output OPs. However, the
procedure we have outlined thus far makes no claims
about what the best k is for a given set S. To estimate the
optimal k, which is the final aspect of
AMINO, we turn to rate distortion theory.10.13

C. Jump Method for Determining Number of Clusters

Sugar and James introduced a method for finding the
ideal number of clusters for a given dataset using rate
distortion theory.1%13 An outline pseudocode of their
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approach is provided in Algorithm 4. The basis for their
approach is that once a distortion function is constructed
for a data set (a function that captures the error in using
some subset of the full dictionary of order parameters to
describe the full set), the maximal jump in distortion alone
is not the best factor in determining the ideal number of
clusters. However, with a proper selection of negative
exponent I (where p is the dimensionality of the
system) applied to the distortion function, the largest
jump in such an exponentiated distortion corresponds to
the optimal number of clusters k for the data set. We now
explain and quantify this intuitive idea.

In order to apply this approach, a distortion function for
a set of centers describing a dataset must be defined. In
Euclidean spaces, the Root-Mean-Square-Deviation
(RMSD) of distances is typically used.!5 In a similar fashion
using a RMSD built on the distance metric for OPs we just
defined (Sec. I1A), a distortion function dkfor a set of OPs S
with centroids cj, ¢z, ..., ckcan be written as follows:

I

Algorithm 3 Dissimilarity Matrix Construction
1: function BuildMatrix(S,k) . Where S - set of data
points, k - size of dissimilarity matrix

2 M initialized to empty k x k matrix
3 foriin Sdo
4 if size(M) < k then
5 Addito M and update M
6: else
7: n := row of M with smallest product
8 row := [D(ij) for (j € M where j 6= n)]
9 if product(n) < product(row) then
10: Replace n in M with i
11: end if
12: end if
13: end for

14: return M
15: end function =0

For each value of k being tested, k OPs are selected using
the clustering procedure detailed in Sec. I1IB. Then, the
distortion is calculated as specified in Eq. 5. This distortion
represents how well the k OPs characterize the entire set
of OPs. Then, using Eq. 6, we find the value of k that
maximizes the jump in the distortion with a negative

exponent applied:
I (6)

I %

with

6
where in Eq. 7, p is the dimensionality of the data.
However, as stated earlier, OPs lie in an arbitrary
higherdimensional space, and all we have defined so far is
a distance function between OPs, not a low-dimensional
coordinate system to uniquely identify OPs. Here we
would like to highlight that the original work of Ref. 13
recommends setting p as the number of independent
components contributing to the data. For a protein -ligand
system in explicit water comprising, we can say with
confidence that 1Ml . That is however not a very
useful statement and leaves us guessing regarding the
choice of p. Indeed recent work has suggested that the
degrees of freedom for protein systems is likely fewer
than 5.16-18 [n AMINO, after applying negative exponents
corresponding to , a conservative
selection is made by choosing the largest k for which a
maximal jump is seen in any of these dimensions. Thus, by
testing multiple values of Y, a value for k, the number of
clusters, is chosen. Thankfully, as will be shown in the
Results section, most selections of Yyield fairly consistent
results for the best k, demonstrating the robustness of
AMINO with respect to the precise choice of p.

Ml RESULTS

We now provide a series of examples demonstrating
clearly how AMINO works as well as its potential
usefulness. The examples are systematically constructed,
including analytical model potentials and computing
binding free energy for a drug fragment and FKBP protein.
In the analytical systems we know the true “best” set of
OPs beforehand, as they were used to generate the data.
To these we then add a large number of decoy OPs and
then use AMINO to see if we recover the true OPs. For the

Algorithm 4 Jump Method to Find k

1: function JumpMethod(d,p) . Where d - array of
distortions, p - dimensionality of system
Y:i=-p/2
ci:=dY

2
3
4: Jit=ci—ci-1
5

return i with largest j
6: end function

protein-ligand system, we consider all possible
proteinligand carbon atom contacts, and then apply
AMINO. We use the OPs from AMINO as an input in the
reaction coordinate optimization method SGOOP.45 The
RC from SGOOP is then used in metadynamics simulations
for binding free energy estimation.
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A. Five Order Parameter Analytical Model System 1.
Description

The first analytical model system begins with a
collection of 48 OPs, including true OPs and decoy OPs.
Each of the 48 OPs fall in one of the following categories:

1. 5 independently sampled random values A,B,C,D,
and E from different distributions with varying
numbers of local maxima, all spanning the range
[-1,1]. These are our true OPs and everything else
here onward for this system is a decoy OP.

