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Spectral gap optimization of order parameters (SGOOP) [P. Tiwary and B. J. Berne, Proc. Natl.
Acad. Sci. U. S. A. 113, 2839 (2016)] is a method for constructing the reaction coordinate (RC) in
molecular systems, especially when they are plagued with hard to sample rare events, given a larger
dictionary of order parameters or basis functions and limited static and dynamic information about
the system. In its original formulation, SGOOP is designed to construct a 1-dimensional RC. Here
we extend its scope by introducing a simple but powerful extension based on the notion of
conditional probability factorization where known features are effectively washed out to learn
additional and possibly hidden features of the energy landscape. We show how SGOOP can be used
to proceed in a sequential and bottom-up manner to (i) systematically probe the need for extending
the dimensionality of the RC and (ii) if such a need is identified, learn additional coordinates of the
RC in a computationally efficient manner. We formulate the method and demonstrate its utility
through three illustrative examples, including the challenging and important problem of calculating
the kinetics of benzene unbinding from the protein T4L99A lysozyme, where we obtain excellent
agreement in terms of dissociation pathway and kinetics with other sampling methods and
experiments. In this last case, starting from a larger dictionary of 11 order parameters that are generic
for ligand unbinding processes, we demonstrate how to automatically learn a 2-dimensional RC,
which we then use in the infrequent metadynamics protocol to obtain 16 independent unbinding
trajectories. We believe our method will be a big step in increasing the utility of SGOOP in
performing intuition-free sampling of complex systems. Finally, we believe that the utility of our
protocol is amplified by its applicability to not just SGOOP but also other generic methods for

constructing the RC. Published by AIP Publishing. https://doi.org/10.1063/1.5064856

I. INTRODUCTION

Finding reaction coordinates (RCs) and mechanistic
pathways in complex systems and processes is a problem of
great theoretical and practical interest for which over the
decades numerous theoretical and numerical schemes have
been proposed.'* The problem becomes especially
complicated in rare event systems, aptly summarized by
Chandler and co-workers in their review as the problem of
“throwing ropes over rough mountain passes, in the dark.”?
Spectral Gap Optimization of Order Parameters (SGOOP) is
one such method to construct a RC as a function of candidate
order parameters for a given molecular system.>® This RC
encapsulates the most relevant degrees of freedom in the
system whose fluctuations must be enhanced in order to
accurately sample the thermodynamics and kinetics of
metastable states during biased molecular dynamics (MD)
simulations such as metadynamics or umbrella sampling.’
SGOOP was designed keeping rare
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event systems in mind, where one progressively improves the
quality of the RC through rounds of biased simulations
performed using it. SGOOP has been demonstrated to be
useful for a range of systems such as small peptides and
protein—ligand systems and falls in the broad family of many
such related methods that attempt to learn RC for enhanced
sampling from sub-optimally biased simulations, such as the
application of tICA by different groups.®® The reason these
methods work is at least two fold: (a) irrespective of system
complexity, it has been rigorously demonstrated that there
exists an optimal one-dimensional RC, given by the normal
direction to the isocommittor surfaces,'*'> and (b) for the
purpose of enhancing the sampling, there is anecdotal
evidence that any RC suffices as long as it has sufficient
overlap with the true RC.”!3 The condition (b) can be
rephrased in terms of the time scale separation between slow
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and fast modes in the system. Namely, the time scales for any
process not captured by the RC must be much faster than the
slow processes that the RC does encapsulate. SGOOP screens
through various putative RCs attempting to maximize this
time scale separation, also called the spectral gap. In order to
do so, it uses a maximum path entropy (or Caliber) model that
combines any known static or dynamic information about the
system®!'*!> and builds transition rate matrices along different
putative RCs which then directly yield the spectral gap.
SGOOP  constructs a one-dimensional reaction
coordinate (RC) as a linear or non-linear combination of pre-
selected candidate order parameters, which can be thought of
as a set of basis functions using which we are trying to
describe our problem. These order parameters must be chosen
by the user from intuition about the specific system of interest
or the class that the system belongs to (such as proteins). This
requirement for user intuition allows the constructed RC to be
easily interpretable as it is a combination of physically
meaningful features. Naturally, by considering sufficiently
complex combinations of the order parameters (think neural
networks) or by making the order parameters themselves
sufficiently complex, it should be possible in principle to
construct a onedimensional RC for any given complex
process. However for many biomolecular systems of practical
relevance that consist of multiple metastable conformations,
possibly with numerous interconnecting pathways, it might be
more desirable to extend the dimensionality of the RC itself.
That is, instead of trying to make the 1-d RC more and more
sophisticated, it might be computationally cheaper and also
physically more interpretable to add a second or even more
components to the RC, while still keeping the final
dimensionality of the RC much lower than the space of order
parameters considered. These other RC components could
serve to lift the degeneracy in the first component and could
directly be interpreted in terms of the different pathways or
metastable states that they correspond to. A natural question
then is how should one go about finding these extra
components. The original SGOOP framework could directly
be applied to construct a multi-dimensional RC simply by
attempting to construct a transition rate matrix on a multi-
dimensional grid. This is not very practical since first, the
dimensionality of the rate matrices scale as N¥ x N, where d
is the RC-dimensionality and N is the number of bins along
each RC-component. Second, SGOOP involves calculating
the number of barriers discernible in a projection along a
given putative RC. This is trivial in 1-d but can become tricky
and prone to noise related instabilities in higher dimensions.
Here, inspired by the recent method Reweighted
Autoencoded Variational Bayes for Enhanced Sampling
(RAVE),'®!7 we develop a simple but powerful extension to
SGOOP that makes it possible to sequentially extend the
dimensionality of the RC in a straightforward manner. Our
approach also makes it possible to visually assess when
adding further dimensions to the picture is no longer needed.
Each additional component is constructed in such a way that
it captures features indiscernible in the previous components.

