Can Automated Program Repair Refine Fault Localization?
A Unified Debugging Approach

Yiling Lou*
HCST, CS, Peking University
Beijing, China
yiling lou@pku.edu.cn

Haotian Zhang
Ant Financial Services Group
Hangzhou, China
jingyun.zht@antfin.com

ABSTRACT

A large body of research efforts have been dedicated to automated
software debugging, including both automated fault localization
and program repair. However, existing fault localization techniques
have limited effectiveness on real-world software systems while
even the most advanced program repair techniques can only fix
a small ratio of real-world bugs. Although fault localization and
program repair are inherently connected, their only existing con-
nection in the literature is that program repair techniques usually
use off-the-shelf fault localization techniques (e.g., Ochiai) to deter-
mine the potential candidate statements/elements for patching. In
this work, we propose the unified debugging approach to unify the
two areas in the other direction for the first time, i.e., can program
repair in turn help with fault localization? In this way, we not only
open a new dimension for more powerful fault localization, but also
extend the application scope of program repair to all possible bugs
(not only the bugs that can be directly automatically fixed). We
have designed ProFL to leverage patch-execution results (from pro-
gram repair) as the feedback information for fault localization. The
experimental results on the widely used Defects4] benchmark show
that the basic ProFL can already at least localize 37.61% more bugs
within Top-1 than state-of-the-art spectrum and mutation based
fault localization. Furthermore, ProFL can boost state-of-the-art
fault localization via both unsupervised and supervised learning.

“This work was mainly done when Yiling Lou was a visiting student in UT Dallas.
HCST is short for Key Lab of High Confidence Software Technologies, MoE, China.
Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8008-9/20/07...$15.00
https://doi.org/10.1145/3395363.3397351

Ali Ghanbari
Xia Li
Lingming Zhang’
University of Texas at Dallas
Texas, USA
{Ali.Ghanbari,Xia.Li3,lingming.zhang}@utdallas.edu

Dan Hao™

Lu Zhang
HCST, CS, Peking University
Beijing, China
{haodan,zhanglucs}@pku.edu.cn

Meanwhile, we have demonstrated ProFL’s effectiveness under dif-
ferent settings and through a case study within Alipay, a popular
online payment system with over 1 billion global users.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging.

KEYWORDS
Automated Program Repair, Fault Localization, Unified Debugging

ACM Reference Format:

Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan
Hao, and Lu Zhang. 2020. Can Automated Program Repair Refine Fault
Localization? A Unified Debugging Approach . In Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA °20), July 18-22, 2020, Los Angeles/Virtual, CA, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3395363.3397351

1 INTRODUCTION

Software bugs (also called software faults, errors, defects, flaws,
or failures [74]) are prevalent in modern software systems, and
have been widely recognized as notoriously costly and disastrous.
For example, in 2017, Tricentis.cominvestigated software failures
impacting 3.7 Billion users and $1.7 Trillion assets, and reported that
this is just scratching the surface — there can be far more software
bugs in the world than we will likely ever know about [70]. In practice,
software debugging is widely adopted for removing software bugs.
However, manual debugging can be extremely tedious, challenging,
and time-consuming due to the increasing complexity of modern
software systems [68]. Therefore, a large body of research efforts
have been dedicated to automated debugging [8, 34, 52, 59, 68].
There are two key questions in software debugging: (1) how to
automatically localize software bugs to facilitate manual repair? (2)
how to automatically repair software bugs without human interven-
tion? To address them, researchers have proposed two categories
of techniques, fault localization [5, 14, 30, 42, 51, 80, 81] and pro-
gram repair [32, 36, 38, 44, 45, 60, 61, 72]. For example, pioneering



ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

spectrum-based fault localization (SBFL) techniques [5, 14, 30] com-
pute the code elements covered by more failed tests or less passed
tests as more suspicious, and pioneering mutation-based fault lo-
calization (MBFL) techniques [51, 55, 81] inject code changes (e.g.,
changing > into >=) based on mutation testing [17, 26] to each code
element to check its impact on test outcomes; meanwhile, pioneer-
ing search-based program repair techniques (e.g., GenProg [38])
tentatively change program elements based on certain rules (e.g.,
deleting/changing/adding program elements) and use the original
test suite as the oracle to validate the generated patches. Please
refer to the recent surveys on automated software debugging for
more details [50, 76]. To date, unfortunately, although debugging
has been extensively studied and even has drawn attention from
industry (e.g., FaceBook [47, 66] and Fujitsu [65]), we still lack prac-
tical automated debugging techniques: (1) existing fault localization
techniques have been shown to have limited effectiveness in prac-
tice [56, 77]; (2) existing program repair techniques can only fix a
small ratio of real bugs [20, 29, 73] or specific types of bugs [47].

In this work, we aim to revisit the connection between program
repair and fault localization for more powerful debugging. We
observe that the current existing connection between fault localiza-
tion and program repair is that program repair techniques usually
use off-the-shelf fault localization techniques to identify potential
buggy locations for patching, e.g., the Ochiai [5] SBFL technique is
leveraged in many recent program repair techniques [20, 29, 73]. In
this work, we propose a new unified debugging approach to unify
program repair and fault localization in the reversed way, and ex-
plore the following question, can program repair in turn help with
fault localization? Our basic insight is that the patch execution in-
formation during program repair can provide useful feedbacks and
guidelines for powerful fault localization. For example, if a patch
passes some originally failing test(s), the patched location is very
likely to be closely related to the real buggy location (e.g., sharing
the same method or even same line), since otherwise the patch can-
not mute the bug impacts to pass the failing test(s). Based on this
insight, we designed ProFL (Program Repair for Fault Localization),
a simplistic feedback-driven fault localization approach that lever-
ages patch-execution information from state-of-the-art PraPR [20]
repair tool for rearranging fault localization results computed by
off-the-shelf fault localization techniques. Note that even state-of-
the-art program repair techniques can only fix a small ratio of real
bugs (i.e., <20% for Defects4] [20, 29, 73]) fully automatically and
were simply aborted for the vast majority of unfixed bugs, while
our approach extends the application scope of program repair to
all possible bugs — program repair techniques can also provide useful
fault localization information to help with manual repair even for the
bugs that are hard to fix automatically.

We have evaluated our ProFL on the Defects4] (V1.2.0) bench-
mark, which includes 395 real-world bugs from six open-source
Java projects and has been widely used for evaluating both fault
localization and program repair techniques [20, 29, 40, 67, 73]. Our
experimental results show that ProFL can localize 161 bugs within
Top-1, while state-of-the-art spectrum and mutation based fault
localization techniques can at most localize 117 bugs within Top-1.
We further investigate the impacts of various experimental config-
urations: (1) we investigate the finer-grained patch categorizations

Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and Lu Zhang

and observe that they do not have clear impact on ProFL; (2) we in-
vestigate the impact of different off-the-shelf SBFL formulae used in
ProFL, and observe that ProFL consistently outperforms traditional
SBFL regardless of the used formulae; (3) we replace the repair feed-
back information with traditional mutation feedback information in
ProFL (since they both record the impacts of certain changes to test
outcomes), and observe that ProFL still localizes 141 bugs within
Top-1, significantly outperforming state-of-the-art SBFL and MBFL;
(4) we feed ProFL with only partial patch-execution information
(since the test execution will be aborted for a patch as soon as it gets
falsified by some test for the sake of efficiency in practical program
repair scenario), and observe that, surprisingly, ProFL using such
partial information can reduce the execution overhead by 26.17X
with no clear effectiveness drop; (5) we also apply ProFL on a newer
version of Defects4], Defects4] (V1.4.0) [22], and observe that ProFL
performs consistently. In addition, we further observe that ProFL
can even significantly boost state-of-the-art fault localization via
both unsupervised [82, 83] and supervised [39] learning, localizing
185 and 216.80 bugs within Top-1, the best fault localization results
via unsupervised/supervised learning to our knowledge.
This paper makes the following contributions:

e This paper opens a new unified debugging dimension for
improving fault localization via off-the-shelf state-of-the-art
program repair techniques, and also extends the application
scope of program repair techniques to all possible bugs (not
only the bugs that can be directly automatically fixed).

e The proposed approach, ProFL, has been implemented as
a fully automated Maven plugin' for automated feedback-
driven fault localization based on the patch executions of
PraPR, a state-of-the-art program repair technique.

e We have performed an extensive study of the proposed
approach on the widely used Defects4] benchmarks, and
demonstrated the effectiveness, efficiency, robustness, and
general applicability of the proposed approach.

e ProFL plugin has been deployed in an international IT com-
pany with over 1 billion global users. We also conducted a
real-world industry case study within the company.