2. 30 linear combinations (including scalar multiples)
of these independently-sampled values.

3. 24 versions of one of the random values with
random noise added. For clarity, take the example
“noisy” OP A1 = A + q1, where q1 is a randomly
sampled value in the range [-0.05,0.05]. Each value
A,B,C,D, and E has 3 to 5 different noisy versions of
themselves within the set of 48 OPs, and the noise g;
of each noisy version is independent from the noise
gjof any other noisy version.

The end goal is that AMINO should be able to return the
original 5 values A,B,C,D, and E or their scalar multiples.
However, noisy versions should not be returned. Although
A and A; give the same amount of information about each
other, Ai gives less information about 4;than A does (for
some i 6= j), since both A;and 4jwere derived from 4, but
their added noises are uncorrelated. This is not true for
scalar multiples, since knowing any scalar multiple of an
OP is equivalent to knowing the original OP itself. To help
develop intuition for this system, a few distance values are
provided in Table I. It can be seen here that A has 0
distance from A and from -24, but is increasingly more
distant from its noisy version As and from the completely
different OP B.

OP 1 |OP2 |MI-Based Distance
A A 0
A |-24 0
A A3 0.3293
A B 0.9957

TABLE I: Typical distance values between some of the
OPs in the first analytical model system
2. Dissimilarity Matrix

It is important to note that dissimilarity matrices were
computed for different numbers of clusters, denoted k, in
the range [1, 30], but only certain dissimilarity matrices of
interest are shown. The most interesting cases are for k =

7
4,5,6, because these are the values of k in a close range of
the true value of k, which is k = 5. The results of the
dissimilarity matrix construction (Algorithm 3) are shown
in Table II. These OPs are not the final OPs for each k,
rather, they are the starting points for the restricted
centroid K-Means clustering that will be run next. For k =
4, the distribution of E is not captured by the selected OPs,
whereas for k = 6, a linear combination of three original
OPs was selected by Algorithm 3 as the extra cluster.

Number of clusters k | OPs resulting from Algorithm 3
4 A1, Bz, Cs, Ds
5 A1, B1, C3, Ds, Es
6 A3, B1,Cs,D3,Es,A+ 4B+ F

TABLE II: Result of dissimilarity matrix construction
(Algorithm 3) for k=4,5,6

3. Clustering

For each value of k, the OPs resulting from dissimilarity
matrix construction (Algorithm 3) were used as the
starting centroids in restricted centroid K-Means
clustering (Algorithm 1). The final solution that Algorithm
1 converged to for k = 4,5,6 is presented in Table III.

Number of clusters k Post-Clustering OPs
4 24,-2B,C,5D
5 2A,-2B,C, 5D, E
6 24,-2B,C,5D,E,A+4B+E

TABLE III: Result of clustering (Algorithm 1) using
starting point from dissimilarity matrix for k = 4,5,6

As Table III shows, clustering did return the intended
OPs. To clarify why returning scalar multiples falls under
intended behavior, consider if the scalar multiple 24 was
in fact the originally sampled value and that all other
scalar multiple and noisy versions were based off of this
value instead of A. It is impossible to distinguish exactly
which of these two explanations is correct (without
looking at the code used to generate the distributions of
course), and thus, this should fall under intended
behavior.

