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ABSTRACT 

In this work, we revisit the classic problem of homogeneous nucleation of a liquid droplet in a supersaturated vapor phase. We consider this 
at different extents of the driving force, or equivalently the supersaturation, and calculate a reaction coordinate (RC) for nucleation as the 
driving force is varied. The RC is constructed as a linear combination of three order parameters, where one accounts for the number of 
liquidlike atoms and the other two for local density fluctuations. The RC is calculated from biased and unbiased molecular dynamics (MD) 
simulations using the spectral gap optimization approach “SGOOP” [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)]. 
Our key finding is that as the supersaturation decreases, the RC ceases to simply be the number of liquidlike atoms, and instead, it becomes 
important to explicitly consider local density fluctuations that correlate with shape and density variations in the nucleus. All three order 
parameters are found to have similar barriers in their respective potentials of mean force; however, as the supersaturation decreases, the 
density fluctuations decorrelate slower and thus carry longer memory. Thus, at lower supersaturations, density fluctuations are non-
Markovian and cannot be simply ignored from the RC by virtue of being noise. Finally, we use this optimized RC to calculate nucleation rates 
in the infrequent metadynamics framework and show that it leads to a more accurate estimate of the nucleation rate with four orders of 
magnitude acceleration relative to unbiased MD. 

Published under license by AIP Publishing. https://doi.org/10.1063/1.5124385., s 

 
I. INTRODUCTION 

The nucleation of one phase from another is considered as the 
first step of several phase transitions in chemical physics, with 
relevance to diverse and important problems in science and 
technology.1–9 Through experiments, simulations, and theory, this 
problem has been extensively studied over the decades.10 Despite 
so much attention being lavished upon this problem, it continues to 
be a difficult challenge. For instance, at experimentally accessible 
supersaturations, i.e., the ratio of the actual vapor pressure and the 
equilibrium vapor pressure,11,12 the characteristic critical nucleus 

size is so small that it becomes difficult to observe experimentally. 
The tens to hundreds of atom size of the nucleus thus make it, in 
principle, ideal for probing through molecular dynamics (MD) 
simulations. However, this is easier said than done due to the 
inherent rare event nature of the problem, where one nucleation 
event can take seconds, hours, or longer, making it far beyond the 
microsecond time scale available through the fastest 
supercomputers. This has led to the development of a plethora of 
sampling schemes that attempt to enhance the process of 
nucleation in a controllable manner.13–20 These various sampling 
methods need the predetermination of slow degree or degrees of 
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freedom relevant to the nucleation process being studied. This slow 
degree of freedom which is most informative of the underlying 
physics is referred to as the reaction coordinate (RC).21–23 In 
sampling methods such as metadynamics,16,23 where one gradually 
deposits a time-dependent bias to escape free energy minimum, 
the need to know a reasonably good RC beforehand is well-
documented. In a different class of methods such as forward flux 
sampling (FFS),19,20 recent work has started to highlight how FFS can 
benefit from preknowledge of adequate slow order parameters or 
the RC.24 Finally, in methods such as transition path sampling 
(TPS)25,26 and variants thereof,17,18 this dependence on 
preknowledge of RC is somewhat mitigated, but instead, one 
becomes reliant on the accuracy of the initial path used in the 
sampling. In any case, one can say with confidence that any 
sampling scheme for the study of nucleation can only benefit from 
a prior sense of an approximate RC for nucleation, with the degree 
of benefit varying from scheme to scheme. 

In this work, we consider what is arguably the simplest of 
nucleation problems, namely, that of the homogeneous nucleation 
of a liquid droplet in a supersaturated vapor phase at different 
supersaturation levels.11 The system is modeled using LennardJones 
interactions.11,28 Even in this simplest of problems, we find that the 
RC for homogeneous nucleation deviates significantly from 
standard assumptions made so far in theoretical and simulation 
approaches.28,27 Our calculations of the RC are performed using a 
spectral gap based optimization method “Spectral gap optimization 
of order parameters (SGOOPs),” originally proposed by Tiwary and 
Berne,22,29–31 for the automatic construction of RC from different 
trial order parameters. We find that there exists a supersaturation 
dependent interplay between size, density, and shape of the 
nucleus. This interplay leads to a nontrivial RC that goes far beyond 
a spherical, uniformly dense nucleus assumed in classical nucleation 
theory (CNT).32–37 While we define RC more rigorously in the main 
text, here we summarize it as a low-dimensional variable permitting 
a Markovian description of the underlying highdimensional 
dynamics.21,27,38 Our key finding is that as the supersaturation 
decreases, the RC becomes composed of not just the number of 
atoms in the largest liquidlike cluster, but it also becomes helpful to 
consider the spatial fluctuations of the aforementioned quantity. 
These fluctuations display similar barriers as the number of 
liquidlike atoms but have a longer autocorrelation time (or 
equivalently, slower diffusion). This diffusion anisotropy becomes 
stronger as the supersaturation decreases. In the spirit of works by 
Szabo, Peters, Hynes, and others,21,39–42 we find that the RC itself 
starts to align with the direction of slowest diffusion or longest 
memory, given that the free energy barriers in the directions of 
various individual order parameters are similar. Finally, we use the 
optimized RC as a biasing variable in infrequent metadynamics 
calculations,43 which allow recovering unbiased kinetic rate 
constants from biased simulations. We find that considering this 
diffusion anisotropy adjusted RC in infrequent metadynamics leads 
to more accurate estimates of the nucleation rate across different 
supersaturations with orders of magnitude speed-up relative to 
unbiased MD. 

