Empirically Revisiting and Enhancing
IR-Based Test-Case Prioritization

Qianyang Peng
University of Illinois
Urbana, IL, USA
qp3@illinois.edu

ABSTRACT

Test-case prioritization (TCP) aims to detect regression bugs faster
via reordering the tests run. While TCP has been studied for over
20 years, it was almost always evaluated using seeded faults/mu-
tants as opposed to using real test failures. In this work, we study
the recent change-aware information retrieval (IR) technique for
TCP. Prior work has shown it performing better than traditional
coverage-based TCP techniques, but it was only evaluated on a
small-scale dataset with a cost-unaware metric based on seeded
faults/mutants. We extend the prior work by conducting a much
larger and more realistic evaluation as well as proposing enhance-
ments that substantially improve the performance. In particular,
we evaluate the original technique on a large-scale, real-world
software-evolution dataset with real failures using both cost-aware
and cost-unaware metrics under various configurations. Also, we
design and evaluate hybrid techniques combining the IR features,
historical test execution time, and test failure frequencies. Our
results show that the change-aware IR technique outperforms state-
of-the-art coverage-based techniques in this real-world setting, and
our hybrid techniques improve even further upon the original IR
technique. Moreover, we show that flaky tests have a substantial
impact on evaluating the change-aware TCP techniques based on
real test failures.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-
ging.

KEYWORDS

Test-case prioritization, information retrieval, continuous integra-
tion

ACM Reference Format:

Qianyang Peng, August Shi, and Lingming Zhang. 2020. Empirically Re-
visiting and Enhancing IR-Based Test-Case Prioritization. In Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA °20), July 18-22, 2020, Virtual Event, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3395363.3397383

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °20, July 18-22, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8008-9/20/07...$15.00
https://doi.org/10.1145/3395363.3397383

August Shi
University of Illinois
Urbana, IL, USA
awshi2@illinois.edu

324

Lingming Zhang
University of Texas at Dallas
Dallas, TX, USA
lingming.zhang@utdallas.edu

1 INTRODUCTION

Test-case prioritization (TCP) aims to detect regression bugs faster
by reordering the tests such that the ones more likely to fail (and
therefore detect bugs) are run first [50]. To date, researchers have
proposed a large number of TCP techniques, including both change-
unaware and change-aware techniques. Change-unaware techniques
use dynamic or static information from the old version to perform
TCP. For example, the total technique simply sorts all the tests in
the descending order of the number of the covered program ele-
ments (e.g., methods or statements), while the improved additional
technique sorts the tests based on the number of their covered
elements that are not covered by already prioritized tests [51]. In
contrast, change-aware techniques consider program changes be-
tween the old and new software versions to prioritize tests more
likely to detect bugs due to these changes. For example, a change-
aware technique based on information retrieval (IR) [53] reduces
the problem of TCP into the traditional IR problem [37]—the pro-
gram changes between revisions are treated as the query, while the
tests are treated as the data objects; the tests that are textually more
related to the program changes are prioritized earlier.

Although various studies have investigated the effectiveness of
existing TCP techniques, they suffer from the following limitations.
First, they are usually performed on artificial software evolution
with seeded artificial or real bugs, and not on real-world software
evolution with real test failures. For example, recently Luo et al. [34]
empirically evaluated TCP techniques on both artificial bugs via
mutation testing and real bugs from Defects4] [22]. However, even
Defects4] bugs are not representative of real regression bugs, be-
cause Defects4] bugs are isolated bugs, while real regression bugs
often come with other benign changes. Furthermore, developers
using TCP as part of their workflow would not know a priori what
are the exact bugs in the code; they would only be able to observe
the test failures that occur. Second, the existing TCP techniques
are usually evaluated using cost-unaware metrics, such as Average
Percentage of Faults Detected (APFD) [50]. Even state-of-the-art
TCP techniques were also evaluated using only APFD [33, 44, 53],
which can be biased and unrealistic [10, 36]. Last but not least, flaky
tests have been demonstrated to be prevalent in practice [32], but
to the best of our knowledge, none of the existing studies of TCP
considered the impacts of flaky tests. In evaluating TCP effective-
ness, flaky test failures would not indicate real bugs in the code, so
having such failures can mislead the results if the goal is to order
the tests that fail (because presumably they detect a real bug) first.

In this work, we focus on the IR technique for TCP based on
program changes [53], which we call the IR-based TCP technique.
This technique uses IR to calculate the textual similarity between
the program changes and each test, then prioritizes the tests in

ISSTA °20, July 18-22, 2020, Virtual Event, USA

descending order of their similarities with the changes. We focus
on this specific technique because it has been shown to outperform
traditional change-unaware total and additional techniques [53].
Furthermore, the IR-based TCP technique is a lightweight static
technique that scales well and can be easily applied to a large set of
projects. In our new evaluation, we aim to reduce the limitations of
the prior studies by using a dataset consisting of real test failures
in projects that occur due to real software evolution and by using
both cost-unaware and cost-aware metrics for evaluation. We also
aim to further enhance the IR-based TCP technique by exploring
more configurations and hybridizing IR features with historical test
execution time and failure frequencies to improve its performance.

Some other studies have started using real test failures for other
aspects of regression testing, e.g., for test-suite reduction [56] re-
gression test selection (RTS) [7], and the impact of flaky tests [25].
Elbaum et al. proposed their TCP and RTS techniques and evalu-
ated them on a closed-source Google dataset [14]. In contrast, we
construct a dataset using real-world, open-source projects.

This paper makes the following contributions:

e Dataset: We collect a large-scale dataset from GitHub and
Travis CI. Our dataset consists of 2,042 Travis CI builds with
2,980 jobs (a Travis CI build can have multiple jobs), and 6,618
real test failures from 123 open-source Java projects. For
each job, our dataset has the source code, program changes,
and the test execution information (the pass/fail outcome
and the test execution time), which suffice for evaluating
TCP techniques. Our dataset also includes the test coverage
information for 565 jobs and the test flakiness labeling for
252 jobs. Moreover, our dataset is publicly available [4].

o Novel Technique: We propose new hybrid IR-based TCP tech-
niques that takes into consideration not only change-aware
IR but also test execution time and historical test failure
frequencies. Our hybrid IR-based TCP techniques signifi-
cantly outperform the traditional IR-based TCP techniques
and history-based techniques.

o Evaluation: We evaluate a wide range of configurations of
IR-based TCP techniques on our dataset using both cost-
unaware and cost-aware metrics. We are among the first to
evaluate TCP techniques based on a large number of real test
failures taken from real-world project changes as opposed
to seeded mutants and faults in the code. We are the first to
evaluate specifically IR-based TCP techniques with a cost-
aware metric, and we are the first to study the impacts of
flaky tests on TCP, which pose a problem to evaluations
based on test failures.

e Outcomes: Our study derives various outcomes, including:
(1) there is a huge bias when using a cost-unaware met-
ric for TCP instead of a cost-aware metric; (2) the IR-based
TCP technique outperforms state-of-the-art coverage-based
TCP techniques on real software evolution by both cost-
unaware and cost-aware metrics; (3) our hybrid IR-based
TCP techniques are very effective in performing TCP and
significantly outperform all traditional IR-based TCP tech-
niques and history-based techniques; and (4) flaky tests have
a substantial impact on the change-aware TCP techniques.

325

Qianyang Peng, August Shi, and Lingming Zhang

2 INFORMATION RETRIEVAL (IR)
TECHNIQUES

Saha et al. [53] first proposed using information retrieval (IR) tech-
niques to perform test-case prioritization (TCP). The key idea is
that tests with a higher textual similarity to the modified code are
more likely related to the program changes, thus having a higher
chance to reveal any bugs between the versions due to the changes.

In general, in an IR system, a query is performed on a set of
data objects, and the system returns a ranking of the data objects
based on similarity against the input query. There are three key
components for an IR system: (1) how to construct the data objects,
(2) how to construct the query, and (3) the retrieval model that
matches the query against the data objects to return a ranking of
the data objects as the result. We describe each component in detail
and how they relate to performing TCP.

2.1 Construction of Data Objects

For IR-based TCP, the data objects are constructed from the tests'.
To construct the data objects, the first step is to process the string
representation of each test into tokens. A token is a sequence of
characters that act as a semantic unit for processing. For example,
a variable can be a token. We consider four different approaches to
process the test files.

The first and most naive approach we consider is to use the
whitespace tokenizer that breaks text into tokens separated by
any whitespace character. We denote this approach as Low. The
approach is simple and straightforward, but it results in two main
disadvantages: (1) the approach does not filter out meaningless
terms for IR such as Java keywords (e.g., if; else, return), operators,
numbers and open-source licenses; and (2) the approach fails to
detect the similarities between the variable names that are partially
but not exactly the same, e.g., setWeight and getWeight.

An optimization for the naive Low approach is to use a spe-
cial code tokenizer to tokenize the source code; we denote this
second approach as Low;gkepn- LOW;oken improves upon Low by
introducing a code tokenizer that (1) filters out all the numbers
and operators, (2) segments the long variables by non-alphabetical
characters in-between and by the camel-case heuristics, and (3) turn
all upper-case letters to lower-case letters. With this code tokenizer,
Low;oken removes several of the disadvantages of Low. However,
Low;oken still does not filter out some meaningless terms for IR,
such as Java keywords and open-source licenses.

A third approach is to build an abstract syntax tree (AST) from
each test file and extract the identifiers and comments [53]. This
step removes most meaningless terms. We denote this approach as
High. After extracting the identifiers, we can additionally apply the
same code tokenizer as Low; k., to create finer-grained tokens.
We denote this fourth, final approach as High;ogen-

2.2 Construction of Queries

IR-based TCP constructs a query based on the program changes
(in terms of changed lines) between two versions. Similar to the
construction of data objects, we also apply one of Low, Low;oken,
High, and High; o..n, as the preprocessing approach for the query.

