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Abstract—Inferring program transformations from concrete
program changes has many potential uses, such as applying
systematic program edits, refactoring, and automated program
repair. Existing work for inferring program transformations
usually rely on statistical information over a potentially large
set of program-change examples. However, in many practical
scenarios we do not have such a large set of program-change
examples.

In this paper, we address the challenge of inferring a program
transformation from one single example. Our core insight is that
“big code” can provide effective guide for the generalization
of a concrete change into a program transformation, i.e., code
elements appearing in many files are general and should not be
abstracted away. We first propose a framework for transforma-
tion inference, where programs are represented as hypergraphs
to enable fine-grained generalization of transformations. We then
design a transformation inference approach, GENPAT, that infers
a program transformation based on code context and statistics
from a big code corpus.

We have evaluated GENPAT under two distinct application sce-
narios, systematic editing and program repair. The evaluation on
systematic editing shows that GENPAT significantly outperforms
a state-of-the-art approach, SYDIT, with up to 5.5x correctly
transformed cases. The evaluation on program repair suggests
that GENPAT has the potential to be integrated in advanced
program repair tools — GENPAT successfully repaired 19 real-
world bugs in the Defects4] benchmark by simply applying
transformations inferred from existing patches, where 4 bugs
have never been repaired by any existing technique. Overall,
the evaluation results suggest that GENPAT is effective for
transformation inference and can potentially be adopted for many
different applications.

Index Terms—Pattern generation, Program adaptation, Code
abstraction

I. INTRODUCTION

Modern program development is often repetitive, where the
same changes are applied over and over again in different
positions or in different projects, by the same or different
developers. Inferring program transformations from change
examples could automate the changes of the same type, and
has many potential uses such as systematically editing many
places in the source code [1], fixing bugs based on patches
of recurring bugs [2]-[4], porting commits among forked
projects [5], [6], adapting client code for incompatible API
changes [7], [8], refactoring [9], [10], etc.

*Yingfei Xiong is the corresponding author. This work was partially done
when Jiajun Jiang was a visiting student in UT Dallas.

A key challenge in transformation inference is to decide
what can be generalized in the transformation. As an example,

let us consider the following change:
f(a, b) = f(g(a),b)

A possible transformation could be the following one:

Wrapping with g any element that
e is a variable
« has type integer
o has identifier name a

We may also consider making the transformation more general
such as the following one:

Wrapping with g any element that
e« is a variable
« has type integer

We may also consider the context of the change to make the
transformation more specific such as the following one:

Wrapping with g any element that
e is a variable
« has type integer
o is the first argument of a call to f

Making the transformation too specific may decrease recall,
i.e., missing cases that should be transformed. Making the
transformation too general may decrease precision, i.e., trans-
forming cases that should not be transformed. Therefore,
selecting a suitable level of generalization is critical to the
quality of the inferred program transformation.

A typical method adopted by many existing tech-
niques [11]-[13] is to learn from many examples, where the
statistical information from many examples is used to decide
which part should be concrete in the transformation and which
part should be abstracted away. In the above example, if there
are many change examples that wrap the first arguments of £
with g and the first arguments have many different names, we
know that the last transformation should be the desirable one,
and information such as variable name a should be abstracted
away. However, such an approach requires many examples as
the training set. In practice, we often do not have so many
examples. For example, Genesis [13] uses hundreds of patches
for the same type of bugs to generate transformations, while in
practice the repetitiveness of patches tends to be tenuous [14],
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and only one or a few patches can be located for many types
of bugs.

On the other hand, a few approaches [12], [15] have tried
to reduce the needed number of examples by using predefined
rules to decide what part in the concrete changes should
be abstracted away in the transformation, i.e., always ignore
the variable names and allow to match variables with any
name [15]. However, as shown in the next section, predefined
rules cannot capture different situations and often fail to
produce the desired transformation.

In this paper, we address the challenge of inferring a
program transformation from one single example. Our core
insight is to learn from “big code”, utilizing the statistical
information in a large code corpus to guide the generalization
from a change example to a transformation. More concretely,
the elements that appear in many files are potentially general
and should be kept in the transformation in order to capture
the transformation for all such instances. Along this line, we
first propose a general framework for transformation inference
from an example, where a hypergraph is used to represent
source code and fine-grained transformation tuning is enabled
by selecting elements and their attributes from the hypergraph.
We then instantiate the framework with a transformation
inference algorithm that fine-tunes the hypergraph information
based on code statistics from a big code corpus. We have
already implemented our approach as a tool, GENPAT, and
evaluated GENPAT in two distinct application scenarios. In
the first scenario, we employed GENPAT to perform systematic
editing as studied by Meng et al. [15] but with a much larger
dataset. The result shows that GENPAT significantly outper-
forms state-of-the-art SYDIT with an up to 5.5x improvement
in terms of correctly generated transformations. In the second
scenario, we explore the potential of using GENPAT to repair
bugs by simply mining and applying fixing patterns from
existing patches. Although not designed as a comprehensive
and standalone repair technique, GENPAT successfully fixed
19 bugs in a subset of the commonly used Defects4] [16]
benchmark. Particularly, 4 bugs have never been fixed by any
existing technique as far as we know. The results suggest that
GENPAT is potentially useful in both systematic editing and
program repair and indicate a promising future for adopting
GENPAT in practical systems with program transformations.

In summary, this paper makes the following contributions:

o A framework for transformation inference from a single
example by representing code as a hypergraph to allow
fine-grained generalization of the transformation.

« An algorithm to instantiate the framework by defining the
rules for selection based on the code context and statistics
in a large code corpus.

« An implementation of the proposed technique in Java
language, called GENPAT, which can be publicly accessed
at https://github.com/xgdsmileboy/GenPat.

o An evaluation with GENPAT on two distinct practical
application scenarios, showing the effectiveness of the
proposed framework and calling for future research to
integrate GENPAT for advanced program-transformation-
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based systems, including systematic-editing and program-
repair systems.