We believe that our work demonstrates the potential of using 
methods such as SGOOP in unraveling the subtle aspects of the RC 
in complex nucleation problems. Such a RC, first of all, directly gives 
useful, physical insight into the processes at play, but second, as we 
show here, it also serves as a useful descriptor for performing 
enhanced sampling simulations including metadynamics and 
beyond. 

II. THEORY AND METHODS A. Order parameters 

In order to motivate this work and the various order 
parameters we consider here, we start with a brief description of 
CNT which has been a basic building block in the study of 
nucleation. In CNT, the first liquid droplet formed in the vapor is 
treated as spherical shaped and uniformly dense.32–37 The 
nucleation process is then modeled by balancing the surface 
tension penalty with chemical potential benefit.44 This simple 
theory, although it captures qualitatively how nucleation happens, 
fails to quantify the true nucleation rate in any practical sense. It is 
believed that CNT makes several oversimplified assumptions 
especially incorrectly assuming that the cluster is spherical and 
uniform.45,46 By using numerical and experimental tools, the lack of 
sphericity and uniform density has indeed been documented in 
crystal nucleation and in nucleation in more complex systems.47–51 

However, such simulations and experiments are expensive, and it 
has been hard to quantitatively probe such effects even in the 
simple gas system such as the one used in this work. 

A popular order parameter that goes beyond the spherical 
nucleus approximation of CNT was introduced by Frenkel and ten 
Wolde.52 This order parameter n equals the number of liquidlike 
atoms in the system in a way that it is still a continuous and 
differentiable function52 of atomic coordinates, a necessity for the 
biased simulations we perform later. In this definition, an atom is 
classified as liquid if it has more than 5 neighboring atoms. The 
number of the neighborhood atoms of the atom with label i, or 
equivalently the coordination number ci, is calculated through the 
use of a switching function as follows: 

=∑ 1 
−(

rij
/
rc

)6 

 ci j≠i 1 −(rij/rc)12 , (1) 

where the summation is carried over all atoms j ≠ i. The distance rij 

between atoms i and j needs to be less than a cutoff rc to be 
considered as neighbors. The number of liquid phase atoms n is 
then calculated using a similar form with threshold value cl which 
we take to be 5 here in spirit of Ref. 52, 

 =
∑

N1−−((ccll//ccii))126 . (2) 

n 

i=1 1 

The above defined n thus captures the total number of 
liquidlike atoms in the system.52 It is, however, oblivious to details 
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such as the density of the clusters in which these atoms are present, 
if there are more than 1 clusters, the shape of these clusters, and 
other nuances. In order to consider these, we propose including the 
second and third moments of the distribution of coordination 
numbers, defined as μ2

2 and μ3
3, respectively.49,53,54 These are 

explicitly calculated as 

 , (3) 

 N i=1 N i=1 

 

FIG. 1. Here, we show an unbiased MD trajectory in (n,μ2
2) space at 

supersaturation 11.43, for a 2 ns interval between 33 ns to 35 ns. 

The panels are the snapshots at similar n but different μ2
2, showing 

clearly how there can be clusters with the same n but otherwise very 

different properties including density and compactness. For 

instance here, at higher μ2
2, the cluster is visibly more compact than 

the one at lower μ2
2. 

where c is the average of the coordination number. In Fig. 1, we 
show a representative unbiased MD trajectory in (n,μ2

2) space 
where it can be seen that at roughly the critical size of n = 30, 
different μ2

2 can represent clusters with strikingly different profiles 
in terms of shape, density, and compactness. 

The distribution of the coordination numbers captures the 
variations in density of the liquid phase and thus can be used to 
study the local properties of the liquid droplets. Another nice 
feature of these moments is that they can easily be generalized for 
multicomponent systems to take into account the variation in 
density related to specific species.47,50,55 Our RC is then expressed 
as a linear combination of these three order parameters n, μ2

2 and 
μ3

3. 

B. Nucleation rate 

The process of nucleation is inherently stochastic in nature and 
satisfies the law of rare events. In other words, different 
independent observations of nucleation should give a distribution 
of nucleation times adhering to a Poisson process.56 If we let P(t) 
denote the survival probability of not observing any liquid droplets 

at and until time t, it will satisfy the following relation valid for all 
Poisson processes: 

 P(t)= e−t/τ, (4) 

where τ is the characteristic time for the first nucleation event, the 
inverse of which can be interpreted as the nucleation rate. In this 
work, we find the characteristic time by performing multiple 
independent simulations starting from the system in gaseous state 
with randomized velocities (other simulation details in Sec. II C) and 
collect the statistics of transition times until the first nucleation 
event. The nucleation time is then obtained by performing a 
Poisson fit to these independent observations following the 
protocol outlined in Refs. 28 and 57. 
C. Simulation setup 