J. Chem. Phys. 149, 234105 (2018)
In this communication, we first develop the key ideas behind
our method, which is in fact more generally applicable than
SGOOP (see Ref. 16 for an illustrative application in the
context of deep learning based RC identification), followed
by its specific implementation through SGOOP. We then
demonstrate the utility of our method through different
examples of varying complexity, including with model
potentials and dissociation of benzene from T4L99A
lysozyme in allatom resolution and explicit TIP3P water. The
last system is a popular yet challenging test-case. Here we
start with a dictionary of 11 order parameters generic for
ligand unbinding processes such as protein-ligand and
protein-protein distances and use our automatically learned
two-dimensional RC in an infrequent metadynamics
framework”!#1? to calculate its dissociation rate constant and
dominant unbinding pathway, in excellent agreement with
previous studies and experiments.?’>* We thus believe our
method should be of considerable use to the enhanced
sampling and molecular simulation communities.

1. THEORYA. Multi-dimensional reaction
coordinates through conditional probability factorization

Many previous strategies have been introduced in the
past to solve this challenging problem of systematically
learning additional hidden variables. For example, inspired by
the Marcus theory of electron transfer, Yang and co-workers
introduced a method based on considering the generalized
force defined by the gradient of the free energy?® with respect
to the RC. Later, Noe and co-workers introduced a
framework” inspired by the variational principle in quantum
mechanics which constructs a family of RC components.26-?7
Here we introduce a new framework based on looking at
factorized conditional probabilities. In Subsection II B, we
elaborate the practical implementation of this framework in
the context of SGOOP, but it is valid much more generally.

Our starting point is a collection of d, given candidate

. P
order parameters s = (s1, 52, . . ., S4) and a trial RC Lplo = ;.

Here the subscript 1 in (;° indicates that it is the 1st
component of the RC, and the superscript 0 indicates the Oth
iteration, i.e., starting choice for the same. By following the
original SGOOP protocol>® or any other methods for
constructing a 1-d RC, we learn an optimized version of this
first component, with different weights {c;}, which we call {;
without any superscripts. Our intention now is to learn a
second (and if needed, more) component Y, of the RC that
can describe any relevant slow, hidden degrees of freedom, if
present, that were not captured by the first component ;. In
order to learn y,, we shift our attention from the unbiased or
Boltzmann probability distribution Py to an auxiliary
probability distribution Pi(s1, . . ., s¢) that is conditional upon
what we know about the 1st RC component. This distribution
thus enhances and sharpens the features in (s1, . . ., sq4) space
not captured by ;. It is defined by the conditional probability

Pl(S1, . ,Sd) EP()(S[, ey Sd|L|J1(S1, ey Sd))



Po(st, ..., Sa, Y1)

Po(1)
Po(s1, ...,
= : (1)
Po(1)

In reaching the last line, we have taken into account that given

the values of {s;} and a set of coefficients {c¢;}, Y1 = LIJl(P,»c,»s,-)

is known exactly. Hence the two joint probability
distributions in the numerators of the second and third lines
of Eq. (1) are equal within an irrelevant constant of
proportionality. Equation (1) essentially calculates the
probability distribution P; of the dictionary of order
parameters conditional on what we already know about the
first component of the RC. In other
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words, it amounts to sampling the {si, s2, . . .} space as per
Boltzmann distribution Py but inverting their weights as per
Po(U1). Given this knowledge, we can now performa 1-d RC
analysis on the probability distribution P;. If there are no
slow, hidden variables, then the probability distribution P;
should have no additional, orthogonal features on top of what
was encapsulated already by the RC ;. We demonstrate this
later in Sec. III through numerical examples. However, if
there are indeed additional slow variables that were not
captured by Y, they will now be expressed through the RC
), obtained by treating the probability distribution P;. This
reflects the most informative degree of freedom conditional
on knowledge of the degrees of freedom captured by Y and
is our second component of the RC. Similar to Eq. (1), the
probability distribution for the third component of the RC can
be obtained by considering the probability distribution Pa(s1,
..., 84) defined through