II. RELATED WORK

In this section, we introduce the most related works to this
paper. Existing techniques have explored different strategies
for transformation extraction and two categories of trans-
formations have been proposed. The first one is executable
transformations, which can be applied directly to modify a
code snippet. The second one is abstract transformations,
which cannot be applied directly but constrain a space of
possible transformation results. In other words, executable
transformations are functions, while abstract transformations
are binary relations that are not functions. Abstract transforma-
tions are useful in guiding other technical processes, such as
ranking candidates in automatic program repair [17]-[19]. In
the following, we will introduce the most related approaches
from these two categories in detail. Also, we will discuss
few-shot learning problem in machine learning domain, of
which the transformation inference problem can be seen as
an instance.

A. Executable Transformation Generation

As explained in the introduction, the key challenge of
transformation inference is to decide how to generalize a
change into a transformation. To approach this challenge,
existing techniques proposed to utilize different strategies,
such as learning from many examples or employing predefined
rules.

Learning from many examples. Multiple existing tech-
niques learn practical transformations from a set of examples
with similar code changes. The basic idea is that shared code
elements across change examples are critical parts for the
transformation and should be preserved, while the other parts
tend to be specific to some individual examples and thus will
be discarded. Andersen et al. [20], [21] proposed spdiff,
which extracts a set of term replacement patches from each
example, and then takes the longest common subpatches as a
transformation pattern. Meng et al. [11] proposed LASE that
learns edit scripts from multiple examples. LASE extracts a
set of edit operations from each example, keeps the common
operations, and extracts the context of the common operations
to form a transformation. Reudismam et al. [12] proposed
REFAZER, which learns syntactic code transformations from
examples. REFAZER takes a program synthesis perspective
and searches for a transformation program that is consistent
with all the examples. Long et al. [13] proposed Genesis.
It infers a template AST from existing patches, which can
cover all mined examples. Bavishi et al. [22] proposed to mine
repair strategies (or repair patterns) from examples for fixing
bugs reported by static analyzers, which clusters similar edit
examples for pattern abstraction (i.e., Synthesis of Context-
Matchers) via leveraging a DSL for representation. Nguyen
et al [23] proposed CPATMINER that aims to mine semantic
code change patterns from code corpus and represents patterns
as graphs. CPATMINER also depends on the repetitiveness of



code changes and leverages graph isomorphism for pattern
clustering. Similarly, Molderez et al [24] leveraged frequent
itemset mining algorithm to learn edit scripts of code changes
from histories of open-source repositories, and employed them
for code change recommendation.

As discussed in the introduction, to achieve a good level of
generalizability, these approaches require a non-trivial number
of examples, which are often difficult to obtain in practice.
For example, in the scenario of program synthesis, these
approaches have been successfully applied to only the most
common bugs [13] or the bugs in student assignments [12],
where a large number of patches can be found for the same
type of bug. However, in practice, the repetitiveness of patches
tend to be tenuous [14], and only one or a few patches can be
located for many types of bugs.

Inferring transformations with predefined rules. Several
approaches rely on predefined rules to infer a suitable trans-
formation. A typical approach is SYDIT, which also infers a
transformation from one example, and is similar to our goal.
Given a change, SYDIT first selects all related statements that
have dependencies with the changed statement, then abstracts
away all names (variable name, type name, method name,
etc) in the statements and leaves only the structure of the
statements. Then the structure is used to match other places
and perform the change. However, there are many cases
that we may need to abstract away part of the structure or
keep some names in the transformation, where SYDIT cannot
extract the desirable transformation. As our evaluation will
show later, our approach significantly outperforms SYDIT with
an up to 5.5x improvement. Approaches relying on multiple
examples may also use predefined rules to select the desired
transformation if the examples are not enough to ensure the
quality of the transformation. For example, REFAZER employs
a set of rules to rank the transformations if the synthesizer
found multiple possible transformations.

Defining transformation manually. There are some other
approaches that perform code changes with manually defined
transformations. For example, Kim et al. [25] manually defined
a set of transformations for automatic program repair after
analyzing a corpus of human patches. Similarly, Liu and
Zhong [26] defined transformations (a.k.a. repair templates)
with analyzing code samples from StackOverflow. Molderez
and De Roover [27] proposed to refine a manually defined
template with a suite of mutation operations, which recom-
mends changes to the templates iteratively. Additionally, to
ease the description of transformations, a set of DSLs have
been proposed by previous studies [7], [8], [21], [28]-[32]
for program migration or API updating. These techniques
provide a way for developers to systematically update a current
program with manually defined transformations. However,
even with the help of DSL, manually defining transformations
is not easy, and automatic transformation inference is desirable
in many situations.
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B. Abstract Transformation as Guidance

Recently, a number of existing techniques were proposed
to extract transformations from a set of examples for guiding
other technical processes. In particular, transformations are
often used in automatic program repair to guide the patch
generation as the complete search space can be too huge [33].
For example, Xuan et al. [17] and Wen et al. [19] leveraged
transformations from historical bug fixes as program repair
templates. Similarly, Jiang et al. [18] proposed to use such
transformations to refine the search space of patch generation.
Also, other researches proposed to use such transformations
for patch prioritization [34]. The core insight behind these
techniques is that frequently appeared transformations in his-
tory bug fixes have higher possibility to repair a bug, and
thus can be utilized to refine the patch space. However, these
transformations cannot be directly applied and can be much
more abstract compared to those executable transformations.

C. Few-Shot Learning

Few-shot learning [35] attempts to train a machine-learning
model with a very small set of training data, and is often
considered a grand challenge in the machine learning domain.
A typical approach to few-shot learning is to utilize data that
are beyond the current task, and train a meta-level model with
these data, which can be used as a basis for the few-shot
learning task. Our problem is similar to few-shot learning as
we try to generalize a transformation from just one example.
Also, we learn meta-level information from big code for the
transformation inference, where the idea is similar to the
approach of few-shot learning. On the other hand, the current
few-shot learning techniques are still designed for classic
classification problem over feature vectors, and thus cannot
be applied to the transformation inference problem since it is
not a classification procedure.

III. MOTIVATING EXAMPLE

In this section, we motivate the problem of transforma-
tion inference with an example in the systematic editing
scenario [15]. In a typical systematic editing scenario, the
programmer would like to perform the same change on a series
of places. She would first change one place, and ask the system
to extract a transformation from the change, then navigate to
the next place and invoke the transformation there. The process
is similar to a copy-paste clipboard operation process except
that only the transformation is “copied” and “pasted”.