The simulations were performed under the constant number, 
volume, temperature (NVT) ensemble with N = 512 argon atoms, 
and average temperature fixed at 80.7 K. Although the isochoric 
condition allows us to compare our results with previous simulation 
works,12 it should be mentioned that this is different from most 
actual experiments which are performed under isobaric conditions. 
The volume of the simulation box was set in order to correspond to 
desired supersaturation levels S detailed in Table I. The 
supersaturation is computed as the ratio of the actual vapor 
pressure p and the equilibrium vapor pressure pe. The actual vapor 
pressure was calculated through the thermodynamic relation p = 
2E/3V, where E is the kinetic energy of the system, while the 
equilibrium vapor pressure of argon at our range of supersaturation 
levels is equal to 0.43 bar.11,28 In order to compare our results with 
unbiased nucleation rates in Ref. 11, our cubic box size ranged from 
9.5 nm to 11.5 nm. The interaction between atoms was modeled 
through a Lennard-Jones potential with ϵ = 0.997 97 kJ/mol and σ = 
0.3405 nm.11 The potential was truncated with cutoff at 6.75 σ. The 
velocity rescale thermostat with a time constant of 0.1 ps was used 
to do temperature coupling.58 All simulations were performed using 
GROMACS version 2016.559 patched with PLUMED version 2.4.2.60 

D. Reaction coordinate 

In order to quantify how these various order parameters n, μ2
2, 

and μ3
3 matter for the process of nucleation, we intend to learn a 

RC χ as their linear combination. In addition to quantifying exactly 
how much these order parameters matter for driving nucleation, 
this RC will also serve as a crucial input for biased simulations to be 
performed later in this work. We first carefully define what exactly 
we mean by RC. 

The RC for a given molecular system is traditionally defined as 
an abstract low-dimensional coordinate that best captures progress 
along the relevant reaction pathway. While this intuitive notion can 
be formalized and quantified in several different ways, here we use 
the definition of RC as follows: For a given multidimensional 
complex system undergoing a certain dynamics, it is an optimal 
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TABLE I. The metadynamics parameters used at different 

supersaturation levels: S represents the supersaturation level, L is the 

size of simulation cubic box which we used to control the 

supersaturation. Gaussian bias kernels of starting height h and width 

ω were added every Δt, which was kept same for metadynamics 

irrespective of free energy or kinetics calculation. γ is the bias factor 

for well-tempered metadynamics.23 

 

  WTmetaD parameters    

Label S L (nm) h (kJ/mol) ωn ωχ Δt (ps) γ 

S1 13.65 9.9 0.01 0.5 0.08 25 5 

S2 12.80 10.1 0.05 0.5 0.08 25 8 

S3 11.43 10.5 0.2 0.5 0.08 25 8 

S4 9.87 11.0 0.2 0.5 0.08 25 8 

S5 9.04 11.3 0.2 0.5 0.08 25 8 

 
low-dimensional variable such that the multidimensional dynamics 
of the full system in terms of movement between different 
metastable states can be mapped into Markovian dynamics 
between various states viewed as a function of the RC.21,63 Thus, an 
optimal RC is a low-dimensional mapping which best satisfies (i) 
thermodynamic truthfulness: demarcating between the various 
relevant metastable states present in the actual high-dimensional 
system, (ii) kinetic truthfulness: preserving pathways for moving 
between these different states, and (iii) time scale separation: 
displaying a clean-cut separation of time scales between the 
relaxation times in the various metastable states and the time spent 
in the actual event of crossing from one state to another. 

E. SGOOP 

To find such a RC, here we use the method “spectral gap 
optimization of order parameters (SGOOPs).” This method uses the 
principle of maximum caliber (“MaxCal”), which is similar to path 
entropy,61–64 to construct a transition probability matrix along any 
candidate RC and then calculates its eigenvalues λ0 = 1 >λ1 >λ2 >⋯. 
Here, λ0 = 1 corresponds to stationary state, while the other 
eigenvalues carry information about the time scales of various 
dynamical processes. The best RC will then produce a transition 
matrix K with a maximal time scale separation between visible slow 
and hidden fast processes. This time scale separation, also known 
as spectral gap, is quantified as the difference λn − λn+1, where n is 
the number of discernible energy wells along the putative RC. 
SGOOP needs two key inputs: (i) an estimate of the stationary 
probability density π along any putative RC and (ii) some dynamical 
observables or constraints. With these inputs, the SGOOP transition 
matrix K can be formulated as follows: 

√ 

 = πn 

Kmn Λ, (5) πm 

where πm is the stationary probability along any putative, spatially 
discretized RC χ with m denoting the grid index and Λ is a dynamical 
observable we will revisit shortly. Kmn gives the rate for moving from 
grid m to grid n in a small time interval. The input (i), namely, the 
stationary density π, can come from unbiased MD at high enough 
supersaturations, or if the supersaturation is too low to permit 
unbiased MD, it can come through the use of preliminary 
metadynamics along a trial RC, followed by reweighting.65 For input 
(ii), namely, calculation of the dynamic observable needed to 
constrain the maximum caliber estimate of the rate matrix, we run 
short unbiased MD runs which calculate the mean number of 
nearest neighbor transitions ⟨N⟩  along any putative RC. It is then 
easy to show69 that the dynamical observable Λ in Eq. (5) is given by 

