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ABSTRACT

In this work, we revisit the classic problem of homogeneous nucleation of a liquid droplet in a supersaturated vapor phase. We consider this
at different extents of the driving force, or equivalently the supersaturation, and calculate a reaction coordinate (RC) for nucleation as the
driving force is varied. The RC is constructed as a linear combination of three order parameters, where one accounts for the number of
liquidlike atoms and the other two for local density fluctuations. The RC is calculated from biased and unbiased molecular dynamics (MD)
simulations using the spectral gap optimization approach “SGOOP” [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)].
Our key finding is that as the supersaturation decreases, the RC ceases to simply be the number of liquidlike atoms, and instead, it becomes
important to explicitly consider local density fluctuations that correlate with shape and density variations in the nucleus. All three order
parameters are found to have similar barriers in their respective potentials of mean force; however, as the supersaturation decreases, the
density fluctuations decorrelate slower and thus carry longer memory. Thus, at lower supersaturations, density fluctuations are non-
Markovian and cannot be simply ignored from the RC by virtue of being noise. Finally, we use this optimized RC to calculate nucleation rates
in the infrequent metadynamics framework and show that it leads to a more accurate estimate of the nucleation rate with four orders of
magnitude acceleration relative to unbiased MD.

Published under license by AIP Publishing.

I. INTRODUCTION

The nucleation of one phase from another is considered as the
first step of several phase transitions in chemical physics, with
relevance to diverse and important problems in science and
technology.' Through experiments, simulations, and theory, this
problem has been extensively studied over the decades.'® Despite
so much attention being lavished upon this problem, it continues to
be a difficult challenge. For instance, at experimentally accessible
supersaturations, i.e., the ratio of the actual vapor pressure and the
equilibrium vapor pressure, the characteristic critical nucleus

size is so small that it becomes difficult to observe experimentally.
The tens to hundreds of atom size of the nucleus thus make it, in
principle, ideal for probing through molecular dynamics (MD)
simulations. However, this is easier said than done due to the
inherent rare event nature of the problem, where one nucleation
event can take seconds, hours, or longer, making it far beyond the
microsecond time scale available through the fastest
supercomputers. This has led to the development of a plethora of
sampling schemes that attempt to enhance the process of
nucleation in a controllable manner. These various sampling
methods need the predetermination of slow degree or degrees of
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freedom relevant to the nucleation process being studied. This slow
degree of freedom which is most informative of the underlying
physics is referred to as the reaction coordinate (RC). In
sampling methods such as metadynamics, where one gradually
deposits a time-dependent bias to escape free energy minimum,
the need to know a reasonably good RC beforehand is well-
documented. In a different class of methods such as forward flux
sampling (FFS), recent work has started to highlight how FFS can
benefit from preknowledge of adequate slow order parameters or
the RC.” Finally, in methods such as transition path sampling
(TPS) and variants thereof, this dependence on
preknowledge of RC is somewhat mitigated, but instead, one
becomes reliant on the accuracy of the initial path used in the
sampling. In any case, one can say with confidence that any
sampling scheme for the study of nucleation can only benefit from
a prior sense of an approximate RC for nucleation, with the degree
of benefit varying from scheme to scheme.

In this work, we consider what is arguably the simplest of
nucleation problems, namely, that of the homogeneous nucleation
of a liquid droplet in a supersaturated vapor phase at different
supersaturation levels.* The system is modeled using LennardJones
interactions. Even in this simplest of problems, we find that the
RC for homogeneous nucleation deviates significantly from
standard assumptions made so far in theoretical and simulation
approaches. Our calculations of the RC are performed using a
spectral gap based optimization method “Spectral gap optimization
of order parameters (SGOOPs),” originally proposed by Tiwary and
Berne, for the automatic construction of RC from different
trial order parameters. We find that there exists a supersaturation
dependent interplay between size, density, and shape of the
nucleus. This interplay leads to a nontrivial RC that goes far beyond
a spherical, uniformly dense nucleus assumed in classical nucleation
theory (CNT). While we define RC more rigorously in the main
text, here we summarize it as a low-dimensional variable permitting
a Markovian description of the underlying highdimensional
dynamics. Our key finding is that as the supersaturation
decreases, the RC becomes composed of not just the number of
atoms in the largest liquidlike cluster, but it also becomes helpful to
consider the spatial fluctuations of the aforementioned quantity.
These fluctuations display similar barriers as the number of
liquidlike atoms but have a longer autocorrelation time (or
equivalently, slower diffusion). This diffusion anisotropy becomes
stronger as the supersaturation decreases. In the spirit of works by
Szabo, Peters, Hynes, and others, we find that the RC itself
starts to align with the direction of slowest diffusion or longest
memory, given that the free energy barriers in the directions of
various individual order parameters are similar. Finally, we use the
optimized RC as a biasing variable in infrequent metadynamics
calculations,”* which allow recovering unbiased kinetic rate
constants from biased simulations. We find that considering this
diffusion anisotropy adjusted RC in infrequent metadynamics leads
to more accurate estimates of the nucleation rate across different
supersaturations with orders of magnitude speed-up relative to
unbiased MD.