Listing 1 shows an example requiring systematic editing.
Here “-” denotes deleted code lines and “+” denotes newly
introduced code lines. The grayed description on the top gives
the detailed information related to the code changes, including
the GitHub link of the corresponding commit, fix message
and changed classes. Particularly, there are two separate code
changes, where the first one at line 68 is the change from
which a transformation would be inferred, and the second one
at line 35 is the ideal change that we expect the transformation
to produce.



// first case for

pattern generation

67 Description createDescription(Class<?> testClass) {

68 — return new Description(testClass.getName(),null,

68 + return new Description(testClass.getName (),

69 testClass.getAnnotations());

70 }

// candidate place to apply the above pattern

// Sydit failed to apply the : re pattern because the

// variable "‘name’’ nnot match the method ‘‘getName()’’

// while >nPat successfully applies it.

34 Description createDescription(String name,
Annotation... annotations) {

35 return new Description(name,null,annotations);

35 + return new Description (name,annotations);

35 }

Listing 1. An example that SYDIT fails to apply pattern.

As we can analyze from the two examples, a desirable
transformation should delete the second argument of a call
to Description if it is null. In other words, the first
argument testClass.getName () and the third argument
testClass.getAnnotations () are specific to the local
change and should not be considered as part of the context
of the transformation. The challenge is to know which part
should be kept in the transformation and which part should be
abstracted away, i.e., deciding how to generalize the change.

As discussed previously, existing approaches rely on either
multiple examples or predefined rules. However, providing
multiple examples is often not desirable or feasible. For
example, in systematic editing, the examples are provided by
the user, and asking the user to provide multiple and preferably
diverse examples significantly increases the cost of using this
approach. In the scenario of bug repair, for many types of bugs,
only one existing patch can be found, and we have to produce
a transformation out of the patch. For example, Listing 2
shows a patch that inserts an equality check between two
Object arguments into a method returning boolean. From
this patch, our approach successfully inferred a transformation
and fixed bug Mockito-22 in Defects4]J [16] benchmark, which
is shown in Listing 3 and has never been fixed by any previous
technique. However, we found only one such change instance
from more than 1 million historical code change examples of
open-source Java projects on GitHub from 2011 to 2016.

commit/8e76da8

erator

1ilo.runtime.op.Op

526 boolean _equalsComplexEL(Object left,Object right,..
527+ if (left==right) {

528+ return true;

529+ }

530 if (Decision.isSimpV (left) &&Decision.isSimpV (right)) {

A

Listing 2. Referenced history patch to fix Mockito-22.

12 public static boolean areEqual (Object ol,Object 02) {
+ if (ol==02) {
+ return true;
+ }
if (ol==null||o2==null) {

Listing 3. Patch of Mockito-22.
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On the other hand, predefined rules hardly meet the diver-
gent requirements of different situations. For example, SYDIT
has a predefined rule to abstract away all variable/method/type
names and keep only the structure. However, in this case, it
would keep the structure of the first and the third arguments,
requiring them to take the o.m () form. It would also discard
the name of the method call Description. Both are not
desirable.

Our approach decides how to generalize the change by
analyzing the “big code”. We count the number of files
where an element appears in a large code corpus. If
an element appears in many files, it is probably a gen-
eral element and should be kept in the transformation
to transform other sibling instances, otherwise it is prob-
ably specific to the current change and should be ab-
stracted away. In this example, testClass.getName () and
testClass.getAnnotations () can be seldomly found in
the codebase and thus is abstracted away. On the other hand,
Description and null are both frequent and thus are kept
in the transformation.

While the general idea is simple, realizing the idea is not
easy and faces multiple challenges:

o Abstraction. We need to have a flexible representation of
the transformation, where the level of generalization can
be adjusted at a fine-grained level.

e Match. The representation should be flexible to allow

matching code with different attributes (such as the static

value type) or different relations (such as data depen-
dency).

Transformation. The matched code pieces should be

consistent with the transformation, i.e., when some code

pieces are matched, the transformation must be able to
be replayed on these code pieces.

In the next section, we will propose a framework for transfor-
mation inference to address the above challenges.

IV. FRAMEWORK OF TRANSFORMATION INFERENCE

In this section, we introduce the framework of transforma-
tion inference. Here we consider a transformation as first a
pattern to match code pieces and a sequence of modification
operations to change the code pieces. To address the challenges
mentioned above, we make the following design decisions.

e Match. To ensure the code elements could be flexibly
matched by their attributes and relations, we abstract
source code into a hypergraph, where the nodes are AST
nodes with their attributes (called code elements) and the
hyperedges are relations among nodes.

e Abstraction. We further introduce a match relation be-

tween hypergraphs such that a graph can be matched by

a more abstract graph with possibly fewer elements and

attributes. In this way, we can abstract a hypergraph into

a pattern at a fine-grained level by selecting elements and

attributes that should be kept in the pattern.

Transformation. To ensure the matched code elements

are transformable, we use elements and attributes as the



interface between the pattern and the modifications. The
modifications specify the elements and attributes that
must be matched to make the transformation applicable,
and the pattern ensures to match these elements and
attributes.

Now we introduce the design in detail. We start by defining
code elements. Intuitively, a code element captures a node
in an AST, and the attributes of the AST node that we are
interested in.

Definition 1 (Code Element). A (code) element is a pair
(id, attrs) where id is an element ID and attrs is a set of
attributes, where each attribute is a pair (name, value).

In our current implementation, we mainly consider three
attributes, AST node type (such as Statement or Variable),
content (such as a+b or >=, which is the string representation
of the complete subtree), and static value type (such as String
or int).

The code element captures a single AST node and its
attributes, but not the relation between AST nodes. To capture
the relations, we further define code hypergraph as a collection
of code elements and their relations.

Definition 2 (Code Hypergraph). A (code) hypergraph is a
pair (F, R), where E is a set of elements and R is a set
of hyperedges, where each hyperedge is a pair (rname,r)
consisting of a relation name rname and a relation » C EF
for some k, where E* denotes the k-ary Cartesian power of
E.

The relation r can be either directed or undirected, but
in our implementation, we consider mainly three directed
relations, the parent relation in an AST, the ancestor rela-
tion which is the transitive closure of the parent relation,
and the intra-procedural data dependency between I-values in
the program. We only consider data dependencies (ignoring
control-flow dependencies) to avoid over-approximations [36],
[37] for lightweight analysis. Please also note that when the
parent relation is included, a hypergraph subsumes an AST.
Additionally, the ancestor relation is necessary as it may still
guarantee the program structure match even when two nodes
do not have direct parent-child relation.