2 BACKGROUND AND RELATED WORK

Fault Localization [5, 9, 14, 23-25, 28, 30, 42, 51, 57, 62-64, 80, 81]
aims to precisely diagnose potential buggy locations to facilitate
manual bug fixing. The most widely studied spectrum-based fault
localization (SBFL) techniques usually apply statistical analysis
(e.g., Tarantula [30], Ochiai [5], and Ample [14]) or learning tech-
niques [9, 62-64] to the execution traces of both passed and failed
tests to identify the most suspicious code elements (e.g., state-
ments/methods). The insight is that code elements primarily exe-
cuted by failed tests are more suspicious than the elements primarily
executed by passed tests. However, a code element executed by a
failed test does not necessarily indicate that the element has impact
on the test execution and has caused the test failure. To bridge
the gap between coverage and impact information, researchers
proposed mutation-based fault localization (MBFL) [51, 54, 55, 81],
which injects changes to each code element (based on mutation
testing [17, 26]) to check its impact on the test outcomes. MBFL has

Uhttps://github.com/yilinglou/proFL



Can Automated Program Repair Refine Fault Localization?
A Unified Debugging Approach

been applied to both general bugs (pioneered by Metallaxis [54, 55])
and regression bugs (pioneered by FIFL [81]). ProFL shares similar
insight with MBFL in that program changes can help determine the
impact of code elements on test failures. However, ProFL utilizes
program repair information that aims to fix software bugs to pass
more tests rather than mutation testing that was originally proposed
to create new artificial bugs to fail more tests; ProFL also embodies
a new feedback-driven fault localization approach. Besides SBFL
and MBFL, researchers have proposed to utilize various other infor-
mation for fault localization (such as program slicing [80], predicate
switching [84], code complexity [67], program invariant [7] infor-
mation, and bug reports [37]), and have also utilized supervised
learning to incorporate such different feature dimensions for fault
localization [39, 40, 79]. However, the effectiveness of supervised-
learning-based fault localization techniques may largely depend
on the training sets, which may not always be available. In this
work, we aim to explore a new direction for simplistic fault localiza-
tion without supervised learning, i.e., leveraging patch-execution
information (from program repair) for powerful fault localization.
Automated Program Repair (APR) techniques [12, 15, 19, 21, 27,
44-46, 48-50, 53, 58, 71, 78] aim to directly fix software bugs with
minimal human intervention via synthesizing genuine patches (i.e.,
the patches semantically equivalent to developer patches). There-
fore, despite a young research area, APR has been extensively stud-
ied in the literature. Various techniques have been proposed to
directly modify program code representations based on different
rules/strategies, and then use tests as the oracle to validate each
generated candidate patch to find plausible patches (i.e., the patches
passing all tests/checks) [12, 15, 21, 45, 49, 53, 58, 78]. Note that
not all plausible patches are genuine patches; thus existing APR
techniques all rely on manual inspection to find the final genuine
patches among all plausible ones. Search-based APR techniques
assume that most bugs could be solved by searching through all
the potential candidate patches based on certain patching rules (i.e.,
program-fixing templates) [16, 29, 38, 73]. Alternatively, semantics-
based techniques use deeper semantical analyses (including sym-
bolic execution [13, 33]) to synthesize program conditions, or even
more complex code snippets, that can pass all the tests [49, 53, 78].
Recently, search-based APR has been extensively studied due to its
scalability on real-world systems, e.g., the most recent PraPR tech-
nique has been reported to produce genuine patches for 43 real bugs
from Defects4] [31]. Despite the success of recent advanced APR
techniques, even the most recent program repair technique can only
fix a small ratio (i.e., <20% for Defects4]) of real bugs [20, 29, 73] or
specific types of bugs [47].

In this work, we aim to leverage program repair results to help
with fault localization. More specifically, we design, ProFL, a sim-
plistic feedback-driven fault localization approach guided by patch-
execution results (from program repair). Note that Ghanbari et
al. [20] and Timperley et al. [69] have considered that plausible
patches may potentially help localize bugs. However, Ghanbari et al.
did not present a systematic fault localization approach working for
all possible bugs, while Timperley et al. showed that this direction
is ineffective. In contrast, we present the first systematic fault local-
ization approach driven by state-of-the-art program repair, perform
the first extensive study under various settings and on a large num-
ber of real-world bugs, and show for the first time that state-of-the-art

ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

Class: org.apache.commons.math.analysis.solvers.BracketingNthOrderBrentSolver
Method:protected double doSolve()

Developer patch:

233: if (agingA >= MAXIMAL_AGING) {

234: // ...

235: - targetY = -REDUCTION_FACTOR x yB;

236: final int p = agingA - MAXIMAL_AGING;

237: final double weightA = (1 << p) - 1;

238: final double weightB = p + 1;

239: targetY = (weightA * yA - weightB x* REDUCTION_FACTOR * yB)
/ (weightA + weightB);

240: } else if (agingB >= MAXIMAL_AGING) {

241: - targetY = -REDUCTION_FACTOR * yA;

243: // ...

243: final int p = agingB - MAXIMAL_AGING;

244: final double weightA = p + 1;

245: final double weightB = (1 << p) - 1;

246: targetY = (weightB * yB - weightA * REDUCTION_FACTOR * yA)

/ (weightA + weightB);

Patch P4, generated by PraPR:

260: - if (signChangeIndex - start >= end - signChangelIndex) {
260: if (MAXMAL_AGING - start >= end - signChangeIndex) {
261: ++start;

262: } else {

263: --end;

264: }

Patch Ps, generated by PraPR:

317: - x[signChangeIndex] = nextX;

317: x[agingAl = nextX;

318: System.arraycopy(y, signChangeIndex, y, signChangeIndex +
1, nbPoints - signChangelndex);

319: y[signChangeIndex] = nextY;

Figure 1: Developer and generated patches for Math-40

Class: com.google.javascript.jscomp.NodeUtil
Method:static boolean functionCallHasSideEffects
Developer patch:

958: if (nameNode.getFirstChild().getType() == Token.NAME) {

959: String namespaceName = nameNode.getFirstChild().getString
O3

960: if (namespaceName.equals("Math")) {

961: return false;

962: }

963: b

Patch Pjp, generated by PraPR:

933: - if (callNode.isNoSideEffectsCall()) {
933: if (callNode.hasChildren()) {

934: return false;

935: }

Figure 2: Developer and generated patches for Closure-61

program repair can substantially boost state-of-the-art fault localiza-
tion. Feedback-driven fault localization techniques have also been
investigated before [41, 43]. However, existing feedback-driven fault
localization techniques usually require manual inspection to guide
debugging. In contrast, we present a fully automated feedback-
driven fault localization, i.e., ProFL utilizes patch-execution results
as feedback to enable powerful automated fault localization.

3 MOTIVATING EXAMPLES

In this section, we present two real-world bug examples to show
the potential benefits of program repair for fault localization.

3.1 Example 1: Math-40

We use Math-40 from Defects4] (V1.2.0) [31], a widely used collec-
tion of real-world Java bugs, as our first example. Math-40 denotes
the 40th buggy version of Apache Commons Math project [6] from



ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

Table 1: Five top-ranked methods from Math-40

Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and Lu Zhang

Table 2: Five top-ranked methods from Closure-61

EID Method Signature SBFL | PID | #F (1) | #P (3177) EID Method Signature SBFL | PID | #F (3) | #P (7082)
e; | incrementEvaluationCount() 0.57 P 1 3170 e1 toString() 0.34 Py 3 7079
ey | BracketingNthOrderBrentSolver (Number) 0.33 P 1 3172 ey getSortedPropTypes() 0.33 Pg 3 6981
e3 | BracketingNthOrderBrentSolver(double, ...) | 0.28 Ps3 1 3177 e3 toString(StringBuilder, ...) 0.27 Py 3 7042
¢} | doSolve() 0.27 ;4 8 ;11(397 e;  functionCallHasSideEffects(Node, ...) | 0.18 | Pio 1 6681

5 es | nodeTypeMayHaveSideEffects(Node, ...) [ 0.09 [ P 1 6766
es | guessX(double[], ...) 0.20 Pe 0 3176

Defects4] (V1.2.0). The bug is located in a single method of the

project (method doSolve of class BracketingNthOrderBrentSolver).

We attempted to improve the effectiveness of traditional SBFL
based on Ochiai formula [5], which has been widely recognized
as one of the most effective SBFL formulae [40, 57, 82]. Inspired
by prior work [67], we used the aggregation strategy to aggregate
the maximum suspiciousness values from statements to methods.
Even with this improvement in place, Ochiai still cannot rank the
buggy method in the top, and instead ranks the buggy method in
the 4th place (with a suspiciousness value of 0.27). The reason is
that traditional SBFL captures only coverage information and does
not consider the actual impacts of code elements on test behaviors.

In an attempt to fix the bug, we further applied state-of-the-
art APR technique, PraPR [20], on the bug. However, since fixing
the bug requires multiple lines of asymmetric edits, the genuine
patch is beyond the reach of PraPR and virtually other existing
APR techniques as well. Analyzing the generated patches and their
execution results, however, gives some insights on the positive
effects that an APR technique might have on fault localization.

Among a large number of methods in Math-40, Table 1 lists the
Top-5 most suspicious methods based on Ochiai. Each row corre-
sponds to a method, with the highlighted one corresponding to
the actual buggy method (i.e., doSolve). Column “EID” assigns an
identifier for each method. Column “SBFL” reports SBFL suspicious-
ness values for each method, and “PID” assigns an identifier for
each patch generated by PraPR that targets the method. Column
“#F”/“#P” reports the number of originally failing/passing tests that
still fail/pass on each generated patch. The numbers within the
parentheses in the table head are the number of failing/passing
tests on the original buggy program. We also present the details
of the developer patch for the bug and two patches generated by
PraPR on the buggy method in Figure 1. From the table, we observe
that P4 is a plausible patch, meaning that it passes all of the avail-
able tests but it might be not a genuine fix; 5 passes originally
failing tests, while fails to pass 8 originally passing tests.

Several observations can be made at this point: First, whether the
originally failing tests pass or not on a patch, can help distinguish
the buggy methods from some correct methods. For example, for
e1, ez and e3, the originally failing test remains failing on all of
their patches, while for the buggy method ey, the originally failing
test becomes passing on both its patches. Second, whether the
originally passing tests fail or not, can also help separate the buggy
methods from some correct methods, e.g., P4 for the buggy method
e4 does not fail any originally passing tests while the patch for the
correct method e still fails some originally passing tests. Lastly,
the detailed number of tests affected by the patches may not matter
much. For example, for the correct method es, its patch only fails
one originally passing test, but for the buggy method ey, patch P
makes even more (i.e., 8) originally passing tests fail.

