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Spectral gap optimization of order parameters (SGOOP) [P. Tiwary and B. J. Berne, Proc. Natl. 

Acad. Sci. U. S. A. 113, 2839 (2016)] is a method for constructing the reaction coordinate (RC) in 

molecular systems, especially when they are plagued with hard to sample rare events, given a larger 

dictionary of order parameters or basis functions and limited static and dynamic information about 

the system. In its original formulation, SGOOP is designed to construct a 1-dimensional RC. Here 

we extend its scope by introducing a simple but powerful extension based on the notion of 

conditional probability factorization where known features are effectively washed out to learn 

additional and possibly hidden features of the energy landscape. We show how SGOOP can be used 

to proceed in a sequential and bottom-up manner to (i) systematically probe the need for extending 

the dimensionality of the RC and (ii) if such a need is identified, learn additional coordinates of the 

RC in a computationally efficient manner. We formulate the method and demonstrate its utility 

through three illustrative examples, including the challenging and important problem of calculating 

the kinetics of benzene unbinding from the protein T4L99A lysozyme, where we obtain excellent 

agreement in terms of dissociation pathway and kinetics with other sampling methods and 

experiments. In this last case, starting from a larger dictionary of 11 order parameters that are generic 

for ligand unbinding processes, we demonstrate how to automatically learn a 2-dimensional RC, 

which we then use in the infrequent metadynamics protocol to obtain 16 independent unbinding 

trajectories. We believe our method will be a big step in increasing the utility of SGOOP in 

performing intuition-free sampling of complex systems. Finally, we believe that the utility of our 

protocol is amplified by its applicability to not just SGOOP but also other generic methods for 

constructing the RC. Published by AIP Publishing. https://doi.org/10.1063/1.5064856 

I. INTRODUCTION 

Finding reaction coordinates (RCs) and mechanistic 

pathways in complex systems and processes is a problem of 

great theoretical and practical interest for which over the 

decades numerous theoretical and numerical schemes have 

been proposed.1–4 The problem becomes especially 

complicated in rare event systems, aptly summarized by 

Chandler and co-workers in their review as the problem of 

“throwing ropes over rough mountain passes, in the dark.”2 

Spectral Gap Optimization of Order Parameters (SGOOP) is 

one such method to construct a RC as a function of candidate 

order parameters for a given molecular system.5,6 This RC 

encapsulates the most relevant degrees of freedom in the 

system whose fluctuations must be enhanced in order to 

accurately sample the thermodynamics and kinetics of 

metastable states during biased molecular dynamics (MD) 

simulations such as metadynamics or umbrella sampling.7 

SGOOP was designed keeping rare 

Note: This article is part of the Special Topic “Markov Models of Molecular 

Kinetics” in J. Chem. Phys. 
a)D. Pramanik and S.-T. Tsai contributed equally to this work. 

event systems in mind, where one progressively improves the 

quality of the RC through rounds of biased simulations 

performed using it. SGOOP has been demonstrated to be 

useful for a range of systems such as small peptides and 

protein–ligand systems and falls in the broad family of many 

such related methods that attempt to learn RC for enhanced 

sampling from sub-optimally biased simulations, such as the 

application of tICA by different groups.8,9 The reason these 

methods work is at least two fold: (a) irrespective of system 

complexity, it has been rigorously demonstrated that there 

exists an optimal one-dimensional RC, given by the normal 

direction to the isocommittor surfaces,10–12 and (b) for the 

purpose of enhancing the sampling, there is anecdotal 

evidence that any RC suffices as long as it has sufficient 

overlap with the true RC.7,13 The condition (b) can be 

rephrased in terms of the time scale separation between slow 

0021-9606/2018/149(23)/234105/9/$30.00 149, 234105-1 Published by AIP Publishing. 
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and fast modes in the system. Namely, the time scales for any 

process not captured by the RC must be much faster than the 

slow processes that the RC does encapsulate. SGOOP screens 

through various putative RCs attempting to maximize this 

time scale separation, also called the spectral gap. In order to 

do so, it uses a maximum path entropy (or Caliber) model that 

combines any known static or dynamic information about the 

system6,14,15 and builds transition rate matrices along different 

putative RCs which then directly yield the spectral gap. 

SGOOP constructs a one-dimensional reaction 

coordinate (RC) as a linear or non-linear combination of pre-

selected candidate order parameters, which can be thought of 

as a set of basis functions using which we are trying to 

describe our problem. These order parameters must be chosen 

by the user from intuition about the specific system of interest 

or the class that the system belongs to (such as proteins). This 

requirement for user intuition allows the constructed RC to be 

easily interpretable as it is a combination of physically 

meaningful features. Naturally, by considering sufficiently 

complex combinations of the order parameters (think neural 

networks) or by making the order parameters themselves 

sufficiently complex, it should be possible in principle to 

construct a onedimensional RC for any given complex 

process. However for many biomolecular systems of practical 

relevance that consist of multiple metastable conformations, 

possibly with numerous interconnecting pathways, it might be 

more desirable to extend the dimensionality of the RC itself. 