For example, Figure 1 shows the code hypergraph of the
two code snippets in Listing 1. Each node in the graph
represents a code element, where their IDs and attributes are
listed. Three types of relations are shown in the graph, the
black lines represent the parent relation and the blue lines
represent the data dependency relation. Note that there is no
data dependency between ps and node pg while the omitted
child node of p3 has data dependency on pg. For clarity, we
ignore the ancestor relation in the figure, e.g., node p; is the
ancestor of node ps.

After we have a code hypergraph, we can define a pattern
that matches elements in the graph. Here we treat a pattern
uniformly also as a hypergraph. A pattern matches some code
elements if both the attributes and the relations on the pattern
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hypergraph match those of the target code elements. Formally,
we first define the match between elements.

Definition 3 (Element Match). An element (id, attrs) is said
to match another element (id’, attrs’), if V (name, value) €
attrs, (name,value) € attrs’.

Based on the match between code elements, we define the
match between hypergraphs.

Definition 4 (Hypergraph Match). A code hypergraph (E, R)
matches another code hypergraph (E’, R’} via a mapping
match : E — E' such that Ve € E, e matches match(e)
and V (rname,r) € R, J(rname’,r’y € R', rname
rname’ Ar C 1.

We say a code hypergraph ¢ is more abstract than another
code hypergraph ¢’ if there exists a match from g to ¢’.

Given a code hypergraph, we can abstract it into a pattern
by removing elements and attributes from the hypergraph. The
result is ensured to match the original hypergraph. In this
way, we turn the generalization problem into a problem of
selecting elements and attributes in a hypergraph, where the
selected elements, their selected attributes, and their relations
form a new hypergraph as a pattern. Please note that our
framework also allows to select relations, but in this paper
we only consider the selections of elements and attributes and
keep all relations among the selected elements. For example,
in Figure 1, the red elements, their red attributes, and their
relations form a new hypergraph that would match both code
snippets. The elements with solid frame are the matched
elements while the elements in the dashed frame are not
matched.

After an element is matched, we can apply the modification
operations to the elements. Our framework does not enforce
a particular set of modification operations and treats modifi-
cations as uninterpreted atomic elements, denoted by set M.
Furthermore, we assume the existence of two functions, prelDs
and preAitrs. Function prelDs(m) denotes the element IDs
that must be matched to make the modification m feasible.
Function preAttrs(m, id) returns the attribute name on element
id that must be matched to make the modification m feasible,
where id € preIDs(m).

In our current approach we consider the following types of
modifications.
insert(id,id’,i): inserts an AST subtree rooted at id’ as
the 3*" child of the element id.
insert_str(id, str,1): inserts the text str as the i*" child
of the element id.
replace(id,id'): replaces an AST subtree rooted at id
with another AST rooted at id’.
replace_str(id, str): replaces an AST subtree rooted at
id with the text str.
delete(id,id’): deletes an AST subtree rooted at id from
its parent id’.

For any modification m of the above modification type,
prelDs(m) returns the set of element IDs appearing as
the argument, e.g., prelDs(insert(id,id',i)) = {id,id'};



MethDecl :

r

Transformation:
- Id: pg

Node Type : RetStmt

Content : return new Description(...)

Value Type: 1

-
-

-_——-— e = — =

Class<?> testClass 1
Id: pg
NodeType :

ClassInsCreation

!
Id: pp
Node Type
Content : new Description(...)
Value Type: Description

ClassInsCreation

Id: p3

Node Type : Methinv
Content : testClass.getName()
Value Type: String

NullLiteral

Id: py

Node Type : NullLiteral
Content : null

Value Type: Object

ld: ps

Node Type : Methlnv

Content : testClasses.getAnnotations()
Value Type: Annotation[]

-->

: non-relevant element

—_

: non-relevant relation

Fig. 1. Transformation instance inferred from the first case in Listing 1 and its matched instance. In the figure, we use

for simplicity. Besides, the ancestor relations are omitted as well.

preAttrs(m,id) always returns “AST node type” for any
id € preIDs(m), as we need to keep consistency of the node
type to ensure the AST is well-formed.

In our running example, the change can be captured by the
modification delete(py, p2), while prelDs requires py and po
to be matched, and preAttrs requires the matched elements
have the same AST node types.

Finally, we give the definition of a transformation.

Definition 5 (Transformation). A transformation is a pair
(g, m), where g is a code hypergraph and /7 is a sequence
of modifications such that for any m € m, id € preIDs(m)
and attrName € preAttrs(m,id), there exists an element
(id’,attrs’) in g such that id = id and atérs’ contains
attr Name.

Given a code hypergraph ¢’ (E',R’), a transforma-
tion (g,m), and a match match from g to ¢', applying
the transformation generates a sequence of modifications
ﬁ[ld()\ldé], e ,Zdn\ld,ln] where <id(), Zd6> go ey <’Ldn, ’Ld,ln> S
match. In other words, the element IDs in original sequence
of modifications are replaced by the matched element IDs.
Then we apply the sequence of modifications to obtain the

changed code.

V. THE GENPAT APPROACH

Based on the framework, we can now proceed to our
approach. Given two code snippets before and after the change,
our approach (1) extracts a code hypergraph from the snippet
before the change, (2) extracts a sequence of modifications
by comparing the two snippets, (3) infers a transformation by
selecting elements and attributes from the hypergraph, and (4)
matches and applies the transformation when given a new code
snippet. In this section, we introduce how we implement the
four components.

A. Extracting Hypergraphs

To extract the hypergraph, we need to extract the elements,
their attributes, and their relations. In our current implemen-
tation we extract them as follows.

Match instance:

1d: ng

[: : element need to match in the transformation.

: relation need to match in the transformation.
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MethDecl
TETTRT
\

r 1
4 ! 1d: ny

Node Type : RetStmt

Content : return new Description(...)
Value Type: L

-

——————————————— Id: ny
Node Type : ClassInsCreation
Content : new Description(...)

