




of the set x, where every possible combination of

token-level typos is allowed:

B(x) = {(x̃1, . . . , x̃L) | x̃i ∈ B(xi) ∀ i} (1)

The size of the attack surface |B(x)| grows expo-

nentially with respect to number of input tokens, as

shown in Figure 2. In general xi ∈ B(xi), so some

words could remain unperturbed.

Model evaluation. In this work, we use three

evaluation metrics for any given task.

First, we evaluate a model on its standard accu-

racy on the task:

accstd(f) = E(x,y)∼ptask
1[f(x) = y]. (2)

Next, we are interested in models that also have

high robust accuracy, the fraction of examples

(x, y) for which the model is correct on all valid per-

turbations x̃ ∈ B(x) allowed in the attack model:

accrob(f) = E(x,y)∼ptask
min

x̃∈B(x)
1 [f(x̃) = y] .

(3)

It is common to instead compute accuracy against

a heuristic attack a that maps clean sentences x to

perturbed sentences a(x) ∈ B(x).

accattack(f ; a) = E(x,y)∼ptask
1[f(a(x)) = y]. (4)

Typically, a(x) is the result of a heuristic search for

a perturbation x̃ ∈ B(x) that f misclassifies. Note

that accattack is a (possibly loose) upper bound of

accrob because there could be perturbations that the

model misclassifies but are not encountered during

the heuristic search (Athalye et al., 2018).

Additionally, since robust accuracy is generally

hard to compute, some existing work computes cer-

tified accuracy (Huang et al., 2019; Jia et al., 2019;

Shi et al., 2020), which is a potentially conserva-

tive lower bound for the true robust accuracy. In

this work, since we use robust encodings, we can

tractably compute the exact robust accuracy.

3 Robust Encodings

We introduce robust encodings (RobEn), a frame-

work for constructing encodings that are reusable

across many tasks, and pair with arbitrary model

architectures. In Section 3.1 we describe the key

components of RobEn, then in Section 3.2 we high-

light desiderata RobEn should satisfy.

3.1 Encoding functions

A RobEn classifier fα : X → Y using RobEn de-

composes into two components: a fixed encoding

function α : X → Z , and a model that accepts en-

codings g : Z → Y .1 For any sentence x, our sys-

tem makes the prediction fα(x) = g(α(x)). Given

training data {(xi, yi)}
n
i=1 and the encoding func-

tion α, we learn g by performing standard training

on encoded training points {(α(xi), yi)}
n
i=1. To

compute the robust accuracy of this system, we

note that for well-chosen α and an input x from

some distribution Px, the set of possible encodings

α(x̃) for some perturbation x̃ ∈ B(x) is both small

and tractable to compute quickly. We can thus com-

pute accrob(fα) quickly by generating this set of

possible encodings, and feeding each into g, which

can be any architecture.

3.2 Encoding function desiderata

In order to achieve high robust accuracy, a classifier

fα that uses α should make consistent predictions

on all x̃ ∈ B(x), the set of points described by the

attack surface, and also have high standard accu-

racy on unperturbed inputs. We term the former

property stability, and the latter fidelity, give intu-

ition for both in this section, and provide a formal

instantiation in Section 4.

Stability. For an encoding function α and some

distribution over inputs Px, the stability Stab(α)
measures how often α maps sentences x ∼ Px to

the same encoding as all of their perturbations.

Fidelity. An encoding function α has high fi-

delity if models that use α can still achieve high

standard accuracy. Unfortunately, while we want to

make task agnostic encoding functions, standard ac-

curacy is inherently task dependent: different tasks

have different expected distributions over inputs

and labels. To emphasize this challenge consider

two tasks: for an integer n, predict n mod 2, and

n mod 3. The information we need encodings to

preserve varies significantly between these tasks:

for the former, 2 and 6 can be identically encoded,

while for the latter they must encoded separately.

To overcome this challenge, we consider a sin-

gle distribution over the inputs Px that we believe

covers many task-distributions ptask. Since it is

hard to model the distribution over the labels, we

take the more conservative approach of mapping

1We can set Z ⊆ X when g accepts sentences.



the different sentences sampled from Px to differ-

ent encodings with high probability. We call this

Fid(α), and give an example in Section 4.5.