Py(si, ..., 80) = Pi(st, - -, SalPa(sy, - -+, S0))
Pi(st, ..., Sq)
=_ 2)
Pi(d2)
By then repeating this protocol on Pi-i(s1, . . ., S¢), Wwhere

i 2 1, we obtain a sequential set of conditional probability
distributions on which we can perform 1-d RC optimization,
for example, in the fashion of the original SGOOP method,>®

P()(S[, ceey Sd)
+58d) = 3
Po(Y1) ... Pi-1(i)

The number of components we choose to identify
through this procedure will eventually depend on the problem
and sampling method at hand—for example, if the intention
is to perform umbrella sampling or metadynamics with the
RC, going beyond 2 or 3 components will probably be futile.
However for other sampling methods, such as parallel bias
metadynamics or the variational approach of Parrinello and
Valsson,?>*° where in principle one can handle many more
biasing variables at the same time, further rounds of the
procedure developed here may be applied. A heuristic
benchmark for when an additional component W+ is
redundant given the components 1, 2, .. ., i is to examine the
correlations between {1+ and y, . . ., {;. As shown in Sec.
III, the need for addition of Y;+; can be best judged from
examining how correlated or orthogonal are the features in
Ui+ to the previous components. Let us say that one judges
that components {i + 1, . . .} do not add any extra information
about the slow processes to the representation and decides to
stop the procedure after round i. At this point, we can use Eq.
(3) to write the full high-dimensional unbiased probability
distribution as follows:

.5 8a) = Po(W)Pi(Y2) . . . Pii(W)P(TQ)
XPo(UD)P1(P2) . . . Pi1(y), 4)

P,‘(Sl, .

Po(s1, -

J. Chem. Phys. 149, 234105 (2018)

where P°(Q) is featureless noise in terms of some more hidden
variables { that we do not care about and thus treat as a
constant of proportionality. Thus we have factorized the
highdimensional Boltzmann probability distribution Po(s1, s2,
., 8q¢) as a product of one-dimensional conditional
probabilities. This factorization establishes that (i) these
variables i, Yo, . . . and their conditional probability
distributions can be learned in a sequential and independent
manner as proposed here and that (ii) these variables together
are sufficient to describe the slow modes in the system. We
would like to emphasize that Eq. (4) does not imply
independence of these variables, i.¢., the following is not true:
Po(s1, . . ., s4) = Po(W1)Po(2). . .Po(Y;). These variables are
not independent components and must be treated together.

B. Multi-dimensional reaction conditional probability
factorization through SGOOP

We now describe how the formalism of Sec. II A can be
implemented in practice using SGOOP.>S Following the
notations of Sec. II A, the inputs to SGOOP are a biased

C quO:P

unbiased MD run that gives a time-series of the order
parameters s = (s1, 52, . . ., Sq). Alternatively, the short unbiased
MD run could be replaced with estimates of the position-
dependent diffusivity tensor.?® The biased trajectory is used to
obtain estimates of the stationary probability density along
various putative RCs, distinguished through values of {c},
through a post-processing reweighting procedure,’! while the
unbiased trajectory is used to obtain dynamical constraints
needed by the Maximum Caliber framework on which
SGOOP is based.®!*!5 In SGOOP,>? one spatially discretizes
the putative RC { by defining a grid {n} along it, where n
takes integral values. Let k., be the time-independent
unbiased rate of transition from grid point m to n per unit time
At. Furthermore, let p°, denote the stationary probability of
being at any grid point n obtained by reweighting the free
energy along the respective putative RC,%®and hNigrepresent
a dynamic observable which we take here as the average
number of first-nearest neighbor transitions in the putative
RC grid observed in time At. SGOOP>? uses the following
equation to calculate the transition rate for moving from grid
point m to grid point n along any putative RC ;:

simulation performed using a trial R :cs;and a short

TR po0 (5)

kmn =P tho

POnpOm pm
Equivalently, the above equation can be written in a
related form by mapping a Smoluchowski equation along
termby-term into a master equation along the same grid and
using diffusion coefficient along {; instead of MaxCal
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constraints (see Ref. 28 for details of the mapping). With
either form, we can now calculate the eigenvalues of the full
transition matrix

—Pm,nkmn. These

eigenvalues directly give us the spectral gap for that RC, and
by optimizing for the maximal spectral gap by varying the
trial coefficients {c;}, we learn the best RC, given the static
and dynamic information at hand. This optimization can be
carried out through a simulated annealing protocol and gives
us an optimized first component of the RC, denoted ;.