scitation.org/journall/jcp

We believe that our work demonstrates the potential of using
methods such as SGOOP in unraveling the subtle aspects of the RC
in complex nucleation problems. Such a RC, first of all, directly gives
useful, physical insight into the processes at play, but second, as we
show here, it also serves as a useful descriptor for performing
enhanced sampling simulations including metadynamics and
beyond.

Il. THEORY AND METHODS A. Order parameters

In order to motivate this work and the various order
parameters we consider here, we start with a brief description of
CNT which has been a basic building block in the study of
nucleation. In CNT, the first liquid droplet formed in the vapor is
treated as spherical shaped and uniformly dense. The
nucleation process is then modeled by balancing the surface
tension penalty with chemical potential benefit.** This simple
theory, although it captures qualitatively how nucleation happens,
fails to quantify the true nucleation rate in any practical sense. It is
believed that CNT makes several oversimplified assumptions
especially incorrectly assuming that the cluster is spherical and
uniform. By using numerical and experimental tools, the lack of
sphericity and uniform density has indeed been documented in
crystal nucleation and in nucleation in more complex systems.
However, such simulations and experiments are expensive, and it
has been hard to quantitatively probe such effects even in the
simple gas system such as the one used in this work.

A popular order parameter that goes beyond the spherical
nucleus approximation of CNT was introduced by Frenkel and ten
Wolde.>? This order parameter n equals the number of liquidlike
atoms in the system in a way that it is still a continuous and
differentiable function®? of atomic coordinates, a necessity for the
biased simulations we perform later. In this definition, an atom is
classified as liquid if it has more than 5 neighboring atoms. The
number of the neighborhood atoms of the atom with label i, or
equivalently the coordination number c;, is calculated through the
use of a switching function as follows:

=/

=Z 1 rij-rc 6
ci j# 1 =(riifrc)1z, (1)

where the summation is carried over all atoms j # i. The distance r;j
between atoms i and j needs to be less than a cutoff r. to be
considered as neighbors. The number of liquid phase atoms n is
then calculated using a similar form with threshold value ¢; which
we take to be 5 here in spirit of Ref. 52,

=ZN1—:( (cenf/cci))126 . (2)

11
The above defined n thus captures the total number of
liquidlike atoms in the system.> It is, however, oblivious to details
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such as the density of the clusters in which these atoms are present,
if there are more than 1 clusters, the shape of these clusters, and
other nuances. In order to consider these, we propose including the
second and third moments of the distribution of coordination
numbers, defined as u% and u3;, respectively. These are
explicitly calculated as

B
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FIG. 1. Here, we show an unbiased MD trajectory in (n,u%) space at
supersaturation 11.43, for a 2 ns interval between 33 ns to 35 ns.
The panels are the snapshots at similar n but different %, showing
clearly how there can be clusters with the same n but otherwise very
different properties including density and compactness. For
instance here, at higher u?%, the cluster is visibly more compact than
the one at lower p?,.

where ¢ is the average of the coordination number. In , we
show a representative unbiased MD trajectory in (n,u?,) space
where it can be seen that at roughly the critical size of n = 30,
different u2, can represent clusters with strikingly different profiles
in terms of shape, density, and compactness.

The distribution of the coordination numbers captures the
variations in density of the liquid phase and thus can be used to
study the local properties of the liquid droplets. Another nice
feature of these moments is that they can easily be generalized for
multicomponent systems to take into account the variation in
density related to specific species. Our RC is then expressed
as a linear combination of these three order parameters n, u% and
K33,

B. Nucleation rate

The process of nucleation is inherently stochastic in nature and
satisfies the law of rare events. In other words, different
independent observations of nucleation should give a distribution
of nucleation times adhering to a Poisson process.*° If we let P(t)
denote the survival probability of not observing any liquid droplets

scitation.org/journall/jcp

at and until time ¢, it will satisfy the following relation valid for all
Poisson processes:

P(t)= e-t, (4)

where tis the characteristic time for the first nucleation event, the
inverse of which can be interpreted as the nucleation rate. In this
work, we find the characteristic time by performing multiple
independent simulations starting from the system in gaseous state
with randomized velocities (other simulation details in Sec. || C) and
collect the statistics of transition times until the first nucleation
event. The nucleation time is then obtained by performing a
Poisson fit to these independent observations following the
protocol outlined in Refs. 28 and