Value Type: Description

1d: ny

SimpleName

Id: ns

Node Type : SimpleName
Content : annotations
Value Type: Annotation(]

1d: nz

Node Type : SimpleName
Content : name

Value Type: String

I1d: ny

Node Type : NullLiteral
Content : null

Value Type: Object

:] : matched element.

_

: modified element.

= = = : data dependency. : matched relation.

@ o

to represent omitted code content

Elements. We parse the code and extract the AST nodes.
AST node type, content, parent relation, ancestor relation.
We directly obtain them from the AST.

Value type. We apply type analysis in Eclipse JDT to
infer the value types of all expressions and parameters.
For the rest of the elements (i.e., statements), we set its
value type to L.

Data dependency. We perform a simple flow-insensitive
intra-procedural define-use analysis [38], [39] to extract
data dependency relations. The variables are assumed to
have no aliases during the analysis.

We assume the change occurs within a method, and consider
only the code within the method body in our current imple-
mentation.

B. Extracting Modifications

In the current implementation, we employed the GumTree
algorithm [40] to extract the modifications. Please note that the
original GumTree algorithm also returns a “move” operation,
which can be combined by a deletion and an insertion using
our modification types.

C. Inferring Transformations

To infer a transformation, we select elements and attributes
from the hypergraph. Please note that we do not select relations
in this paper and consider all relations among the selected
elements.

Element Selection. Since the definition of the transforma-
tion requires the elements in prelDs (i.e., elements correspond-
ing to the modifications) to be included in the transformation,
we first select these elements.

Next we add elements related to these elements as context.
Here we follow the parent relation and the data dependency
relation, both forwardly and backwardly, and include all el-
ements that can be reached within k£ levels of the relations.
In this study, we set k = 1 (the default configuration). In the
future, we plan to conduct a more thorough investigation of
different configurations.



For example, for the program in Figure 1, we first select
p2 and py since they are modified. Then following the parent
relation we include pq, p3, and ps.

Attribute Selection. Same as elements, we first add
the attributes required by preAttrs to form a well-formed
transformation. In our example we would add the “AST node
type” attributes of po and py.

Then we select from other attributes in the selected ele-
ments. For the attributes of content and value type, we compute
the frequency for a given attribute. That is, we collect the
element content and value types from a large code corpus,
and then compute the cross-project frequency for a given
attribute. If the frequency is larger than a threshold, we select
the attribute. In current implementation, we use the following
formula to compute the frequency of each attribute. In the
experiment, we set the threshold as 0.5%.

_ [{flattr exists in file f}|
~ |{all files in dataset}|

Finally, we select the attribute of AST node type when the
corresponding code element is a statement. This is to avoid

inconsistent matching such as matching a statement with a
variable. In the example, we select the node type of p;.

freq(attr)

D. Matching and Applying Transformations

Now suppose we have a transformation ¢ = (g, 77%), and we
would like to apply the transformation to a code snippet sp.
We first transform sp to a hypergraph ¢’=(E’, R’), and then
find a match match from g to ¢’ to perform the transformation.
In order to find the match, we proceed with the following two
steps.

1) Greedily matching each element e in E with all elements

in E’ by considering only the attributes.

2) Exhaustively checking all possible matching combina-

tions generated in the first step with the relations between
elements.

In our running example, by considering only the attributes,
we can obtain the following mapping.
match(pi) € {n1}, match(pz) € {n2}, match(ps) € {ns}
match(pa) € {na}, match(ps) € {na2,n3---nr}

Then further considering the relations between elements, we
can filter out the extra elements for ps, forming a valid match.
match(pi) € {n1}, match(pz) € {n2}
match(ps) € {ns}, match(ps) € {na}, match(ps) € {ns}

Based on this match, we can generate the following trans-
formation on the target snippet.

delete(na, nyg)

It is possible that multiple matches exist for a target code
snippet. In some applications, we would like to find only one
match. For example, in program repair, we usually assume
that there is only one fault for a failed test. As a result, we
need to rank the matches to find the best one. In our current
approach we use the similarity between the AST node type
and the content attributes to rank the matches.
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l{e | e € E A sameNodeType(e, match(e))}|

node_sim =
|E|

LCS(tokenize(e), tokenize(match(e)))

[tokenize(e)|

1
text_sim = —|266E

|E

score = node_sim + text_sim

In the formulas, sameNodeType(e,e’) is used to judge
whether element ¢ is with the same node type as ¢/,
tokenize(e) is the tokenized sequence for the content of
element e, and LC'S(sy, s2) computes longest common token
sequence between two token lists s; and ss. Finally, we use the
sum of the two similarities for match ranking. Our intuition
for the ranking heuristic is that if the buggy code has more
common parts with the pattern code, more confidence can
be gained to apply the transformation. As a result, in the
formulas we consider both the node-type and token-sequence
similarity information since they correspond to code syntax
and semantics, respectively.

VI. EVALUATION

To evaluate the effectiveness of GENPAT, we choose
two application scenarios—systematic editing [1], [15] (Sec-
tion VI-A), and automatic program repair [17]-[19], [41]-[46]
(Section VI-B).

A. Systematic Editing

1) Subjects: We employ two datasets in our evaluation,
both collected in existing studies for evaluating systematic
editing. The first one is the SYDIT dataset collected by Meng
et al. [15]. The second one is the dataset collected by Kreutzer
et al. [47], which we call C3.

Both datasets contain similar changes collected from com-
mits in open-source projects, where all modifications within a
method in a commit are considered as a change. The difference
is how they measure similarity: SYDIT uses ChangeDis-
tiller [48] to extract changes for method pairs and requires they
share at least one common syntactic edit and their content is
at least 40% similar, and C3 represents a code change as a list
of edit operations and then clusters the changes by calculating
distances over the feature vector of code changes.

The SYDIT dataset consists of 56 pairs of similar changes.
For each pair, one change is used for pattern extraction and the
other one is used to test the extracted transformation. The C3
dataset consists of 218,437 clusters of similar changes, where
each cluster may have multiple changes. To unify the format of
the two datasets, we randomly select a pair from each cluster
of the C3 dataset. We summarize the detailed information of
the subjects in Table I.

2) Procedure: In this experiment we use SYDIT as a base-
line for comparison, which is a state-of-the-art technique that
uses predefined rules for inferring program transformations.
For each pair of code changes (v, — vg,v, — Up) in
the dataset, we apply GENPAT and SYDIT to extract the
transformation from v, — v/, and apply the transformation



TABLE I
EVALUATION DATASET FOR Systematic Editing.