So far in this sub-section, we have simply summarized
SGOOP. This is where we start to extend the protocol. At this
point, we have an estimate of {; using which we perform a
second metadynamics run biasing ;. Obtaining the
probability distribution Pi(s1, . . . , s4) = 2l ey=12 of Eq. (1)
from this metadynamics run is embarrassingly trivial: it is the
unreweighted, biased probability distribution sampled here.
Similar to Eq. (5), we now write down a rate equation along
any putative RC {,,

K, where K, = kun for m , n and K, =

EREEP hgNil “BEs pln

fomn =1, mlnplm pm

Here p', denotes the probability of being at any grid point
along a trial 2nd component of the RC, obtained by
marginalizing out all other degrees of freedom from Pi(s1, . .
., s4). This is a simple binning operation and does not even
need the reweighting procedure®' for the 1st component,
which was needed there to reweight out the effect of biasing

along the trial RC 1st component quO. hNi represents the

average number of first-nearest neighbor transitions in the
putative RC grid observed in a time-interval Az but this time
as observed in the simulation performed by biasing ;.

If Y was truly the only slow degree of freedom, then a
search for an RC on the Pi(sy, . . ., 54) probability distribution
would return no solutions; that is, the optimized RC would be
featureless, or even if any features were discovered, they
would not be new and would be already captured by Y (see
Sec. 111 for examples). However, if indeed a non-trivial RC is
found through optimizing the spectral gaps from Eq. (6), we
call this as the 2nd component Y, of our RC. We now perform
a metadynamics run biasing both 1 and Y and in principle
can repeat this procedure to add as many components as we
wish. We re-emphasize that in any successive round,
excluding the starting one for ), there is no need to perform
any reweighting and that the respective biased run itself
suffices fully for performing Maximum Caliber based
estimates.

J. Chem. Phys. 149, 234105 (2018)

1Il. RESULTS

Here we first demonstrate our method on two illustrative
simple model potentials through a combination of which it
can be clearly seen that why a second component to the RC
might or might not be needed and how SGOOP can be used
to identify the various components. We then apply it to the
very challenging test case of benzene dissociation from
T4L99A lysozyme in all-atom resolution including explicit
TIP3P water, where we are able to accurately simulate the full
dissociation process which normally takes hundreds of
milliseconds and calculate the dissociation rate constant ko,
a quantity of immense practical relevance in basic
biochemistry and drug design.'®3?73¢ For the two model
systems, we considered Eq. (5) in its diffusion constant form
as detailed in Ref. 28 and assumed position-independent
isotropic diffusivity tensor with no off-diagonal terms. For
benzene-T4L99A, we considered Eq. (5) directly with
MaxCal constraints, as detailed in Sec. I1I B.
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A. Model systems

Both model potentials are represented through sum of
three Gaussians, and an overall restraining potential, and are
in kgT units, where kzis Boltzmann’s constant and 7 is the
temperature of the system. We use a numerical approach for
these two model potentials using analytical/numerical
estimates of different reweighted free energies and
probability
distributions. We did perform MD as well on these potentials
(hence the need for restraining potentials), using the full
MaxCal version of Eq. (5), and the results were
indistinguishable from those reported here.

1. When a 1-component RC is sufficient

The first model potential we considered (Fig. 1) is given
by

U(x, y) = =12e-4.5(x+.752-3(+.5)2 = 16€-2x2-2(y-1)2 -

12e-4.5(x-.752-30+.5)*+ .05(x6 + y6).  (7)

Here we first identified the first component of the RC, defined
as Pi(x, ), as a linear combination of x and y demarcated
through the rotation 8 measured counter-clockwise from the
x-axis. Performing SGOOP here yields the spectral gap versus
0 profile shown in Fig. 1(b) with two clear maxima at 6 = 60°
and 8 = 120°. The two RC solutions are equivalent due to the
symmetry of the problem and lead to an identical free energy
profile along the RC given in Fig. 1(c), with three distinct
wells. Finally in Fig. 1(d), we have provided the unbiased free
energy [i.e., —kgT log Po(P1, Y2)], where Y, was calculated to

2.0 16

15 14

1.0 12

0.5 10
> 0.0 8
0.5 6
-1.0 4
-1.5 2

0

-2.0
-2.0-1.5-1.0-0.5 00 05 1.0 1.5 2.0
X

(a)

bt = ()
o w o

Energy in kT

w

24 -178 117 055 005 066 128 189 251

W,

(c)
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be 6 = 20° by performing SGOOP on Po(x, y|d:). We will
revisit Fig. 1(d) in Sec. IIT A 2.