That is, instead of trying to make the 1-d RC more and more 

sophisticated, it might be computationally cheaper and also 

physically more interpretable to add a second or even more 

components to the RC, while still keeping the final 

dimensionality of the RC much lower than the space of order 

parameters considered. These other RC components could 

serve to lift the degeneracy in the first component and could 

directly be interpreted in terms of the different pathways or 

metastable states that they correspond to. A natural question 

then is how should one go about finding these extra 

components. The original SGOOP framework could directly 

be applied to construct a multi-dimensional RC simply by 

attempting to construct a transition rate matrix on a multi-

dimensional grid. This is not very practical since first, the 

dimensionality of the rate matrices scale as Nd × Nd, where d 

is the RC-dimensionality and N is the number of bins along 

each RC-component. Second, SGOOP involves calculating 

the number of barriers discernible in a projection along a 

given putative RC. This is trivial in 1-d but can become tricky 

and prone to noise related instabilities in higher dimensions. 

Here, inspired by the recent method Reweighted 

Autoencoded Variational Bayes for Enhanced Sampling 

(RAVE),16,17 we develop a simple but powerful extension to 

SGOOP that makes it possible to sequentially extend the 

dimensionality of the RC in a straightforward manner. Our 

approach also makes it possible to visually assess when 

adding further dimensions to the picture is no longer needed. 

Each additional component is constructed in such a way that 

it captures features indiscernible in the previous components. 

In this communication, we first develop the key ideas behind 

our method, which is in fact more generally applicable than 

SGOOP (see Ref. 16 for an illustrative application in the 

context of deep learning based RC identification), followed 

by its specific implementation through SGOOP. We then 

demonstrate the utility of our method through different 

examples of varying complexity, including with model 

potentials and dissociation of benzene from T4L99A 

lysozyme in allatom resolution and explicit TIP3P water. The 

last system is a popular yet challenging test-case. Here we 

start with a dictionary of 11 order parameters generic for 

ligand unbinding processes such as protein-ligand and 

protein-protein distances and use our automatically learned 

two-dimensional RC in an infrequent metadynamics 

framework7,18,19 to calculate its dissociation rate constant and 

dominant unbinding pathway, in excellent agreement with 

previous studies and experiments.20–24 We thus believe our 

method should be of considerable use to the enhanced 

sampling and molecular simulation communities. 

II. THEORYA. Multi-dimensional reaction 

coordinates through conditional probability factorization 

Many previous strategies have been introduced in the 

past to solve this challenging problem of systematically 

learning additional hidden variables. For example, inspired by 

the Marcus theory of electron transfer, Yang and co-workers 

introduced a method based on considering the generalized 

force defined by the gradient of the free energy25 with respect 

to the RC. Later, Noe and co-workers introduced a 

framework´ inspired by the variational principle in quantum 

mechanics which constructs a family of RC components.26,27 

Here we introduce a new framework based on looking at 

factorized conditional probabilities. In Subsection II B, we 

elaborate the practical implementation of this framework in 

the context of SGOOP, but it is valid much more generally. 

Our starting point is a collection of d, given candidate 

order parameters s = (s1, s2, . . ., sd) and a trial RC 
ψ

1
0 =

P
i ci

0si. 

Here the subscript 1 in ψ1
0 indicates that it is the 1st 

component of the RC, and the superscript 0 indicates the 0th 

iteration, i.e., starting choice for the same. By following the 

original SGOOP protocol5,28 or any other methods for 

constructing a 1-d RC, we learn an optimized version of this 

first component, with different weights {ci}, which we call ψ1 

without any superscripts. Our intention now is to learn a 

second (and if needed, more) component ψ2 of the RC that 

can describe any relevant slow, hidden degrees of freedom, if 

present, that were not captured by the first component ψ1. In 

order to learn ψ2, we shift our attention from the unbiased or 

Boltzmann probability distribution P0 to an auxiliary 

probability distribution P1(s1, . . ., sd) that is conditional upon 

what we know about the 1st RC component. This distribution 

thus enhances and sharpens the features in (s1, . . ., sd) space 

not captured by ψ1. It is defined by the conditional probability 

P1(s1, . . . , sd) ≡ P0(s1, . . . , sd|ψ1(s1, . . . , sd)) 



 

P0(s1, . . . , sd, ψ1) 

= 

P0(ψ1) 

P0(s1, . . . , sd) 

 = . (1) 

P0(ψ1) 