Tradeoff. Stability and fidelity are inherently

competing goals. An encoding function that maps

every sentence to the same encoding trivially max-

imizes stability, but is useless for any non-trivial

classification task. Conversely, fidelity is maxi-

mized when every input is mapped to itself, which

has very low stability. In the following section,

we construct an instantiation of RobEn that bal-

ances stability and fidelity when the attack surface

consists of typos.

4 Robust Encodings for Typos

In this section, we focus on adversarial typos,

where an adversary can add typos to each token

in a sentence (see Figure 2). Since this attack sur-

face is defined at the level of tokens, we restrict

attention to encoding functions that encode each

token independently. Such an encoding does not

use contextual information; we find that even such

robust encodings achieve greater attack accuracy

and robust accuracy in practice than previous work.

First, we will reduce the problem of generat-

ing token level encodings to assigning vocabulary

words to clusters (Section 4.1). Next, we use an ex-

ample to motivate different clustering approaches

(Section 4.2), then describe how we handle out-of-

vocabulary tokens (Section 4.3). Finally, we in-

troduce two types of token-level robust encodings:

connected component encodings (Section 4.4) and

agglomerative cluster encodings (Section 4.5).

4.1 Encodings as clusters

We construct an encoding function α that encodes

x token-wise. Formally, α is defined by a token-

level encoding function π that maps each token

xi ∈ T to some encoded token π(xi) ∈ ZTok:

α(x) = [π(x1), π(x2), . . . π(xL)]. (5)

In the RobEn pipeline, a downstream model g is

trained on encodings (Section 3.1). If π maps many

words and their typos to the same encoded token,

they become indistinguishable to g, conferring ro-

bustness. In principle, the relationship between dif-

ferent encoded tokens is irrelevant: during training,

g learns how to use the encoded tokens to perform

a desired task. Thus, the problem of finding a good

π is equivalent to deciding which tokens should

share the same encoded token.

at
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abrupt

about

aut

aet
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abot

aboupt

Maximal stability

Maximal fidelity

Balanced

Figure 3: Visualization of three different encodings.

Vocabulary words (large font, blue) share an edge if

they share a common perturbation (small font, red).

The maximal stability cluster (thick solid line) clusters

identically, the maximal fidelity clusters (thin dotted

line) encodes all words separately, while the balanced

clusters (thin solid line) trade off the two.

Since the space of possible tokens T is in-

numerable, we focus on a smaller set of words

V = {w1, . . . , wN} ⊆ T , which contains the N
most frequent words over Px. We will call elements

of V words, and tokens that are perturbations of

some word typos. We view deciding which words

should share an encoded token as assigning words

to clusters C1, . . . , Ck ⊆ V . For all other tokens

not in the vocabulary, including typos, we define a

separate πOOV. Thus, we decompose π as follows:

π(xi) =

{

πV (xi) xi ∈ V

πOOV(xi) xi /∈ V
, (6)

Here, πV is associated with a clustering C of vo-

cabulary words, where each cluster is associated

with a unique encoded token.

4.2 Simple example

We use a simple example to illustrate how a token-

level encoding function can achieve the RobEn

desiderata: stability and fidelity defined in Section

3.2. We will formally define the stability and fi-

delity of a clustering in Sections 4.3 and 4.5.

Consider the five words (large font, blue) in Fig-

ure 3, along with potential typos (small font, red).

We illustrate three different clusterings as boxes

around tokens in the same cluster. We may put all

words in the same cluster (thick box), each word

in its own cluster (dashed boxes), or something

in between (thin solid boxes). For now, we group

each typo with a word it could have been perturbed

from (we will discuss this further in Section 4.3).

To maximize stability, we need to place all words

in the same cluster. Otherwise, there would be two



words (say “at” and “aunt”) that could both be

perturbed to the same typo (“aut”) but are in dif-

ferent clusters. Therefore, “aut” cannot map to

the same encoded token as both the possible vocab

words. At the other extreme, to maximize fidelity,

each word should be in its own cluster. Both map-

pings have weaknesses: the stability-maximizing

mapping has low fidelity since all words are iden-

tically encoded and thus indistinguishable, while

the fidelity-maximizing mapping has low stabil-

ity since the typos of words “aunt”, “abet”, and

“abrupt” could all be mapped to different encoded

tokens than that of the original word.