N 

 Λ= √⟨  ⟩  , (6) 

πmπn 

where 

⟨N⟩= ∑ πmKmn. 
(m, n) 

∀∣ m−n∣ =1 

Equivalently,69 if one was to completely by-pass the MaxCal 

framework, a very similar equation to Eq. (5) can be derived by 

comparing a master equation along χ with a discretized 

Smoluchowski equation along the same.66 Then, the prefactor Λ 

becomes 

= Dχ 

 Λ 2d2 , (7) 

where Dχ is the position-dependent diffusivity along the coordinate 
χ and d is the grid spacing along χ. 

Equations (5)–(7) collectively show not just that the rate matrix 
K, hence the spectral gap, and consequently the optimized RC 
depend on the free energy barriers that would be encapsulated in 
the stationary density π, or equivalently in the associated free 
energy, but that the dynamics of the system as captured in the 
diffusivity of the various order parameters can also play a significant 
role in the RC. As we will show later in Sec. III, we find this to be a 
very important point in the context of liquid droplet nucleation. 

F. Metadynamics 

For high enough supersaturations such as S1, S2, and S3 in Table 
I, we can perform unbiased simulations directly in reasonable 
computer time, both for the calculation of nucleation kinetics and 
for feeding stationary density into SGOOP for constructing the RC. 
However, for lower supersaturations, we need to apply enhanced 
sampling methods since nucleation becomes a rare event. In this 
work, we use well-tempered metadynamics16,23 along a trial RC to 
obtain preliminary stationary density estimates, and infrequent 
metadynamics43,65 to calculate the kinetics of nucleation. 
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In metadynamics,15,16,23 the system is encouraged to visit new 
states by adding a history-dependent Gaussian bias V(s, t) as a 
function of a biasing variable s. Here, specifically we use the 
welltempered variant of metadynamics in which the height of the 
Gaussian is tempered through a bias factor each time a point is 
revisited. The different parameters of the Gaussian bias are listed 
in Table I in which h is the starting height, ω is the width, Δt is the 
deposition interval, and γ is the bias factor. The final output of a 
traditional metadynamics run is the free energy along the variable 
s or along any other degree of freedom which can be expressed as 
function of the atomic coordinates of the system. In theory, a 
relation connecting the free energy with the deposited bias can be 
derived irrespective of the precise choice of biasing variable s, 
which will be asymptotically valid in the limit of long simulation 
time. In practice, however, it helps if s is as close to the true RC as 
possible. 

More recently, a simple extension to well-tempered 
metadynamics was introduced which allows recovering not just 
static free energies but also unbiased kinetic information from 
metadynamics. This protocol has been dubbed “infrequent 
metadynamics.”43,65 The key idea here is that as long as the bias 
deposition rate is infrequent enough compared to barrier-crossing 
time scales, in principle we should be able to reweight the biased 
time scales from well-tempered metadynamics directly to obtain 
unbiased kinetics through a simple acceleration factor, 

α(t)= τ =⟨ eβV(t)⟩ , (8) τM 

where τ is the unbiased transition time we seek to learn, β is the 
inverse temperature, and τM is the biased transition time we 
actually observe in metadynamics. V(t) is the net bias deposited 
until time t. The central assumption in infrequent metadynamics is 
that the biasing variable does a good job of time scale separation 
between time spent in the free energy basin and the time spent 
during barrier crossing. Thus, the need to have a more accurate RC 
for biasing that satisfies the criteria of Sec. II D becomes even more 
significant for infrequent metadynamics than in traditional 
metadynamics. For instance, as we will show in Sec. III, infrequent 
metadynamics becomes more accurate if the biased variable 
includes all relevant slow modes with a long autocorrelation time, 
and any hidden modes not considered in the biasing variable are as 
Markovian (or quickly decorrelating) as possible. Here, we learn 
such a 1-dimensional RC χ as a linear combination of our order 
parameters. Our bias potential then becomes V

. The weights of the different 
order parameters (w1,w2,w3) are determined with SGOOP.70 

III. RESULTS A. RC predicted from SGOOP 

We first describe the RC, as introduced and defined in Sec. II D, 
that we identify for the condensation of a liquid droplet across 
different supersaturation values. To learn this RC, we have used 
SGOOP,22,29 with the stationary probability density π estimated 
through unbiased MD at high supersaturations S1 and S2 and 
preliminary metadynamics23 at low supersaturations S4, S4, and S5. 