2. When a 1-component RC is not sufficient

The second model potential is given by
Ulx, y) = =12e-4.5(c+.557-3(+57 = 16e-2:2-2(y-1)?

- 12e-4.5(x-.55)>-3(+.5)2+ .05(x6 + y6). ®)
The potential shown in Fig. 2(a) is a modification of the
previous potential with the two bottom wells moved closer
together as can be seen from Eq. (8). This simple change will
cause the overlap between the two wells to be
indistinguishable to a single-component linear RC. The
spectral gap was optimized as shown in Fig. 2(b), yielding RC
Y1 at ® = 90° with the corresponding unbiased free energy
shown in Fig. 2(c). Y was unable to capture all three energy
wells showing that there are hidden degrees of freedom. The
conditional probability distribution Pi(x, y) = Po(x, y| b1 (x,
y)) shown in Fig. 2(d) through its associated free energy was
calculated and the spectral gap for the 2nd RC component
[Fig. 2(e)] was optimized on this probability distribution. The
second component of the RC shown in Fig. 2(d) and given by
0 = 10’ captures a new degree of freedom previously invisible
to the first component. Combined these two components can
account for both transitions in the x and y directions despite
the x-transitions being hidden to ;.

0.5
Q. 0.4
¢
=~ 03
©
e
5 0.2
2
o 0.11
0.0 . . ‘
0 50 100 150
0 (degrees)
(b)
2.5 16
14
1.25 12
10
5 00 8
6
-1.25 4
2
2.5 0
27 <135 0.0 135 2:7
W
(d)

FIG. 1. (a) Potential energy contours for Eq. (7). The gray line shows the optimal RC 1st component ), demarcated through the rotation 6 = 120° measured
counter-clockwise from the x-axis. (b) Spectral gap as a function of 6 for this potential. (c) Free energy along ), for this potential. (d) Unbiased free energy
[i.e., =ksT logPo(Y1, P2)]. All energies are in units of k57, while the spectral gap is in arbitrary units since only its relative values concern us.
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In Fig. 2(f), we provide the unbiased free energy [i.e.,
-kgT log Po(P1, Y2)] for the potential of Fig. 2(a). This is to
be contrasted with the equivalent free energy profile in Fig.
1(d) for the potential of Fig. 1(a). It can be seen from Fig. 2(f)
that the stable states demarcated by U, lie orthogonal to the
U axis—i.e., they have the same {; value. However, in Fig.
1(d), this is not the case. The stable states demarcated by
can already be distinguished through their ; values directly.
As such, while adding the second component Y, helps in the
potential of Fig. 2(a), it does not add any extra information
for the potential of Fig. 1(a). This simple heuristic should
serve useful in deciding when to add extra components to the
RC, as we demonstrate for the next, significantly harder
example.

B. T4 lysozyme dissociation rate and pathway through
infrequent metadynamics

The protocol for extending a RC to multiple components
is generally applicable and is expected to be useful for more
complex systems for a range of sampling methods. Here we
illustrate this through its applicability to infrequent
metadynamics, a widely used scheme for recovering unbiased
kinetics rates from biased metadynamics simulations.® 82137~
4 The central idea in infrequent metadynamics is to perform
periodic but infrequent biasing of a low-dimensional RC in
order to increase the escape probability from metastable states
where the system would ordinarily be trapped for extended
periods of time. Provided that the chosen RC displays time
scale separation and can demarcate all relevant stable states
of interest, and if the time interval between biasing events is
infrequent compared to the time spent in the transition state
(TS) regions, then one increases the likelihood of not adding
bias in the TS regions and thereby keeping unbiased the
dynamics during barrier crossing itself. This preserves the

J. Chem. Phys. 149, 234105 (2018)

sequence of transitions between stable states that the unbiased
trajectory would have taken. Finally, the acceleration of
transition rates through biasing, which directly yields the true
unbiased rates, can be calculated through a simple
acceleration factor detailed in Refs. 7 and 38. Whether the
conditions for the applicability of infrequent metadynamics
were met or not can be verified a posteriori by checking if the
cumulative distribution function for the transition times is
Poisson through a Kolmogorov-Smirnoff test developed in
Ref. 42. Here one calculates a p-value for the quality of
Poisson fit, and traditionally achieving a value greater than
0.05 is considered safe for reliability.