!In this work, we prioritize test classes as tests; a test class can contain multiple test
methods. In the rest of this paper, when we refer to a test, we mean test class.

Empirically Revisiting and Enhancing IR-Based Test-Case Prioritization

For each type of data-object construction, we apply the same corre-
sponding preprocessing approach, e.g., if using High; ., for data
objects, we use High; ., for the query as well.

Example 1: The context of changed code

private void initEnvType() {
2 // Get environment from system property

m_env = System.getProperty("env");
L+ if (Utils.isBlank(m_env)) {
5o+ m_env = System.getProperty("active");
6 + }
if (!'Utils.isBlank(m_env)) {
8 m_env = m_env.trim();

9 logger.info(info, m_env);
10 return;

1 }

An important consideration for constructing the query is whether
to include the context of the change or not. By context, we mean the
lines of code around the exact changed lines between the two ver-
sions. Example 1 illustrates a small code diff with the surrounding
context, taken from a change to file DefaultServerProvider. java
in GitHub project ctripcorp/apollo 2. In the example, lines 4-6 are
the modified lines (indicated by +), and the highlighted lines show
the considered context for the diff if configured to include 1 line of
context. More context makes the query more informative, and the
query has a higher chance to reveal hidden similarities between
the code change and tests. However, more context also has a higher
chance to include unrelated text into the query. Prior work [53]
used 0 lines of context to construct queries without evaluating the
impact of this choice of context. In our evaluation, we evaluate the
impact of including 0 lines, 1 line, 3 lines, 5 lines of context before
and after the changed lines, and we also consider including the
contents of the whole file as the context.

2.3 Retrieval Models

The retrieval model part of the IR system takes the data objects and
the query as input, and it generates a ranking of data objects (i.e.,
tests for IR-based TCP) as the output. In our evaluation, we explore
the following four retrieval models: Tf-idf, BM25, LSI and LDA.
Tf-idf. Tf-idf [54] is a bag-of-words based text vectorization algo-
rithm. Given the vector representations of the data objects, we per-
form the data-object ranking based on the vector distances between
the data objects’ vectors and the query. We use Tfidf Vectorizer from
scikit-learn [45] to implement the Tf-idf model. We perform TCP
by sorting the tests in a descending order of the cosine similarity
scores between their Tf-idf vectors and the query’s vector.

BM25. BM25 [48] (also known as Okapi BM25), is another suc-
cessful retrieval model [47]. Unlike the Tf-idf model, BM25 takes
the data-object lengths into consideration, such that shorter data
objects are given higher rankings. Moreover, unlike the traditional
Tf-idf model, which requires using the cosine similarity scores to
perform the ranking after feature extraction, BM25 itself is designed
to be a ranking algorithm that can directly compute the similarity
scores. In our evaluation, we use the gensim [46] implementation
of BM25, and we use their default parameters. We perform TCP by

Zhttps://github.com/ctripcorp/apollo/pull/1029/files

326

ISSTA °20, July 18-22, 2020, Virtual Event, USA

sorting tests in the descending order of their BM25 scores. Saha et
al. [53] previously evaluated IR-based TCP using BM25 on Java
projects, and recently Mattis and Hirschfeld also evaluated IR-based
TCP using BM25, but on Python projects.

LSI and LDA. LSI [11] and LDA [62] are two classic unsupervised
bag-of-words topic models. As a topic model, the representation of
a data object or a query is a vector of topics rather than a vector
of raw tokens. This mathematical embedding model transforms
the data objects from a very high dimensional vector space with
one dimension per word into a vector space with a much lower
dimension. Using a vector of topics to represent each data object and
the query, we can calculate the similarity scores and rank the data
objects. We use the gensim implementation of LSI and LDA, and
we use cosine similarity to calculate vector similarities to compute
the ranking.

2.3.1 New Tests and Tie-Breaking. In the case of new tests, which
means there is no IR score, we configure IR-based TCP to place the
new tests at the very beginning of the test-execution order, because
we believe new tests are the most related to the recent changes.

When multiple tests share the same score, it means that IR-based
TCP considers them equally good. However, the tests still need to
be ordered. In such a scenario, we order these tests deterministically
in the order they would have been scheduled to run when there is
no TCP technique that reorders them (basically running them in
the order the test runner runs them).

3 CONSTRUCTING DATASET

To perform IR-based TCP, we need the code changes between two
software versions (for the query) and the textual contents of tests
(for the data objects). For our evaluation, we need test execution out-
comes (pass or fail) and test execution time as to evaluate how well
an IR-based TCP technique orders failing tests first. We construct
our dataset that contains all of the above requirements.

To construct our dataset, we use projects that use the Maven
build system, are publicly hosted on GitHub, and use Travis CL
Maven [2] is a popular build system for Java projects, and the logs
from Maven builds are detailed enough to contain the information
we need concerning test execution outcomes and times. GitHub [1]
is the most popular platform for open-source projects. If a project
is active on GitHub, we can download any historical version of
the project, and we can get the code changes between any two
code versions in the form of an unified diff file. Travis CI [3] is
a widely-used continuous-integration service that integrates well
with GitHub. When a project on GitHub is integrated with Travis
CI, every time a developer pushes or a pull request is made to the
GitHub project, that push or pull request triggers a Travis build,
which checks out the relevant version of the project onto a server
in the cloud and then proceeds to compile and test that version.

Each build on Travis CI can consist of multiple jobs. Different
jobs for the same build run on the same code version, but can
run different build commands or run using different environment
variables. Each job outputs a different job log and has its own job
state (passed, failed, or errored). As such, we treat jobs as the data
points for running TCP on in our study, as opposed to builds. We
use the Travis CI API to obtain the state of each job as well as the
state of the jobs from the previous build. The Travis CI API also

ISSTA °20, July 18-22, 2020, Virtual Event, USA

provides for us the Git commit SHA corresponding to the build
and the previous build as well. We use the commit SHAs to in turn
query the GitHub API to obtain the diff between the two versions.
Furthermore, we use the Travis CI API to download full job logs
corresponding to each job. We obtain the test execution outcomes
and test execution times for each job by parsing the historical job
logs, as long as the job log is well formatted.

We start with 10,000 Java projects collected using GitHub’s
search API. A single query to the GitHub search API returns at most
1,000 projects, so we use 10 separate sub-queries by the year of
creation of the project. In the search query, we specify the primary
language to be Java and sort the result by the descending number
of stars (a representation of the popularity of a project). Out of the
10,000 projects, we find 1,147 projects that build using Maven and
also use Travis CIL For each of these projects, we select the jobs for
the project that satisfy the requirements below:

(1) The SHA of the build’s corresponding commit is accessible
from GitHub, so we can download a snapshot of the project
at that commit in the form of a zip file.

(2) The state of the job is “failed” due to test failures, while
the state of the previous Travis build is “passed” (A “passed”
Travis build means the states of all jobs in it are “passed”).
This requirement is to increase the likelihood that the job
contains regressions that are due to the code changes.

(3) The logs of both the job and the previous job are analyzable,
which means we can get the fully-qualified name (FQN), the
outcome (passed or failed), and the execution time of every
test run in the jobs.

(4) The code changes between the build and the previous build
contains at least one Java file, and the Java files are decode-
able and parseable.

For each job log, we extract the FQNs and execution times of
executed tests by matching the text with regular expressions “Run-
ning: (*?)” and “Time elapsed: (*? s)”. We extract the failed test
FQNs with the provided toolset from TravisTorrent [9].

Given these requirements for jobs, we obtain a final dataset that
consists of 2,980 jobs from 2,042 Travis builds across 123 projects.
More details on the specific projects and the jobs we analyze can
be found in our released dataset [4].

4 EXPERIMENT SETUP

We evaluate IR-based TCP on our collected dataset of projects
and test failures. In this section, we discuss the metrics we use
to evaluate TCP and give details on the other TCP techniques we
compare IR-based TCP against.

4.1 Evaluation Metrics

We use two metrics, Average Percentage of Faults Detected (APFD)
and Average Percentage of Fault Detected per Cost (APFDc), to
evaluate TCP effectiveness.

4.1.1 Average Percentage of Faults Detected (APFD). Average Per-
centage of Faults Detected (APFD) [50] is a widely used cost-unaware
metric to measure TCP effectiveness:

APFD = 1- 22 1Fi 4 1

nxXm 2n"

327

Qianyang Peng, August Shi, and Lingming Zhang

In the formula, n is the number of tests and m is the number of
faults. TF; is the position of the first failed test that detects the ith
fault in the prioritized test suite.

4.1.2 Average Percentage of Fault Detected per Cost (APFDc). Av-
erage Percentage of Fault Detected per Cost (APFDc) is a variant
of APFD that takes into consideration the different fault severities
and the costs of test executions [12, 36]. Due to the difficulty of
retrieving the fault severities, prior work typically uses a simplified
version of APFDc that only takes into consideration the test execu-
tion time [10, 15]. Our evaluation utilizes this simplified version of
APFDc in ourze'}lfa(lggtion:t L)
i=1\&j=TF; L~ 2!TF;

APFDc = zj;z:f},-mz

In the formula, n, m, and TF; have the same definitions as in the
formula for APFD, while ¢; is the execution time of the jth test.