The preliminary metadynamics runs were performed biasing n. All 
runs were complemented with short unbiased MD runs (50 ns) for 
obtaining dynamical constraints for MaxCal. For every 
supersaturation, SGOOP is initiated from a given choice of trials 

weights (w1,w2,w3) for the RC χ expressed as  

. 
A key question that immediately arises is whether at any given 

supersaturation S, there is a unique RC, or if there are multiple 
possible combinations of the weights (w1,w2,w3) which meet 
equally well the criteria for an optimal RC described in Sec. II D. Yet 
another question which we ask and answer is how transferable is 
the RC learnt at one supersaturation S across different values of S. 
To answer the first question, we perform several exhaustive SGOOP 
trials to estimate the optimized RC, first in the 2-d (n,μ2

2) space 
where we do an explicit grid based search over the full space and 
then in the 3-d (n,μ2

2,μ3
3) space where we start SGOOP from 

different initial weights. In the latter case, the optimization over 
weights in SGOOP is performed using a basin hopping algorithm 
which is a global search algorithm with several stochastic jumps 
aiding the system from not getting trapped in local minima. 

In the 2-d  optimization, we do an explicit 
search among all possible RCs by rotating the putative RC χ ≡ 

 in the  space. Here, as shown in Fig. 2(a) 
for S = 11.43, we find that the spectral gap profile has a sharp peak 
when the RC is almost exclusively comprised of μ2

2, i.e., θ≈π/2 and 

μ2
2 has around 8 times higher weight in the RC than n. Such a – 

heavy RC is obtained irrespective of any S value, showing 
unequivocally that the second moment μ2

2 plays a more important 
role in the RC than n itself. Figure 2(a) also shows the variation of 
the kinetic prefactor Λ of Eq. (5) with RC choice, and we will revisit 
this profile in Sec. III B. Next, we perform optimization in the full 
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FIG. 2. (a) The spectral gap (blue asterisks, left axis) and 

dynamical prefactor 
Λ (red circles, right axis) of SGOOP 

transition rate [Eq. (5)] along different RC 
. Both the maximal spectral gap and minimum Λ take 

place at θ = 0.5π. (b) Mean spectral gap ratio at five different 

supersaturation levels S1–S5: for each supersaturation, we 

averaged the spectral gap ratios calculated from 20 independent 

biased runs, and the error bars represent the standard error from 

the averaged results. 

3-d  space. Here, we find that there are many 
combinations (w1,w2,w3) with similarly enhanced spectral gaps 
relative to the traditional choice of χ = n, but with a common theme 
that the second moment and the third moment consistently show 
up in the optimized RC. 

Thus, to summarize so far, (a) RC optimization in (n,μ2
2) leads 

to RC predominantly comprised of μ2
2, and (b) RC optimization in 

(n,μ2
2,μ3

3) leads to a RC invariably with weights for all 3 variables 
but with multiple local maxima in the spectral gap profile. In other 
words, the RC is quite degenerate, but considering μ2

2 and μ3
3 in the 

RC is important for a more accurate description of the nucleation 
process. In the supplementary material, we also show results from 
a full grid search over spectral gaps in the (w1,w2,w3) space at S = 
11.43, further illustrating the findings from SGOOP. Here, among 
the first few largest local maxima from 3 different trajectories, we 
picked (w1,w2,w3) = (0.15, 0.65, −0.15) for use in further calculations 
across all supersaturations S. In Fig. 2(b), we plot the ratio between 
the spectral gap along RC = 0.15n + 0.65μ2

2 − 0.15μ3
3 and that along 

RC = n at different S. As can be seen there, at all S values, the 
optimized RC gives higher spectral gaps than just n, and the 

improvement increases sharply with decreased supersaturation. 
That is, as the supersaturation decreases, the importance of 
considering shape and density fluctuations in the nuclei become 
more and more important, which is one of the central findings of 
this paper. Furthermore, the optimized RC learnt at one 
supersaturation gives improved spectral gaps at other 
supersaturations, and hence, the RC is transferable across 
supersaturations. Thus, in Sec. III C, we use the RC χ = 0.15n + 
0.65μ2

2 − 0.15μ3
3 at all supersaturations for enhanced sampling 

based calculations of the nucleation rate. 

B. Understanding the RC 

SGOOP optimizes the RC by finding a low-dimensional 
projection with highest gap between slow and fast processes. In 
most cases, this amounts to selecting a projection with the highest 
barrier separating the metastable states. To understand if the RC 
learnt in Sec. III A can be attributed to simply barriers in the free 
energy profile, or if dynamical concerns such as the prefactor Λ in 
Eqs. (5)– (7) play a role, we construct free energies along various 1-
d and 2-d components (totaling six combinations) of (n,μ2

2,μ3
3). 

These free energies were obtained by running metadynamics with 
same parameters defined in Table I and bias potentials added along 
n. We then averaged over 10 independent metadynamics runs with 
each trajectory reweighted using the free estimator described in 
Ref. 65. 

https://doi.org/10.1063/1.5124385#suppl
https://doi.org/10.1063/1.5124385#suppl
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From the various 1-d and 2-d free energy profiles shown in Figs. 
3(a)–3(f) for S = 11.43, it is hard to distinguish between the 
importance of the various order parameters n, μ2

2, and μ3
3. The 2-d 

profiles show that starting from the gas phase [red stars in Figs. 
3(a)– 3(c)], all three order parameters change in a very correlated 
manner until the barrier is reached and nucleation is essentially 
complete  

 

FIG. 3. The free energy plots obtained from well-tempered metadynamics biasing along n: The top three panels are the 2-d free energy surfaces 

of (a) (n, μ2
2), (b) (μ2, μ3

3), and (c) (n, μ3) at supersaturation S3. The starting gaseous state corresponding to each plot is shown with a red star. 