2.0 16 0s 17.5
. 4
1.5 1 a 15.0
1.0 12 © 0.4 [
U] > 125
0.5 10 = =
m 03 "= 100
> 0.0 8 5 2
¥]
0.5 6 o 02 5
2 C 50
1.0 4 n 01 S
1.5 2 25
0.0~ .
2.0 0 0 50 100 150 o
2.0-15-1.00.5 0.0 0.5 1.0 15 2.0 6 (degrees) 249 191 133 075 017 04 098 156 214
X W,
(b) (c)
17.5 0.20 . 16
150 o 14
125 ©® o1s 12
o= 10
100 T
© 8
75 © 010 6
8 a
LY
2
25 0.05 ) )
2.0 0.0 0 50 100 150 2.0 1.0 &0 10 2.0
2.0 -1.5 -1.0 0.5 0)? 0.5 1.0 1.5 2.0 6 (degrees) N
() (e) (H

FIG. 2. (a) Potential energy contours for Eq. (8). The gray line shows the optimal RC 1st component ,, demarcated through the rotation 8 = 90° measured
counter-clockwise from the x-axis. (b) Spectral gap as a function of 8 for various ), choices. (c) Free energy along ), for this potential. This reaction coordinate
only captures the movement between the top well and the bottom wells and misses the sub-structure of the bottom two wells. (d) Free energy —kzT logP(x, )
after conditioning on the estimate of Po();) as per Eq. (1). In addition to the first component of the RC, the second component is also illustrated given by 8 =
10°. (e) Spectral gap as a function of 8 for P;(x, y). (f) Unbiased free energy [i.e., —kzT logPo(W1, U,)]. All energies are in units of k7, while the spectral gap is

in arbitrary units since only its relative values concern us.
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Using SGOOP we demonstrate how the process of RC
selection for infrequent metadynamics can be made almost
automatic, starting from a larger dictionary of 11 order
parameters that are generic for ligand unbinding processes.
The specific problem considered here is benzene dissociation
from the protein T4L99A lysozyme [Fig. 3(a)]. This is a
wellstudied but extremely hard to simulate process due to the
debilitating long time scales of milliseconds to seconds and
thus has been studied through different specialized sampling
methods. Given the rare event nature of this problem and
complex, coupled movements of protein, ligand, and even
solvent, learning a RC on-the-fly is not a trivial task. We
study the process in all-atom resolution using CHARMM?22*
force field for protein, TIP3P water model, and CGenFF force
field for the
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FIG. 3. Various details for the benzene-T4L99A system studied here. (a) Secondary structure of the protein, with helices 1, 2, 3, and 4 from Table I shown in
red, green, yellow, and purple, respectively. Superimposed is the trajectory of the ligand as it unbinds along the dominant pathway. The trajectory here
corresponds to 42 ns of MD simulation time, with the ligand shown every 10 ps and colored from red to white to blue as a function of simulation time. 3 clear
clusters of states can be seen—bound, metastable, and unbound. In the top inlay, we have highlighted the residue F114 which acts as a gatekeeper before the
ligand reaches the metastable state. In the bottom inlay, we have displayed the residues along with helices that make up the list of order parameters considered
for the RC. (b) A visual depiction of the order parameter weights as tabulated in Table L. (¢) Cumulative distribution function (CDF) for the reweighted'®
unbiased dissociation times (black dashed line) obtained from independent infrequent metadynamics simulations, along with a Poisson fit (solid red line).
Various statistics indicating the reliable quality of the fit are provided in the inlay. (d) Unbiased free energy [i.e., —kzT logPo(, P2)] in units of kJ/mol.
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ligands. Infrequent metadynamics as well has been applied to
study this system using exactly the same force-field and MD
setup as we used here. However these and other previous
attempts involved putting special effort and fine-tuning into
the design of the reaction coordinate to bias during infrequent
metadynamics.

Our 11 order parameters {s;} where i ranges from 1 to 11
comprise 8 protein-ligand contacts and 3 protein-protein
contacts, implemented through simple centre-of-mass to
centreof-mass distances (Table I). Note that we can easily
deal with an even higher number of order parameters than 11
without a significant slow-down in the algorithm or the code.
This is due to the use of simulated annealing protocol for
optimization to identify the RC, which is known to scale well
with dimensionality and due to the dimensionality reduction
occurring before the construction of the transition matrix.*3

We now provide further details of the implementation as
well as results so obtained. We first performed a
metadynamics run using trial RC ,° = s3. It is important to
note that the method at least in principle is quite tolerant with
respect to the choice of a starting RC; as long as when used
in the initial metadynamics run, this RC allows sampling the
rare event or events of interest. This first run was performed