Prior TCP work [10, 36] has shown that the classic TCP evalua-
tion metric APFD can be very biased and unreal. More specifically,
a technique that results in high APFD does not necessarily result
in high APFDc, thus being not cost-efficient. Recently, Chen et
al. [10] also showed that a simple cost-only technique outperforms
coverage-based TCP techniques. In this work, we measure TCP
effectiveness using both metrics, in particular evaluating IR-based
TCP, which was only evaluated using APFD in the past [53]. We
measure both as to compare how the two metrics can lead to differ-
ent results in which TCP technique is the best.

4.1.3 Failure-to-Fault Mapping. Note that APFD and APFDc are
defined with respect to the number of faults as opposed to failed
tests. Prior work evaluated using seeded faults and mutants (treated
as faults), with an exact mapping from test failures to faults in
the code. However, in our evaluation, we only have information
concerning which tests failed, and we do not have an exact mapping
from failures to faults. Potentially, a single failed test can map to
multiple faults in the code, and conversely multiple failed tests can
all map to a single fault. In general, a developer would not know
this exact mapping without deep investigation, and given our use
of a dataset using real test failures, we also do not know the exact
mapping. When answering our research questions, we assume that
each single failed test maps to a single distinct fault, similar to one
of the mappings Shi et al. used in their prior work on test-suite
reduction [56], so the number of faults is then the number of test
failures. In Section 5.5, we evaluate the impacts of a new mapping
that all failures map to the same fault (only one fault in the code),
the other extreme for mapping failures to faults.

4.2 Other TCP Techniques

We implement two simple TCP techniques, based on test execution
time or historical failures, as baselines to compare IR-based TCP
against. While these baselines are relatively simple, prior work has
also shown them to be quite effective TCP techniques [10, 14]. We
also implement four traditional coverage-based TCP techniques
for comparison purposes as well. In general, all these other TCP
techniques prioritize based on some metric. For ties in the metric,
like with our implementation IR-based TCP, we order the tests
deterministically in the order they would have been scheduled to
run without any TCP technique in use.

Empirically Revisiting and Enhancing IR-Based Test-Case Prioritization

4.2.1 QTF. A simple way to prioritize tests is based on the execu-
tion time of the tests. The intuition is that if the fastest-running
tests can already find bugs, then running them first should lead to
quicker detection of bugs. QTF prioritizes the tests by the ascend-
ing order of their execution time in the previous job, running the
quickest test first. Chen et al. found this technique to be a strong
baseline in their prior work [10].

4.2.2 HIS. Both industry [35, 40] and academia [7, 42, 59] have
considered historical test failures when optimizing software testing
techniques. In fact, Maven Surefire, the default unit testing plugin
for Maven builds, has a built-in option for specifying that recently
failed tests be run first [5]. The intuition is that more frequently
failed tests are more likely to fail again in the future. HIS builds
upon that intuition and prioritizes the tests based on the number
of times the test has failed in prior jobs.

To implement HIS, we collect the historical failure frequency
data for each test in each job by counting the number of times that
the specific test has ever failed before the specific job. Each test ¢;
is then assigned a historical failure frequency hf;, indicating the
number of times it failed before, and HIS orders the tests by the
descending order of hf;.

4.2.3 Coverage-Based TCP. Coverage-based TCP techniques have
been extensively evaluated in empirical studies [31, 50] and are
widely used as the state-of-the-art techniques to compare new tech-
niques against [44, 53]. We focus on four traditional coverage-based
TCP techniques: (1) Total Test Prioritization [50], (2) Additional
Test Prioritization [50], (3) Search-Based Test Prioritization [30, 31],
and (4) Adaptive Random Test Prioritization (ARP) [21]. These four
techniques are all change-unaware, cost-unaware TCP techniques
that aim to find an ideal ordering of the tests based on the coverage
information of code elements (statements/branches/methods) [31]
obtained on the initial version. We utilize Lu et al.’s implementation
of the four coverage-based TCP techniques [31].

For every build in our dataset, we collect coverage on the cor-
responding previous build. Prior work has found that the distance
between the version for coverage collection and the version for test
prioritization can greatly impact test prioritization results, as the
tests and coverages would change over software evolution [13, 31].
In our evaluation, we compute the coverage at the build right be-
fore the build where the prioritized test ordering is evaluated, thus
maximizing the effectiveness of the coverage-based techniques. We
evaluate coverage-based TCP at its best for comparison purposes
against IR-based TCP.

To collect coverage on each previous build, we download the
corresponding previous build and try to rebuild it locally. We use a
clean Azure virtual machine installed with Ubuntu 16.04, and we
utilize the default Maven configuration to run the tests. We use
OpenClover [43], a coverage collection tool, to collect the coverage
information. OpenClover collects coverage per each test method,
and we merge the coverage of each test method in the same test class
together to form the coverage for each test class. Note that our local
build might be different from the original build on Travis CI because
of different Maven configurations, and the differences can make the
local Maven build crash or produce no result, so we are unable to
rerun all the jobs in our dataset locally. We also have to filter out the
tests that are executed locally but not recorded in the original build

328

ISSTA °20, July 18-22, 2020, Virtual Event, USA

log, to make the test suite consistent between our local build and
the original build run on Travis CI. (Such problems with building
also illustrate difficulties in implementing and deploying an actual
coverage-based TCP technique to run during regression testing.)
We successfully rebuild 565 jobs across 49 projects, out of the 2,980
jobs in the dataset. When we compare these coverage-based TCP
techniques against IR-based TCP, we compare them only on this
subset of jobs.

4.3 Flaky Tests

Our evaluation of TCP using real test failures from historical test
executions runs the risk of flaky tests. Flaky tests are tests that can
non-deterministically pass or fail even for the same code under
test [32]. The effect of flaky tests can be substantial, especially for
change-aware TCP techniques. If a test failure is due to flakiness,
the failure may have nothing to do with the recent change, and a
change-aware TCP technique may (rightfully) rank such a test lower.
However, if measuring TCP effectiveness based on test failures, a
TCP technique can be evaluated as worse than what it should be.

To study the effect of flaky tests on TCP evaluation, we build a
dataset that splits test failures into two groups: those definitely due
to flaky tests and those likely due to real regressions introduced by
program changes. Identifying whether a test failure is due to a flaky
test is challenging and would in the limit require extensive manual
effort [8, 26]. We use an automated approach by re-running the
commiits for the jobs with failed tests multiple times and checking
what tests fail in those reruns. We select 252 jobs that contain
exactly one single test failure and with a build time of less than five
minutes, which we rerun six times on Travis CI using exactly the
same configuration as when the job was originally run. (We choose
only single test failures as to simplify our analysis of categorizing
a failure as due to flakiness and a short build time as to not abuse
utilizing Travis CI resources.) After the reruns, we record whether
the single failure re-occurred or not. A test that does not consistently
fail is definitely flaky, while one that does fail in all reruns is likely
to be a failing test that indicates a real bug. (Note that having a
consistent failure in six reruns does not necessarily mean the test is
non-flaky.) For a job that we rerun, if the only failure in it is flaky,
that job is a flaky job; otherwise, it is a non-flaky job. As a result, we
collect 29 flaky jobs and 223 non-flaky jobs, and then we compare
the effectiveness of TCP techniques on them.

5 EMPIRICAL EVALUATION

Our evaluation aims to answer the following research questions:

¢ RQ1: How do different information retrieval configurations
impact IR-based TCP techniques in real software evolution?

e RQ2: How do IR-based TCP techniques compare against
other TCP techniques, in terms of both cost-unaware and
cost-aware metrics?

e RQ3: How can we further enhance IR-based TCP techniques?

e RQ4: How do flaky tests impact the evaluation of TCP in
real software evolution?

ISSTA °20, July 18-22, 2020, Virtual Event, USA

5.1 RQ1: IR Configurations

The goal of this RQ is to explore different configurations for IR-
based TCP; we then use the configuration that has the best perfor-
mance as the default implementation of the IR-based TCP technique
for the later RQs. When comparing the different configurations,
we use APFD as the evaluation metric. IR-based TCP is fundamen-
tally cost-unaware, so measuring APFD would better reflect the
differences in quality due to differences in the configurations.

As described in Section 2, there are three main configuration
options we need to set when implementing an IR-based TCP tech-
nique: (1) the code preprocessing approach for data objects and
queries (by default using High;oken), (2) the amount of context to
the program changes for constructing the query (by default using
the whole file as the context), and (3) the retrieval model (by default
using BM25, used in prior work [53]). We evaluate which values to
set for each option in RQ1.1, 1.2 and 1.3, respectively.

5.1.1 RQ1.1: Code Preprocessing. We apply the four types of code
preprocessing, Low, Low;oker, High, Highsoker, to the tests and
program changes for each failed job collected in our dataset. While
we change the code preprocessing approach, we set the other parts
to their default values. In other words, we use the whole-file strategy
for the amount of context to the program changes and use BM25
as the retrieval model.

Table 1: Comparing different preprocessing approaches

APFD Time on IR (s) | Avg. v-length

Method - -
mean | median | group | mean | median | data | query
Low 0.696 0.757 C 1.294 0.127 | 10419 3309
Lowroken 0.755 0.849 A 2.194 0326 | 1753 928
High 0.737 0.831 B 0.198 0.044 3056 677
Highioren | 0.752 0844 | AB | 0.558 0.160 | 1011 358

Table 1 shows the effectiveness of IR-based TCP when changing
the preprocessing approach measured in APFD (we show mean and
median), the time spent on running the IR phase, and the mean
vocabulary size, which is the number of distinct tokens in the data
objects and in the query. Also, we perform a Tukey HSD test [61] for
the APFD values, to see if there is any statistical difference between
the approaches; the results are shown under the “group” column.
The capital letters A-D are the results of the Tukey HSD test, where
techniques are clustered into the letter groups, and A is the best
while D is the worst (and having two letters means the technique
is in a group that is between the two letter groups). We highlight
the best approach in gray for each metric, so the highlighted boxes
have either the highest mean or median APFD, the shortest mean
or median time for running the IR phase, or the shortest vocabulary
length for the data objects or queries.