In reaching the last line, we have taken into account that given 

the values of {si} and a set of coefficients {ci}, ψ1 = ψ1(
P

icisi) 

is known exactly. Hence the two joint probability 

distributions in the numerators of the second and third lines 

of Eq. (1) are equal within an irrelevant constant of 

proportionality. Equation (1) essentially calculates the 

probability distribution P1 of the dictionary of order 

parameters conditional on what we already know about the 

first component of the RC. In other 



234105-4 Smith et al. J. Chem. Phys. 149, 234105 (2018) 

words, it amounts to sampling the {s1, s2, . . .} space as per 

Boltzmann distribution P0 but inverting their weights as per 

P0(ψ1). Given this knowledge, we can now perform a 1-d RC 

analysis on the probability distribution P1. If there are no 

slow, hidden variables, then the probability distribution P1 

should have no additional, orthogonal features on top of what 

was encapsulated already by the RC ψ1. We demonstrate this 

later in Sec. III through numerical examples. However, if 

there are indeed additional slow variables that were not 

captured by ψ1, they will now be expressed through the RC 

ψ2 obtained by treating the probability distribution P1. This 

reflects the most informative degree of freedom conditional 

on knowledge of the degrees of freedom captured by ψ1 and 

is our second component of the RC. Similar to Eq. (1), the 

probability distribution for the third component of the RC can 

be obtained by considering the probability distribution P2(s1, 

. . ., sd) defined through 

P2(s1, . . . , sd) ≡ P1(s1, . . . , sd|ψ2(s1, . . . , sd)) 

P1(s1, . . . , sd) 

 = . (2) 

P1(ψ2) 

By then repeating this protocol on Pi−1(s1, . . ., sd), where 

i ≥ 1, we obtain a sequential set of conditional probability 

distributions on which we can perform 1-d RC optimization, 

for example, in the fashion of the original SGOOP method,5,28 

P0(s1, . . . , sd) 

 Pi(s1, . . . , sd) = . (3) 

P0(ψ1) . . . Pi−1(ψi) 

The number of components we choose to identify 

through this procedure will eventually depend on the problem 

and sampling method at hand—for example, if the intention 

is to perform umbrella sampling or metadynamics with the 

RC, going beyond 2 or 3 components will probably be futile. 

However for other sampling methods, such as parallel bias 

metadynamics or the variational approach of Parrinello and 

Valsson,29,30 where in principle one can handle many more 

biasing variables at the same time, further rounds of the 

procedure developed here may be applied. A heuristic 

benchmark for when an additional component ψi+1 is 

redundant given the components 1, 2, . . ., i is to examine the 

correlations between ψi+1 and ψ1, . . ., ψi. As shown in Sec. 

III, the need for addition of ψi+1 can be best judged from 

examining how correlated or orthogonal are the features in 

ψi+1 to the previous components. Let us say that one judges 

that components {i + 1, . . .} do not add any extra information 

about the slow processes to the representation and decides to 

stop the procedure after round i. At this point, we can use Eq. 

(3) to write the full high-dimensional unbiased probability 

distribution as follows: 

P0(s1, . . . , sd) = P0(ψ1)P1(ψ2) . . . Pi−1(ψi)P0(ζ) 

 ∝ P0(ψ1)P1(ψ2) . . . Pi−1(ψi), (4) 

where P0(ζ) is featureless noise in terms of some more hidden 

variables ζ that we do not care about and thus treat as a 

constant of proportionality. Thus we have factorized the 

highdimensional Boltzmann probability distribution P0(s1, s2, 

. . ., sd) as a product of one-dimensional conditional 

probabilities. This factorization establishes that (i) these 

variables ψ1, ψ2, . . . and their conditional probability 

distributions can be learned in a sequential and independent 

manner as proposed here and that (ii) these variables together 

are sufficient to describe the slow modes in the system. We 

would like to emphasize that Eq. (4) does not imply 

independence of these variables, i.e., the following is not true: 

P0(s1, . . ., sd) = P0(ψ1)P0(ψ2). . .P0(ψi). These variables are 

not independent components and must be treated together. 

B. Multi-dimensional reaction conditional probability 

factorization through SGOOP 

We now describe how the formalism of Sec. II A can be 

implemented in practice using SGOOP.5,6 Following the 

notations of Sec. II A, the inputs to SGOOP are a biased 

simulation performed using a trial RC 
ψ

1
0 =

P
i ci

0si and a short 

unbiased MD run that gives a time-series of the order 

parameters s = (s1, s2, . . ., sd). Alternatively, the short unbiased 

MD run could be replaced with estimates of the position-

dependent diffusivity tensor.28 The biased trajectory is used to 

obtain estimates of the stationary probability density along 

various putative RCs, distinguished through values of {ci}, 

through a post-processing reweighting procedure,31 while the 

unbiased trajectory is used to obtain dynamical constraints 

needed by the Maximum Caliber framework on which 

SGOOP is based.6,14,15 In SGOOP,5,28 one spatially discretizes 

the putative RC ψ by defining a grid {n} along it, where n 

takes integral values. Let kmn be the time-independent 

unbiased rate of transition from grid point m to n per unit time 

∆t. Furthermore, let p0
n denote the stationary probability of 

being at any grid point n obtained by reweighting the free 

energy along the respective putative RC,5,6 and hNi0 represent 

a dynamic observable which we take here as the average 

number of first-nearest neighbor transitions in the putative 

RC grid observed in time ∆t. SGOOP5,28 uses the following 

equation to calculate the transition rate for moving from grid 

point m to grid point n along any putative RC ψ1: 