3.2 Example 2: Closure-61

We further looked into Closure-61, another real-world buggy project
from Defects4] (V1.2.0), but for which PraPR is even unable to gen-
erate any plausible patch. Similar with the first example, we present
the Ochiai and PraPR results for the Top-5 methods in Table 2.

Based on Table 2, we observe that even the non-plausible noisy
patch Py is related to the buggy methods. The patches targeting
method getSortedPropTypes and the two overloading methods
of toString (which have higher suspiciousness values than that
of the buggy method functionCallHasSideEffects) cannot gen-
erate any patch that can pass any of the originally failing tests. In
addition, the fact that the number of passed tests which now fail in
the patches of the buggy method are much larger than that for the
correct method nodeTypeMayHaveSideEffects further confirms
our observation above that, the detailed impacted test number does
not matter much with the judgement of the correctness of a method.

Based on the above two examples, we have following implica-
tions to utilize the patch execution results to improve the original
SBFL: (1) the patches (no matter plausible or not) positively impact-
ing some failed test(s) may indicate the actual buggy locations and
should be favored; (2) the patches negatively impacting some passed
test(s) may help exclude some correct code locations and should
be unfavored; (3) the detailed number of the impacted tests does
not matter much for fault localization. Therefore, we categorize all
the patches into four different basic groups based on whether they
impact originally passed/failed tests to help with fault localization,
details shown in Section 4.

4 APPROACH
4.1 Preliminaries

In order to help the readers better understand the terms used
throughout this paper, in what follows, we attempt to define a
number of key notions more precisely.

Definition 4.1 (Candidate Patch). Given the original program P,
a candidate patch # can be created by modifying one or more pro-
gram elements within $,. The set of all candidate patches generated
for the program is denoted by P.

In this paper, we focus on APR that conducts only first-order
program transformations, which only change one program element
in each patch, such as PraPR [20]. Note that our approach is general
and can also be applied to other APR techniques in theory, even
including the ones applying high-order program transformations.

Definition 4.2 (Patch Execution Matrix). Given a program %, its
test suite 7, and its corresponding set of all candidate patches P,
the patch execution matrix, M, is defined as the execution results
of all patches in P on all tests in 7. Each matrix cell result, M[P, ¢],
represents the execution results of test t € 7~ on patch # € P, and



Can Automated Program Repair Refine Fault Localization?
A Unified Debugging Approach

:I E Mcicanrix NoneFix
s, [oaz] ©1 [os7]o--- WNoisyFix [ NegFix
s, m m ) 77'01 X [X [X |X [X [X |X |X \/ ””” v
s ‘,,cli mlx [x [x [x [x [x [V [V [V [ _‘ A
i 0 it e s 2 S P
N ) ooy N I A A A A A A A e o 0] e [0

: 027 8
% Joxs| ' ©s BV X [x [x [x [x [x [x [x [T e ‘e ﬂ
Selomal : \
aVIx VVWVVVIVIVT . o]

Lt bt bty b : )
\

- y AN
Layer 1: Layer 2: Layer 3: Layer 4:
Suspicious Patch Group Feedback-driven
Computation Categorization Aggregation Reranking

Figure 3: Overview of ProFL

can have the following possible values, {v/, X, O}, which represent
failed, passed, and unknown yet.

Note that for the ease of presentation, we also include the original
program execution results in M, i.e., M[P,, ] denotes the execution
results of test ¢ on the original program P,

Based on the above definitions, we can now categorize candidate
patches based on the insights obtained from motivating examples:

Definition 4.3 (Clean-Fix Patch). A patch P is called a Clean-
Fix Patch, i.e., G[P] = CleanFix, if it passes some originally fail-
ing tests while does not fail any originally passing tests, i.e., 3t €
T.M[Po, t] =XAM[P,t] =/, and Bt € T, M[P,, t] =/ AM[P, t] =X.

Note that G[#] returns the category group for each patch P.

Definition 4.4 (Noisy-Fix Patch). A patch P is called a Noisy-
Fix Patch, i.e., G[P] = NoisyFix, if it passes some originally fail-
ing tests but also fails on some originally passing tests, i.e., 3t €
T ,M[Py, t] =XAM[P, t] =/, and Tt € T ,M[Py, t] =/ AM[P, t]| =X.

Definition 4.5 (None-Fix Patch). A patch P is called a None-Fix
Patch, i.e., G[#] = NoneFix, if it does not impact any originally fail-

ing or passing tests. More precisely, it € T, M[Py, t] =XAM[P, t] =/,

and 3t € T, M[P,, t] =/ AM[P, t] =X.

Definition 4.6 (Negative-Fix Patch). A patch % is called a Negative-
Fix Patch, i.e., G[P] = NegFix, if it does not pass any originally
failing test while fails some originally passing tests, ie., it €
T M[Po, t] =XAM[P, t] =/, and 3t € T ,M[Py, t] =/ AM[P, t] =X.

Based on our insights obtained from the motivating example,
the ranking of different patch groups is: CleanFix > NoisyFix >
NoneFix > NegFix. Note that in Section 4.3, we will discuss more
patch categorization variants besides such default patch categoriza-
tion to further study their impacts on ProFL.

4.2 Basic ProFL

The overview of ProFL is shown in Figure 3. According to the figure,
ProFL consists of four different layers. The input for ProFL is the ac-
tual buggy program under test and the original failing test suite, and
the final output is a refined ranking of the program elements based
on the initial suspiciousness calculation. In the first layer, ProFL
conducts naive SBFL formulae (e.g., Ochiai [5]) at the statement
level, and then performs suspiciousness aggregation [67] to calculate
the initial suspiciousness value for each program element. Note
that besides such default initial suspiciousness computation, ProFL
is generic and can leverage the suspiciousness values computed

ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

by any other advanced fault localization technique in this layer
(such as the PageRank-based fault localization [82]). In the second
layer, ProFL collects the patch execution matrix along the program
repair process for the program under test, and categorizes each
patch into different groups based on Section 4.1. In the third layer,
for each element, ProFL maps the group information of its corre-
sponding patches to itself via group aggregation. In the last layer,
ProFL finally reranks all the program elements via considering their
suspiciousness and group information in tandem.

We next explain each layer in detail with our first motivation
example. Since the number of tests and patches are really huge,
due to space limitation, we only include the tests and patches that
are essential for the ranking results of the elements. After reduc-
tion, we consider the six patches (P; to P¢) and the 9 tests whose
statuses changed on these patches (denoted as t; to tg). Based on
Definition 4.2, we present M in Figure 3, The first row stands for
M][%P,, 7], the execution results of 7 on the original buggy pro-
gram P, , and from the second row, each row represents M[P, 7],
the execution results of each patch # as shown in Table 1 on 7.

4.2.1 Layer 1: Suspicious Computation. Given the original program
statements, e.g., S = [s1, 52, ..., Sp |, we directly apply an off-the-
shelf spectrum-based fault localization technique (e.g., the default
Ochiai [5]) to compute the suspiciousness for each statement, e.g.,
S[s;] for statement s;. Then, the proposed approach applies suspi-
ciousness aggregation [67] to compute the element suspiciousness
values at the desired level (e.g., method level in this work) since
prior work has shown that suspicious aggregation can significantly
improve fault localization results [11, 67]. Given the initial list
of & = [e1,e2,...,em], for each e; € &, suspiciousness aggrega-
tion computes its suspiciousness as S[e;] = Maxs; ee, S[sj], i.e., the
highest suspiciousness value for all statements within a program
element is computed as the suspiciousness value for the element.
For our first motivation example, after suspicious aggregation,
for the five elements, S[e1, ez, €3, e4, e5] = [0.57,0.33,0.28, 0.27, 0.20].

4.2.2  Layer 2: Patch Categorization. In this layer, ProFL automati-
cally invokes off-the-shelf program repair engines (PraPR [20] for
this work) to try various patching opportunities and record the de-
tailed patch-execution matrix, M. Then, based on the resulting M,
ProFL automatically categorizes each patch into different groups.
Given program element e and all the patches generated for the
program, P, the patches occurring on e can be denoted as P[e].
Then, based on Definitions 4.3 to 4.6, each patch within P[e] for
each element e can be categorized into one of the four following
groups, {CleanFix, NoisyFix, NoneFix, NegFix}. Recall that G[P]
represents the group information for P, e.g., G[P] = CleanFix
denotes that # is a clean-fix patch.

For the example, the group of each patch in the motivation ex-
ample is as follows: G[P1, P2, P3, P4, Ps, Ps] = [NegFix, NegFix,
NoneFix, CleanFix,NoisyFix, NoisyFix]

4.2.3 Layer 3: Group Aggregation. For each program element e,
we utilize its corresponding patch group information to determine
its own group information. Recall that the ranking of different
patch groups is: CleanFix>NoisyFix>NoneFix>NegFix. Then, the
group information for a program element can be determined by
the best group information of all patches occurring on the program



ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

element. Therefore, we present the following rules for determining
the group information for each e:
CleanFix if 3P, P € Ple] A G[P] = CleanFix
G NoisyFix elseif 3P, P € Ple] A G[P] = NoisyFix
lel = NoneFix else if 3P, P € Ple] A G[P] = NoneFix
else if 3P, P € Ple] A G[P] = NegFix
1)

Shown in Equation 1, element e is within Group CleanFix when-
ever there is any patch # within e such that # is a clean-fix patch;
otherwise, it is within Group NoisyFix whenever there is any patch
# within e such that # is a noisy-fix patch.

After group aggregation, the group of each program element
(i.e., method) in the motivation example is Gleq, e2, €3, e4, 5] =
[NegFix, NegFix, NoneFix, CleanFix, NoisyFix].