C. Simulation setup

The simulations were performed under the constant number,
volume, temperature (NVT) ensemble with N = 512 argon atoms,
and average temperature fixed at 80.7 K. Although the isochoric
condition allows us to compare our results with previous simulation
works,*” it should be mentioned that this is different from most
actual experiments which are performed under isobaric conditions.
The volume of the simulation box was set in order to correspond to
desired supersaturation levels S detailed in . The
supersaturation is computed as the ratio of the actual vapor
pressure p and the equilibrium vapor pressure p.. The actual vapor
pressure was calculated through the thermodynamic relation p =
2E/3V, where E is the kinetic energy of the system, while the
equilibrium vapor pressure of argon at our range of supersaturation
levels is equal to 0.43 bar. In order to compare our results with
unbiased nucleation rates in Ref. 11, our cubic box size ranged from
9.5 nm to 11.5 nm. The interaction between atoms was modeled
through a Lennard-Jones potential with € =0.997 97 klJ/moland o =
0.3405 nm."'! The potential was truncated with cutoff at 6.75 o. The
velocity rescale thermostat with a time constant of 0.1 ps was used
to do temperature coupling.>® All simulations were performed using
GROMACS version 2016.5°° patched with PLUMED version 2.4.2.

D. Reaction coordinate

In order to quantify how these various order parameters n, u%,,
and u3; matter for the process of nucleation, we intend to learn a
RC x as their linear combination. In addition to quantifying exactly
how much these order parameters matter for driving nucleation,
this RC will also serve as a crucial input for biased simulations to be
performed later in this work. We first carefully define what exactly
we mean by RC.

The RC for a given molecular system is traditionally defined as
an abstract low-dimensional coordinate that best captures progress
along the relevant reaction pathway. While this intuitive notion can
be formalized and quantified in several different ways, here we use
the definition of RC as follows: For a given multidimensional
complex system undergoing a certain dynamics, it is an optimal
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TABLE |. The metadynamics parameters used at different
supersaturation levels: S represents the supersaturation level, L is the
size of simulation cubic box which we used to control the
supersaturation. Gaussian bias kernels of starting height h and width
w were added every At, which was kept same for metadynamics
irrespective of free energy or kinetics calculation. y is the bias factor
for well-tempered metadynamics.

WTmetaD parameters

Label S L (nm) h(k)/mol)  wp Wy At (ps) vy
S1 13.65 9.9 0.01 0.5 0.08 25 5
S2 12.80 10.1 0.05 0.5 0.08 25 8
S3 11.43 10.5 0.2 0.5 0.08 25 8
Sa 9.87 11.0 0.2 0.5 0.08 25 8
Ss 9.04 11.3 0.2 0.5 0.08 25 8

low-dimensional variable such that the multidimensional dynamics
of the full system in terms of movement between different
metastable states can be mapped into Markovian dynamics
between various states viewed as a function of the RC. Thus, an
optimal RC is a low-dimensional mapping which best satisfies (i)
thermodynamic truthfulness: demarcating between the various
relevant metastable states present in the actual high-dimensional
system, (ii) kinetic truthfulness: preserving pathways for moving
between these different states, and (iii) time scale separation:
displaying a clean-cut separation of time scales between the
relaxation times in the various metastable states and the time spent
in the actual event of crossing from one state to another.

E. SGOOP

To find such a RC, here we use the method “spectral gap
optimization of order parameters (SGOOPs).” This method uses the
principle of maximum caliber (“MaxCal”), which is similar to path
entropy, to construct a transition probability matrix along any
candidate RC and then calculates its eigenvalues Ag= 1 >A; >A; >+-:
Here, Ao = 1 corresponds to stationary state, while the other
eigenvalues carry information about the time scales of various
dynamical processes. The best RC will then produce a transition
matrix K with a maximal time scale separation between visible slow
and hidden fast processes. This time scale separation, also known
as spectral gap, is quantified as the difference A, - Aps1, Where n is
the number of discernible energy wells along the putative RC.
SGOOP needs two key inputs: (i) an estimate of the stationary
probability density it along any putative RC and (ii) some dynamical
observables or constraints. With these inputs, the SGOOP transition
matrix K can be formulated as follows:

scitation.org/journall/jcp

where mp, is the stationary probability along any putative, spatially
discretized RC y with m denoting the grid index and A is a dynamical
observable we will revisit shortly. K, gives the rate for moving from
grid m to grid n in a small time interval. The input (i), namely, the
stationary density 1, can come from unbiased MD at high enough
supersaturations, or if the supersaturation is too low to permit
unbiased MD, it can come through the use of preliminary
metadynamics along a trial RC, followed by reweighting.®> For input
(ii), namely, calculation of the dynamic observable needed to
constrain the maximum caliber estimate of the rate matrix, we run
short unbiased MD runs which calculate the mean number of
nearest neighbor transitions ( N) along any putative RC. It is then
easy to show®’ that the dynamical observable Ain Eq. (5) is given by

N
A=V() (6)

TTmITn
where

( N) =2 TtmKmn.