 kmn P hqNi0 
s 

p0
n0 . (5) 

 p0np0m pm 

Equivalently, the above equation can be written in a 

related form by mapping a Smoluchowski equation along ψ1 

termby-term into a master equation along the same grid and 

using diffusion coefficient along ψ1 instead of MaxCal 
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constraints (see Ref. 28 for details of the mapping). With 

either form, we can now calculate the eigenvalues of the full 

transition matrix 

K, where Knm = kmn for m , n and Kmm = −
P

m,nkmn. These 

eigenvalues directly give us the spectral gap for that RC, and 

by optimizing for the maximal spectral gap by varying the 

trial coefficients {ci}, we learn the best RC, given the static 

and dynamic information at hand. This optimization can be 

carried out through a simulated annealing protocol and gives 

us an optimized first component of the RC, denoted ψ1. 

So far in this sub-section, we have simply summarized 

SGOOP. This is where we start to extend the protocol. At this 

point, we have an estimate of ψ1 using which we perform a 

second metadynamics run biasing ψ1. Obtaining the 

probability distribution P1(s1, . . . , sd) = P0
P

(s
0

1
(
,
ψ

...
1
,
)
sd) of Eq. (1) 

from this metadynamics run is embarrassingly trivial: it is the 

unreweighted, biased probability distribution sampled here. 

Similar to Eq. (5), we now write down a rate equation along 

any putative RC ψ2, 

P hqNi1 s p1n 

kmn =1 . (6) p1np1m pm 

Here p1
n denotes the probability of being at any grid point n 

along a trial 2nd component of the RC, obtained by 

marginalizing out all other degrees of freedom from P1(s1, . . 

., sd). This is a simple binning operation and does not even 

need the reweighting procedure31 for the 1st component, 

which was needed there to reweight out the effect of biasing 

along the trial RC 1st component 
ψ

1
0. hNi1 represents the 

average number of first-nearest neighbor transitions in the 

putative RC grid observed in a time-interval ∆t but this time 

as observed in the simulation performed by biasing ψ1. 

If ψ1 was truly the only slow degree of freedom, then a 

search for an RC on the P1(s1, . . ., sd) probability distribution 

would return no solutions; that is, the optimized RC would be 

featureless, or even if any features were discovered, they 

would not be new and would be already captured by ψ1 (see 

Sec. III for examples). However, if indeed a non-trivial RC is 

found through optimizing the spectral gaps from Eq. (6), we 

call this as the 2nd component ψ2 of our RC. We now perform 

a metadynamics run biasing both ψ1 and ψ2 and in principle 

can repeat this procedure to add as many components as we 

wish. We re-emphasize that in any successive round, 

excluding the starting one for ψ1, there is no need to perform 

any reweighting and that the respective biased run itself 

suffices fully for performing Maximum Caliber based 

estimates. 

III. RESULTS 

Here we first demonstrate our method on two illustrative 

simple model potentials through a combination of which it 

can be clearly seen that why a second component to the RC 

might or might not be needed and how SGOOP can be used 

to identify the various components. We then apply it to the 

very challenging test case of benzene dissociation from 

T4L99A lysozyme in all-atom resolution including explicit 

TIP3P water, where we are able to accurately simulate the full 

dissociation process which normally takes hundreds of 

milliseconds and calculate the dissociation rate constant koff , 

a quantity of immense practical relevance in basic 

biochemistry and drug design.19,32–36 For the two model 

systems, we considered Eq. (5) in its diffusion constant form 

as detailed in Ref. 28 and assumed position-independent 

isotropic diffusivity tensor with no off-diagonal terms. For 

benzene-T4L99A, we considered Eq. (5) directly with 

MaxCal constraints, as detailed in Sec. III B. 
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A. Model systems 

Both model potentials are represented through sum of 

three Gaussians, and an overall restraining potential, and are 

in kBT units, where kB is Boltzmann’s constant and T is the 

temperature of the system. We use a numerical approach for 

these two model potentials using analytical/numerical 

estimates of different reweighted free energies and 

probability 

distributions. We did perform MD as well on these potentials 

(hence the need for restraining potentials), using the full 

MaxCal version of Eq. (5), and the results were 

indistinguishable from those reported here. 