The middle three panels show the 1-d free energy curves along (d) n, (e) μ2
2, and (f) μ3

3, respectively. The profiles and the errorbars are 

calculated from the averages over 10 independent metadynamics runs at supersaturation S = 11.43. The bottom three panels display the 1-d 

free energy curves from (g) S = 11.43, (h) S = 9.87, and (i) S = 9.04. In each panel, we show the profile averaged over 10 independent 

metadynamics runs along n, χ, and μ2
2. The regions between errorbars are filled. The corresponding energy barriers ΔE(RC) along three 

different putative RCs are also shown. It can be seen that as S decreases, the barrier difference decreases. All energies are in units of kJ/mol. 
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(n > 100). The 1-d free energies along the three order parameters 
[Figs. 3(d)–3(f)] show that the free energy barrier that needs to be 
overcome is also very similar for each of the 3 order parameters, 
although there are some systematic differences which we revisit 
shortly in Figs. 3(g)–3(i). Comparing the 1-d free energy along μ3

3 

[Fig. 3(f)] with the corresponding 2-d free energies [Figs. 3(b) and 
3(c)], we can see that unlike n and μ2

2, the 1-d projection along μ3
3 

does a very poor job of describing the pathway in higher dimension 
space, further justifying our choice of RC χ in Sec. III A with higher 
weight for μ2

2 than for μ3
3. In Figs. 3(g)–3(i), we show the free 

energies along three different RC choices, namely, n, μ2
2, and the 

optimized χ = 0.15n + 0.65μ2
2 − 0.15μ3

3, for three different S values. 
As S is decreased, invariably there is a small but consistent 
improvement in the barrier height when viewed as a function of χ 
or μ2

2, relative to when viewed as a function of n. However, first, 
this difference is very small (0.25 kJ or 0.1 kBT), and second, it 
appears to get even smaller with decreasing S [Figs. 3(g)– 3(i), left 
to right]. Thus, the free energy barrier cannot be used to explain the 
behavior of spectral gap vs supersaturation shown in Fig. 2(b). Here, 
we showed that at all supersaturation levels we considered, the 
spectral gaps of the optimized RC are better than of n. It was also 
pointed out that as supersaturation decreases, the spectral gap 
improvement increases. This tells us that the optimized RC works 
better at lower supersaturation, which is inconsistent with the 
change in free energy barriers along different order parameters 
with supersaturation. 

Our next step is therefore explaining why SGOOP finds that μ2
2 

has a role to play in χ and why the advantage in considering μ2
2 

increases with decreasing supersaturation S. In Fig. 2(a), we 
provided a profile of how the prefactor Λ varied with the RC choice 
and correspondingly with the spectral gap. It can be seen there that 
the prefactor Λ has a strong inverse correlation with the spectral 
gap of χ—the maximum spectral gap coincides with minimum Λ. 
Thus, the minuscule increase in barrier height with varying RC is 
compensated by the slowness of the dynamics along the RC, as 
captured by Λ or the average number of first neighbor transitions in 
a unit time. 

To gain further insight into this, we calculated 
timeautocorrelation functions along our three different order 
parameters (see Fig. 4) as higher autocorrelation time represents 
slower diffusivity. Our calculations show that μ2

2 and μ3
3 have 

longer autocorrelation times than n and therefore lose memory 
slower than n.27,28 Furthermore, the increase in autocorrelation 
times of the two order parameters μ2

2 and μ3
3 relative to n becomes 

more and more pronounced as the supersaturation S decreases 
(Fig. 4). This is in striking contrast to Fig. 3, where we found an 
opposite trend looking at the free energy barriers along these order 
parameters. 

We therefore conclude this section with the observation that 
anisotropic diffusion in the space of order parameters becomes an 
important factor in determining the RC, especially at lower 
supersaturations. The longer autocorrelation times are linked to 
less Markovian behavior, which means μ2

2 and μ3
3 carry longer 

memory than n.27,28 Coupled with the finding that all three order 
parameters have similar barriers in their respective potential of 

mean force, this means that change in nuclei characteristics such as 
shape and density become slower as supersaturation S decreases, 
and it becomes important to explicitly consider this in the 
construction of a Markovian RC. 

 

FIG. 4. The mean autocorrelation times of the order parameters n 

(blue circles), μ2
2 (orange triangles), and μ3

3 (green squares) 

calculated from unbiased MD simulations at five different 

supersaturation levels S1–S5. At each supersaturation level, the 

calculations from 10 independent runs are averaged. The error bars 

show the standard error of the averaged results. 

Here, we would also like to highlight past work by Peters42 

which applied a theoretical model to the study of the interplay 
between concentration fluctuations and nucleation processes in 
multicomponent systems. While that work did not compute rates, 
as we do in Sec. III C here, and also made stringent assumptions 
such as a radially symmetric concentration profile, our key findings 
here are similar to theirs. Namely, that in this work, shape variations 
can drive or inhibit a nucleus from going into the second phase, 
while in their case,42 certain types of concentration profiles can 
drive a classically precritical nucleus over the nucleation barrier. 