J. Chem. Phys. 149, 234105 (2018)

simulations were performed in NPT wusing isotropic
Parrinello-Rahman barostat with a time constant of 2 ps and
modified Berendsen thermostat with a time constant of 0.1 ps.
From these two runs, we obtained an estimate of the 1st RC
component ; (Table I). A plot of the free energy
corresponding to this 1st RC component is available in the
supplementary material. We expect that performing
infrequent metadynamics, biasing only {; would lead to
overestimated dissociation times due to hysteresis because of
missing hidden degrees of freedom. To identify the 2nd
component, we perform metadynamics with similar
parameters as for the 1st component but this time biasing U,

instead of ¢1°. SGOOP is applied to the probability

distribution Pi(s1, s2, - . ., s11) = Po(s1, s2, . . ., su|Pi1). In
practice, this amounts to ignoring the bias deposited as a
function of Y and taking the metadynamics trajectory as is.
The same trajectory can also be used for calculating MaxCal
constraints. From this, we obtain the second component .
See Table I and Fig. 3(b) for weights of different order
parameters in Y and . In principle, we could add further
components to the RC. We however note that the objective in
this exercise is to perform infrequent metadynamics biasing

TABLE L. List of order parameters used to construct RC and their weights in different trial and optimized RC components as learned through SGOOP. Note

that no trial values are needed for the second RC-component.

Order Weight ¢ in trial Weight ¢;in optimized Weight in optimized
parameter Type Definition RC Y10 =Pciosi 1= Pcisi Y2 = Pcisi
. Protein-ligand Y88CA-ligand 0 0.1019 0.5524
52 Protein-ligand A99CA-ligand 0 1 0.5068
53 Protein-ligand L133CA-ligand 1 0.4625 0.1838
54 Protein-ligand L118CA-ligand 0 0.3011 0.3698
s5 Protein-ligand V111CA-ligand 0 0.9866 0.0767
56 Protein-ligand A130CA-ligand 0 0.5829 0.5033
§7 Protein-ligand N140CA-ligand 0 0.0548 1
58 Protein-ligand Al146CA-ligand 0 0.0376 0.6962
59 Protein-protein Helix 1 (A82-S90)-Helix 2 0 0.1188 0.3192
(T115-123Q)
S10 Protein-protein Helix 2 (T115-123Q)—Helix 3 0 0.1113 0.0642
(W126-A134)
st Protein-protein Helix 3 (W126-A134)-Helix 4 0 0.0527 0.0260

(K147-T155)

using a relatively frequent and aggressive metadynamics
protocol since the objective was to obtain an approximate
estimate of the stationary probability density for use in
SGOOP. Specifically we used a well-tempered metadynamics
protocol,*** with initial hill height = 1.5, bias factor y = 15,
Gaussian width o = 0.02, and bias added every 1 ps. The
simulation was performed using GROMACS version 5.1
patched with PLUMED version 2.3.434¢ A short unbiased MD
run of 18 ns was performed in parallel which was used to
construct the MaxCal dynamical observable of average
number of transitions in any order parameter s;in 200 fs. All

together the various components of the RC. Since infrequent
metadynamics and metadynamics in general become
extremely slow computationally if one was to use three or
more different biasing variables, we stop at this point.

The two components of the RC ; and Y, are then used
in the infrequent metadynamics protocol to construct a
twodimensional bias as a function of these RCs. We perform
16 independent unbinding simulations all starting from the
xray bound pose with different randomized velocities at 298
K corresponding to the Boltzmann distribution. These were
performed using a well-tempered metadynamics protocol®!#


ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-011848
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-011848
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with initial hill height 1.5 kJ, bias factor y = 15, Gaussian
widths 0.1 for both {; and U, and bias added every 8 ps. Each
run is stopped when s; reaches 3 nm, at which point the ligand
is fully solvated and has started freely diffusing. This is our
unbound state. From these 16 biased trajectories, we find the
corresponding unbiased dissociation time estimates through
computing the respective acceleration factors, which are in
the range of five to seven orders of magnitude. These are then
subjected to the Kolmogorov-Smirnov test of Ref. 42, where
we obtain a p-value of 0.32, which is well above the
recommended and normally wused threshold of 0.05,
suggesting reliability of the kinetics and associated pathways.
Various associated metrics demonstrating the quality of
Poisson fit are provided in Fig. 3(c). Finally from this fit, we
obtain a dissociation rate of 1.5 + 0.7 s”!. This is within error
bar agreement with previous infrequent metadynamics using
path CVs with the same force-field.? In total, our 16 full
unbinding trajectories took around 700 ns for a process that
actually takes a few hundred ms. This reflects the tremendous
computational speed-up achieved with respect to unbiased
MD, while still recovering unbiased rates well within order of
magnitude agreement with results using other methods for an
identical force-field parametrization.?%?!