The clustering represented by the thin solid

boxes in Figure 3 balances stability and fidelity.

Compared to encoding all words identically, it has

higher fidelity, since it distinguishes between some

of the words (e.g., “at” and “about” are encoded

differently). It also has reasonably high stability,

since only the infrequent “abet” has typos that

are shared across words and hence are mapped to

different encoded tokens.

4.3 Encoding out-of-vocab tokens

Given a fixed clustering of V , we now study how

to map out-of-vocabulary tokens, including typos,

to encoded tokens without compromising stability.

Stability. Stability measures the extent to which

typos of words map to different encoded tokens.

We formalize this by defining the set of tokens that

some typo of a word w could map to, Bπ(w):

Bπ(w) = {π(w̃); w̃ ∈ B(w)}, (7)

where B(w) is the set of allowable typos of w.

Since we care about inputs drawn from Px, we

define Stab on the clustering C using ρ(w), the

normalized frequency of word w based on Px.

Stab(C) = −

N
∑

i=1

ρ(wi)|Bπ(wi)| (8)

For a fixed clustering, the size of Bπ(w) depends

on where πOOV maps typos that w shares with other

words; for example in Figure 3, “aet” could be a

perturbation of both “at” and “abet”. If we map

the typo the encoded token of “at”, we increase

the size of Bπ(”abet”) and vice-versa. In order to

keep the size of Bπ(w) smaller for the more fre-

quent words and maximize stability (Equation 8),

we map a typo to the same encoded token as its

most frequent neighbor word (in this case “at”).

Finally, when a token is not a typo of any vocab

words, we encode it to a special token OOV.

4.4 Connected component encodings

We present two approaches to generate robust

token-level encodings. Our first method, connected

component encodings, maximizes the stability ob-

jective (8). Notice that Stab is maximized when for

each word w, Bπ(w) contains one encoded token.

This is possible only when all words that share a

typo are assigned to the same cluster.

To maximize Stab, define a graph G with all

words in V as vertices, and edges between words

that share a typo. Since we must map words that

share an edge in G to the same cluster, we define

the cluster Ci to be the set of words in the ith

connected component of G. While this stability-

maximizing clustering encodes many words to the

same token (and hence seems to compromise on

fidelity), these encodings still perform surprisingly

well in practice (see Section 5.4).

4.5 Agglomerative cluster encodings

Connected component encodings focus only sta-

bility and can lead to needlessly low fidelity. For

example, in Figure 3, “at” and “about” are in the

same connected component even though they don’t

share a typo. Since both words are generally fre-

quent, mapping them to different encoded tokens

can significantly improve fidelity, with only a small

drop in stability: recall only the infrequent word

“abet” can be perturbed to multiple encoded tokens.

To handle such cases, we introduce agglomera-

tive cluster encodings, which we construct by trad-

ing off Stab with a formal objective we define for

fidelity: Fid. We then approximately optimize this

combined objective Φ using an agglomerative clus-

tering algorithm.

Fidelity objective. Recall from Section 3.2 that

an encoding has high fidelity if it can be used to

achieve high standard accuracy on many tasks. This

is hard to precisely characterize: we aim to design

an objective that could approximate this.

We note that distinct encoded tokens are arbi-

trarily related: the model g learns how to use dif-

ferent encodings during training. Returning to our

example, suppose “at” and “abet” belong to the

same cluster and share an encoded token z. Dur-

ing training, each occurrence of “at” and “abet”

is replaced with z. However, since “at” is much

more frequent, classifiers treat z similarly to “at ′′



in order to achieve good overall performance. This

leads to mostly uncompromised performance on

sentences with “at”, at the cost of performance on

sentences containing the less frequent “abet”.

This motivates the following definition: let ~vi
be a the indicator vector in R

|V | corresponding to

word i. In principle ~vi could be a word embedding;

we choose indicator vectors to avoid making addi-

tional assumptions. We define the encoded token

~µj associated with words in cluster Cj as follows:

~µj =

∑

wi∈Cj
ρ(wi)~vi

∑

wi∈Cj
ρ(wi)

(9)

We weight by the frequency ρ to capture the effect

of training on the encodings, as described above.