1. When a 1-component RC is sufficient 

The first model potential we considered (Fig. 1) is given 

by 

U(x, y) = −12e−4.5(x+.75)2−3(y+.5)2 − 16e−2x2−2(y−1)2 − 

12e−4.5(x−.75)2−3(y+.5)2 + .05(x6 + y6). (7) 

Here we first identified the first component of the RC, defined 

as ψ1(x, y), as a linear combination of x and y demarcated 

through the rotation θ measured counter-clockwise from the 

x-axis. Performing SGOOP here yields the spectral gap versus 

θ profile shown in Fig. 1(b) with two clear maxima at θ = 60◦ 

and θ = 120◦. The two RC solutions are equivalent due to the 

symmetry of the problem and lead to an identical free energy 

profile along the RC given in Fig. 1(c), with three distinct 

wells. Finally in Fig. 1(d), we have provided the unbiased free 

energy [i.e., −kBT log P0(ψ1, ψ2)], where ψ2 was calculated to 

be θ = 20◦ by performing SGOOP on P0(x, y|ψ1 ). We will 

revisit Fig. 1(d) in Sec. III A 2. 

2. When a 1-component RC is not sufficient 

The second model potential is given by 

U(x, y) = −12e−4.5(x+.55)2−3(y+.5)2 − 16e−2x2−2(y−1)2 

 − 12e−4.5(x−.55)2−3(y+.5)2 + .05(x6 + y6). (8) 

The potential shown in Fig. 2(a) is a modification of the 

previous potential with the two bottom wells moved closer 

together as can be seen from Eq. (8). This simple change will 

cause the overlap between the two wells to be 

indistinguishable to a single-component linear RC. The 

spectral gap was optimized as shown in Fig. 2(b), yielding RC 

ψ1 at θ = 90◦ with the corresponding unbiased free energy 

shown in Fig. 2(c). ψ1 was unable to capture all three energy 

wells showing that there are hidden degrees of freedom. The 

conditional probability distribution P1(x, y) = P0(x, y|ψ1 (x, 

y)) shown in Fig. 2(d) through its associated free energy was 

calculated and the spectral gap for the 2nd RC component 

[Fig. 2(e)] was optimized on this probability distribution. The 

second component of the RC shown in Fig. 2(d) and given by 

θ = 10◦ captures a new degree of freedom previously invisible 

to the first component. Combined these two components can 

account for both transitions in the x and y directions despite 

the x-transitions being hidden to ψ1. 

 

FIG. 1. (a) Potential energy contours for Eq. (7). The gray line shows the optimal RC 1st component ψ1, demarcated through the rotation θ = 120◦ measured 

counter-clockwise from the x-axis. (b) Spectral gap as a function of θ for this potential. (c) Free energy along ψ1 for this potential. (d) Unbiased free energy 

[i.e., −kBT logP0(ψ1, ψ2)]. All energies are in units of kBT, while the spectral gap is in arbitrary units since only its relative values concern us. 
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In Fig. 2(f), we provide the unbiased free energy [i.e., 

−kBT log P0(ψ1, ψ2)] for the potential of Fig. 2(a). This is to 

be contrasted with the equivalent free energy profile in Fig. 

1(d) for the potential of Fig. 1(a). It can be seen from Fig. 2(f) 

that the stable states demarcated by ψ2 lie orthogonal to the 

ψ1 axis—i.e., they have the same ψ1 value. However, in Fig. 

1(d), this is not the case. The stable states demarcated by ψ2 

can already be distinguished through their ψ1 values directly. 

As such, while adding the second component ψ2 helps in the 

potential of Fig. 2(a), it does not add any extra information 

for the potential of Fig. 1(a). This simple heuristic should 

serve useful in deciding when to add extra components to the 

RC, as we demonstrate for the next, significantly harder 

example. 

B. T4 lysozyme dissociation rate and pathway through 

infrequent metadynamics 

The protocol for extending a RC to multiple components 

is generally applicable and is expected to be useful for more 

complex systems for a range of sampling methods. Here we 

illustrate this through its applicability to infrequent 

metadynamics, a widely used scheme for recovering unbiased 

kinetics rates from biased metadynamics simulations.6,18–21,37–

41 The central idea in infrequent metadynamics is to perform 

periodic but infrequent biasing of a low-dimensional RC in 

order to increase the escape probability from metastable states 

where the system would ordinarily be trapped for extended 

periods of time. Provided that the chosen RC displays time 

scale separation and can demarcate all relevant stable states 

of interest, and if the time interval between biasing events is 

infrequent compared to the time spent in the transition state 

(TS) regions, then one increases the likelihood of not adding 

bias in the TS regions and thereby keeping unbiased the 

dynamics during barrier crossing itself. This preserves the 

sequence of transitions between stable states that the unbiased 

trajectory would have taken. Finally, the acceleration of 

transition rates through biasing, which directly yields the true 

unbiased rates, can be calculated through a simple 

acceleration factor detailed in Refs. 7 and 38. Whether the 

conditions for the applicability of infrequent metadynamics 

were met or not can be verified a posteriori by checking if the 

cumulative distribution function for the transition times is 

Poisson through a Kolmogorov-Smirnoff test developed in 

Ref. 42. Here one calculates a p-value for the quality of 

Poisson fit, and traditionally achieving a value greater than 

0.05 is considered safe for reliability. 