NegFix

4.24 Layer 4: Feedback-driven Reranking. In this last layer, we
compute the final ranked list of elements based on the aggregated
suspiciousness values and groups. All the program elements will be
first clustered into different groups with Group CleanFix ranked
first and Group NegFix ranked last. Then, within each group, the
initial SBFL (or other fault localization techniques) suspiciousness
values will be used to rank the program elements. Assume we
use R[e1, e2] to denote the total-order ranking between any two
program elements, it can be formally defined as:
e1 > es if Gler] > Glez] or
Rles. ez] = .G[el] = Glez] A S[eq] = S[ez] @
ey > e; if Glez] > Gleq] or

Gle1] = Glez] A S[ez] = S[e21]

That is, e is ranked higher or equivalent to ez only when (i) e;
is within a higher-ranked group, or (ii) e; is within the same group
as ez but has a higher or equivalent suspicious value compared to
e2. Therefore, the final ranking of our example is: e4 > e5 > e3 >
e1 > ep, ranking the buggy method ey at the first place.

4.3 Variants of ProFL

Taking the approach above as the basic version of ProFL, there can
be many variants of ProFL, which are discussed as follows.

Finer-grained Patch Categorization. Previous work [20] found
that plausible patches are often coupled tightly with buggy ele-
ments, which actually is a subset of CleanFix defined in our work.
Inspired by this finding, we further extend ProFL with finer-grained
patch categorization rules, which respectively divide CleanFix
and NoisyFix into two finer categories according to the criterion
whether all failed tests are impacted. We use Figure 4 to show the
relation between the four finer-grained patch categories and the
four basic categories. Considering the finer categories, we further
extend the group aggregation strategies in the third layer of ProFL
accordingly as shown in Table 3 to study the impact of further split-
ting CleanFix and NoisyFix categories. For example, Ry (ranking
CleanPartFix below CleanAllFix) and R, (ranking CleanAllFix below
CleanPartFix) study the two different ways for splitting CleanFix.
SBFL Formulae. The elements are reranked in the last layer based
on their aggregated suspiciousness values and groups. In theory,
ProFL is not specific for any particular way to calculate the aggre-
gated suspiciousness value. Therefore, besides our default Ochiai [5]

Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and Lu Zhang

Clean All

Clean Fix
Clean Part

Patch

T NoFix ——5 NonFix

Patch Category Finer Category

Figure 4: Patch categorization tree

Table 3: Finer-grained patch categorization rules

ID | Extended Categorization Aggregation Rules

Ry | CleanAllFix>CleanPartFix>NoisyFix>NoneFix>NegFix
Ry | CleanPartFix>CleanAllFix>NoisyFix>NoneFix>NegFix
R3 | CleanFix>NoisyAllFix>NoisyPartFix>NoneFix>NegFix
R4 | CleanFix>NoisyPartFix> NoisyAllFix>NoneFix>NegFix

formula, all the other formulae in SBFL can be adopted in ProFL.
We study all the 34 SBFL formulae considered in prior work [40, 67].
The impact of these formulae on ProFL would be studied later.
Feedback Sources. Generally speaking, not only the patch ex-
ecution results can be the feedback of our approach, any other
execution results correlated with program modifications can serve
as the feedback sources, e.g., mutation testing [26]. For example, a
mutant and a patch are both modifications on the program, thus
ProFL can directly be applied with the mutation information as
feedback. However, mutation testing often includes simple syntax
modifications that were originally proposed to simulate software
bugs to fail more tests, while program repair often includes more
(advanced) modifications that aim to pass more tests to fix software
bugs. Therefore, although it is feasible to use mutation information
as the feedback source of our approach, the effectiveness remains
unknown, which would be studied.
Partial Execution Matrix. During program repair, usually the
execution for a patch would terminate as soon as one test fails,
which is the common practice to save the time cost. In this scenario,
only partial execution results are accessible. In the previous sections,
M is considered as complete (as traditional MBFL also requires full
mutant execution matrices), which we denote as full matrix, My,
while in this section, we discuss the case where M is considered
as incomplete in APR practice, which we call a partial matrix, M.
Recall Definition 4.2, different from M, cells in M can be O
besides v and X. E.g., when ¢ is not executed on P, M [P, t] = O.
In the motivation example, during the patch execution, if 7 is
executed in the order from #; to t9, and one failed test would stop
execution for each patch immediately, M}, is as follows.

Po
P
P>
Ps
Py
Ps
L Ps

xXx*x\N000sN<
ON000NT

NN X X X% x>
CON000~N&
COSN000~N~
CON000N&
CON000Nx
O

CON000N=
COSN000sNs®

In the scenario where only partial matrix is accessible, we can
find there are many unknown results. Interestingly, in this example,
we find the final ranking does not change at all even with a partial



Can Automated Program Repair Refine Fault Localization?
A Unified Debugging Approach

Table 4: Benchmark statistics

ID Name #Bug | #Test LoC
Lang Apache commons-lang 65 2,245 22K
Math Apache commons-math 106 3,602 85K
Time Joda-Time 27 4,130 28K
Chart JFreeChart 26 2,205 96K
Closure Google Closure compiler | 133 7,927 90K
Mockito  Mockito framework 38 1,366 23K
Defectsd] (V1.2.0) 395 | 21,475 | 344K
Cli Apcache commons-cli 24 409 4K
Codec Apache commons-codec | 22 883 10K
Csv Apache commons-csv 12 319 2K
JXPath Apache commons-jxpath | 14 411 21K
Gson Google GSON 16 N/A 12K
Guava Google Guava 9 1,701,947 | 420K
Core Jackson JSON processor 13 867 31K
Databind  Jackson data bindings 39 1,742 71K
Xml Jackson XML extensions | 5 177 6K
Jsoup Jsoup HTML parser 63 681 14K
Defects4] (V1.4.0) 587 26,964 503K

matrix as input. For the patches 3, Py, Ps5 and Pg, their patch
categorization does not change at all. For example, since the failed
tests are executed first, when P stops its execution, its execution
result is that one failed test passes now and one passed test fails
now, and thus Ps is still categorized into NoisyFix. For #; and
P>, although their patch categorization changes from NegFix to
NoneFix, it does not impact the final ranking results. The exam-
ple indicates the insensitivity of ProFL to partial matrix, and the
categorization design is the main reason for it. We would further
confirm this observation in the detailed experimental studies.

5 EXPERIMENT SET UP

5.1 Research Questions

In our study, we investigate the following research questions:

e RQ1: How does the basic ProFL perform compared with
state-of-the-art SBFL and MBFL techniques?
e RQ2: How do different configurations impact ProFL?
- RQ2a: What is the impact of finer patch categorization?
— RQ2b: What is the impact of the used SBFL formula?
RQ2c: What is the impact of the feedback source used?
RQ2d: What is the impact of partial execution matrix?
RQ2e: What is the impact of the used benchmark suite?
e RQ3: Can ProFL further boost state-of-the-art unsupervised-
and supervised-learning-based fault localization?

Besides the research questions, we also conduct a case study in an
international IT company with over 700M Monthly Active Users.

5.2 Benchmark

We conduct our study on all bugs from the Defects4] benchmark [31],
which has been widely used in prior fault-localization work [39,
40, 57, 67, 82]. Defects4] is a collection of reproducible real bugs
with a supporting infrastructure. To our knowledge, all the fault
localization studies evaluated on Defects4] use the original version
Defects4] (V1.2.0). Recently, an extended version, Defects4] (V1.4.0),

ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

which includes more real-world bugs, has been released [22]. There-
fore, we further perform the first fault localization study on De-
fects4] (V1.4.0) to reduce the threats to external validity.

In Table 4, Column “ID” presents the subject IDs. Columns
“Name” and “#Bugs” present the full name and the number of bugs
for each project. Columns “Loc” and “#Test” list the line-of-code
information and the number of tests for the HEAD version of each
project. Note that the two projects highlighted in gray are excluded
due to build/test framework incompatibility with PraPR [20]. In
total, our study is performed on all 395 bugs from Defects4] (V1.2.0)
and 192 additional bugs from Defects4] (V1.4.0).

5.3 Independent Variables

Evaluated Techniques: We compare ProFL with the following
state-of-the-art SBFL and MBFL techniques: (a) Spectrum-based
(SBFL): we consider traditional SBFL with suspiciousness aggrega-
tion strategy to aggregate suspiciousness values from statements
to methods, which has been shown to be more effective than naive
SBFL in previous work [11, 67]. (b) Mutation-based (MBFL): we
consider two representative MBFL techniques, MUSE [51] and Met-
allaxis [55]. (¢) Hybrid of SBFL and MBFL (MCBFL): we also con-
sider the recent MCBFL [57], which represents state-of-the-art hy-
brid spectrum- and mutation-based fault localization. Furthermore,
we include state-of-the-art learning-based fault localization tech-
niques: (a) Unsupervised: we consider state-of-the-art PRFL [82]
and PRFLjr4 [83] (which further improves PRFL via suspicious-
ness aggregation) that aim to boost SBFL with the unsupervised
PageRank algorithm. (b) Supervised: we consider state-of-the-art
supervised-learning-based fault localization, DeepFL [39], which
outperforms all other learning-based fault localization [40, 67, 79].
Note that, SBFL and Metallaxis can adopt different SBFL formulae,
and we by default uniformly use Ochiai [5] since it has been demon-
strated to perform the best for both SBFL and MBFL [40, 57, 82].
Experimental Configurations: We explore the following con-
figurations to study ProFL: (a) Finer ProFL Categorization: in
RQ2a, we study the four extended categorization aggregation rules
based on the finer patch categories as listed in Table 3. (b) Studied
SBFL Formulae: in RQ2b, we implement all the 34 SBFL formu-
lae considered in prior work [40, 67] to study the impact of initial
formulae. (c) Feedback Sources: besides the patch execution re-
sults of program repair, mutation testing results can also be used as
the feedback sources of ProFL. Thus, we study the impact of these
two feedback sources in RQ2c. (d) Partial Execution Matrix: we
collect partial execution matrices in three common test-execution
orderings: (i) Oy: the default order in original test suite; (ii) O2: run-
ning originally-failed tests first and then originally-passing tests,
which is also the common practice in program repair to save the
time cost; (iii) O3: running originally-passing tests first and then
originally-failed tests. The partial matrices collected by these orders
are denoted as M}(ool), M}(OOZ) and M;,O” respectively. We investigate
the impacts of different partial execution matrices used in RQ2d.
(e) Used Benchmarks: we evaluate ProFL in two benchmarks,
Defects4] (V1.2.0) and Defects4] (V1.4.0) in RQ2e.



ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

5.4 Dependent Variables and Metrics

In this work, we perform fault localization at the method level fol-
lowing recent fault localization work [7, 39, 40, 67, 82], because
the class level has been shown to be too coarse-grained while the
statement level is too fine-grained to keep useful context informa-
tion [35, 56]. We use the following widely used metrics [39, 40]:
Recall at Top-N: Top-N computes the number of bugs with at least
one buggy element localized in the Top-N positions of the ranked
list. As suggested by prior work [56], usually, programmers only
inspect a few buggy elements in the top of the given ranked list,
e.g., 73.58% developers only inspect Top-5 elements [35]. Therefore,
following prior work [39, 40, 82, 85], we use Top-N (N=1, 3, 5).
Mean First Rank (MFR): For each subject, MFR computes the
mean of the first relevant buggy element’s rank for all its bugs,
because the localization of the first buggy element for each bug can
be quite crucial for localizing all buggy elements.

Mean Average Rank (MAR): We first compute the average rank-
ing of all the buggy elements for each bug. Then, MAR of each
subject is the mean of such average ranking of all its bugs. MAR
emphasizes the precise ranking of all buggy elements, especially
for the bugs with multiple buggy elements.

Fault localization techniques sometimes assign same suspicious-
ness score to code elements. Following prior work [39, 40], we use
the worst ranking for the tied elements. For example, if a buggy
element is tied with a correct element in the k% position of the
ranked list, the rank for both elements would be k + 1th,

5.5 Implementation and Tool Supports

For APR, we use PraPR [20], a recent APR technique that fixes bugs
at the bytecode level. We choose PraPR because it is one of the
most recent APR techniques and has been demonstrated to be able
to fix more bugs with a much lower overhead compared to other
state-of-the-art techniques. PraPR is set to generate patches for all
potentially buggy locations so that the misranked elements can be
adjusted by ProFL. Note that, ProFL does not rely on any specific
APR technique, since its feedback input (i.e., patch executions) is
general and can come from any other APR technique in principle.
We now discuss the collection of all the other information for
implementing ProFL and other compared techniques: (i) To collect
the coverage information required by SBFL techniques, we use
the ASM bytecode manipulation framework [10] to instrument
the code on-the-fly via JavaAgent [2]. (ii) To collect the mutation
testing information required by MBFL, we use state-of-the-art PIT
mutation testing framework [3] (Version 1.3.2) with all its available
mutators, following prior MBFL work [39, 40]. Note that we also
modify PIT to force it to execute all tests for each mutant and collect
detailed mutant impact information (i.e., whether each mutant can
impact the detailed test failure message of each test [57]) required
by Metallaxis. For PRFL, PRFLj; 4, and DeepFL, we directly used the
implementation released by the authors [39, 83]. All experiments
are conducted on a Dell workstation with Intel(R) Xeon(R) Gold
6138 CPU @ 2.00GHz, 330GB RAM, and Ubuntu 18.04.1 LTS.

5.6 Threats to Validity

Threats to internal validity mainly lie in the correctness of im-
plementation of our approach and the compared techniques. To

Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and Lu Zhang

Table 5: Overall fault localization results

Tech Name | Top-1 | Top-3 | Top-5 | MFR | MAR
SBFL 117 219 259 19.15 | 24.63
MUSE 89 152 182 47.51 | 52.81
Metallaxis 84 175 223 17.10 | 19.54
MCBFL 131 227 267 17.99 | 23.26
ProFL 161 255 286 9.48 14.37

reduce this threat, we manually reviewed our code and verified that
the results of the overlapping fault localization techniques between
this work and prior work [40, 82, 83] are consistent. We also directly
used the original implementations from prior work [39, 83].
Threats to construct validity mainly lie in the rationality of as-
sessment metrics that we chose. To reduce this threat, we chose
the metrics that have been recommended by prior studies/sur-
veys [35, 56] and widely used in previous work [39, 40, 67, 82].
Threats to external validity mainly lie in the benchmark suites
used in our experiments. To reduce this threat, we chose the widely
used Defects4] (V1.2.0) benchmark, which includes hundreds of
real bugs collected during real-world software development. To
further reduce the threats, compared to previous work, we also
conducted the first fault localization evaluation on an extended
version of Defects4], Defects4] (V1.4.0).

6 RESULTS
6.1 RQ1: Effectiveness of ProFL

To answer this RQ, we first present the overall fault localization
results of ProFL and state-of-the-art SBFL and MBFL techniques
on Defects4] (V1.2.0) in Table 5. Column “Tech Name” represents
the corresponding techniques and the other columns present the
results in terms of Top-1, Top-3, Top-5, MFR and MAR. From the
table, we observe that ProFL significantly outperforms all the ex-
isting techniques in terms of all the five metrics. For example, the
Top-1 value of ProFL is 161, 30 more than MCBFL, 44 more than
aggregation-based SBFL, 77 more than Metallaxis, and 72 more
than MUSE. In addition, MAR and MFR values are also signifi-
cantly improved (e.g., 47.30% improvement in MFR compared with
state-of-the-art MCBFL), indicating a consistent improvement for
all buggy elements in the ranked lists. Note that our overall bug
ranking results are consistent with prior fault localization work at
the method level [40], e.g., state-of-the-art MBFL can outperform
SBFL, demonstrating the effectiveness of MBFL. Meanwhile, we
observe that SBFL outperforms state-of-the-art MBFL techniques
in terms of Top-ranked bugs, which is not consistent with prior
work [40]. We find the main reason to be that the prior work did
not use suspicious aggregation (which was proposed in parallel
with the prior work) for SBFL, demonstrating the effectiveness of
suspiciousness aggregation for SBFL.

To further investigate why the simple ProFL approach works,
we further analyze each of the four basic ProFL patch categories in
a post-hoc way. For each patch category group G;, for each bug in
the benchmark, we use metric Ratioj, to represent the ratio of the
number of buggy elements (i.e., methods in this work) categorized
into group G; to the number of all elements categorized into group



Can Automated Program Repair Refine Fault Localization?
A Unified Debugging Approach

1.00
0.75
0.50

0.25

0.00

1-Clean-Fix 2-Noisy-Fix 3-None-Fix  4-Negative—Fix

Figure 5: Ratioy, distribution for different patch groups

Gi. Formally, it can be presented as:

[{e|G[P] = Gi AP € Ple]} Ae € B
{elG[P] = Gi AP € Plel}]

where B represents a set of buggy elements. Ratioj, ranges from 0
to 1, and a higher value indicates a higher probability for a patch
group to contain the actual buggy element(s). We present the distri-
bution of the Ratioj, values on all bugs for each of the four different
patch groups in the violin plot in Figure 5, where the x axis presents
the four different groups, the y axis presents the actual Ratio, val-
ues, and the width of each plot shows the distribution’s density.
From the figure we observe that the four different groups have to-
tally different Ratioy, distributions. E.g., group CleanFix has rather
even distribution, indicating that roughly half of the code elements
within this group could be buggy; on the contrary, group NegFix
mostly have small Ratioy, values, indicating that elements within
this group are mostly not buggy. Such group analysis further con-
firms our hypothesis that different patch categories can be leveraged
as the feedback information for powerful fault localization.

Ratioy(Gi) =

©

Finding 1: Simplistic feedback information from program
repair can significantly boost existing SBFL-based fault lo-
calization techniques, opening a new dimension for fault
localization via program repair.

Table 6: Impacts of finer patch categorization

Tech Top-1 | Top-3 | Top-5 | MFR MAR
ProFL 161 255 286 9.48 14.37
ProFLg, | 162 255 286 9.53 (p=0.974) | 14.41 (p=0.933)
ProFLg, | 161 252 283 9.56 (p=0.904) | 14.45 (p=0.876)
ProFLg, | 161 255 285 9.67 (p=0.987) | 14.62 (p=0.899)
ProFLg, | 162 251 285 9.55 (p=0.949) | 14.45 (p=0.967)

6.2 ROQ2: Different experimental configurations

6.2.1 RQ2a: Impact of finer categorization. To investigate the four
extended rules on the finer categorization presented in Section 4.3,
we implemented different ProFL variants based on each rule in
Table 3. The experimental results for all the variants are shown in
Table 6. In the table, Column “Tech” presents each of the compared
variants and the remaining columns present the corresponding met-
ric values computed for each variant. Note that the four variants
of ProFL implemented with different rules shown in Table 3 are
denoted as ProFLg, , ProFLg,, ProFLg, and ProFLg,, respectively.
From the table, we observe that ProFL variants with different ex-
tended rules perform similarly with the default setting in all the

ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

used metrics. To confirm our observation, we further perform the
Wilcoxon signed-rank test [75] (at the significance level of 0.05)
to compare each variant against the default setting in terms of
both the first and average buggy-method ranking for each bug.
The test results are presented in the parentheses in the MFR and
MAR columns, and show that there is no significant difference
(p»0.05) among the compared variants, indicating that considering
the finer-grained grouping does not help much in practice. To ex-
plain this observation, we analyze the methods in CleanAllFix,
CleanPartFix and find that they have same method sets for over
90% cases, indicating that fixing a subset of failing tests without
breaking any passing tests is already challenging.