From the table, we make the following observations. First, code
tokenization is effective at reducing the vocabulary length. For
example, comparing Low; ., against Low, code tokenization re-
duces the vocabulary size of the data objects by 83.2%; comparing
High;oken against High, it reduces the vocabulary size of the data
objects concerning extracted identifiers by 66.9%. Second, the ap-
proaches utilizing code tokenization usually take longer to run
because the time complexity of the BM25 technique is linear to the
number of words in the query. That is, although code tokenization

329

Qianyang Peng, August Shi, and Lingming Zhang

reduces the vocabulary size, it makes the data objects and queries
longer by splitting long variable names into shorter tokens. Finally,
Low;oken> High, and High; o..p, lead to similar APFD values, while
Low has clearly worse results than the other three approaches. The
Tukey HSD test shows that Low; k., performs the best, with it
being in its own group and at the top (A). However, High; ogen per-
forms almost as good (and ends up in the second-highest group, AB).
High;oken also runs faster and leads to smaller vocabulary lengths
than Low; ygep- Overall, the Highy k., approach is slightly worse
than Low;kep, for APFD, but it seems to provide the best trade-offs
between APFD, time, and space among all four approaches.

Table 2: Comparing different change contexts

APFD # Ties

Context - -

mean | median | group | mean | median
0 line 0.697 0.788 C 353 2
1 line 0.703 0.788 BC 30.9 2
3 lines 0.713 0.799 BC 25.8 1
5 lines 0.717 0.802 B 23.4 1
Whole-file | 0.752 0.844 A 5.3 0

5.1.2 RQ1.2: Context of Change. Table 2 shows the evaluation re-
sult of how different lines of context influences the APFD and the
number of ties. (Like with evaluating code preprocessing config-
uration, we set the other configurations to the default values, i.e.,
code preprocessing is set to High; o, and the retrieval model is
BM25.) Using the whole file as the context has the dominantly best
performance in terms of both the highest APFD and the lowest
rate of ties, whereas using 0 lines of context leads to the worst
performance. We note that the mean value for number of ties is
large relative to the median number of ties because of the few jobs
that have an extremely large number of ties, which drags the mean
up. In general, we observe that IR-based TCP performs better when
there are more lines of context in the query.

One interesting observation is that when the length of the query
is small, the IR scores for data objects tend to be identical (usually 0),
so the prioritization barely changes the ordering of the tests from
the original order. Similarity ties are common when we include 0
lines of context into the query. Ideally, the amount of context to
include should lead to high APFD values but with a low rate of ties.

5.1.3 RQ1.3: Retrieval Model. We compare the four retrieval mod-
els described in Section 2.3. To choose an appropriate retrieval
model, we perform a general evaluation of the overall mean and
median APFD value across all jobs using each retrieval model. We
also perform a per-project evaluation to see for each retrieval model
the number of projects that perform the best (having the highest
mean APFD across their jobs) with that model.

Table 3 shows the comparison between the different retrieval
models. In this table and in the following tables, #B.Projs shows the
number of projects that have the highest averaged metric value for
each specific technique. We can see that BM25 model has both the
highest mean and median APFD, and over 60% of the projects in
our evaluation have the best results when using BM25.

3Note that we do not remove duplicated tokens, because prior work has found doing
so would lead to worse results [53].

Empirically Revisiting and Enhancing [R-Based Test-Case Prioritization

Table 3: Comparing different retrieval models

Retrieval Model - APFD -
mean | median | group | #B.Projs
Tf-idf 0.728 0.812 B 27
BM25 0.752 0.844 A 75
LSI 0.707 0.775 C 13
LDA 0.659 0.735 D 8

These results shows that BM25 performs better than Tf-idf, in-
dicating that when two tests are equally similar to the same code
change, running the test with the fewer lines of code early detects
failures faster. Another important observation is that the vector
space models (Tf-idf and BM25) perform better than the topic mod-
els (LSI and LDA) in terms of APFD, which is consistent with the
conclusions found in previous work [52, 67]. The reason for this
difference between types of models is likely because the topic mod-
els need many more tests to train on. Another likely reason is that
the individual tests are not distinct enough between each other,
making it hard for the models to generate effective topics.

RQ1: Overall, we determine that the best configuration options
to set of IR-based TCP is to use High;,ken as the code prepro-
cessing approach, to use the whole file as the context to include
in the queries, and to use BM25 as the retrieval model.

For the following RQs, we evaluate IR-based TCP using the
recommended configurations. We denote IR-based TCP under these
optimized configuration values as OptIR.

5.2 RQ2: Comparison of IR-Based TCP against
Other TCP Techniques

For this RQ, we compare the effectiveness of OptIR against the

other TCP techniques (Section 4.2). We measure both APFD and

APFDc for evaluating the effectiveness of TCP.

OptiR + w +——{O0—| OptiR{ #+ ++— B }—
oTF | —ENCEE——— ¢ | OoTF| [
HIS - HIS | ++1 d

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Avg. APFD Avg. APFDc

TCP Technique Avg. APED -

mean | median | group | #B.Projs
OptIR 0.759 0.784 A 86
QTF 0.348 0.314 C 7
HIS 0.632 0.645 B 30

Avg. APFD

TCP Technique .Vg ¢ -

mean | median | group | #B.Projs
OptIR 0.672 0.671 A 49
QTF 0.696 0.729 A 53
HIS 0.556 0.568 B 21

Figure 1: Comparing OptIR, QTF, and HIS APFD/APFDc

ISSTA 20, July 18-22, 2020, Virtual Event, USA

5.2.1 Comparison with QTF and HIS. Figure 1 shows the results
of the comparison between OptIR with QTF and HIS in terms of
APFD and APFDc. The box plots show the distribution of average
APFD and APFDc values per project for each TCP technique. The
table in Figure 1 shows the mean and median for the average APFD
and APFDc values across projects for each technique. The table also
includes the number of projects where that technique results in
the best average APFD or APFDc value. Furthermore, we perform
a Tukey HSD test to check for statistically significant differences
between the three techniques.

From the figure, we observe that the cost-unaware metric APFD
can severely over-estimate the performance of cost-unaware tech-
niques and under-estimate the performance of cost-aware tech-
niques. If we take the mean APFDc value as the baseline, the mean
APFD over-estimates the performance of OptIR by 12.9% and under-
estimates the performance of QTF by 50.0%. Also, although QTF
performs the worst when evaluated by APFD, it becomes better
than both OptIR and HIS when evaluated by APFDc. The mean and
median APFDc values for QTF are slightly higher than for OptIR,
although the Tukey HSD test suggests that they belong in the same
group (A). We further perform a Wilcoxon pairwise signed-rank
test [63] to compare the pairs of APFDc values per project between
OptIR and QTF, and we find the p-value is 0.339, which does not
suggest statistically significant differences between the two. We
cannot say then that OptIR is superior to QTF (especially since QTF
has higher mean and median APFDc values). Concerning HIS, we
clearly see it does not perform well in terms of APFDc. The main
reason is because 45.1% of the failures in our dataset are first-time
failures for a test, so there is often not any history for HIS to use.

5.2.2 Comparison with Coverage-Based TCP Techniques. In Fig-
ure 2, we further compare against traditional coverage-based TCP
techniques (Section 4.2.3). The figure shows box plots and a table
similar to in Figure 1, except it also includes coverage-based TCP
techniques. Recall that we could only collect the test coverage infor-
mation on a subset of the full dataset (565 jobs across 49 projects), so
the results for OptIR, QTF, and HIS shown are different from what
are shown in the previous figure. Besides the mean and median av-
eraged APFD/APFDc by each project, we further perform a Tukey
HSD test to check for statistically significant differences between
all seven TCP techniques. Note that the sum of all the values for
#B.Projs does not necessarily add up to the total 49 projects for this
table. The reason is that when there is a tie between techniques for
the best APFD/APFDc value for a project, we count that project for
all the techniques that tie.

From the results, we observe that OptIR, even in this smaller
dataset, still performs better than QTF and HIS based on APFD. Op-
tIR also performs better than coverage-based techniques by APFD
as well, based on the higher mean and median values. However,
while the APFD value is higher, the Tukey HSD test shows that
OptIR is in the same (A) group as all the coverage-based TCP tech-
niques, except for ARP (which performs worse). Furthermore, like
before, QTF performs the worst based on APFD.

However, when we consider APFDc, once again, QTF outper-
forms the other TCP techniques, including the coverage-based ones.
QTF has the highest mean and median APFDc values, and the Tukey
HSD test shows QTF in its own group (A) that is above the groups

ISSTA °20, July 18-22, 2020, Virtual Event, USA

OptlR{ + + +——{C0}— | OptlIR{++ (oI}
QTF | —mma——+| QTF{ ++——{momm—
HIS HIS{+ +—C & F——
Tot. * —— Tot.{ + —

Add. — . Add. S —
Sea. — Sea. —
ARP o} i ARP| —
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Avg. APFD Avg. APFDc
TCP Technique l.Kvg. APFD -
mean | median | group | #B.Projs
OptIR 0.740 0.807 A 21
QTF 0.393 0.305 C 6
HIS 0.606 0.610 AB 8
Tot. 0.719 0.734 A 12
Add. 0.725 0.740 A 9
Sea. 0.722 0.746 A 8
ARP 0.580 0.555 B 6
TCP Technique Ayg. APFDe -
mean | median | group | #B.Projs
OptIR 0.656 0.711 AB 14
QTF 0.701 0.768 A 19
HIS 0.528 0.532 B 5
Tot. 0.573 0.601 AB 6
Add. 0.582 0.595 AB 4
Sea. 0.578 0.564 AB 6
ARP 0.595 0.584 AB 4

Figure 2: Comparing all TCP techniques’ APFD/APFDc

designated for all the other techniques. When we do a series of
Wilcoxon pairwise signed-rank tests between QTF APFDc values
and the values for all the other techniques, we see that the dif-
ferences are statistically significant for all except for OptIR, once
again. Also, OptIR ends up in the same Tukey HSD group as all the
coverage-based TCP techniques.