 

FIG. 2. (a) Potential energy contours for Eq. (8). The gray line shows the optimal RC 1st component ψ1, demarcated through the rotation θ = 90◦ measured 

counter-clockwise from the x-axis. (b) Spectral gap as a function of θ for various ψ1 choices. (c) Free energy along ψ1 for this potential. This reaction coordinate 

only captures the movement between the top well and the bottom wells and misses the sub-structure of the bottom two wells. (d) Free energy −kBT logP1(x, y) 

after conditioning on the estimate of P0(ψ1) as per Eq. (1). In addition to the first component of the RC, the second component is also illustrated given by θ = 

10◦. (e) Spectral gap as a function of θ for P1(x, y). (f) Unbiased free energy [i.e., −kBT logP0(ψ1, ψ2)]. All energies are in units of kBT, while the spectral gap is 

in arbitrary units since only its relative values concern us. 
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Using SGOOP we demonstrate how the process of RC 

selection for infrequent metadynamics can be made almost 

automatic, starting from a larger dictionary of 11 order 

parameters that are generic for ligand unbinding processes. 

The specific problem considered here is benzene dissociation 

from the protein T4L99A lysozyme [Fig. 3(a)]. This is a 

wellstudied but extremely hard to simulate process due to the 

debilitating long time scales of milliseconds to seconds and 

thus has been studied through different specialized sampling 

methods. Given the rare event nature of this problem and 

complex, coupled movements of protein, ligand, and even 

solvent, learning a RC on-the-fly is not a trivial task. We 

study the process in all-atom resolution using CHARMM22∗ 

force field for protein, TIP3P water model, and CGenFF force 

field for the  

 

FIG. 3. Various details for the benzene-T4L99A system studied here. (a) Secondary structure of the protein, with helices 1, 2, 3, and 4 from Table I shown in 

red, green, yellow, and purple, respectively. Superimposed is the trajectory of the ligand as it unbinds along the dominant pathway. The trajectory here 

corresponds to 42 ns of MD simulation time, with the ligand shown every 10 ps and colored from red to white to blue as a function of simulation time. 3 clear 

clusters of states can be seen—bound, metastable, and unbound. In the top inlay, we have highlighted the residue F114 which acts as a gatekeeper before the 

ligand reaches the metastable state. In the bottom inlay, we have displayed the residues along with helices that make up the list of order parameters considered 

for the RC. (b) A visual depiction of the order parameter weights as tabulated in Table I. (c) Cumulative distribution function (CDF) for the reweighted18 

unbiased dissociation times (black dashed line) obtained from independent infrequent metadynamics simulations, along with a Poisson fit (solid red line). 

Various statistics indicating the reliable quality of the fit are provided in the inlay. (d) Unbiased free energy [i.e., −kBT logP0(ψ1, ψ2)] in units of kJ/mol. 
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ligands. Infrequent metadynamics as well has been applied to 

study this system using exactly the same force-field and MD 

setup as we used here. However these and other previous 

attempts involved putting special effort and fine-tuning into 

the design of the reaction coordinate to bias during infrequent 

metadynamics. 

Our 11 order parameters {si} where i ranges from 1 to 11 

comprise 8 protein-ligand contacts and 3 protein-protein 

contacts, implemented through simple centre-of-mass to 

centreof-mass distances (Table I). Note that we can easily 

deal with an even higher number of order parameters than 11 

without a significant slow-down in the algorithm or the code. 

This is due to the use of simulated annealing protocol for 

optimization to identify the RC, which is known to scale well 

with dimensionality and due to the dimensionality reduction 

occurring before the construction of the transition matrix.43 

We now provide further details of the implementation as 

well as results so obtained. We first performed a 

metadynamics run using trial RC ψ1
0 = s3. It is important to 

note that the method at least in principle is quite tolerant with 

respect to the choice of a starting RC; as long as when used 

in the initial metadynamics run, this RC allows sampling the 

rare event or events of interest. This first run was performed 

using a relatively frequent and aggressive metadynamics 

protocol since the objective was to obtain an approximate 

estimate of the stationary probability density for use in 

SGOOP. Specifically we used a well-tempered metadynamics 

protocol,31,44 with initial hill height = 1.5, bias factor γ = 15, 

Gaussian width σ = 0.02, and bias added every 1 ps. The 

simulation was performed using GROMACS version 5.1 

patched with PLUMED version 2.3.45,46 A short unbiased MD 

run of 18 ns was performed in parallel which was used to 

construct the MaxCal dynamical observable of average 

number of transitions in any order parameter si in 200 fs. All 

simulations were performed in NPT using isotropic 

Parrinello-Rahman barostat with a time constant of 2 ps and 

modified Berendsen thermostat with a time constant of 0.1 ps. 