4.  Jump Method

Now, using the resulting clusters from running these
two steps for different number of clusters k in the range
[1,30], we will apply the ideas of Sugar and James!3
(Algorithm 4) to determine what is the best number of
clusters, or equivalently, the number of OPs for this
system is. From the description of the system, the answer
should be 5. As stated earlier, we do not know the
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dimensionality of the OP space, so multiple exponents (Y
in Eq. 6) will be applied. The results can be seen in Fig. 2.
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FIG. 2: Jumps in distortion with various negative
exponents Y (indicated with different colors) applied for
the 5 OP model system. The black dashed line shows the
location for maximum jump at 5 OPs, which is robust
with choice of Yin Eq. 6.

There is clearly a significant jump at k = 5 that
corresponds to the correct number of OPs, thus, the k=5
clustering results are used. As stated in Sec. IIC, Sugar and
James’s results3 show that this largest jump in distortion
once a negative exponent is applied corresponds to the
optimal number of clusters for the data.

B. Ten Order Parameter Analytical Model System 1.
Description

A similar model system as Sec. IIIA was set up with 10
originally-sampled OPs among a total of 120 OPs. We will
refer to the 10 originally sampled values as 4,B,C,...,,J, and
we will use the same conventions described in Sec. I1IA to
describe the noisy versions of these values.

The OPs in this data set consisted of:

1. 10 independently sampled random values 4,B,C,..., 1]
from different distributions with varying numbers
of wells, all spanning the range [-1,1].

2. 110 “noisy” versions of one of the random values
with random noise added.

For this system, we did not add any linear combinations
and instead focused solely on noisy versions of the original
OPs, since these are more similar to what would be
encountered in an experimental system. Similar to Sec.
IIIA, we find that AMINO recovers the originallysampled
10 OPs, since these 10 give the most information about the
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entire system, or equivalently, the originallysampled 10
OPs provide the most information about the full set of 120
OPs. Since there are no scalar multiples in this system,
there are no pairs of OPs with a distance of 0 (as
determined by Eq. 2), unlike in the 5 OP model system
from Sec. I1IA.

2. Dissimilarity Matrix

Dissimilarity matrices were computed for k in the range
[1,30], and the values provided in Table IV are the results
of dissimilarity matrix construction algorithm (Algorithm
3) for the values of k near the true number of clusters, k =
10.

Number of clusters k |Dissimilarity Matrix OPs
9 A13, B1, Ca, D4, E13,
G3, Hz, I11, J1
10 A11, Bs, Cs, D4, Es, Fs,
G12, Hz, Is, J1
11 A9, B1, C4, D3, E12, Fs, Gs, H2,
I3, 1,8

TABLE IV: Result of dissimilarity matrix construction
(Algorithm 3) for k=9,10,11.

3. Clustering

As was done in Sec. IIIA, the results of Algorithm 3 in
Table IV were used as input to Algorithm 2 in order to find
the final centroid OPs that AMINO will return. The results
of clustering for the interesting values of k are in Table V.
Just as in Sec. IIIA, the original OPs are returned for the
correct value of k, which in this case is k=10, and deviating
from the correct value of k either leads to missing an
original order parameter or selecting a noisy version.

Number of clusters k Post-Clustering OPs
9 AB CD,EGH,I]
10 A B CDEFGHILJ]
11 A/B,CDEF,GHILJJs

TABLE V: Result of clustering (Algorithm 1) using starting
points from dissimilarity matrix for k=9,10,11

4. Jump Method

Now, we look at the resulting jumps in distortion from
using different values of k for the 10 OP model system.
Fig. 3 shows that the selected number of OPs as
determined by Eq. 6 is k = 10, as expected given that there
were 10 initial OPs.
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FIG. 3: Jumps in distortion with various negative
exponents Y (indicated with different colors) applied for
the 10 OP model system. The black dashed line shows the
location for maximum jump at 10 OPs, which is robust
with choice of Yin Eq. 6.

As shown here in Sections IIIA and IIIB, this approach
appears robust in handling these kinds of model systems.
Now, we consider OPs extracted from unbiased MD
trajectories of real systems to determine whether this
procedure remains successful.