(m, n)
Vi m-n| =1

Equivalently,®® if one was to completely by-pass the MaxCal

framework, a very similar equation to Eq. can be derived by

comparing a master equation along y with a discretized

Smoluchowski equation along the same.®® Then, the prefactor A

becomes

= DX o
A2d,, (7)

where Dy is the position-dependent diffusivity along the coordinate
x and d is the grid spacing along y.

Equations (5)—(7) collectively show not just that the rate matrix
K, hence the spectral gap, and consequently the optimized RC
depend on the free energy barriers that would be encapsulated in
the stationary density m, or equivalently in the associated free
energy, but that the dynamics of the system as captured in the
diffusivity of the various order parameters can also play a significant
role in the RC. As we will show later in Sec. |, we find this to be a
very important point in the context of liquid droplet nucleation.

F. Metadynamics

For high enough supersaturations such as S1, Sz, and S3in

, we can perform unbiased simulations directly in reasonable
computer time, both for the calculation of nucleation kinetics and
for feeding stationary density into SGOOP for constructing the RC.
However, for lower supersaturations, we need to apply enhanced
sampling methods since nucleation becomes a rare event. In this
work, we use well-tempered metadynamics along a trial RC to
obtain preliminary stationary density estimates, and infrequent
metadynamics to calculate the kinetics of nucleation.
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In metadynamics, the system is encouraged to visit new
states by adding a history-dependent Gaussian bias V(s, t) as a
function of a biasing variable s. Here, specifically we use the
welltempered variant of metadynamics in which the height of the
Gaussian is tempered through a bias factor each time a point is
revisited. The different parameters of the Gaussian bias are listed
in in which h is the starting height, w is the width, At is the
deposition interval, and y is the bias factor. The final output of a
traditional metadynamics run is the free energy along the variable
s or along any other degree of freedom which can be expressed as
function of the atomic coordinates of the system. In theory, a
relation connecting the free energy with the deposited bias can be
derived irrespective of the precise choice of biasing variable s,
which will be asymptotically valid in the limit of long simulation
time. In practice, however, it helps if s is as close to the true RC as
possible.

More recently, a simple extension to well-tempered
metadynamics was introduced which allows recovering not just
static free energies but also unbiased kinetic information from
metadynamics. This protocol has been dubbed “infrequent
metadynamics.” The key idea here is that as long as the bias
deposition rate is infrequent enough compared to barrier-crossing
time scales, in principle we should be able to reweight the biased
time scales from well-tempered metadynamics directly to obtain
unbiased kinetics through a simple acceleration factor,

a(t)= 1 =(esvn), (8) ™

where T is the unbiased transition time we seek to learn, 8 is the
inverse temperature, and Tty is the biased transition time we
actually observe in metadynamics. V(t) is the net bias deposited
until time t. The central assumption in infrequent metadynamics is
that the biasing variable does a good job of time scale separation
between time spent in the free energy basin and the time spent
during barrier crossing. Thus, the need to have a more accurate RC
for biasing that satisfies the criteria of Sec. becomes even more
significant for infrequent metadynamics than in traditional
metadynamics. For instance, as we will show in Sec. Ill, infrequent
metadynamics becomes more accurate if the biased variable
includes all relevant slow modes with a long autocorrelation time,
and any hidden modes not considered in the biasing variable are as
Markovian (or quickly decorrelating) as possible. Here, we learn
such a 1-dimensional RC x as a linear combination of our order
parameters. Our bias potential then becomes V

. The weights of the different
order parameters (w1,w,,ws) are determined with SGOOP.