Fidelity is maximized when each word has a

distinct encoded token. We capture the drop in

standard accuracy due to shared encoded tokens by

computing the distance between the original em-

beddings of the word its encoded token. Formally,

let c(i) be the cluster index of word wi. We define

the fidelity objective Fid as follows:

Fid(C) = −
N
∑

i=1

ρ(wi)‖~vi − ~µc(i)‖
2. (10)

Fid is high if frequent words and rare words are

in the same cluster and is low when when multiple

frequent words are in the same cluster.

Final objective. We introduce a hyperparameter

γ ∈ [0, 1] that balances stability and fidelity. We

approximately minimize the following weighted

combination of Stab (8) and Fid (10):

Φ(C) = γ Fid(C) + (1− γ) Stab(C). (11)

As γ approaches 0, we get the connected compo-

nent clusters from our baseline, which maximize

stability. As γ approaches 1, we maximize fidelity

by assigning each word to its own cluster.

Agglomerative clustering. We approximate the

optimal value of Φ using agglomerative clustering;

we start with each word in its own cluster, then iter-

atively combine the pair of clusters whose resulting

combination increases Φ the most. We repeat until

combining any pair of clusters would decrease Φ.

Further details are provided in Appendix A.1.

5 Experiments

5.1 Setup

Token-level attacks. The primary attack surface

we study is edit distance one (ED1) perturbations.

For every word in the input, the adversary is al-

lowed to insert a lowercase letter, delete a charac-

ter, substitute a character for any letter, or swap

two adjacent characters, so long as the first and last

characters remain the same as in the original token.

The constraint on the outer characters, also used by

Pruthi et al. (2019), is motivated by psycholinguis-

tic studies (Rawlinson, 1976; Davis, 2003).

Within our attack surface, “the movie was miser-

able” can be perturbed to “thae mvie wjs misreable”

but not “th movie as miserable”. Since each to-

ken can be independently perturbed, the number

of perturbations of a sentence grows exponentially

with its length; even “the movie was miserable”

has 431,842,320 possible perturbations. Our attack

surface contains the attack surface used by (Pruthi

et al., 2019), which allows ED1 perturbations to at

most two words per sentence. Reviews from SST-2

have 5 million perturbations per example (PPE) on

average under this attack surface, while our attack

surface averages 1097 PPE. We view the size of

the attack surface as a strength of our approach:

our attack surface forces a system robust to subtle

perturbations (“the moviie waas misreable”) that

smaller attack surfaces miss.

In Section 5.7, we additionally consider the in-

ternal permutation attacks studied in Belinkov and

Bisk (2018) and Sakaguchi et al. (2017), where

all characters, except the first and the last, may be

arbitrarily reordered.

Attack algorithms. We consider two attack algo-

rithms: the worst-case attack (WCA) and a beam-

search attack (BSA). WCA exhaustively tests ev-

ery possible perturbation of an input x to see any

change in the prediction. The attack accuracy of

WCA is the true robust accuracy since if there ex-

ists some perturbation that changes the prediction,

WCA finds it. When instances of RobEn have high

stability, the number of possible encodings of per-

turbations of x is often small, allowing us to exhaus-

tively test all possible perturbations in the encoding

space.2 This allows us to tractably run WCA. Using

WCA with RobEn, we can obtain computationally

tractable guarantees on robustness: given a sen-

tence, we can quickly compute whether or not any

perturbation of x that changes the prediction.

For systems that don’t use RobEn, we cannot

tractably run WCA. Instead, we run a beam search

2When there are more than 10000 possible encodings,
which holds for 0.009% of our test examples, we assume
the adversary successfully alters the prediction.



attack (BSA) with beam width 5, perturbing tokens

one at a time. For efficiency, we sample at most

len(xi) perturbations at each step of the search (see

Apendix A.2). Even against this very limited attack,

we find that baseline models have low accuracy.

Datasets. We use six of the nine tasks from

GLUE (Wang et al., 2019): SST-2, MRPC, QQP,

MNLI, QNLI, and RTE. We do not use STS-B and

CoLA as they are evaluated on correlation, which

does not decompose as an example-level loss. We

additionally do not use WNLI, as most submitted

GLUE models cannot even outperform the major-

ity baseline, and state-of-the-art models are rely on

external training data (Kocijan et al., 2019). We

evaluate on the test sets for SST-2 and MRPC, and

the publicly available dev sets for the remaining

tasks. More details are provided in Appendix A.3.