From these two runs, we obtained an estimate of the 1st RC 

component ψ1 (Table I). A plot of the free energy 

corresponding to this 1st RC component is available in the 

supplementary material. We expect that performing 

infrequent metadynamics, biasing only ψ1 would lead to 

overestimated dissociation times due to hysteresis because of 

missing hidden degrees of freedom. To identify the 2nd 

component, we perform metadynamics with similar 

parameters as for the 1st component but this time biasing ψ1 

instead of 
ψ

1
0. SGOOP is applied to the probability 

distribution P1(s1, s2, . . ., s11) = P0(s1, s2, . . ., s11|ψ1). In 

practice, this amounts to ignoring the bias deposited as a 

function of ψ1 and taking the metadynamics trajectory as is. 

The same trajectory can also be used for calculating MaxCal 

constraints. From this, we obtain the second component ψ2. 

See Table I and Fig. 3(b) for weights of different order 

parameters in ψ1 and ψ2. In principle, we could add further 

components to the RC. We however note that the objective in 

this exercise is to perform infrequent metadynamics biasing 

together the various components of the RC. Since infrequent 

metadynamics and metadynamics in general become 

extremely slow computationally if one was to use three or 

more different biasing variables, we stop at this point. 

The two components of the RC ψ1 and ψ2 are then used 

in the infrequent metadynamics protocol to construct a 

twodimensional bias as a function of these RCs. We perform 

16 independent unbinding simulations all starting from the 

xray bound pose with different randomized velocities at 298 

K corresponding to the Boltzmann distribution. These were 

performed using a well-tempered metadynamics protocol31,44 

TABLE I. List of order parameters used to construct RC and their weights in different trial and optimized RC components as learned through SGOOP. Note 

that no trial values are needed for the second RC-component. 

Order   Weight ci
0 in trial Weight ci in optimized Weight in optimized 

parameter Type Definition RC ψ10 =Pci0si ψ1 = Pcisi ψ2 = Pcisi 

s1 
Protein-ligand Y88CA–ligand 0 0.1019 0.5524 

s2 Protein-ligand A99CA–ligand 0 1 0.5068 

s3 Protein-ligand L133CA–ligand 1 0.4625 0.1838 

s4 Protein-ligand L118CA–ligand 0 0.3011 0.3698 

s5 Protein-ligand V111CA–ligand 0 0.9866 0.0767 

s6 Protein-ligand A130CA–ligand 0 0.5829 0.5033 

s7 Protein-ligand N140CA–ligand 0 0.0548 1 

s8 Protein-ligand A146CA–ligand 0 0.0376 0.6962 

s9 Protein-protein Helix 1 (A82-S90)–Helix 2 
(T115-123Q) 

0 0.1188 0.3192 

s10 Protein-protein Helix 2 (T115-123Q)–Helix 3 
(W126-A134) 

0 0.1113 0.0642 

s11 Protein-protein Helix 3 (W126-A134)–Helix 4 
(K147-T155) 

0 0.0527 0.0260 

 

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-011848
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-011848
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with initial hill height 1.5 kJ, bias factor γ = 15, Gaussian 

widths 0.1 for both ψ1 and ψ2, and bias added every 8 ps. Each 

run is stopped when s1 reaches 3 nm, at which point the ligand 

is fully solvated and has started freely diffusing. This is our 

unbound state. From these 16 biased trajectories, we find the 

corresponding unbiased dissociation time estimates through 

computing the respective acceleration factors, which are in 

the range of five to seven orders of magnitude. These are then 

subjected to the Kolmogorov-Smirnov test of Ref. 42, where 

we obtain a p-value of 0.32, which is well above the 

recommended and normally used threshold of 0.05, 

suggesting reliability of the kinetics and associated pathways. 

Various associated metrics demonstrating the quality of 

Poisson fit are provided in Fig. 3(c). Finally from this fit, we 

obtain a dissociation rate of 1.5 ± 0.7 s−1. This is within error 

bar agreement with previous infrequent metadynamics using 

path CVs with the same force-field.20 In total, our 16 full 

unbinding trajectories took around 700 ns for a process that 

actually takes a few hundred ms. This reflects the tremendous 

computational speed-up achieved with respect to unbiased 

MD, while still recovering unbiased rates well within order of 

magnitude agreement with results using other methods for an 

identical force-field parametrization.20,21 

In Fig. 3(a), we provide an overlaid depiction of a typical 

dissociation trajectory seen in our simulations, wherein the 

ligand moves through the crevice between helices 2 and 3 

(colored green and yellow, respectively). At least 3 distinct 

clusters can be seen corresponding to the bound state, a 

metastable unbound state where the ligand is stuck on the 

surface of the protein, and finally the unbound state when the 

ligand is freely diffusing in the solvent. In the inlay to Fig. 