IIl. RESULTS A. RC predicted from SGOOP

We first describe the RC, as introduced and defined in Sec. | D,
that we identify for the condensation of a liquid droplet across
different supersaturation values. To learn this RC, we have used
SGOOP, with the stationary probability density m estimated
through unbiased MD at high supersaturations S; and S, and
preliminary metadynamics’® at low supersaturations S, Ss, and Ss.

scitation.org/journall/jcp

The preliminary metadynamics runs were performed biasing n. All
runs were complemented with short unbiased MD runs (50 ns) for
obtaining dynamical constraints for MaxCal. For every
supersaturation, SGOOP is initiated from a given choice of trials

weights (w1,w,ws) for the RC y expressed as

A key question that immediately arises is whether at any given
supersaturation S, there is a unique RC, or if there are multiple
possible combinations of the weights (wi,wa,w3) which meet
equally well the criteria for an optimal RC described in Sec. . Yet
another question which we ask and answer is how transferable is
the RC learnt at one supersaturation S across different values of S.
To answer the first question, we perform several exhaustive SGOOP
trials to estimate the optimized RC, first in the 2-d (n,u%) space
where we do an explicit grid based search over the full space and
then in the 3-d (n,u?,u3s) space where we start SGOOP from
different initial weights. In the latter case, the optimization over
weights in SGOOP is performed using a basin hopping algorithm
which is a global search algorithm with several stochastic jumps
aiding the system from not getting trapped in local minima.

In the 2-d optimization, we do an explicit
search among all possible RCs by rotating the putative RC y =

in the space. Here, as shown in
for S =11.43, we find that the spectral gap profile has a sharp peak
when the RC is almost exclusively comprised of u, i.e., 9=m/2 and

U2, has around 8 times higher weight in the RC than n. Such a .—
heavy RC is obtained irrespective of any S value, showing
unequivocally that the second moment u?; plays a more important
role in the RC than n itself. also shows the variation of
the kinetic prefactor A of Eq. (5) with RC choice, and we will revisit
this profile in Sec. . Next, we perform optimization in the full
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FIG. 2. (a) The spectral gap (blue asterisks, left axis) and
dynamical prefactor
I A (red circles, right axis) of SGOOP
transition rate [Eq. (5)] along different RC
. Both the maximal spectral gap and minimum A take
place at & = 0.51. (b) Mean spectral gap ratio at five different
supersaturation levels S;—Ss: for each supersaturation, we
averaged the spectral gap ratios calculated from 20 independent
biased runs, and the error bars represent the standard error from
the averaged results.
3-d - space. Here, we find that there are many
combinations (wi1,wz,ws) with similarly enhanced spectral gaps
relative to the traditional choice of y = n, but with a common theme
that the second moment and the third moment consistently show
up in the optimized RC.

Thus, to summarize so far, (a) RC optimization in (n,u?;) leads
to RC predominantly comprised of u2,, and (b) RC optimization in
(n,u?,,u33) leads to a RC invariably with weights for all 3 variables
but with multiple local maxima in the spectral gap profile. In other
words, the RC is quite degenerate, but considering u?; and 33 in the
RC is important for a more accurate description of the nucleation
process. In the supplementary material, we also show results from
a full grid search over spectral gaps in the (w1,w,,ws3) space at S =
11.43, further illustrating the findings from SGOOP. Here, among
the first few largest local maxima from 3 different trajectories, we
picked (w1,w,,w3) =(0.15, 0.65, -0.15) for use in further calculations
across all supersaturations S. In Fig. 2(b), we plot the ratio between
the spectral gap along RC = 0.15n + 0.65u2, - 0.15u33 and that along
RC = n at different S. As can be seen there, at all S values, the
optimized RC gives higher spectral gaps than just n, and the

improvement increases sharply with decreased supersaturation.
That is, as the supersaturation decreases, the importance of
considering shape and density fluctuations in the nuclei become
more and more important, which is one of the central findings of
this paper. Furthermore, the optimized RC learnt at one
supersaturation gives improved spectral gaps at other
supersaturations, and hence, the RC is transferable across
supersaturations. Thus, in Sec. Ill C, we use the RC y = 0.15n +
0.65u2%, — 0.15u3; at all supersaturations for enhanced sampling
based calculations of the nucleation rate.

B. Understanding the RC

SGOOP optimizes the RC by finding a low-dimensional
projection with highest gap between slow and fast processes. In
most cases, this amounts to selecting a projection with the highest
barrier separating the metastable states. To understand if the RC
learnt in Sec. Ill A can be attributed to simply barriers in the free
energy profile, or if dynamical concerns such as the prefactor A in
Egs. (5)—(7) play a role, we construct free energies along various 1-
d and 2-d components (totaling six combinations) of (n,u2,,u3s).
These free energies were obtained by running metadynamics with
same parameters defined in Table | and bias potentials added along
n. We then averaged over 10 independent metadynamics runs with
each trajectory reweighted using the free estimator described in
Ref. 65.
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From the various 1-d and 2-d free energy profiles shown in Figs.
3(a)=3(f) for § = 11.43, it is hard to distinguish between the
importance of the various order parameters n, u%, and p3;. The 2-d
profiles show that starting from the gas phase [red stars in Figs.
3(a)=- 3(c)], all three order parameters change in a very correlated