Dataset Source Project #Pairs
SYDIT [15] - 56
junit 3,904

cobertura 2,570

jgrapht 2,490

checkstyle 13,263

C3 [47] ant 25,063
fitlibrary 3,199

drjava 31,393

eclipsejdt 73,109

eclipseswt 63,446

Total 218,493

to vp. If the transformation can be applied and produces v+,
we compare v« With vy. Since the complete dataset is large,
in this experiment, the adapted code v,+ is considered correct
only if it is syntactically identical with the ground truth vy .
We also sample a small proportion of the programs that are
not syntactically identical to the ground truth and check its
semantic equivalence manually. For each pair, we set the
timeout as 1 minute.

We also need a code corpus for calculating the frequencies
of attributes. For simplicity, we use the same corpus of patches
as in the second program-repair experiment (Section VI-B1).
Please note while this is not an ideal choice for systematic
editing, as we will see later, we already achieved significantly
better performance than the state-of-the-art technique.

TABLE II
GENPAT ON COMPLETE EXPERIMENT DATASET FOR Systematic Editing.

Projects Total Pairs #Adapted #Syn-Eq
SYDIT 56 49 (87.5%) 27 (48.2%)
Junit 3,904 1,088 (27.9%) 412 (10.6%)
cobertura 2,570 769 (29.9%) 305 (11.9%)
jgapht 2,490 547 (22.0%) 226 (9.1%)
checkstyle 13,263 5,918 (44.6%) 1,679 (12.7%)
ant 25,063 10,428 (41.6%) 4,398 (17.5%)
fitlibrary 3,199 922 (28.8%) 374 (11.7%)
drjava 31,393 11,391 (36.3%) 4,151 (13.2%)
eclipsejdt 73,109 32,037 (43.8%) 14,150 (19.4%)
eclipseswt 63,446 22,218 (35.0%) 9,206 (14.5%)
Total 218,493 85,367 (39.1%) 34,928 (16.0%)

NOTE, the ratio in the table denotes the portion of Total Pairs.
In the table, SYDIT represents the corresponding dataset.

3) Results: First, we evaluate GENPAT on the complete
dataset as shown in Table I, and the experimental results are
listed in Table II. In the table, the second column shows the
total number of cases for transformation in each project, and
the last column (#Syn-Eq) denotes the number (ratio) that
GENPAT makes a syntactically identical adaptation among
all the test cases. We also report the number of cases that
GENPAT can successfully match the generated transformation
to the target code shown in the third column (#Adapted). In
total, GENPAT can successfully match and produce a result on
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39.1% cases, while on 16.0% cases, the result is syntactically
identical to the ground truth.

Then we further compare the result of GENPAT with
state-of-the-art SYDIT on the same dataset. Note that we
directly borrow the experimental result of SYDIT on the
SYDIT dataset as reported in the original paper [15]. For
the other projects, we successfully ran SYDIT on three
projects (SYDIT reported errors on other projects, such as
missing dependencies as it requires the projects compilable,
encountering exceptions like NullPointerException and
IndexOutOfBoundException, etc.). Therefore, we compare
the results of GENPAT and SYDIT on the subset of our
experiment dataset where they both apply. The details of
the experimental results are listed in Table III. Please also
note that SYDIT requires code change pairs for transformation
extraction and application coming from the same versions (ref.
Section VI-A2: v, and v, should come from the same project
version). To satisfy this constraint, we select only those pairs
in this experiment.

In Table III, for each technique, we report both the number
(ratio) of cases adapted and the number (ratio) of cases that
are transformed with syntactically identical editing (Columns
4-7). Particularly, since the result of SYDIT on the SYDIT
dataset is based on the semantic equivalence between the
adapted code and the ground truth. For a fair comparison, we
also perform a manual inspection on the results of GENPAT
on the SYDIT dataset. However, for the other projects, we
compare their results based on syntactic equivalence. From
the table we can see that GENPAT significantly outperforms
SYDIT on the numbers of both adapted and (syntactically
or semantically) correctly transformed cases. Overall, GEN-
PAT produces 2.0x (1079/541) the adapted cases and 5.5x
(570/103) the correctly transformed cases as SYDIT. If we
consider the ratio of false positives, i.e., the cases where
a transformation result is produced but not identical to the
ground truth, GENPAT ((1079-570)/1079=47.2%) still signifi-
cantly outperforms SYDIT ((541-103)/541=81.0%). Moreover,
we found that GENPAT can still achieve a much better result
(117 vs 64) even only on the cases where SYDIT can find a
match (SYDIT #Adapted). To conclude, GENPAT significantly
outperforms state-of-the-art SYDIT. The results suggest that
using predefined rules may produce undesired transformations
in many cases, which either cannot match, or incorrectly match
the target code.

Considering the performance of the tools on different
datasets, we can find that on the SYDIT dataset GENPAT
only slightly outperforms SYDIT (49 vs 46 adapted and 40 vs
39 correctly transformed), while on the C3 dataset, GENPAT
significantly outperforms SYDIT (1030 vs 495 adapted and
530 vs 64 correctly transformed). The reason is that the
SYDIT dataset has stricter requirements on the similarity of
the changes, and thus predefined rules already achieve good
performance. On the other hand, C3 contains more diverse
pairs such that better transformation inference is needed.

Please note that syntactical equivalence may not be a precise
measurement as two changes may be syntactically different but



TABLE III
COMPARING GENPAT WITH SYDIT ON Systematic Editing.