Finding 2: Finer-grained patch grouping has no significant
impact on ProFL, further demonstrating the effectiveness of
the default grouping.

3 L El Eg 5 0 20 30

(a) Top-1 (b) MAR

Figure 6: Comparison of ProFL and SBFL over all formulae

6.2.2  RQ2b: Impact of SBFL formulae. Our ProFL approach is gen-
eral and can be applied to any SBFL formula, therefore, in this RQ,
we further study the impact of different SBFL formulae on ProFL
effectiveness. The experimental results are shown in Figure 6. In
this figure, the x axis presents all the 34 SBFL formulae considered
in this work, the y axis presents the actual metric values in terms of
Top-1and MAR, while the light and dark lines represent the original
SBFL techniques and our ProFL version respectively. We can ob-
serve that, for all the studied SBFL formulae, ProFL can consistently
improve their effectiveness. For example, the Top-1 improvements
range from 41 (for ER1a) to 87 (for GP13), while the MAR improve-
ments range from 36.54% (for Wong) to 77.41% (for GP02). Other
metrics follow similar trend, e.g., the improvements in MFR are
even larger than MAR, ranging from 49.24% (for SBI) to 80.47% (for
GP02). Furthermore, besides the consistent improvement, we also
observe that the overall performance of ProFL is quite stable for
different SBFL formulae. For example, the MAR value for SBFL has
huge variations when using different formulae, while ProFL has
stable performance regardless of the formula used, indicating that
ProFL can boost ineffective SBFL formulae even more.

Finding 3: ProFL can consistently improve all the 34 studied
SBFL formulae, e.g., by 49.24% to 80.47% in MFR.

6.2.3  RQ2c: Impact of feedback source. Since ProFL is general and
can even take traditional mutation testing information as feedback
source, we implement a new ProFL variant that directly take mu-
tation information (computed by PIT) as feedback. To distinguish



ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

Table 7: Impacts of using mutation or repair information

Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and Lu Zhang

Table 8: Impacts of using partial matrices

Tech Name Top-1 | Top-3 | Top-5 | MFR | MAR
MUSEp;T 89 | 152 | 182 | 47.51 | 52.81
MUSEpyapRr 95 | 172 | 207 | 38.79 | 43.10
Metallaxisp; T 84| 175 | 223 17.10 | 1954
Metallaxisp,qpgr 77 | 170 | 211 | 21.42 | 22.94
MCBFLp; T 131 | 227 | 267 | 17.99 | 23.26
MCBFLp,4pRr 130 | 228 | 267 | 18.03 | 23.28
ProFLpT 141 | 238 | 266 | 15.24 | 20.33
ProFLp,qpR 161 | 255 | 286 | 9.48 | 14.37

the two ProFL variants, we denote the new variant as ProFLprT
and the default one as ProFLp,,pr. Meanwhile, all the existing
MBFL techniques can also take the APR results from PraPR as in-
put (PraPR can be treated as an augmented mutation testing tool
with more and advanced mutators), thus we also implemented such
variants for traditional MBFL for fair comparison, e.g., the original
MUSE is denoted as MUSE p;1 while the new MUSE variant is de-
noted as MUSEp,4pRr. Table 7 presents the experimental results for
both ProFL and prior mutation-based techniques using different
information sources. We have the following observations:

First, ProFL is still the most effective technique compared with
other techniques even with the feedback information from mutation
testing. For example, ProFL with mutation information localizes
141 bugs within Top-1, while the most effective existing technique
(no matter using mutation or repair information) only localizes
131 bugs within Top-1. This observation implies that the ProFL
approach of using feedback information (from program-variant
execution) to refine SBFL ranking is general in design, and is not
coupled tightly with specific source(s) of feedback.

Second, ProFL performs worse when feedback source changes
from program repair to mutation testing. For example, the Top-1
decreases from 161 to 141. The reason is that patches within groups
CleanFix/NoisyFix can help promote the ranking of buggy meth-
ods. However, mutation testing cannot create many such patches.

For example, we find that the number of bugs with CleanFix/NoisyFix

patches increases by 39.84% when changing from mutation testing
to APR. This further indicates that APR is more suitable than muta-
tion testing for fault localization since it aims to pass more tests while
mutation testing was originally proposed to fail more tests.

Third, for the two existing MBFL techniques, MUSE performs
better in program repair compared to mutation testing while Met-
allaxis is the opposite. We find the reason to be that MUSE simply
counts the number of tests changed from passed to failed and vice
versa, while Metallaxis leverages the detailed test failure messages
to determine mutant impacts. In this way, APR techniques that make
more failed tests pass can clearly enhance the results of MUSE, but
do not have clear benefits for Metallaxis.

Finding 4: ProFL still performs well even with the mutation
feedback information, but has effectiveness decrements com-
pared to using program repair, indicating the superiority of
program repair over mutation testing for fault localization.

6.2.4 RQ2d: Impact of partial execution matrix. So far, we have
studied ProFL using full patch execution matrices. However, in

M, Tech Name Top-1 | Top-3 | Top-5 | MFR | MAR
MUSEprapR 92 | 148 | 172 | 118.56 | 125.11

(@) | Metallaxispr.apr 64 | 128 | 167 | 113.9 | 126.79
P ProFL 165 260 288 18.18 23.47
MUSEp, PR 87 | 130 | 152 | 191.71 | 206.0

M©) Metallaxisp,qpR 32 73 94 | 163.29 | 170.61
P ProFL 157 242 281 9.61 14.20
MUSEp, 2R 89 | 128 | 144 | 169.33 | 174.09

(09 | Metallaxispr.apg 63| 127 159 | 187.19 | 195.07
P ProFL 155 245 277 19.10 25.19

practical program repair, a patch will not be executed against the
remaining tests as soon as some test falsifies it for the sake of
efficiency. Therefore, we further study new ProFL variants with
only partial patch execution matrices. The experimental results for
three variants of ProFL using different partial matrices are shown
in Table 8. From the table, we have the following observations:
First, surprisingly, ProFL with different partial matrices still per-
form similarly with our default ProFL using full matrices, while
the traditional MBFL techniques perform significantly worse us-
ing partial matrices. For example, the MFR and MAR values for
existing MBFL all become over 160 when using partial matrices
collected following common APR practice (i.e., M;OZ) ), while the
MFR and MAR values for ProFL have negligible change when using
the same partial matrices. We think the reason to be that existing
MBFL techniques utilize the detailed number of impacted tests for
fault localization and may be too sensitive when switching to par-
tial matrices. Second, ProFL shows consistent effectiveness with
partial matrices obtained from different test execution orderings,
e.g., even the worst ordering still produces 155 Top-1 bugs. One
potential reason that M%) performs the worst is that if there is
any passed tests changed into failing, the original failed tests will
no longer be executed, missing the potential opportunities to have
CleanFix/NoisyFix patches that can greatly boost fault localiza-
tion. Luckily, in practice, repair tools always execute the failed tests
first (i.e., M;,OZ)), further demonstrating that ProFL is practical.
Note that the cost of ProFL consists of two parts: (1) APR time
(full/partial matrix collection time), and (2) final fault-localization
time based on the APR results. As for the latter cost, ProFL costs
less than 2min to compute the suspiciousness scores for each De-
fects4] (V1.2.0) bug on average (including the APR result parsing
time), which is negligible compared to the APR time. Therefore,
we next present the cost reduction benefits that partial execution
matrices can bring to speed up the ProFL APR time. The experi-
mental results for the HEAD version (i.e., the latest and usually the
largest version) of each studied subject are shown in Table 9. In
the table, Column “Time” presents the time for executing all tests
on each candidate patch while Column “Time,” presents the time
for terminating test execution on a patch as soon as the patch gets
falsified (following the default test execution order of PraPR, i.e.,
MI(DOZ), which executes originally failed tests first then passed tests).
Similarly, Column “Execution;”/“Execution),” shows the number
of test executions accumulated for all patches for full/partial matri-
ces. From the table, we can observe that partial execution matrix
collection can overall achieve 26.17X/718.85X speedup in terms



Can Automated Program Repair Refine Fault Localization?
A Unified Debugging Approach

Table 9: Full and partial matrix collection (with 4 threads)

Subject Timey Time), | Speedup || Executions | Execution, | Speedup
Lang-1 0m38s 0m31s 1.23X 2,282 157 14.54X
Closure-1 | 2,568m26s | 110m33s 23.23X || 186,451,071 253,378 | 735.86X
Mockito-1 452m33s 2m43s | 166.58X 4,429,249 8,318 | 532.49X
Chart-1 32m27s 2m4ls 12.09X 796,654 3,769 | 211.37X
Time-1 149m14s 0m4ls | 218.39X 677,094 1,147 | 590.32X
Math-1 68m24s 7m53s 8.63X 244,702 1,162 | 210.59X
Total 3,271m42s 125m2s 26.17X || 192,601,052 267,931 | 718.85X

time/test-executions, e.g., even the largest Closure subject only
needs less than 2 hours, indicating that ProFL can be scalable to
real-world systems (since we have shown that ProFL does not have
clear effectiveness drop when using only partial matrices).

Finding 5: ProFL keeps its high effectiveness even on partial
patch execution matrices, especially with test execution or-
dering following the program repair practice, demonstrating
that its runtime overhead can be reduced by 26.17X without
clear effectiveness drop.