manner until the barrier is reached and nucleation is essentially
complete
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FIG. 3. The free energy plots obtained from well-tempered metadynamics biasing along n: The top three panels are the 2-d free energy surfaces
of (a) (n, %), (b) (1% u3), and (c) (n, u°) at supersaturation S;. The starting gaseous state corresponding to each plot is shown with a red star.
The middle three panels show the 1-d free energy curves along (d) n, (e) u?%, and (f) w3, respectively. The profiles and the errorbars are
calculated from the averages over 10 independent metadynamics runs at supersaturation S = 11.43. The bottom three panels display the 1-d
free energy curves from (g) S = 11.43, (h) S = 9.87, and (i) S = 9.04. In each panel, we show the profile averaged over 10 independent
metadynamics runs along n, x, and u%. The regions between errorbars are filled. The corresponding energy barriers AE(RC) along three
different putative RCs are also shown. It can be seen that as S decreases, the barrier difference decreases. All energies are in units of kJ/mol.
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(n > 100). The 1-d free energies along the three order parameters
[ —3(f)] show that the free energy barrier that needs to be
overcome is also very similar for each of the 3 order parameters,
although there are some systematic differences which we revisit
shortly in —3(i). Comparing the 1-d free energy along p3;
[ ] with the corresponding 2-d free energies [ and

], we can see that unlike n and u?%;, the 1-d projection along u3;
does a very poor job of describing the pathway in higher dimension
space, further justifying our choice of RC y in Sec. with higher
weight for u?, than for u3;. In —3(i), we show the free
energies along three different RC choices, namely, n, u?, and the
optimized y = 0.15n + 0.65u2, - 0.15133, for three different S values.
As S is decreased, invariably there is a small but consistent
improvement in the barrier height when viewed as a function of y
or u%, relative to when viewed as a function of n. However, first,
this difference is very small (0.25 kJ or 0.1 kgT), and second, it
appears to get even smaller with decreasing S [ — 3(i), left
to right]. Thus, the free energy barrier cannot be used to explain the
behavior of spectral gap vs supersaturation shown in . Here,
we showed that at all supersaturation levels we considered, the
spectral gaps of the optimized RC are better than of n. It was also
pointed out that as supersaturation decreases, the spectral gap
improvement increases. This tells us that the optimized RC works
better at lower supersaturation, which is inconsistent with the
change in free energy barriers along different order parameters
with supersaturation.

Our next step is therefore explaining why SGOOP finds that u?,
has a role to play in y and why the advantage in considering u?;
increases with decreasing supersaturation S. In , we
provided a profile of how the prefactor A varied with the RC choice
and correspondingly with the spectral gap. It can be seen there that
the prefactor A has a strong inverse correlation with the spectral
gap of y—the maximum spectral gap coincides with minimum A.
Thus, the minuscule increase in barrier height with varying RC is
compensated by the slowness of the dynamics along the RC, as
captured by A or the average number of first neighbor transitions in
a unit time.

To gain further insight into this, we calculated
timeautocorrelation functions along our three different order
parameters (see ) as higher autocorrelation time represents
slower diffusivity. Our calculations show that u% and p3; have
longer autocorrelation times than n and therefore lose memory
slower than n. Furthermore, the increase in autocorrelation
times of the two order parameters u2; and p3; relative to n becomes
more and more pronounced as the supersaturation S decreases
( ). This is in striking contrast to , where we found an
opposite trend looking at the free energy barriers along these order
parameters.

We therefore conclude this section with the observation that
anisotropic diffusion in the space of order parameters becomes an
important factor in determining the RC, especially at lower
supersaturations. The longer autocorrelation times are linked to
less Markovian behavior, which means u2; and p3; carry longer
memory than n. Coupled with the finding that all three order
parameters have similar barriers in their respective potential of

scitation.org/journalljcp

mean force, this means that change in nuclei characteristics such as
shape and density become slower as supersaturation S decreases,
and it becomes important to explicitly consider this in the
construction of a Markovian RC.

FIG. 4. The mean autocorrelation times of the order parameters n
(blue circles), u% (orange triangles), and p3: (green squares)
calculated from unbiased MD simulations at five different
supersaturation levels Si—Ss. At each supersaturation level, the
calculations from 10 independent runs are averaged. The error bars
show the standard error of the averaged results.