Dataset | Projects #To‘tal #Adapted #Syn-Eq/Sem-Eq #Syn-Eq of GENPAT
Pairs GENPAT SYDIT GENPAT SYDIT in SYDIT #Adapted
SYDIT - 56 49(87.5%) 46(82.1%) | -140(71.4%)  -/39(69.6%) -
jerapht 1,314 354(26.9%) 20(1.5%) | 211(16.1%) 6(0.5%) 7
c3 junit 1,208 383(31.7%)  240(19.9%) | 206(17.1%) 57(4.7%) 110
cobertura 1,021 293(28.7%)  235(23.0%) 113(11.1%) 1(0.1%) 0
Total 3,543 1,030(29.1%)  495(14.0%) | 530(15.0%) 64(1.8%) 117
Overall 3,599 | 1,07930.0%) 541(15.0%) | 570(15.8%) 103(2.9%) -

In the table, the ratio denotes the portion of Total Pairs, and we use

semantically equivalent. To further understand how much of
the syntactically different cases can be semantically equivalent,
we perform a manual inspection on the transformed results.
Since we do not have the detailed result of SYDIT on its own
dataset, we randomly choose 20 cases in each project from
C3 dataset, where the transformed code is not syntactically
identical with the ground truth. As a result, we choose 60
cases for GENPAT and 54 cases for SYDIT (only 14 cases in
project jgrapht, cf. Table III). The results are 11.7% (7/60)
semantically correct cases for GENPAT, while 9.3% (5/54)
semantically correct cases for SYDIT. The results suggest that
the number of semantically equivalent cases would be slightly
higher than the syntactically equivalent cases, and GENPAT
would probably still significantly outperform SYDIT.

We further investigate the reasons why GENPAT do not
produce syntactically or semantically equivalent cases. We
randomly sampled 100 cases that are not equivalent to the
ground truth. By manually analyzing these cases, we found
the following four main reasons. (i) The dominating reason
is that the dataset contains noise, where the given code
change examples do not conform to the target code. In other
words, we cannot obtain the desired code after applying
the transformation inferred from the corresponding example.
For example, the given code change example is updating a
variable runners to fRunners, while the desired change
is updating fRunners to runners. It is impossible to infer
the latter transformation from the former example. In total,
64% incorrect cases are due to this reason. (ii) Some types
of changes are not supported by our implementation. For
example, some cases change the method signature, and some
cases change two methods at the same time. Both situations
are not supported by our current implementation. In total, 27%
cases are due to this reason. (iii) Our current modification
types do not allow some transformations. For example, the
desired transformation should insert a statement after some
other statements, while our modification operation only allows
inserting at an absolute position, i.e., the ¢th child of the parent,
rather than a relative position. In total, 3% cases are due to
this reason. (iv) Our inference algorithm does not infer the
correct transformation. For example, we may extract a too
strong context that cannot match the target code. In total, 6%
cases are due to this reason. Note that first two reasons are not

263

o @

to denote missing data or directly omit

directly related to our approach. The latter two reasons point
out future directions to further develop the approach. In other
words, with a better implementation our approach may show
even better results.

B. Automated Program Repair

Our second experiment aims to explore the capability of
repairing real-world bugs using GENPAT. In this experiment,
we infer transformations from a large dataset of existing
patches, and then apply these transformations to repair new
bugs.

1) Subjects: We prepare two datasets, one of which is used
as a training set for transformation extraction, while the other
one is used as the dataset for program repair.

For the first dataset, we downloaded more than 2 million
code change examples from all open-source Java projects on
GitHub corresponding to all their commits from 2011 to 2016.
In this process, we leverage a set of keywords for filtering,
such as “fix”, “repair”, “bug”, “issue”, “problem”, “error”, etc.
Following previous studies [17], [49], we further filter out code
change examples involving more than five java files or six
lines of source code since they may include benign changes.
Moreover, we remove commits in the projects to repair (i.e.,
Defects4] projects) or their forked projects to avoid using their
own patches. As a result, we build a training set consisting
of more than 1 million bug-fixing examples, which will be
used to extract transformations for program repair. Besides,
this dataset is used as the big code corpus for attribute selection
as well, where each changed file in each commit is treated as
a code file.

For the second dataset, we employ a commonly used
benchmark Defects4] [16] (v1.4), which consists of 395 real-
world bugs from six open-source projects. We select 113 bugs
from Defects4] for our experiment. The reason is that GENPAT
is not designed to be a comprehensive and standalone repair
tool and is not possible to fix many specific types of bugs (e.g.,
bugs requiring additional invocations of specific methods only
from the current projects). To save experiment time, we filtered
these bugs that cannot be fixed, and used the remaining 113
bugs. The details of the benchmark are listed in Table IV.

2) Procedure: As suggested by existing studies [2], [3],
[50] that same bug fixes may recursively exist among the
historical bug fixes. To avoid repetitive computation, we first



TABLE IV
EVALUATION BENCHMARK FOR Program Repair.

Project Bugs kLoC Tests
JFreechart (Chart) 12 96 2,205
Closure compiler (Closure) 22 90 7,927
Apache commons-math (Math) 34 85 3,602
Apache commons-lang (Lang) 33 22 2,245
Joda-Time (Time) 6 28 4,130
Mockito (Mockito) 6 45 1,457
Total 113 366 21,566

In"the table, column™Bugs™ denotes the total number of bugs used in our
evaluation, column“kLoC” denotes the number of thousands of lines of code,
and column “Tests” denotes the total number of test cases for each project.

perform a transformation clustering, which collects the same
transformations together to form a cluster. In this process, two
transformations belong to the same cluster only if they can
match each other, and they have the same modifications. As a
result, after clustering 689,546 unique transformation clusters
are left, which are finally employed for patch generation.

Following existing APR techniques [43]-[45], [51], we first
leverage an existing fault localization framework [52] to obtain
a ranked list of candidate faulty locations. Particularly, we
employ the Ochiai [53] spectrum-based fault localization to
compute suspicious scores. However, the fault localization
result is at the statement level, while GENPAT matches a code
snippet rather than a single line. Therefore, we further apply
Method-Level Aggregation [54]-[57] to obtain a ranked list
of faulty methods from statement-level results since it has
been demonstrated to outperform direct method-level fault
localization [54].

Given a faulty method, GENPAT locates a set of transfor-
mations whose attributes can be found in the faulty method.
Then transformations will be ranked according to the size
of corresponding clusters. Thereafter, GENPAT tries to apply
each transformation to a given faulty method and generates
patches. In the matching process, we discard matches that
involve no elements in a faulty line in the method. In our
experiment, we collect at most 10,000 compilable patches
for each faulty method and then rank them with the ranking
method introduced in the approach (Section V-D). Finally,
we validate each candidate patch with the test suites and
set a timeout of 5 hours to repair one bug. In this paper,
following recent repair work [17]-[19], [44], [45], [58]-[60],
we consider a patch as correct only if it is semantically
equivalent to the developer’s patch in Defects4] with manual
check.