In Fig. 3(a), we provide an overlaid depiction of a typical
dissociation trajectory seen in our simulations, wherein the
ligand moves through the crevice between helices 2 and 3
(colored green and yellow, respectively). At least 3 distinct
clusters can be seen corresponding to the bound state, a
metastable unbound state where the ligand is stuck on the
surface of the protein, and finally the unbound state when the
ligand is freely diffusing in the solvent. In the inlay to Fig.
3(a), we have highlighted the residue F114 which acts as a
gatekeeper for the ligand to go from the bound state to the
metastable state. The exit of the ligand is coupled to the
breathing of these helices with respect to each other which
opens up space for the ligand to exit. Figure 3(b) gives the
weights of both the RC components, scaled so that every
order parameter in Table I ranges between 0 and 1. Note that
the unscaled order parameter weights have however been
used for Fig. 3(d) since these are what we use while biasing
in metadynamics. We would like to highlight that this same
pathway has been reported to be the dominant dissociation
pathway in other studies on this
system.20,22

It is interesting to examine the weights of the different
order parameters in both RC components. The highest weight
in Y is for s, which corresponds to ligand separation from the
residue A99, which is in the interior of the binding pocket. A
roughly equal in magnitude but opposite in sign weight is
carried by ss, reflecting that the ligand moves closer to V111
as it moves away from A99. In Y, the highest weight is for
s7 which corresponds to ligand separation from the residue
N140, which lies on one of the two helices surrounding the
final ligand exit pathway, and is quite distant from the A99
residue contributing to s which is important for ;.

J. Chem. Phys. 149, 234105 (2018)

Furthermore, while the protein—protein separation order
parameters have non-zero weights in either RC component,
these are not the most dominant players. This reflects that the
protein breathing motion, while a critical slow process, is not
the main driver for dissociation.

Finally, in Fig. 3(d), we provide the unbiased free energy
[i.e., k5T log Po(Y1, P2)] for this system. This is again to be
contrasted with the equivalent free energy profiles in Figs.
1(d) and 2(f) for the potentials of Figs. 1(a) and 2(a),
respectively. It is more similar to Fig. 2(f): the escape from
the barrier between bound and metastable states, as well as
out of the metastable state, is far better distinguished through
their g, values and has much more tightly spaced U values.
As such, here as well adding the second component ), helps
in lifting the degeneracy of states demarcated by ;. At this
point, we recommend this as a heuristic approach for
determining the need for additional RC components. Namely,
if the metastable states discerned by the additional component
could have been already resolved with the existing
coordinates, then this additional component is redundant. But
if the metastable states so captured could not have been
resolved by the previous components, then the additional
component should be considered. In future work, we hope to
design a more rigorous information theoretic criterion for this
test. Of course, we could have continued to add more
components here, but since the objective is to perform
infrequent metadynamics, we stopped at two components.

IV. DISCUSSION

In this work, we have introduced a conditional
probability factorization scheme for extending the
dimensionality of the reaction coordinate (RC) in a given
molecular system. Specifically, here we developed and
demonstrated the algorithm in context of the RC optimization
method named “spectral gap optimization of order parameters
(SGOOP).”>? Our motivation is that often it might be
desirable to prefer a multidimensional RC with different
simple components, over a onedimensional complex RC. To
find such a multi-dimensional RC, the central idea in this
work is to progressively “wash out” known features to learn
additional and possibly hidden features of the energy
landscape. In a sense, this is inspired by the approach of
metadynamics’ where one gradually builds a memory kernel
as a function of a given RC to revisit new parts of the
landscape. Here we do an analogous operation in a multi-
dimensional RC space, and by building memory of the
features already learned, we explore additional, hidden
lowdimensional features themselves which then can be used
to extend the dimensionality of the RC. This higher
dimensional RC then gives a more accurate picture of the
slow dynamics in the system and could then also be used to
deposit a memory kernel as function thereof. We also want to
remark that for the purpose of forming reasonably accurate
estimates of the RC {U1, Yo, . . .}, we find that poorly
converged estimates of the marginal probabilities Py, Pi, . . .,
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etc., are already useful, as long as they can be used to at least
partially wash out the features already captured. This is line
with what has been reported previously for SGOOP.>®

We demonstrated the utility of our approach through
three illustrative examples, including the problem of
calculating kinetics of benzene unbinding from the protein
T4L99A lysozyme. In this last case, we started from a larger
dictionary of 11 order parameters that are generic for ligand
unbinding processes and demonstrated how to automatically
learn a 2-dimensional RC, which we then used in the
infrequent metadynamics protocol'®*? to obtain 16
independent unbinding trajectories. This directly gave us
insight into dominant dissociation pathway, as well as the
dissociation kinetics.

We believe our method will be a big step in increasing
the utility of SGOOP in performing intuition-free sampling of
complex systems. We also believe that the utility of our
protocol is amplified by its applicability to not just SGOOP
or metadynamics but also other generic methods for
constructing the RC and sampling energy landscapes in
complex systems. A Python based code implementing the
method is available for public use at
https://github.com/zwsmith200/SGOOP/.

SUPPLEMENTARY MATERIAL

See supplementary material for additional free energy
profile.
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