Here, we would also like to highlight past work by Peters
which applied a theoretical model to the study of the interplay
between concentration fluctuations and nucleation processes in
multicomponent systems. While that work did not compute rates,
as we do in Sec. here, and also made stringent assumptions
such as a radially symmetric concentration profile, our key findings
here are similar to theirs. Namely, that in this work, shape variations
can drive or inhibit a nucleus from going into the second phase,
while in their case,*’ certain types of concentration profiles can
drive a classically precritical nucleus over the nucleation barrier.

C. Nucleation kinetics

Now that we have identified an optimized RC y =0.15n

+0.65u%,-0.15u33 with improved spectral gap relative to the
Frenkelten Wolde parameter n, we perform two sets of enhanced
sampling simulations (specifically, infrequent metadynamics) using
n and y as the biasing variable, respectively. We use Eq. to
reconstruct the unbiased time scale estimates from these biased
runs. At high enough supersaturations, we are able to run unbiased
MD as well and together with the results of Chkonia et al.,' these
constitute a valuable set of results to benchmark our findings
against. At each supersaturation level, we launched 40 independent
metadynamics runs with 20 of them biasing n and the other 20
biasing the optimized RC y. For each independent run, in order to
be able to compare our results with previously published work,

we defined the nucleation event as when the number of liquidlike
atoms n reaches 30 for the first time. Every independent
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observation of such an event in terms of its metadynamics time was
scaled by the acceleration factor [Eq. (8)] to obtain an unbiased
observation of the nucleation time. With these 20 independent
estimates of the nucleation time, we can compute the characteristic
time [Eq. of observing the first nucleation event ty by fitting a
Poisson distribution to the statistics, where tyis the expected value
of the fitted Poisson

TABLE Il. The table shows the characteristic nucleation times 1y by
fitting Eq. and the corresponding nucleation rates J. Results are
shown as obtained from the simulations biasing along n as well as
biasing along the optimized RC y. The labels correspond to the
supersaturation levels denoted in . a is the mean acceleration
factor for every set of simulations. For the fitted characteristic
nucleation times 1y, we have also provided in square brackets the
corresponding p-value of the fit when used in the Kolmogorov-Smirnov
test of Ref.

S RC wv(s) [p - value] J(1/cm3/s) a

n 4.16+045x107°[0.17] 2.48+0.27 x10% 11

S1

X  456+031x109[0.67] 226+0.15x10% 11

n 8.66+0.85x107°[0.47] 1.12 £0.11 x 102 2.0
S2 X 1.6

7.88+0.51x10°[0.37] 1.23+0.08 x 10% :

n 1.00 £ 0.15x 1077[0.87] 8.64+1.30x10%# 4.0x10!
S3

X 047+0.07x107[0.35] 1.84+0.27x10% 6.4x 10!

n 1.26+0.27x10°%[0.64] 5.96%1.28 x102® 3.7 x 10?2
Sa

X  069+0.12x10%[0.80] 1.09+0.19x10%* 1.1x 103

n 1.58 +0.19 x 1075 [0.59] 4.32+0.52x10%2 5.7 x103
Ss

X  0.62+0.15x10°5 [0.13] 1.10+0.27 x 102 7.8x 103
distribution. The corresponding nucleation rates are then

calculated through the formula J = 1/(taV) and J = 1/(tyV), where V
is the volume of the system. The results are shown in andin

We find that the use of n as a biasing variable in infrequent
metadynamics does a remarkably decent job of obtaining
nucleation rates (in agreement with the findings of Ref. 28) even
with very significant acceleration factors or computational boost
relative to unbiased MD. There is, nonetheless, further
improvement of up to three times that can be obtained in the
quality of the nucleation rate if the
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FIG. 5. The nucleation rates calculated from the Poisson fits of
reweighted nucleation times obtained from infrequent
metadynamics biasing along n and y (green squares and red circles,
respectively). The values and their associated error bars are listed
in . We also compare our results with previous studies from
Refs. 11 and 28 (blue triangles and red diamonds, respectively).

optimized RC is used instead of n, especially as the supersaturation
is decreased. In a field where errors can be as high as 26 orders of
magnitude,’® improvement of three times seems minuscule,
reflecting that n is, after all, not that bad of a biasing variable for
infrequent metadynamics. Yet, even though the improvement is
relatively small compared to the usual standards in nucleation
kinetics, it is systematic, robust, and indicative of possible
usefulness when employed in more complex systems with different
competing variables, including but not limited to composition
fluctuations.*? As can be seen from , the acceleration factor
in metadynamics relative to unbiased MD increases steadily as S
decreases, reaching almost four orders of magnitude at the lowest
S. All reweighted nucleation times, irrespective of whether they
came from biasing n or biasing y, give pvalues above the
recommended cutoff in the Kolmogorov-Smirnov test from Ref.