C. Nucleation kinetics 

Now that we have identified an optimized RC χ = 0.15n 

+0.65μ2
2−0.15μ3

3 with improved spectral gap relative to the 
Frenkelten Wolde parameter n, we perform two sets of enhanced 
sampling simulations (specifically, infrequent metadynamics) using 
n and χ as the biasing variable, respectively. We use Eq. (8) to 
reconstruct the unbiased time scale estimates from these biased 
runs. At high enough supersaturations, we are able to run unbiased 
MD as well and together with the results of Chkonia et al.,11 these 
constitute a valuable set of results to benchmark our findings 
against. At each supersaturation level, we launched 40 independent 
metadynamics runs with 20 of them biasing n and the other 20 
biasing the optimized RC χ. For each independent run, in order to 
be able to compare our results with previously published work,11,28 

we defined the nucleation event as when the number of liquidlike 
atoms n reaches 30 for the first time. Every independent 
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observation of such an event in terms of its metadynamics time was 
scaled by the acceleration factor [Eq. (8)] to obtain an unbiased 
observation of the nucleation time. With these 20 independent 
estimates of the nucleation time, we can compute the characteristic 
time [Eq. (4)] of observing the first nucleation event τN by fitting a 
Poisson distribution to the statistics, where τN is the expected value 
of the fitted Poisson 
TABLE II. The table shows the characteristic nucleation times τN by 

fitting Eq. (4) and the corresponding nucleation rates J. Results are 

shown as obtained from the simulations biasing along n as well as 

biasing along the optimized RC χ. The labels correspond to the 

supersaturation levels denoted in Table I. α is the mean acceleration 

factor for every set of simulations. For the fitted characteristic 

nucleation times τN, we have also provided in square brackets the 

corresponding p-value of the fit when used in the Kolmogorov-Smirnov 

test of Ref. 57. 

 

S RC τN(s) [p − value] J (1/cm3/s) α 

S1 
n 

χ 

4.16 ± 0.45 × 10−9 [0.17] 

4.56 ± 0.31 × 10−9 [0.67] 

2.48 ± 0.27 × 1026 

2.26 ± 0.15 × 1026 

1.1 

1.1 

S2 
n 

χ 

8.66 ± 0.85 × 10−9 [0.47] 

7.88 ± 0.51 × 10−9 [0.37] 

1.12 ± 0.11 × 1026 

1.23 ± 0.08 × 1026 

2.0 

1.6 

S3 
n 

χ 

1.00 ± 0.15 × 10−7 [0.87] 

0.47 ± 0.07 × 10−7 [0.35] 

8.64 ± 1.30 × 1024 

1.84 ± 0.27 × 1025 

4.0 × 101 

6.4 × 101 

S4 
n 

χ 

1.26 ± 0.27 × 10−6 [0.64] 

0.69 ± 0.12 × 10−6 [0.80] 

5.96 ± 1.28 × 1023 

1.09 ± 0.19 × 1024 

3.7 × 102 

1.1 × 103 

S5 
n 

χ 

1.58 ± 0.19 × 10−5 [0.59] 

0.62 ± 0.15 × 10−5 [0.13] 

4.32 ± 0.52 × 1022 

1.10 ± 0.27 × 1023 

5.7 × 103 

7.8 × 103 

 

distribution. The corresponding nucleation rates are then 
calculated through the formula J = 1/(τNV) and J = 1/(tNV), where V 
is the volume of the system. The results are shown in Table II and in 

Fig. 5. 

We find that the use of n as a biasing variable in infrequent 
metadynamics does a remarkably decent job of obtaining 
nucleation rates (in agreement with the findings of Ref. 28) even 
with very significant acceleration factors or computational boost 
relative to unbiased MD. There is, nonetheless, further 
improvement of up to three times that can be obtained in the 
quality of the nucleation rate if the 

 

FIG. 5. The nucleation rates calculated from the Poisson fits of 

reweighted nucleation times obtained from infrequent 

metadynamics biasing along n and χ (green squares and red circles, 

respectively). The values and their associated error bars are listed 

in Table II. We also compare our results with previous studies from 

Refs. 11 and 28 (blue triangles and red diamonds, respectively). 