Another observation we make is that OptIR in general suffers
from a smaller performance loss when evaluation is changed from
using APFD to APFDc, compared to coverage-based TCP tech-
niques. The reason is that high-coverage tests tend to be more
time-consuming, while higher IR-similarity tests related to the
changes do not have such a tendency. This tendency makes tradi-
tional coverage-based TCP techniques have relatively lower APFDc
values, as more costly tests are prioritized earlier. The ARP tech-
nique prioritizes tests based on the diversity of the test coverages
rather than the amount of test coverages, so the difference from
switching to APFDc is not as prevalent for this technique as well.

RQ2: QTF outperforms almost all other techniques, including
traditional coverage-based TCP techniques, suggesting that fu-
ture work on improving TCP should be compared against and at
least perform better than QTF. OptIR performs similarly as QTF
when measured by APFDc. OptIR also does not suffer much of a
difference in performance when switching the evaluation metric
from APFD to APFDc.

331

Qianyang Peng, August Shi, and Lingming Zhang

5.3 RQ3: Hybrid Techniques

From RQ2, we find that OptIR does not outperform the simple QTF
technique based on APFDc, so we aim to improve OptIR by making
it cost-aware. Prior work has tried to address the cost-inefficiency of
coverage-based TCP techniques by implementing Cost-Cognizant
coverage-based techniques that balance the coverage and the test-
execution time, e.g., state-of-the-art Cost-Cognizant Additional
Test Prioritization prioritizes tests based on the additional cover-
age per unit time [10, 15, 36]. However, recent work found that
these techniques perform similarly or even worse than the cost-
only technique, i.e., QTF. The possible reason is that traditional
coverage-based TCP techniques tend to put more costly tests (those
with more coverage) earlier, which contrasts with the goals of the
Cost-Cognizant feature that tends to put less costly tests earlier. The
change-aware IR techniques we study are based on the textual simi-
larity and do not give stronger preference to complicated and costly
tests. Therefore, we expect that IR techniques potentially perform
better when hybridized with QTF. We also consider hybridizing
with HIS to consider historical failure frequencies as well.

Before we hybridize OptIR to consider test execution cost or
historical failure frequencies, we first consider a hybrid technique
combining just test execution cost and historical failures. For a test
T;, given its historical failure frequency A f; and its prior execution
time ¢/, we define a TCP technique that rearranges tests by the
descending order of:

acen(Ti) = hfi/t] (1)

We denote this technique as CCH. We use CCH as another com-
parison against the hybrid techniques that directly improve OptIR.

We design the first Cost-Cognizant IR-based TCP technique
that orders tests based on their execution cost and IR score. For a
test T;, given its IR score ir; (computed using the same optimized
configuration values as with OptIR) and its execution time ¢/ in
the corresponding previous job, we define a TCP technique that
rearranges tests by the descending order of:

accir(Ti) = irl’/ti,

We denote this technique as CCIR.
We next consider a hybrid technique that combines OptIR with
HIS. For a test Tj, given its IR score ir; and its historical failure

frequency hf;, we define a TCP technique that rearranges tests by
the descending order of:

apir(Ti) = (hfi iri)

We denote this technique as HIR.
Finally, we consider a hybrid technique that combines both test
execution cost and historical failures with OptIR. For a test T;,
given its IR score ir;, its historical failure frequency hf;, and its

prior execution time ¢/, we define a TCP technique that rearranges
tests by the descending order of:

acchir(Ti) = (hfi * iri)/ti,

We denote this technique as CCHIR.

Figure 3 shows our evaluation of the hybrid TCP techniques on
the full dataset. From the figure, we see that all hybrid techniques
are better than the individual non-hybrid techniques that they
are built upon. For example, CCIR results in a better mean APFDc

@)

®)

4)

Empirically Revisiting and Enhancing [R-Based Test-Case Prioritization

OptIR ¢ et

QtF —

HIS . ‘

CCH + ——— o

CCIR e

HIR - ! ;

CCHIR —————

0.0 0.2 0.4 0.6 0.8 1.0
Avg. APFDC
TCP Technique Ayg. APFDc -

mean | median | group | #B.Projs
OptIR 0.672 0.671 C 19
QTF 0.696 0.729 BC 9
HIS 0.556 0.568 D 5
CCH 0.758 0.776 AB 18
CCIR 0.744 0.776 AB 10
HIR 0.744 0.774 AB 31
CCHIR 0.794 0.815 A 47

Figure 3: Comparing against the hybrid TCP techniques

value than both OptIR (by 10.7%) and QTF (by 6.9%) from which this
hybrid technique is constructed. Overall, we observe that the three-
factor hybrid technique combining IR scores, prior execution time,
and historical failure frequency outperforms any other technique
we evaluate by at least 4.7% in terms of the mean averaged APFDc,
which means the three factors we consider in the hybrid technique
can enhance each other and form an effective hybrid technique.

To see whether there is a statistically significant difference be-
tween the distributions of the APFDc values of the different tech-
niques, we once again perform a Tukey HSD test on the APFDc
results for the three single techniques (OptIR, QTF, and HIS) and
three hybrid techniques (CCIR, CCH, and CCHIR). We see a statis-
tically significant difference between hybrid techniques and non-
hybrid techniques, with CCHIR being the best and HIS being the
worst. The results of these statistical tests suggest that the hybrid
techniques, especially the three-factor hybrid technique CCHIR,
are effective techniques to perform TCP.

Figure 4 shows the results of our per-project analysis compar-
ing the different hybrid techniques. The figure shows the average
APFDc of all jobs per project for each technique; the projects are
sorted left to right by descending order of each one’s average APFDc
value for CCHIR. We do not include the per-project results of the
non-hybrid techniques into the figure, because our prior overall
evaluation on the full dataset shows that the non-hybrid techniques
generally perform worse than the hybrid ones. The accompanying
table in the figure shows the number of jobs and the average APFDc
values across all those jobs per project for each hybrid technique.
Once again, the best APFDc value is highlighted for each project.

Based on Figure 4, for most projects, CCHIR performs the best
among all techniques or performs closely to the best technique, and
it never performs the worst. Specifically, we perform a Tukey HSD
test on the hybrid techniques on all 119 projects in our dataset that
each has more than one job. We find that there are 105 projects
for which CCHIR performs the best among all hybrid techniques,
being in group A. Also, the standard deviation of the average APFDc

332

ISSTA 20, July 18-22, 2020, Virtual Event, USA

per project for CCHIR is the lowest among all studied techniques,
demonstrating that CCHIR tends to be more stable. These results
further suggest that developers should in general use CCHIR.

We further inspect the projects that CCHIR does not perform
as well. Among all the 27 projects that the average APFDc value
is lower than 0.7 with CCHIR, there are 18 of them where HIR
performs the best. We inspect these projects and find that these
projects are those where QTF also performs poorly. Therefore, if
CCHIR performs poorly on a project, it is likely due to the test
cost factor. On closer inspection of these projects, we find that
the failing tests are those that run quite long, so both QTF and
the hybrid techniques that hybridize with QTF tend to prioritize
those tests later. This finding further demonstrates the necessity of
designing more advanced techniques to better balance the textual,
cost and historical information for more powerful test prioritization.

RQ3: We find that hybrid techniques that combine OptIR with
test execution cost and historical failures improves over OptIR
with respect to APFDc, with CCHIR, which utilizes all these
factors, performing the best among all hybrid techniques.

5.4 RQ4: Impacts of Flaky Tests

Figure 5 shows boxplots side-by-side comparing the APFDc for
flaky jobs and non-flaky jobs under seven major TCP techniques
(four change-aware IR techniques: Tf-idf, BM25, LSI, LDA; two
change-unaware techniques QTF, HIS; and one hybrid technique
CCHIR). We observe that all change-aware IR techniques (Tf-idf,
BM25, LSI, LDA) perform better on non-flaky jobs than on flaky
jobs. As flaky test failures are usually introduced into the program
before the latest version [32] while non-flaky failures are more
likely to be regressions introduced by the latest change, change-
aware techniques are better at prioritizing non-flaky tests whose
failures then likely indicate regressions in the program change.

We also find that QTF and HIS have better performance on flaky
jobs than on non-flaky jobs. This result suggests that in our dataset
flaky tests tend to run faster and are more likely to have failed in
the past. Furthermore, CCHIR performs the best among the seven
techniques on both flaky jobs and non-flaky jobs. This result demon-
strates the robustness and effectiveness of our hybrid technique as
it is positively influenced by the change-aware technique without
suffering much from its weaknesses.

RQ4: Flaky test failures can affect the results from evaluat-
ing and comparing different TCP techniques. In particular, for
change-aware techniques, these techniques would seem to per-
form better when evaluated using only non-flaky failures. How-
ever, we find that CCHIR still performs the best among all eval-
uated techniques regardless of flaky or non-flaky failures.