Table 10: Results on Defects4] (V1.4.0)

Tech Name | Top-1 | Top-3 | Top-5 | MFR | MAR
SBFL 59 102 124 | 13.81 | 20.44
MUSE 34 63 73 | 67.89 | 74.49
Metallaxis 47 88 115 | 21.45 | 28.30
MCBFL 67 112 132 | 13.20 | 19.79
ProFL 78 117 131 | 12.01 | 17.96

6.2.5 RQ2e: Impact of used benchmarks. In this RQ, we further
compare ProFL and state-of-the-art SBFL/MBFL techniques on ad-
ditional bugs from Defects4] (V1.4.0), to reduce the threats to exter-
nal validity. The experimental results are shown in Table 10. From
the table, we observe that ProFL still significantly outperforms all
other compared techniques. E.g., Top-1 is improved from 59 to 78
compared to the original state-of-the-art SBFL. Such a consistent
finding on additional bugs further confirms our findings in RQ1.

Finding 6: ProFL still significantly outperforms state-of-the-
art SBFL and MBFL on additional bugs.

6.3 ROQ3: Boosting learning-based localization

We further apply the basic ProFL to boost state-of-the-art unsupervised-

learning-based (i.e., PRFL and PRFL s 4 [83]) and supervised-learning-
based (i.e., DeepFL [39]) fault localization. For unsupervised-learning-
based techniques, ProFL is generic and can use any existing fault lo-
calization techniques to compute initial suspiciousness (Section 4.2);
therefore, we directly apply ProFL on the initial suspiciousness com-

puted by PRFL and PRFL s 4, denoted as ProFLpgrry and ProFLprFrpA,

respectively. For supervised-learning-based techniques, ProFL with
all the 34 used SBFL formulae can serve as an additional feature
dimension; therefore, we augment DeepFL by injecting ProFL fea-
tures between the original mutation and spectrum feature dimen-
sions (since they are all dynamic features), and denote that as
ProFLpeeprL- The experimental results are shown in Table 11. Note
that DeepFL results are averaged over 10 runs due to the DNN ran-
domness [39]. First, even the basic ProFL significantly outperforms

ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

state-of-the-art unsupervised-learning-based fault localization. E.g.,
ProFL localizes 161 bugs within Top-1, while the most effective
unsupervised PRFLj;4 only localizes 136 bugs within Top-1. Sec-
ond, ProFL can significantly boost unsupervised-learning-based
fault localization. E.g., ProFLprrrama localizes 185 bugs within
Top-1, the best fault localization results on Defects4] without su-
pervised learning to our knowledge. Actually, such unsupervised-
learning-based fault localization results even significantly outper-
form many state-of-the-art supervised-learning-based techniques,
e.g., TraPT [40], FLUCCS [67], and CombineFL [85] only localize
156, 160, and 168 bugs from the same dataset within Top-1, re-
spectively [39, 85]. Lastly, we can observe that ProFL even boosts
state-of-the-art supervised-learning-based technique. E.g., it boosts
DeepFL to localize 216.80 bugs within Top-1, the best fault local-
ization results on Defects4] with supervised learning to our knowl-
edge. The Wilcoxon signed-rank test [75] with Bonferroni correc-
tions [18] for bug ranking also shows that ProFL significantly boosts
all the studied learning-based techniques at significance level of
0.05.

Finding 7: ProFL significantly outperforms state-of-the-art
unsupervised-learning-based fault localization, and can fur-
ther boost unsupervised and supervised learning based fault
localization, further demonstrating the effectiveness and gen-
eral applicability of ProFL.

Table 11: Boosting state-of-the-art learning-based fault lo-
calization

Tech Name Top-1 | Top-3 | Top-5 | MFR | MAR
PRFL 114 199 243 | 23.62 | 27.67
ProFLpRrr 179 251 288 | 10.44 | 14.83
PRFL 136 242 269 | 18.06 | 22.60
ProFLpRFL,, 4 185 264 295 | 9.04 | 13.73
DeepFL 211.00 | 284.50 | 310.50 4.97 6.27
ProFLpeeprr | 216.80 | 293.60 | 318.00 | 4.53 | 5.88

Developer patch:

Method:public static OrderDTO convertDTOFromAdOrder(AdPlan plan)

- result.setBizScene(SceneType.APP.toString());
result.setBizScene(plan.getSceneType().getSceneCode());

Figure 7: Developer patch for Bug-A in industry

6.4 Industry case study

ProFL has already been deployed in Alipay [1], a practical online
payment system with over 1 billion global users. Before the deploy-
ment, the Alipay developers evaluated ProFL on a large number of
real bugs and observed that ProFL consistently/largely boosts the
Ochiai fault localization that Alipay used (e.g., localizing 2.1X more
bugs within Top-1). We now present a case study with one real-
world bug that ProFL has recently helped debug within Alipay. The
bug is from Project-A (with 100M+ daily users, anonymized ac-
cording to the company policy), a Spring-style [4] multi-module mi-
croservice system (built with Maven) with 197,402 LoC and 418 tests.
State-of-the-art Ochiai and PRFLj4 localize the buggy method as
the 125th and 52nd, respectively. In contrast, within 48min, after



ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

exploring 3459 patch executions, the default ProFL (applied on
Ochiai with partial PraPR matrices) directly localizes the bug as
the 1st, i.e., over 50X improvement in bug ranking. The developers
looked into the code and found that although the bug is challenging
to automatically fix with the current used repair system PraPR
(as shown in Figure 7, this bug requires a multi-edit patch that is
not currently supported by PraPR), multiple patches on the actual
buggy method was able to mute the bug and make the originally
failing tests pass. In this way, ProFL is able to easily point out the
actual buggy location.

7 CONCLUSION

We have investigated a simple question: can automated program
repair help with fault localization? To this end, we have designed,
ProFL, the first unified debugging approach that leverages program
repair information as the feedback for powerful fault localization.
The experimental results on the widely used Defects4] benchmarks
demonstrate that ProFL can significantly outperform state-of-the-
art spectrum and mutation based fault localization. Furthermore, we
have demonstrated ProFL’s effectiveness under various settings as
well as with an industry case study. Lastly, ProFL even boosts state-
of-the-art fault localization via both unsupervised and supervised
learning.

ACKNOWLEDGEMENTS

This work was partially supported by the National Key Research and
Development Program of China under Grant No. 2017YFB1001803
and the National Natural Science Foundation of China under Grant
Nos. 61872008 and 61861130363. This work was also partially sup-
ported by National Science Foundation under Grant Nos. CCF-
1763906 and CCF-1942430, and Alibaba.

REFERENCES

2019. Alipay. https://intl.alipay.com/. Accessed Aug-22-2019.

[2] 2019. JavaAgent. https://docs.oracle.com/javase/7/docs/api/java/lang/
instrument/package-summary.html

2019. Pitest. http://pitest.org

2019. Spring Framework. https://spring.io/. Accessed Jan-10-2020.

Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of
spectrum-based fault localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques-MUTATION (TAICPART-MUTATION 2007). IEEE,
89-98.

Apache. 2019. Commons Math. https://commons.apache.org/proper/commons-
math/. Accessed Aug-22-2019.

Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-to-
rank based fault localization approach using likely invariants. In Proceedings of the
25th International Symposium on Software Testing and Analysis. ACM, 177-188.
Antonia Bertolino. 2007. Software testing research: Achievements, challenges,
dreams. In 2007 Future of Software Engineering. IEEE Computer Society, 85-103.
Lionel C Briand, Yvan Labiche, and Xuetao Liu. 2007. Using machine learning to
support debugging with tarantula. In ISSRE. 137-146.

Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: a code manip-
ulation tool to implement adaptable systems. Adaptable and extensible component
systems 30, 19 (2002).

Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Compiler Bug Isolation via Effective Witness Test Program Generation. In
FSE. 223-234.

Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-based Program Repair
Without the Contracts. In Proceedings of the 32Nd IEEE/ACM International Con-
ference on Automated Software Engineering (Urbana-Champaign, IL, USA) (ASE
2017). IEEE Press, Piscataway, NJ, USA, 637-647. http://dl.acm.org/citation.cfm?
id=3155562.3155642

Lori A. Clarke. 1976. A system to generate test data and symbolically execute
programs. TSE 3 (1976), 215-222.

[10]

[11]

[12

=
&

Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and Lu Zhang

[14

[15

(17

(18

[19

[20

[22

[23

[24

[26

[27

[28

[30

[31

[32

[34

[35

[36

[37

]

]

]

]

Valentin Dallmeier, Christian Lindig, and Andreas Zeller. 2005. Lightweight
defect localization for java. In ECOOP. 528-550.

Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. 2009. Generating Fixes
from Object Behavior Anomalies. In Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE °09). IEEE Computer
Society, Washington, DC, USA, 550-554. https://doi.org/10.1109/ASE.2009.15
V. Debroy and W. E. Wong. 2010. Using Mutation to Automatically Suggest Fixes
for Faulty Programs. In 2010 Third International Conference on Software Testing,
Verification and Validation. 65-74. https://doi.org/10.1109/ICST.2010.66
Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints on
Test Data Selection: Help for the Practicing Programmer. IEEE Computer 11, 4
(1978), 34-41. https://doi.org/10.1109/C-M.1978.218136

Olive Jean Dunn. 1961. Multiple comparisons among means. Journal of the
American statistical association 56, 293 (1961), 52-64.

L. Gazzola, D. Micucci, and L. Mariani. 2017. Automatic Software Repair: A
Survey. IEEE Transactions on Software Engineering PP, 99 (2017), 1-1. https:
//doi.org/10.1109/TSE.2017.2755013

Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program
repair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2019, Beijing, China,
FJuly 15-19, 2019. 19-30. https://doi.org/10.1145/3293882.3330559

Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. 2011.
Specification-based Program Repair Using SAT. In Proceedings of the 17th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems (Saarbrcken, Germany) (TACAS’11/ETAPS’11). Springer-Verlag, Berlin,
Heidelberg, 173-188. http://dl.acm.org/citation.cfm?id=1987389.1987408
Gregécr. 2019. Defects4] — version 1.4.0. https://github.com/Greg4cr/defects4j/
tree/additional-faults-1.4.