C. FKBP/BUT System

Metadynamics®1?is a popular sampling method used to
bias MD simulations in order to visit states separated by a
large energy barrier that would rarely be traversed in an
unbiased MD simulation. The biasing is performed along a
pre-selected low-dimensional RC. The typical output of a
metadynamics simulation is the equilibrium probability
distribution of the system along the RC or along any other
low-dimensional coordinate through a reweighting
scheme.l® There also exist variations of metadynamics
useful to construct not just static probabilities but also
unbiased kinetic observables such as the rates for moving
between different metastable states.2021 In any of its
formulation, metadynamics benefits from a suitably
chosen RC that adequately characterizes the different
states of interest.8 While of late many methods have been
developed that generate a RC from a set of OPs3467.22, as
stated earlier, the input set of OPs is usually still chosen
based on prior knowledge of the system. However, by
applying AMINO, this set of OPs can be automatically
selected with minimal prior knowledge of the system,
except the bound pose structure and a short unbiased MD
run where we do not rely on the dissociation event being
sampled even once. In order to compute the free energy of
binding/unbinding,

9

Protein Ligand Weight in SGOOP
Atom Atom RC

86GLY Car 3 1.000

106LEU Ca |2 0.946

39SER Ca 3 -0.973

23VAL Ca 1 -0.862

87HIS Ca 2 -0.903

61GLUCa |3 -0.951

10GLY Ca 2 -0.974

80TYR Ca 1 -0.846

TABLE VI: List of OPs that were output from AMINO for
FKBP/BUT protein-ligand system. Ligand carbon
numbers are shown in Fig. 4

several dissociation and re-association events need to be
observed in order for the free energy to converge.
However, using metadynamics with a properly-
constructed RC, unbinding events can occur more quickly
(in terms of simulation time), decreasing the total time
needed to compute the free energy.

We begin with a short 10 nanosecond trajectory of the
protein-ligand system of the protein FKBP and one of its

L TR, |

-

FIG. 4: Image of the bound FKBP/BUT

protein-ligand system, with inset showing the atom
numbering for ligand carbons used in Table VI. Carbons
are in blue, oxygens are in red, and the only polar
hydrogen is in white. The dashed lines show the 8
different OPs detailed in Table VI, out of input 428
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options, resulting from AMINO that were then used to
construct a RC through SGOOP#

0.0005 A
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FIG. 5: Results of the jump method (Algo 4)) when
applied to the FKBP/BUT system. The different lines
correspond to different choices for Yin Eq. 6, specified in
the legend. The maximum jump occurs at 8 OPs for all
choices of Y.

ligands, 4-hydroxy-2-butanone (BUT). The trajectory is
expressed in terms of a dictionary of 428 OPs (Fig. 4) that
consists of every combination of distances between alpha
carbons in the protein (107 atoms) and carbons in the
ligand (4 atoms). These 428 OPs were used as input to
AMINO to yield a reduced dictionary of 8 OPs, shown in
Table VI. The output of using the jump method for this
system is illustrated in Fig. 5 where irrespective of the
precise value of p we can identify 8 OPs as the robust
choice. Table VI also provides the weights obtained for
these OPs when considered in a 1-dimensional RC in
SGOOP* expressed as a linear combination of these OPs.
Now that a reaction coordinate has been constructed
using the AMINO-selected OPs, a biased metadynamics
runs was conducted to calculate the free energy of binding
(AG) for the system. We provide the results from the
metadynamics run as well as for an unbiased run for
comparison in Fig. 6.

Fig. 6 shows how the simulation that was biased using a
RC constructed from AMINO-generated OPs gives a
reasonably accurate estimate of AG in a very short time.
Also illustrated is the reference value for this system from
long Anton simulations reported in Ref. 23. The difference
between our estimate and the Anton value is minuscule
especially considering that we re-parameterized the
ligand on our own. While we followed Ref. 23’s
instructions, this can easily lead to the fraction of a kT
difference we find. On the other hand our unbiased MD
simulation gives a much worse estimate of AG and as can
be seen from Fig. 6 as well as Fig. 7, it would take much
longer than 500 ns to converge to the correct value. Thus,
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the OPs selected by AMINO using absolutely no prior
knowledge of the system were able to construct a
meaningful reaction coordinate that led to enhanced
sampling of this system.