5.5 Discussion

So far in our evaluation, we assume that each failure maps to a
distinct fault. However, in reality it is possible that multiple test
failures are due to the same fault in the source code, and with dif-
ferent failure-to-fault mappings the computed APFD and APFDc

ISSTA °20, July 18-22, 2020, Virtual Event, USA

APFDc

Qianyang Peng, August Shi, and Lingming Zhang

—— CCHIR
0.0 4 = T
Project
N Avg. APFDc . Avg. APFDc
Proj. Name #obs e T oo T AR [ocHm]| Proi Name b oo TCOR | AR [CCHR
zeroturnaround/zt-zip 3 0.994 | 0.994 | 0.439 0.994 flaxsearch/luwak 3 0.990 | 0.993 [0.751 0.993
RIPE-NCC/whois 5 0.893 | 0.985 0.991 0.985 yandex-gatools/postgresql-embedded 2 0.966 | 0.966 | 0.037 0.966
mp911de/logstash-gelf 6 0.941 0.963 | 0.662 0.961 undera/jmeter-plugins 10 0.921 | 0.949 | 0.919 0.957
mitreid-connect/OpenID-Connect-Java-Spring-Server 5 0.912 0.950 0.969 0.957 apache/commons-compress 4 0.969 0.956 0.799 0.956
internetarchive/heritrix3 15 0.948 0.945 0.719 0.951 apache/incubator-dubbo 82 0.935 0.944 0.889 0.950
perwendel/spark 9 0.867 | 0.757 [0.927 0.948 wmixvideo/nfe 20 0.806 | 0.934 | 0.963 0.943
mjiderhamn/classloader-leak-prevention 1 0.422 0.941 0.976 0.941 apache/systemml 6 0.901 0.931 0.812 0.941
eclipse-vertx/vert.x 95 0.938 | 0.884 0.910 0.933 vert-x3/vertx-web 8 0.903 0.912 0.912 0.926
ocpsoft/rewrite 42 0.893 0.564 0.971 0.926 graphhopper/jsprit 20 0.880 0.916 0.812 0.925
ebean-orm/ebean 44 0.864 | 0.900 0.886 0.924 xetorthio/jedis 67 0.911 0.854 | 0.889 0.915
DiUS/java-faker 16 0.904 0.908 0.887 0.915 alibaba/fastjson 46 0.875 0.898 0.845 0.914
FasterXML/jackson-databind 44 0.850 0.899 0.833 0.908 HubSpot/jinjava 7 0.587 0.860 0.929 0.907
killme2008/aviator 4 0.891 0.899 0.846 0.904 resteasy/Resteasy 101 0.873 0.879 0.893 0.904
rhwayfun/spring-boot-learning-examples 4 0.757 0.904 | 0.656 0.904 protegeproject/protege 3 0.859 0.885 0.824 0.903
alipay/sofa-rpc 72 0.836 0.813 0.918 0.895 gresrun/jesque 9 0.821 0.869 0.836 0.892
amzn/ion-java 11 0.879 0.875 0.652 0.888 dooApp/FXForm?2 10 0.874 0.888 0.877 0.888
Angel-ML/angel 6 0.860 | 0.756 [0.799 0.878 google/error-prone 26 0.853 | 0.871 | 0.727 0.878
prometheus/client_java 21 0.834 | 0.776 0.776 0.876 socketio/socket.io-client-java 4 0.842 0.844 0.885 0.875
orbit/orbit 5 0.814 0.858 0.786 0.875 openmrs/openmrs-core 48 0.798 0.858 0.733 0.873
f4j/f4j 9 0.868 0.863 0.883 0.872 yegor256/rultor 13 0.925 0.578 0.987 0.870
joelittlejohn/jsonschema2pojo 9 0.753 0.861 0.868 0.865 basho/riak-java-client 39 0.813 0.843 0.774 0.864
JSQLParser/JSqlParser 34 0.866 | 0.844 0.730 0.862 elasticjob/elastic-job-lite 86 0.836 0.844 | 0.813 0.858
LiveRamp/hank 7 0.866 0.857 0.628 0.857 bootique/bootique 5 0.759 0.820 0.868 0.855
RoaringBitmap/RoaringBitmap 44 0.861 | 0.847 | 0.699 0.855 tcurdt/jdeb 4 0.847 | 0.853 | 0.884 0.853
junkdog/artemis-odb 12 0.843 0.783 0.820 0.853 lukas-krecan/JsonUnit 57 0.880 | 0.863 0.602 0.850
zendesk/maxwell 27 0.850 0.863 0.722 0.844 FasterXML/jackson-dataformat-xml 7 0.788 0.849 0.795 0.838
apache/incubator-druid 93 0.808 0.701 0.831 0.836 pf4j/pfaj 13 0.825 0.827 0.727 0.835
hs-web/hsweb-framework 25 0.832 0.740 0.763 0.834 apache/servicecomb-pack 35 0.716 0.571 0.894 0.833
SpigotMC/BungeeCord 1 0.928 | 0.831 0.489 0.831 davidmoten/rxjava-extras 12 0.767 | 0.563 | 0.923 0.829
stanford-futuredata/macrobase 16 0.674 | 0.779 0.896 0.824 debezium/debezium 61 0.776 | 0.784 | 0.801 0.820
alibaba/druid 5 0.921 [0.783 | 0.635 0.818 eclipse/paho.mqtt.java 20 0.813 | 0.809 | 0.789 0.815
jtablesaw/tablesaw 34 0.815 0.777 0.513 0.815 google/closure-compiler 38 0.741 0.777 0.783 0.814
scobal/seyren 6 0.801 0.782 0.793 0.814 twitter/GraphJet 13 0.747 0.775 0.782 0.811
weibocom/motan 24 0.794 0.796 0.661 0.809 abel533/Mapper 12 0.766 0.802 0.746 0.807
rest-assured/rest-assured 7 0.753 0.754 0.722 0.805 keycloak/keycloak 52 0.757 0.746 0.822 0.802
apache/incubator-dubbo-spring-boot-project 20 0.822 0.851 0.813 0.795 st-js/st-js 11 0.801 0.727 0.786 0.793
cglib/cglib 1 0.778 0.787 0.328 0.787 gchg/Gaffer 41 0.706 0.618 0.783 0.783
rapidoid/rapidoid 15 0.775 | 0.730 | 0.785 0.781 spring-projects/spring-data-redis 41 0.811 | 0.735 | 0.597 0.780
aws/aws-sdk-java 56 0.712 0.732 0.700 0.777 RipMeApp/ripme 74 0.777 0.731 0.584 0.777
qos-ch/logback 1 0.629 0.719 0.992 0.775 floodlight/floodlight 20 0.746 0.708 0.757 0.768
zhang-rf/mybatis-boost 19 0.768 0.779 0.551 0.768 ctripcorp/apollo 31 0.720 0.771 0.788 0.768
sakaiproject/sakai 39 0.705 0.524 0.823 0.764 awslabs/amazon-kinesis-client 28 0.769 | 0.744 | 0.390 0.764
fakereplace/fakereplace 2 0.775 0.738 0.525 0.753 alibaba/jetcache 4 0.706 0.746 0.754 0.751
spring-projects/spring-data-mongodb 41 0.750 | 0.649 [0.692 0.750 networknt/light-4j 25 0.651 | 0.640 | 0.697 0.743
ModeShape/modeshape 7 0.742 0.736 0.801 0.742 apache/incubator-pinot 52 0.689 0.696 0.728 0.740
searchbox-io/Jest 13 0.736 | 0.561 0.666 0.728 JanusGraph/janusgraph 144 0.697 0.662 0.602 0.705
AxonFramework/AxonFramework 48 0.736 0.594 0.679 0.705 jhy/jsoup 25 0.587 0.740 0.699 0.704
google/auto 13 0.616 0.593 0.831 0.701 spring-projects/spring-security-oauth 27 0.639 0.645 0.781 0.700
vipshop/vjtools 21 0.680 0.701 0.588 0.696 teamed/qulice 12 0.671 0.680 0.707 0.695
getheimdall/heimdall 15 0.652 0.681 0.711 0.695 winder/Universal-G-Code-Sender 11 0.647 0.668 0.615 0.688
jcabi/jcabi-github 4 0.607 0.333 0.872 0.687 rickfast/consul-client 9 0.554 0.636 0.866 0.685
apache/rocketmq 49 0.668 0.610 0.700 0.683 demoiselle/framework 6 0.535 0.682 | 0.654 0.682
pippo-java/pippo 11 0.638 0.662 0.646 0.665 vipshop/Saturn 42 0.632 0.514 0.650 0.645
apache/zeppelin 37 0.627 0.407 0.702 0.631 onelogin/java-saml 4 0.609 0.609 0.665 0.627
codelibs/fess 45 0.611 0.568 0.647 0.627 square/moshi 5 0.483 0.625 0.776 0.625
alipay/sofa-bolt 20 0.669 0.392 0.711 0.613 alexxiyang/shiro-redis 8 0.582 0.729 | 0.353 0.610
doanduyhai/Achilles 3 0.623 | 0.606 0.550 0.590 pholser/junit-quickcheck 3 0.530 0.579 | 0.489 0.579
redpen-cc/redpen 16 0.694 | 0.486 | 0.737 0.571 jaeksoft/opensearchserver 6 0.519 | 0.540 [0.495 0.540
apache/servicecomb-java-chassis 49 0.484 0.434 0.768 0.534 magefree/mage 43 0.483 0.438 0.787 0.514
spring-projects/spring-data-cassandra 40 0.523 0.420 0.595 0.514 shrinkwrap/resolver 3 0.515 0.513 0.493 0.513
opensagres/xdocreport 6 0.568 0.481 0.610 0.489 jenkinsci/java-client-api 3 0.338 0.320 0.770 0.431
sismics/reader 7 0.439 0.154 0.688 0.362

Figure 4: Comparing the hybrid TCP techniques by project

333

Empirically Revisiting and Enhancing [R-Based Test-Case Prioritization

29 223 29 223 29 223 29 223 29 223 29 223

1.