At S = 11.43, the use of y as the biasing variable instead of n leads
to much better agreement with the unbiased estimate of Chkonia
et al.'' as can be seen in . In general, the characteristic times
for nucleation from runs biasing the RC y are significantly lower than
those from biasing n, and roughly speaking, this difference
increases as S decreases. In addition to the explicit agreement with
unbiased estimate of Chkonia et al.'' at S = 11.43, the lower
characteristic time (with similar p-values) can be seen as further
evidence of the benefit of biasing y instead of n. This is because, in
metadynamics, the presence of missing slow degrees of freedom
from explicit consideration in the biasing variable typically leads to
hysteresis during free energy calculations, or overestimation of the
accelerated time through Eqg. (8), as pointed out in Refs. 57 and

IV. DISCUSSION

In this work, we used new tools to revisit a classic problem
in nucleation, namely, that of the formation of liquid droplet from
gaseous precursor as a function of varying driving force for
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nucleation, namely, supersaturation. Our interest was in (a)
constructing a Markovian reaction coordinate (RC) for this process
and (b) testing if there is any gain to be had through the use of a
more Markovian RC in enhanced sampling calculations of
nucleation kinetics. To answer these questions especially at low
supersaturations where access to unbiased trajectories of
nucleation is difficult (needed by many other RC optimization
methods such as Refs. and 69), we use the spectral gap
optimization method from Ref. 22 to construct optimized RC from
input biased simulations. Our calculations demonstrate
unequivocally that it is not sufficient to consider only the typical
order parameter used to describe nucleation, namely, the number
of liquidlike atoms in the system. By considering further variables
that account for heterogeneity in the system, such as higher
moments uZ and third moment u3; of the distribution of
coordination numbers, we could obtain a much more Markovian
RC. Interestingly, these various order parameters have nearly
identical free energy barriers, and they differ primarily only in
associated diffusivities. The importance of these variables further
increases with decreasing supersaturation as their associated
autocorrelation time increases sharply. In other words, shape and
density fluctuations in the nucleating clusters cease to stay rapidly
equilibrating variables which can be entirely ignored from a
Markovian low-dimensional description of nucleation. We conclude
that diffusion anisotropy plays a more important role at lower S,
which is supported by our analysis of autocorrelation functions and
autocorrelation times. While previous work has demonstrated how
infrequent metadynamics can predict nucleation time with only n
as the RC, we show in this work that the prediction of nucleation
time can be further improved by biasing along an optimized RC. It
will be interesting to see if the use of such a more Markovian RC
makes improvement in the reliability and efficiency of other
enhanced sampling methods such as forward flux sampling. One
additional important comment we would like to make here is that
while the RC was found to be increasingly more complex as the
supersaturation was brought down, there is no guarantee that this
trend will continue monotonically as the supersaturation is further
decreased. Indeed, in a general setting, the rate k for an activated
process depends on the diffusivity D only in the pre-exponential but
on the free energy barrier AG

6AG jn the exponentiated
term, i.e., k = De . As the supersaturation decreases, we expect at
some point the increase in nucleation barrier will be so significant
that any manifestations of diffusion anisotropy will be washed out,
and classical nucleation theory will again start to take hold as has
been pointed out, for instance, by Binder.”’ Our supersaturation
values in this work, however, did not reach this regime.

Finally, it should be mentioned that in this calculation, we did
not consider effects due to the finite size of the system, which can
be done using the method proposed in Ref. 28 but was not the main
objective here. We realize that our findings here might simply be a
finite size effect, resulting from the coupling between fluctuations
in the density of the parent phase and fluctuations in the size of the
growing nucleus of the product phase, which are inherently coupled
due to the overall material balance in the simulation box. To check

scitation.org/journall/jcp

whether our findings might indeed be valid in the thermodynamic
limit, in future work, we will explore these simulations at different
box sizes and with different supersaturation levels. Similarly, our
findings might change with constant number, pressure, and
temperature (NPT) simulations. The present work can be redone,
taking these important nuances into account. Finally, strictly
speaking, ours was a model system with model parameters. This
work is a proof of principle that ideas such as SGOOP for RC
optimization are potentially useful for study of nucleation through
enhanced sampling or otherwise. In the future, we will be extending
this work to systems such as crystal nucleation, multiple
polymorphs, systems with multiple pathways, or multiple species,
where there will be even more order parameters to be considered.
All of these continue to be very difficult yet important problems for
understanding nucleation pathways and rates, and we are hopeful
that our tools will allow us and others to systematically study these.

SUPPLEMENTARY MATERIAL

See for the PLUMED input file,
autocorrelation function plots, spectral gap profiles, and bootstrap
analyses of nucleation times.
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