Although metadynamics does significantly increase the
occurrence of unbinding events, re-binding is limited by

15
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FIG. 6: Absolute binding free energy AG in kJ/mol as a
function of simulation time for the unbiased and biased
runs of the FKBP/BUT protein-ligand system. The shaded
regions denote a +ksT/2 range from the final AG
estimate. The horizontal solid blue and orange lines
denote respectively to the final AG values after 500 ns in
the unbiased and biased simulations, respectively. Solid
black line shows the reference value from long unbiased
MD simulations performed on

Anton supercomputer by Pan et al.23
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FIG. 7: Time-series of reaction coordinate obtained from
SGOOP as a linear combination of AMINO-outputted OPs.
Blue lines show biased simulations with multiple
dissociation and association events leading to quick
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estimate of converged AG, while orange lines show
unbiased simulation where the trajectory stays trapped
for extended periods of time leading to poor estimates of
AG. The black dashed line indicates the boundary
between bound and unbound considered by us to stay
consistent with the definition of bound state in Ref. 23.
entropy, thus traditional metadynamics® cannot
encourage re-binding, regardless of the reaction
coordinate. This is illustrated in Fig. 7. The unbiased
trajectory begins in the bound state, and the ligand only
ever rebinds to the protein once. In the biased run, the
simulation spends very little time in the bound state since
it is biased away from remaining in the already-explored
bound state. This allows the simulation to spend more
time searching the other, unexplored states, so that it
converges to a reasonable solution more quickly.
However, this extended time spent in the unbound state
presents an opportunity for further acceleration through
approaches such as funnel metadynamics which help with
the entropic problem.2* In combination with AMINO,
SGOOP, and traditional metadynamics, funnel
metadynamics can even further accelerate the procedure
we have gone through here.

V. DISCUSSION

In this work we have introduced an information
theoretic approach to screening for OP redundancy by
using a mutual information based distance function as a
measure of dissimilarity between two OPs. In general, to
select a set of OPs for a system, current approaches rely
primarily on previous biophysical knowledge of the
system. With the procedure we have presented, a set of
viable OPs can be constructed with much less knowledge
of the system. For the calculation of protein-ligand
absolute binding free energy, this amounted to knowing
the bound pose structure and a very short MD trajectory
(10 ns) where the ligand did not have to dissociate even
once. Having a trajectory with actual dissociation events
would likely increase the accuracy of AMINO even further,
but that is not a practical scenario for systems of real-
world interest invariably plagued with the sampling issue.
The approach applied involves clustering the set of OPs by
using the mutual information based metric as detailed in
Algorithm 2, and using the resulting centroids as the
output set of OPs. In order to overcome the problem of
centroids becoming stuck in the same cluster, we initialize
the K-Means clustering algorithm with centroids from the

1 P. Tiwary and B. Berne, Proceedings of the National Academy of
Sciences 113, 2839 (2016).

2 Z.Smith, D. Pramanik, S.-T. Tsai, and P. Tiwary, The Journal of Chemical
Physics 149, 234105 (2018), https://doi.org/10.1063/1.5064856.
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construction of a dissimilarity matrix (Algorithm 3). The
motivation for creating the dissimilarity matrix is to
generate a set of k points out of the set of provided OPs
that are internally dissimilar. To determine the best k, a
rate distortion theory based Jump Method, described by
Sugar and James,!3> was employed on the results of
clustering for various k.

Our proposed algorithm eases the previous
requirement of how well a system must be understood
before selecting OPs. Selection of OPs is vital to all
methods employed after unbiased MD simulations, such
as reaction coordinate construction and enhanced
sampling. In future work, we will be applying AMINO to
different molecular systems in biology and beyond, with
different classes of trial OPs, including bond torsion
values, hydration states of specific constituents and many
others. We believe that our algorithm provides significant
progress towards the process of automating OP selection.
A Python 3 implementation of this algorithm in Jupyter
Notebook is available at
https://github.com/pavanravindra/amino for public use.
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