HIH

0.

APFDc
+

I
~

+

o
o
.
&
v
e

o
N

[Flaky jobs
[Non-flaky jobs

0.0

Thidf BM25 LSl LDA QTF HIS CCHR
Figure 5: Comparing different techniques on flaky/non-

flaky jobs

values could change. We evaluate again the major research ques-
tions by mapping all failures to the same fault to check whether the
conclusions still remain the same. For RQ1, we calculate the mean
and median APFD by job for Tf-idf, BM25, LSI and LDA; for RQ2,
we calculate the the mean and median APFD and APFDc by project
for OptIR, QTF, HIS, and the coverage-based techniques (only on
the jobs in common among all the techniques); and for RQ3, we
calculate the mean and median APFDc by project for OptIR, QTF,
CCIR, HIS, CCH, CCHIR. For all these values, we recalculate while
considering all failures mapping to the same fault. In other words,
all we want to observe is how well the different TCP techniques or-
der tests such to get a failed test to come as early as possible. We do
not re-evaluate RQ4, concerning flaky tests, because our evaluation
for RQ4 already only considers jobs with one test failure.

We compare the results with mapping each failure to a distinct
fault (the type of evaluation we use before for all prior RQs) to
see if there is a difference in overall results. Table 4 shows the
evaluation results. From the table, we observe that although the
APFD and APFDc values are larger when mapping all failures to one
fault than when mapping each failure to distinct faults, different
failure-to-fault mappings lead to similar overall conclusions.

The only result inconsistent with what we observe from before is
that, after mapping all failures to the same fault, Additional Test Pri-
oritization and Search-Based Test Prioritization outperform OptIR
when evaluated by mean APFD. The potential reason is that both
Additional Test Prioritization and Search-Based Test Prioritization
care only about the additional coverage. Therefore, when there are
multiple failures mapping to the same fault, the corresponding fault-
revealing methods will grant only one of the failures a high priority.
That is, the APFD and APFDc values are more under-estimated in
these techniques than in other techniques. However, in terms of
APFDc, the cost-aware metric, OptIR still outperforms the coverage-
based techniques. Overall, all other conclusions concerning trends
remain the same, i.e., BM25 is the best retrieval model for IR-based
TCP, QTF outperforms all other non-hybrid techniques based on
APFDc, and the hybrid CCHIR technique performs the best among
all the hybrid and non-hybrid techniques.

6 THREATS TO VALIDITY

For our dataset, we extract test FQNs, test outcomes, and test ex-
ecution times from job logs, so whether we can get a complete

334

ISSTA 20, July 18-22, 2020, Virtual Event, USA

Table 4: Impact of different failure-to-fault mappings

| RQ No. I I One to One || All to One |

APFD mean | median || mean | median

Tf-idf 0.728 0.812 0.771 0.885

RQ1 BM25 0.752 0.844 0.795 0.913
LSI 0.707 0.775 0.753 0.860

LDA 0.659 0.735 0.713 0.837

Avg. APFD | mean | median || mean | median

OptIR 0.740 0.807 0.768 0.838

QTF 0.393 0.305 0.440 0.397

HIS 0.606 0.610 0.650 0.647

Tot. 0.719 0.734 0.756 0.785

RQ2 Add. 0.725 0.740 0.774 0.802
Sea. 0.722 0.746 0.771 0.796

ARP 0.580 0.555 0.633 0.603

Avg. APFDc | mean | median || mean | median

OptIR 0.656 0.711 0.692 0.770

QTF 0.701 0.768 0.733 0.806

HIS 0.528 0.532 0.578 0.584

Tot. 0.573 0.601 0.622 0.678

Add. 0.582 0.595 0.637 0.672

Sea. 0.578 0.564 0.634 0.665

ARP 0.595 0.584 0.649 0.673

Avg. APFDc | mean | median || mean | median

OptIR 0.672 0.671 0.727 0.730

QTF 0.696 0.729 0.733 0.778

RQ3 HIS 0.556 0.568 0.606 0.635
CCH 0.758 0.776 0.793 0.826

CCIR 0.744 0.776 0.779 0.804

HIR 0.744 0.774 0.790 0.816

CCHIR 0.794 0.815 0.826 0.853

and accurate dataset is dependent on the completeness and the
parsability of log files.

Our implementations of the TCP techniques and our experimen-
tal code may have bugs that affect our results. To mitigate this
threat, we utilize well-developed and well-used tools, such as Trav-
isTorrent to parse job logs, OpenClover to collect code coverage,
javalang [60] to parse the AST of source code, and various mature
libraries to compute IR similarity scores. Furthermore, we tested
our implementations and scripts on small examples to increase
confidence in the correctness of our results.

For our hybrid techniques, we collect the historical failures from
the failed jobs in our dataset, which satisfy our requirements as
discussed in Section 3, as opposed to failures from all possible
failed jobs on Travis CL. As such, the historical failures we use
is a subset of all possible failures for tests as recorded in Travis
CIL which is in turn a subset of all possible failures that occurred
during development (failures occurred during local development
and not pushed for continuous integration). However, developers
may not need to see all failures, as a recent study on evaluating
test selection algorithms at Google focused on only the transition
of test statuses (e.g., going from pass to fail), instead of just straight
failures (developers may not have addressed the fault yet) [29].
We also construct our dataset using only jobs where the currently
failing tests were not failing in the job before (Section 3).

ISSTA °20, July 18-22, 2020, Virtual Event, USA

The metrics for evaluating TCP techniques are also crucial for
this work. We adopt both the widely used cost-unaware metric
APFD and the cost-aware metric APFDc for evaluating all the stud-
ied TCP techniques.

7 RELATED WORK

Regression testing [64] has been extensively studied in the liter-
ature [13, 16, 17, 28, 49, 56, 57, 65]. Among various regression
testing techniques, the basic idea of test-case prioritization (TCP)
techniques is to prioritize tests that have a higher likelihood of
detecting bugs to run first. Most prior work has implemented tech-
niques based on test coverage (prioritizing tests that cover more)
and diversity (ordering tests such that similar tests in terms of
coverage are ordered later), and investigated characteristics that
can affect TCP effectiveness such as test granularity or number of
versions from original point of prioritization [19, 21, 30, 31, 33, 66].
Recent work shows that traditional coverage-based techniques are
not cost effective at running the tests that detect bugs earlier, be-
cause they tend to execute long-running tests first [10]. To ad-
dress this problem, one solution is to make new Cost-Cognizant
coverage-based techniques that are aware of both the coverage
and cost of tests [10, 36]. However, Chen et al. [10] showed that
the Cost-Cognizant Additional Test Prioritization technique per-
formed better than the cost-only technique for only 54.0% of their
studied projects, and the mean APFDc of the Cost-Cognizant Ad-
ditional Test Prioritization technique technique is just 3.0% better
than that of the cost-only technique. Another solution is to utilize
machine learning techniques, but it requires non-trivial training
process involving a large number of historical bugs that are often
unavailable [10]. In our work, we propose new simplistic hybrid
TCP techniques that combine an IR-based TCP technique with test
execution cost and historical failure frequency. We find that these
hybrid techniques perform better, leading to higher APFDc values.

Prior work has utilized information retrieval (IR) techniques in
software testing [24, 41, 53]. Our work is most similar to prior work
by Saha et al., who prioritized tests in Java projects using IR tech-
niques, ordering tests based on the similarities between tests and
the program changes between two software versions [53]. Using IR
to perform TCP can be effective, because it does not require costly
static or dynamic analysis, only needing lightweight textual-based
computations. Saha et al. found that their IR-based TCP technique
outperforms the traditional coverage-based techniques. However,
Saha et al. evaluated their technique on a dataset with only 24
manually-constructed version pairs from eight projects to repro-
duce regressions, which potentially makes their result noninclusive
and less generalizable. Also, they evaluate using APFD, which does
not consider the cost of testing and does not reflect the effective-
ness of TCP as well as using APFDc. Our work improves upon
Saha et al’s evaluation by introducing a much larger dataset with
real failures and real time, and we utilize APFDc to evaluate the ef-
fectiveness of IR-based TCP techniques. Mattis and Hirschfeld also
recently studied IR-based TCP on Python code and tests [38]. They
propose a new IR-based technique based on the predictive power of
lexical features in predicting future failures. Mattis and Hirschfeld
find that their predictive model outperforms BM25 based on APFD

335

Qianyang Peng, August Shi, and Lingming Zhang

measured through seeded mutants and faults in the dynamically-
typed programming domain of Python, but their new technique
does not outperform BM25 when time to first failure is considered.

Recently, some other work has used Travis CI to construct large
and real datasets to evaluate testing techniques [8, 20, 25, 39, 56].
We also collect our dataset from Travis CI, collecting information
from builds that involve real changes from developers and real test
failures. With real failures used in evaluation, our work improves
upon evaluation of TCP in prior work, which utilized mutation
testing [7, 10, 23]. Mattis et al. in a parallel, independent work
published a dataset for evaluating TCP [6, 39]. For their dataset,
Mattis et al. also collected test failures from Travis CI, collecting
more than 100,000 build jobs across 20 open-source Java projects
from GitHub. Their dataset contains the test outcomes and test
times per job, but it does not contain the source code diffs we need
to perform IR-based TCP.