Dan Hao, Tao Xie, Lu Zhang, Xiaoyin Wang, Jiasu Sun, and Hong Mei. 2010. Test
input reduction for result inspection to facilitate fault localization. Autom. Softw.
Eng. 17,1 (2010), 5-31. https://doi.org/10.1007/s10515-009-0056-x

Dan Hao, Lu Zhang, Ying Pan, Hong Mei, and Jiasu Sun. 2008. On similarity-
awareness in testing-based fault localization. Autom. Softw. Eng. 15, 2 (2008),
207-249. https://doi.org/10.1007/s10515-008-0025-9

Dan Hao, Lu Zhang, Tao Xie, Hong Mei, and Jiasu Sun. 2009. Interactive Fault
Localization Using Test Information. J. Comput. Sci. Technol. 24, 5 (2009), 962-974.
https://doi.org/10.1007/s11390-009-9270-z

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development
of Mutation Testing. IEEE Trans. Software Eng. 37, 5 (2011), 649-678. https:
//doi.org/10.1109/TSE.2010.62

Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring
program transformations from singular examples via big code. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 255-266.

Jiajun Jiang, Ran Wang, Yingfei Xiong, Xiangping Chen, and Lu Zhang. 2019.
Combining Spectrum-Based Fault Localization and Statistical Debugging: An
Empirical Study. In 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE,
502-514. https://doi.org/10.1109/ASE.2019.00054

Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 298-309.

James A Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In ICSE. 467-477.

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4]: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(San Jose, CA, USA) (ISSTA 2014). ACM, New York, NY, USA, 437-440. https:
//doi.org/10.1145/2610384.2628055

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 802-811.

James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385-394.

Edward Kit and Susannah Finzi. 1995. Software testing in the real world: improving
the process. ACM Press/Addison-Wesley Publishing Co.

Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis. ACM, 165-176.

Xianglong Kong, Lingming Zhang, W Eric Wong, and Bixin Li. 2015. Experience
report: How do techniques, programs, and tests impact automated program
repair?. In ISSRE. 194-204.

Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Martin Monperrus,
Jacques Klein, and Yves Le Traon. 2019. iFixR: bug report driven program repair. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM,
314-325.



Can Automated Program Repair Refine Fault Localization?
A Unified Debugging Approach

[38]

[39]

[40

[41

[44

[45]

[46

[47]

[48

[49

[50]

[51]

[52]

[53]

[54]

[56]

[57

[58

[59

[60]

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (2012), 54-72. https://doi.org/10.1109/TSE.2011.104
Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Meller
(Eds.). ACM, 169-180. https://doi.org/10.1145/3293882.3330574

Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem for
fault localization. Proceedings of the ACM on Programming Languages 1, OOPSLA
(2017), 92

Xiangyu Li, Shaowei Zhu, Marcelo d’Amorim, and Alessandro Orso. 2018. Enlight-
ened debugging. In Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chau-
dron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 82-92.
https://doi.org/10.1145/3180155.3180242

Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I Jordan. 2005.
Scalable statistical bug isolation. PLDI (2005), 15-26.

Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jin Song Dong. 2017. Feedback-
based debugging. In Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. 393-403. https:
//doi.org/10.1109/ICSE.2017.43

Fan Long and Martin Rinard. 2015. Staged program repair with condition syn-
thesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015. 166-178.
https://doi.org/10.1145/2786805.2786811

Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016. 298-312. https://doi.org/10.1145/2837614.2837617

Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. 2019. History-
driven build failure fixing: how far are we?. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 43-54.
Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. Sapfix: Automated end-to-end
repair at scale. In Proceedings of the 41st International Conference on Software
Engineering: Software Engineering in Practice. 269-278.

Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic repair of real bugs in java: a large-scale experiment
on the defects4j dataset. Empirical Software Engineering 22, 4 (01 Aug 2017),
1936-1964. https://doi.org/10.1007/s10664-016-9470-4

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016. 691-701. https://doi.org/10.1145/2884781.2884807

Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. ACM
Comput. Surv. 51, 1, Article 17 (Jan. 2018), 24 pages. https://doi.org/10.1145/
3105906

Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
mutants: Mutating faulty programs for fault localization. In Software Testing,
Verification and Validation (ICST), 2014 IEEE Seventh International Conference on.
IEEE, 153-162.

Glenford ] Myers, Corey Sandler, and Tom Badgett. 2011. The art of software
testing. John Wiley & Sons.

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: program repair via semantic analysis. In 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26,
2013. 772-781. https://doi.org/10.1109/ICSE.2013.6606623

Mike Papadakis and Yves Le Traon. 2012. Using mutants to locate” unknown"
faults. In Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth
International Conference on. IEEE, 691-700.

Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Software Testing, Verification and Reliability 25, 5-7 (2015), 605-628.
Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the 2011 international symposium
on software testing and analysis. ACM, 199-209.

Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In Proceedings of the 39th International Conference on Software Engi-
neering. 609-620.

Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas
Zeller. 2014. Automated Fixing of Programs with Contracts. IEEE Transactions
on Software Engineering 40, 5 (2014), 427-449. https://doi.org/10.1109/TSE.2014.
2312918

William E Perry. 2007. Effective Methods for Software Testing: Includes Complete
Guidelines, Checklists, and Templates. John Wiley & Sons.

Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014.
The Strength of Random Search on Automated Program Repair. In Proceedings

ISSTA °20, July 18-22, 2020, Los Angeles/Virtual, CA, USA

of the 36th International Conference on Software Engineering (Hyderabad, India)
(ICSE 2014). ACM, New York, NY, USA, 254-265. https://doi.org/10.1145/2568225.
2568254

Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of patch
plausibility and correctness for generate-and-validate patch generation systems.
In ISSTA. 24-36.

Shounak Roychowdhury and Sarfraz Khurshid. 2011. A novel framework for
locating software faults using latent divergences. In ECML. 49-64.

Shounak Roychowdhury and Sarfraz Khurshid. 2011. Software fault localization
using feature selection. In International Workshop on Machine Learning Technolo-
gies in Software Engineering. 11-18.

Shounak Roychowdhury and Sarfraz Khurshid. 2012. A family of generalized
entropies and its application to software fault localization. In International Con-
ference Intelligent Systems. 368-373.

Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. 2017. ELIXIR:
effective object oriented program repair. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE Press, 648-659.
Andrew Scott, Johannes Bader, and Satish Chandra. 2019. Getafix: Learning to
fix bugs automatically. arXiv preprint arXiv:1902.06111 (2019).

Jeongju Sohn and Shin Yoo. 2017. Fluccs: Using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 273-283.

Gregory Tassey. 2002. The economic impacts of inadequate infrastructure for
software testing. National Institute of Standards and Technology, RTI Project 7007,
011 (2002).

Christopher Steven Timperley, Susan Stepney, and Claire Le Goues. 2017. An
investigation into the use of mutation analysis for automated program repair. In
International Symposium on Search Based Software Engineering. Springer, 99-114.
Tricentis. 2019. "Tricentis Report". https://www.tricentis.com. "accessed 10-jan-
2020".

Westley Weimer. 2006. Patches As Better Bug Reports. In Proceedings of the 5th
International Conference on Generative Programming and Component Engineering
(Portland, Oregon, USA) (GPCE ’06). ACM, New York, NY, USA, 181-190. https:
//doi.org/10.1145/1173706.1173734

Westley Weimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging program
equivalence for adaptive program repair: Models and first results. In ASE. 356~
366.

Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In Pro-
ceedings of the 40th International Conference on Software Engineering (ICSE 2018).
1-11.

Wikipedia contributors. 2019. Software bug — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Software_bug [accessed 10-jan-2020].

Wikipedia contributors. 2019. Wilcoxon signed-rank test — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test.
[accessed 10-jan-2020].

W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Trans. Softw. Eng. 42, 8 (Aug. 2016),
707-740. https://doi.org/10.1109/TSE.2016.2521368

Xiaoyuan Xie, Zicong Liu, Shuo Song, Zhenyu Chen, Jifeng Xuan, and Baowen
Xu. 2016. Revisit of automatic debugging via human focus-tracking analysis. In
ICSE. 808-819.

Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian
R. Lamelas Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monper-
rus. 2017. Nopol: Automatic Repair of Conditional Statement Bugs in Java
Programs. IEEE Transactions on Software Engineering 43, 1 (2017), 34-55.
https://doi.org/10.1109/TSE.2016.2560811

Jifeng Xuan and Martin Monperrus. 2014. Learning to combine multiple ranking
metrics for fault localization. In 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 191-200.

Jifeng Xuan and Martin Monperrus. 2014. Test case purification for improving
fault localization. In FSE. 52-63.

Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting mechanical
faults to localize developer faults for evolving software. In OOPSLA. 765-784.
Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. 2017. Boosting
spectrum-based fault localization using PageRank. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 261-272.
Mengshi Zhang, Yaoxian Li, Xia Li, Lingchao Chen, Yuqun Zhang, Lingming
Zhang, and Sarfraz Khurshid. 2019. An Empirical Study of Boosting Spectrum-
based Fault Localization via PageRank. IEEE Transactions on Software Engineering
(2019).

Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Locating faults through
automated predicate switching. In Proceedings of the 28th international conference
on Software engineering. ACM, 272-281.

Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D Ernst, and Lu Zhang. 2019.
An Empirical Study of Fault Localization Families and Their Combinations. IEEE
Transactions on Software Engineering (2019). https://doi.org/10.1109/TSE.2019.
2892102