optimized RC is used instead of n, especially as the supersaturation 
is decreased. In a field where errors can be as high as 26 orders of 
magnitude,46 improvement of three times seems minuscule, 
reflecting that n is, after all, not that bad of a biasing variable for 
infrequent metadynamics. Yet, even though the improvement is 
relatively small compared to the usual standards in nucleation 
kinetics, it is systematic, robust, and indicative of possible 
usefulness when employed in more complex systems with different 
competing variables, including but not limited to composition 
fluctuations.42 As can be seen from Table II, the acceleration factor 
in metadynamics relative to unbiased MD increases steadily as S 
decreases, reaching almost four orders of magnitude at the lowest 
S. All reweighted nucleation times, irrespective of whether they 
came from biasing n or biasing χ, give pvalues above the 
recommended cutoff in the Kolmogorov-Smirnov test from Ref. 57. 
At S = 11.43, the use of χ as the biasing variable instead of n leads 
to much better agreement with the unbiased estimate of Chkonia 
et al.11 as can be seen in Fig. 5. In general, the characteristic times 
for nucleation from runs biasing the RC χ are significantly lower than 
those from biasing n, and roughly speaking, this difference 
increases as S decreases. In addition to the explicit agreement with 
unbiased estimate of Chkonia et al.11 at S = 11.43, the lower 
characteristic time (with similar p-values) can be seen as further 
evidence of the benefit of biasing χ instead of n. This is because, in 
metadynamics, the presence of missing slow degrees of freedom 
from explicit consideration in the biasing variable typically leads to 
hysteresis during free energy calculations, or overestimation of the 
accelerated time through Eq. (8), as pointed out in Refs. 57 and 67. 

IV. DISCUSSION 

In this work, we used new tools22,43 to revisit a classic problem 
in nucleation, namely, that of the formation of liquid droplet from 
gaseous precursor as a function of varying driving force for 
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nucleation, namely, supersaturation. Our interest was in (a) 
constructing a Markovian reaction coordinate (RC) for this process 
and (b) testing if there is any gain to be had through the use of a 
more Markovian RC in enhanced sampling calculations of 
nucleation kinetics. To answer these questions especially at low 
supersaturations where access to unbiased trajectories of 
nucleation is difficult (needed by many other RC optimization 
methods such as Refs. 68 and 69), we use the spectral gap 
optimization method from Ref. 22 to construct optimized RC from 
input biased simulations. Our calculations demonstrate 
unequivocally that it is not sufficient to consider only the typical 
order parameter used to describe nucleation, namely, the number 
of liquidlike atoms in the system. By considering further variables 
that account for heterogeneity in the system, such as higher 
moments μ2

2 and third moment μ3
3 of the distribution of 

coordination numbers, we could obtain a much more Markovian 
RC. Interestingly, these various order parameters have nearly 
identical free energy barriers, and they differ primarily only in 
associated diffusivities. The importance of these variables further 
increases with decreasing supersaturation as their associated 
autocorrelation time increases sharply. In other words, shape and 
density fluctuations in the nucleating clusters cease to stay rapidly 
equilibrating variables which can be entirely ignored from a 
Markovian low-dimensional description of nucleation. We conclude 
that diffusion anisotropy plays a more important role at lower S, 
which is supported by our analysis of autocorrelation functions and 
autocorrelation times. While previous work has demonstrated how 
infrequent metadynamics can predict nucleation time with only n 
as the RC, we show in this work that the prediction of nucleation 
time can be further improved by biasing along an optimized RC. It 
will be interesting to see if the use of such a more Markovian RC 
makes improvement in the reliability and efficiency of other 
enhanced sampling methods such as forward flux sampling. One 
additional important comment we would like to make here is that 
while the RC was found to be increasingly more complex as the 
supersaturation was brought down, there is no guarantee that this 
trend will continue monotonically as the supersaturation is further 
decreased. Indeed, in a general setting, the rate k for an activated 
process depends on the diffusivity D only in the pre-exponential but 
on the free energy barrier ΔG 

−βΔG in the exponentiated 
term, i.e., k = De . As the supersaturation decreases, we expect at 
some point the increase in nucleation barrier will be so significant 
that any manifestations of diffusion anisotropy will be washed out, 
and classical nucleation theory will again start to take hold as has 
been pointed out, for instance, by Binder.70 Our supersaturation 
values in this work, however, did not reach this regime. 

Finally, it should be mentioned that in this calculation, we did 
not consider effects due to the finite size of the system, which can 
be done using the method proposed in Ref. 28 but was not the main 
objective here. We realize that our findings here might simply be a 
finite size effect, resulting from the coupling between fluctuations 
in the density of the parent phase and fluctuations in the size of the 
growing nucleus of the product phase, which are inherently coupled 
due to the overall material balance in the simulation box. To check 

whether our findings might indeed be valid in the thermodynamic 
limit, in future work, we will explore these simulations at different 
box sizes and with different supersaturation levels. Similarly, our 
findings might change with constant number, pressure, and 
temperature (NPT) simulations. The present work can be redone, 
taking these important nuances into account. Finally, strictly 
speaking, ours was a model system with model parameters. This 
work is a proof of principle that ideas such as SGOOP for RC 
optimization are potentially useful for study of nucleation through 
enhanced sampling or otherwise. In the future, we will be extending 
this work to systems such as crystal nucleation, multiple 
polymorphs, systems with multiple pathways, or multiple species, 
where there will be even more order parameters to be considered. 
All of these continue to be very difficult yet important problems for 
understanding nucleation pathways and rates, and we are hopeful 
that our tools will allow us and others to systematically study these. 

SUPPLEMENTARY MATERIAL 

See supplementary material for the PLUMED input file, 
autocorrelation function plots, spectral gap profiles, and bootstrap 
analyses of nucleation times. 
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