There has been much prior work in the area of flaky tests [8, 18,
26, 27,32, 55, 58]. In our work, we evaluate how TCP techniques per-
form on flaky and non-flaky tests separately. From our evaluation,
we find that the change-aware IR-based TCP techniques perform
better when considering only non-flaky test failures. However, we
find that the hybrid TCP technique CCHIR is quite robust in the
face of flaky tests.

8 CONCLUSIONS

In this work, we conduct an empirical evaluation of TCP tech-
niques on a large-scale dataset with real software evolution and
real failures. We focus on evaluating IR-based TCP techniques, and
our results show that IR-based TCP is significantly better than tra-
ditional coverage-based techniques, and its effectiveness is close
to that of the cost-only technique when evaluated by APFDc, a
cost-aware metric. We also implement new hybrid techniques that
combine change-aware IR with historical test failure frequencies
and test execution time, and our hybrid techniques significantly
outperform all the non-hybrid techniques evaluated in this study.
Lastly, we show that flaky tests have a substantial impact on the
change-aware TCP techniques.

ACKNOWLEDGMENTS

We thank Wing Lam, Owolabi Legunsen, and Darko Marinov for
their extensive discussion with us on this work. We acknowledge
support for research on test quality from Futurewei. We also ac-
knowlege support from Alibaba. This work was partially supported
by NSF grants CNS-1646305, CCF-1763906, and OAC-1839010.

REFERENCES

[n.d.]. GitHub. https://github.com/.

[n.d.]. Maven. http://maven.apache.org/.

[n.d.]. Travis-CL https://travis-ci.org/.

2020. Empirically Revisiting and Enhancing IR-based Test-Case Prioritization.
https://sites.google.com/view/ir-based-tcp.

2020. Maven Surefire Plugin - surefire:test. https://maven.apache.org/surefire/
maven-surefire-plugin/test-mojo.html.

2020. RTPTorrent: An Open-source Dataset for Evaluating Regression Test
Prioritization. https://zenodo.org/record/3712290.

Maral Azizi and Hyunsook Do. 2018. ReTEST: A cost effective test case selection
technique for modern software development. In ISSRE.

[8] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically detecting flaky tests. In ICSE.

Empirically Revisiting and Enhancing IR-Based Test-Case Prioritization

(9]

[10]

[11]

[12

[13]

[14

[15]

[16

[17]
(18]
[19]

[20

[21]

[22

[23]

[24]

[25]

[26]

[27]

[28

[29]

[30]

[31

[32]
[33]
[34]
[35]

[36

[37]

Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Syn-
thesizing Travis CI and GitHub for full-stack research on continuous integration.
In MSR.

Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang, Dan Hao,
and Lu Zhang. 2018. Optimizing test prioritization via test distribution analysis.
In ESEC/FSE.

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer,
and Richard Harshman. 1990. Indexing by latent semantic analysis. JASIS 41, 6
(1990).

Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. 2001. Incorporating
varying test costs and fault severities into test case prioritization. In ICSE.
Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2002. Test case
prioritization: A family of empirical studies. TSE 28, 2 (2002).

Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-
proving regression testing in continuous integration development environments.
In FSE.

Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K Burke. 2015.
Empirical evaluation of pareto efficient multi-objective regression test case pri-
oritisation. In ISSTA.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
test selection. In ICSE Demo.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical regression
test selection with dynamic file dependencies. In ISSTA.

Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable testing:
Detecting state-polluting tests to prevent test dependency. In ISSTA.
Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Comparing white-box and black-box test prioritization. In ICSE.

Michael Hilton, Jonathan Bell, and Darko Marinov. 2018. A large-scale study of
test coverage evolution. In ASE.

Bo Jiang, Zhenyu Zhang, Wing Kwong Chan, and T. H. Tse. 2009. Adaptive
random test case prioritization. In ASE.

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4]: A database of
existing faults to enable controlled testing studies for Java programs. In ISSTA
Demo.

René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In FSE.

Jung-Hyun Kwon, In-Young Ko, Gregg Rothermel, and Matt Staats. 2014. Test
case prioritization based on information retrieval concepts. In APSEC, Vol. 1.
Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the
cost of regression testing in practice: A study of Java projects using continuous
integration. In ESEC/FSE.

Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root causing flaky tests in a large-scale industrial setting. In
ISSTA.

Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A framework for detecting and partially classifying flaky tests. In ICST.
Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An extensive study of static regression test selection in
modern software evolution. In FSE.

Claire Leong, Abhayendra Singh, Mike Papadakis, Yves Le Traon, and John
Micco. 2019. Assessing transition-based test selection algorithms at Google. In
ICSE-SEIP.

Zheng Li, Mark Harman, and Robert M. Hierons. 2007. Search algorithms for
regression test case prioritization. TSE 33, 4 (2007).

Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan
Zhou, and Lu Zhang. 2016. How does regression test prioritization perform in
real-world software evolution?. In ICSE.

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In FSE.

Qi Luo, Kevin Moran, and Denys Poshyvanyk. 2016. A large-scale empirical
comparison of static and dynamic test case prioritization techniques. In FSE.

Qi Luo, Kevin Moran, Denys Poshyvanyk, and Massimiliano Di Penta. 2018.
Assessing test case prioritization on real faults and mutants. In ICSME.
Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2018.
Predictive test selection. In ICSE-SEIP.

Alexey G. Malishevsky, Joseph R Ruthruff, Gregg Rothermel, and Sebastian
Elbaum. 2006. Cost-cognizant test case prioritization. Technical Report. Technical
Report TR-UNL-CSE-2006-0004, University of Nebraska-Lincoln.

Christopher Manning, Prabhakar Raghavan, and Hinrich Schiitze. 2010. Intro-
duction to information retrieval. Nat. Lang. Eng. 16, 1 (2010).

336

(38]

[39

[40]

[41]

N
=

=
&

T T TS
N e .

™
&

o
=

‘o
&

o
2

5
=

(67

ISSTA °20, July 18-22, 2020, Virtual Event, USA

Toni Mattis and Robert Hirschfeld. 2020. Lightweight Lexical Test Prioritization
for Immediate Feedback. Programming Journal 4 (2020).

Toni Mattis, Patrick Rein, Falco Diirsch, and Robert Hirschfeld. 2020. RTPTorrent:
An open-source dataset for evaluating regression test prioritization. In MSR.
Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale continuous testing. In ICSE-
SEIP.

Cu D. Nguyen, Alessandro Marchetto, and Paolo Tonella. 2011. Test case priori-
tization for audit testing of evolving web services using information retrieval
techniques. In ICWS.

Tanzeem Bin Noor and Hadi Hemmati. 2015. A similarity-based approach for
test case prioritization using historical failure data. In ISSRE.

Marek Parfianowicz and Grzegorz Lewandowski. 2017-2018. OpenClover. https:
//openclover.org.

David Paterson, José Campos, Rui Abreu, Gregory M. Kapfhammer, Gordon
Fraser, and Phil McMinn. 2019. An empirical study on the use of defect prediction
for test case prioritization. In ICST.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine learning in Python. JMLR 12 (2011).

Radim Rehiifek and Petr Sojka. 2010. Software framework for topic modelling
with large corpora. In LREC.

Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance frame-
work: BM25 and beyond. Found. Trends Inf. Ret 3, 4 (2009).

Stephen E. Robertson, Steve Walker, and Micheline Hancock-Beaulieu. 2000.
Experimentation as a way of life: Okapi at TREC. Inf. Process. Manage. 36, 1
(2000).

Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing regression test selec-
tion techniques. TSE 22, 8 (1996).

Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test case prioritization: An empirical study. In ICSM.

Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 2001.
Prioritizing test cases for regression testing. TSE 27, 10 (2001).

Ripon K. Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013.
Improving bug localization using structured information retrieval. In ASE.
Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015.
An information retrieval approach for regression test prioritization based on
program changes. In ICSE.

Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Inf. Process. Manage. 24, 5 (1988).

August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov. 2016. Detecting
assumptions on deterministic implementations of non-deterministic specifica-
tions. In ICST.

August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov.
2018. Evaluating test-suite reduction in real software evolution. In ISSTA.
August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi
Legunsen. 2019. Reflection-aware static regression test selection. PACMPL 3,
OOPSLA (2019).

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A framework for automatically fixing order-dependent flaky tests. In ESEC/FSE.
Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Rein-
forcement learning for automatic test case prioritization and selection in contin-
uous integration. In ISSTA.

Chris Thunes. 2018. c2nes/javalang. https://github.com/c2nes/javalang.

John W. Tukey. 1949. Comparing individual means in the analysis of variance.
Biometrics 5, 2 (1949).

Xing Wei and W. Bruce Croft. 2006. LDA-based document models for ad-hoc
retrieval. In SIGIR.

Frank Wilcoxon. 1945. Individual comparisons by ranking methods.

Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: A survey. STVR 22, 2 (2012).

Lingming Zhang. 2018. Hybrid regression test selection. In ICSE.

Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. 2013.
Bridging the gap between the total and additional test-case prioritization strate-
gies. In ICSE.

Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug reports.
In ICSE.

	Abstract
	1 Introduction
	2 Information Retrieval (IR) Techniques
	2.1 Construction of Data Objects
	2.2 Construction of Queries
	2.3 Retrieval Models

	3 Constructing Dataset
	4 Experiment Setup
	4.1 Evaluation Metrics
	4.2 Other TCP Techniques
	4.3 Flaky Tests

	5 Empirical Evaluation
	5.1 RQ1: IR Configurations
	5.2 RQ2: Comparison of IR-Based TCP against Other TCP Techniques
	5.3 RQ3: Hybrid Techniques
	5.4 RQ4: Impacts of Flaky Tests
	5.5 Discussion

	6 Threats to Validity
	7 Related Work
	8 Conclusions
	References