3(a), we have highlighted the residue F114 which acts as a 

gatekeeper for the ligand to go from the bound state to the 

metastable state. The exit of the ligand is coupled to the 

breathing of these helices with respect to each other which 

opens up space for the ligand to exit. Figure 3(b) gives the 

weights of both the RC components, scaled so that every 

order parameter in Table I ranges between 0 and 1. Note that 

the unscaled order parameter weights have however been 

used for Fig. 3(d) since these are what we use while biasing 

in metadynamics. We would like to highlight that this same 

pathway has been reported to be the dominant dissociation 

pathway in other studies on this 

system.20,22 

It is interesting to examine the weights of the different 

order parameters in both RC components. The highest weight 

in ψ1 is for s2 which corresponds to ligand separation from the 

residue A99, which is in the interior of the binding pocket. A 

roughly equal in magnitude but opposite in sign weight is 

carried by s5, reflecting that the ligand moves closer to V111 

as it moves away from A99. In ψ2, the highest weight is for 

s7 which corresponds to ligand separation from the residue 

N140, which lies on one of the two helices surrounding the 

final ligand exit pathway, and is quite distant from the A99 

residue contributing to s2 which is important for ψ1. 

Furthermore, while the protein–protein separation order 

parameters have non-zero weights in either RC component, 

these are not the most dominant players. This reflects that the 

protein breathing motion, while a critical slow process, is not 

the main driver for dissociation. 

Finally, in Fig. 3(d), we provide the unbiased free energy 

[i.e., −kBT log P0(ψ1, ψ2)] for this system. This is again to be 

contrasted with the equivalent free energy profiles in Figs. 

1(d) and 2(f) for the potentials of Figs. 1(a) and 2(a), 

respectively. It is more similar to Fig. 2(f): the escape from 

the barrier between bound and metastable states, as well as 

out of the metastable state, is far better distinguished through 

their ψ2 values and has much more tightly spaced ψ1 values. 

As such, here as well adding the second component ψ2 helps 

in lifting the degeneracy of states demarcated by ψ1. At this 

point, we recommend this as a heuristic approach for 

determining the need for additional RC components. Namely, 

if the metastable states discerned by the additional component 

could have been already resolved with the existing 

coordinates, then this additional component is redundant. But 

if the metastable states so captured could not have been 

resolved by the previous components, then the additional 

component should be considered. In future work, we hope to 

design a more rigorous information theoretic criterion for this 

test. Of course, we could have continued to add more 

components here, but since the objective is to perform 

infrequent metadynamics, we stopped at two components. 

IV. DISCUSSION 

In this work, we have introduced a conditional 

probability factorization scheme for extending the 

dimensionality of the reaction coordinate (RC) in a given 

molecular system. Specifically, here we developed and 

demonstrated the algorithm in context of the RC optimization 

method named “spectral gap optimization of order parameters 

(SGOOP).”5,28 Our motivation is that often it might be 

desirable to prefer a multidimensional RC with different 

simple components, over a onedimensional complex RC. To 

find such a multi-dimensional RC, the central idea in this 

work is to progressively “wash out” known features to learn 

additional and possibly hidden features of the energy 

landscape. In a sense, this is inspired by the approach of 

metadynamics7 where one gradually builds a memory kernel 

as a function of a given RC to revisit new parts of the 

landscape. Here we do an analogous operation in a multi-

dimensional RC space, and by building memory of the 

features already learned, we explore additional, hidden 

lowdimensional features themselves which then can be used 

to extend the dimensionality of the RC. This higher 

dimensional RC then gives a more accurate picture of the 

slow dynamics in the system and could then also be used to 

deposit a memory kernel as function thereof. We also want to 

remark that for the purpose of forming reasonably accurate 

estimates of the RC {ψ1, ψ2, . . .}, we find that poorly 

converged estimates of the marginal probabilities P0, P1, . . ., 
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etc., are already useful, as long as they can be used to at least 

partially wash out the features already captured. This is line 

with what has been reported previously for SGOOP.5,6 

We demonstrated the utility of our approach through 

three illustrative examples, including the problem of 

calculating kinetics of benzene unbinding from the protein 

T4L99A lysozyme. In this last case, we started from a larger 

dictionary of 11 order parameters that are generic for ligand 

unbinding processes and demonstrated how to automatically 

learn a 2-dimensional RC, which we then used in the 

infrequent metadynamics protocol18,42 to obtain 16 

independent unbinding trajectories. This directly gave us 

insight into dominant dissociation pathway, as well as the 

dissociation kinetics. 

We believe our method will be a big step in increasing 

the utility of SGOOP in performing intuition-free sampling of 

complex systems. We also believe that the utility of our 

protocol is amplified by its applicability to not just SGOOP 

or metadynamics but also other generic methods for 

constructing the RC and sampling energy landscapes in 

complex systems. A Python based code implementing the 

method is available for public use at 

https://github.com/zwsmith200/SGOOP/. 

SUPPLEMENTARY MATERIAL 

See supplementary material for additional free energy 

profile. 
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