3) Results: In this section, we present the experimental
result of GENPAT on repairing real-world bugs and compare
it with state-of-the-art APR techniques that are recently pub-
lished on SE conferences. The results are shown in Table V.
In the table, we listed the number of bugs correctly fixed by
each technique when considering top-k (k € {1, 10}) plausible
patches. We use “-” to represent those missed data. From
the table we can observe that, surprisingly, although GENPAT
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is not designed as a comprehensive and standalone repair
technique, it still successfully repairs 16 bugs when only con-
sidering top-1 plausible patch, even outperforming some recent
approaches, such as SketchFix and JAID. When considering
top-10 plausible patches, GENPAT can successfully repair 19
bugs. Moreover, among all the bugs fixed by GENPAT, 4 bugs
have never been fixed by any existing technique as far as we
know, such as the example shown in Listing 3. The results
demonstrate that it is possible to repair real-world bugs by
learning executable program transformations from historical
bug fixes directly. Furthermore, the results also suggest that
it would be promising to consider integrating GENPAT when
designing advanced APR techniques to repair more bugs,
which calls for future research in this direction.

TABLE V
COMPARING GENPAT WITH STATE-OF-THE-ART APR TECHNIQUES.

Conf. Tech. #Top-1 Pos.  #Top-10 Pos.
ISSTA’19 PraPR [60] 30 39
ISSTA’18 SimFix [18] 34 -
ICSE’18 SketchFix [61] 9 -
ICSE’18 CapGen [19] 21 22
ASE’17 JAID [59] 9 15
ICSE’17 ACS [45] 18 -
SANER’16  HD-Repair [17] 10 -

GENPAT 16 19

In an investigation of the patches we found that the fixed
bugs are often non-trivial and may not be easily fixed by
approaches with a predefined search space. For example,
Listing 4 shows the patch for Lang-21, which is successfully
generated by applying the transformation extracted from the
example in Listing 5. It is not easy to predefine a search space
to include this constant replacement.

264 call.get (Calendar .MINUTE)==cal2.get (Calendar .MINUTE) &&
265 -call.get (Calendar.HOUR)==cal2.get (Calendar.HOUR) &&
265 +call.get (Calendar.HOUR_OF_DAY)==cal2.get (Calendar.

HOUR_OF_DAY) &&

266 call.get (Calendar.YEAR)==cal2.get (Calendar.YEAR) &&

Listing 4. Patch of Lang-21.

ftware/PressureNet/commit/9d00742

bugs, #113

s .barome rnetwork.BarxxActivit

2459 - if (start.get (Calendar.HOUR)==0&&end.get (Calendar.
HOUR) ==0) {

2459 + if (start.get (Calendar.HOUR_OF_DAY)==0&&end.get (
Calendar.HOUR_OF_DAY)==0) {

Listing 5. Referenced history patch to fix Lang-21.

Meanwhile, though GENPAT is promising to repair real-
world bugs, it still faces challenges. In our experiment, GEN-
PAT generates plausible but incorrect patches for other 23
bugs among all 113 bugs. Compared with some state-of-
the-art techniques, such as SimFix and CapGen, the repair
precision of GENPAT is slightly lower. By analyzing those
incorrect patches, we found that the reasons for its low
precision are mainly threefold. First, though we have already
preprocessed the training dataset for transformation extraction,



there still exist code changes that are not relevant to bug fixes,
which may produce incorrect patches. Second, the inferred
transformation is too general and can be applied frequently,
such as inserting a return statement in an if body. Since
GENPAT only expands one level dependency relation, the gen-
erated transformation can be applied wherever there is an if
statement, and can easily introduce incorrect patches. Third,
GENPAT is not designed to be a standalone repair tool and thus
does not include the patch-correctness checking mechanisms
that mature tools use. In the future, recent advanced patch-
correctness checking techniques [62], [63] can also be further
integrated with GENPAT to mitigate this issue.

VII. THREATS TO VALIDITY

In this section, we discuss the threats to validity of GENPAT.

First, the external threats to the validity fall into the data
collection in our evaluation. We employed a subset of the C3
data set, i.e., we choose one pair of similar code changes
from each cluster for the experiment, which may cause data
selection bias. However, to mitigate this threat, we employed
all 218,441 clusters in the data set shown in Table I with a
random sample, which leaves us 218,441 pairs of examples.
We believe that this big dataset can alleviate the threats. On
the other hand, since the dataset is constructed automatically
by previous research, which may involve noises as discussed
in the previous section. As a consequence, we employed the
manually-constructed dataset [15] as well in our evaluation,
which can mitigate this issue to some extent.

Second, the internal threats to validity are related to the
implementation of GENPAT. To ensure the correctness of its
implementation, two authors of the paper collaborate with code
review to make sure all functions are properly implemented.
However, it is still possible to unintentionally get some im-
plementation bugs involved. To further reduce this threat, we
have also released both the source and test code of GENPAT,
as well as the replication package, and invite other researchers
to contribute to this promising direction.

VIII. CONCLUSION

In this paper, we propose a framework for transformation
inference from a single example by representing code as a
hypergraph, which allows fine-grained generalization of trans-
formations with big code. Based on this framework, we further
propose a transformation inference algorithm and implement
it in a tool called GENPAT. Finally, we evaluated the effec-
tiveness of GENPAT in two distinct application scenarios, i.e.,
systematic editing and automatic program repair. The experi-
mental results show that GENPAT significantly outperforms the
state-of-the-art SYDIT with up to 5.5x correctly transformed
cases in the first application. Additionally, although not de-
signed as a comprehensive and standalone repair technique,
GENPAT already shows potentialities in automatic program
repair — it successfully fixed 19 bugs in the Defects4J bench-
mark, 4 of which have never been repaired by any existing
technique. In all, the evaluation results suggest that GENPAT
is effective and potentially can be adopted in many different
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applications. On the other hand, in the current implementation,
we do not consider the context information while computing
the attribute frequencies, which potentially can further improve
the quality of the inferred transformations. Also, there are also
other attributes and relations besides those considered in our
current implementation, such as the node-position attributes
in AST or control-dependency relations, both of which may
impact the quality of inferred program transformations. We
leave a more thorough investigation to these variations to our
future study.
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