5.2 Baseline models.

We consider three baseline systems. Our first is the

standard base uncased BERT model (Devlin et al.,

2019) fine-tuned on the training data for each task.3

Data augmentation. For our next baseline, we

augment the training dataset with four random per-

turbations of each example, then fine-tune BERT

on this augmented data. Data augmentation has

been shown to increase robustness to some types of

adversarial perturbations (Ribeiro et al., 2018; Liu

et al., 2019). Other natural baselines all have severe

limitations. Adversarial training with black-box at-

tacks offers limited robustness gains over data aug-

mentation (Cohen et al., 2019; Pruthi et al., 2019).

Projected gradient descent (Madry et al., 2017), the

only white-box adversarial training method that is

robust in practice, cannot currently be applied to

BERT since subword tokenization maps different

perturbations to different numbers of tokens, mak-

ing gradient-based search impossible. Certifiably

robust training (Huang et al., 2019; Shi et al., 2020)

does not work with BERT due to the same tokeniza-

tion issue and BERT’s use of non-monotonic acti-

vation functions, which make computing bounds

intractable. Moreover the bounds computed with

certifiably robust training, which give guarantees,

become loose as model depth increases, hurting

robust performance (Gowal et al., 2018).

Typo-corrector. For our third baseline, we use

the most robust method from Pruthi et al. (2019). In

3https://github.com/huggingface/

pytorch-transformers

particular, we train a scRNN typo-corrector (Sak-

aguchi et al., 2017) on random perturbations of

each task’s training set. At test time inputs are

“corrected” using the typo corrector, then fed into

a downstream model. We replace any OOV out-

putted by the typo-corrector with the neutral word

“a” and use BERT as our downstream model.

5.3 Models with RobEn

We run experiments using our two token-level

encodings: connected component encodings

(CONNCOMP) and agglomerative cluster encod-

ings (AGGCLUST). To form clusters, we use the

N = 100, 000 most frequent words from the Cor-

pus of Contemporary American English (Davies,

2008) that are also in GloVe (Pennington et al.,

2014). For AGGCLUST we use γ = 0.3, which

maximizes robust accuracy on SST-2 dev set.

Form of encodings. Though unnecessary when

training from scratch, to leverage the inductive bi-

ases of pre-trained models like BERT (Devlin et al.,

2019), we define the encoded token of a cluster to

be the cluster’s most frequent member word. In

the special case of the out-of-vocab token, we map

OOV to [MASK]. Our final encoding, α(x), is the

concatenation of all of these words. For both encod-

ings, we fine-tune BERT on the training data, using

α(x) as input. Further details are in Appendix A.4.

5.4 Robustness gains from RobEn

Our main results are shown in Table 1. We show

all three baselines, as well as models using our

instances of RobEn: CONNCOMP and AGGCLUST.

Even against the heuristic attack, each baseline

system suffers dramatic performance drops. The

system presented by Pruthi et al. (2019), Typo Cor-

rector + BERT, only achieves 35.3% attack accu-

racy, compared to its standard accuracy of 78.2%.

BERT and Data Augmentation + BERT perform

even worse. Moreover, the number of perturbations

the heuristic attack explores is a tiny fraction of our

attack surface, so the robust accuracy of Typo Cor-

rector + BERT, the quantity we’d like to measure,

is likely far lower than the attack accuracy.

In contrast, simple instances of RobEn are much

more robust. AGGCLUST + BERT achieves av-

erage robust accuracy of 71.3%, 36 points higher

than the attack accuracy of Typo Corrector + BERT.

AGGCLUST also further improves on CONNCOMP

in terms of both robust accuracy (by 1.3 points)

and standard accuracy (by 2.8 points).
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A Appendix

A.1 Aggloemrative clustering

Recall that any πV induces a clustering of V , where

each cluster contains a set of words mapped by πV
to the same encoded token. We use an agglomer-

ative clustering algorithm to approximately mini-

mize Φ. We initialize πV by setting πV (w) = w
for each w ∈ V , which corresponds to placing

each word in its own cluster. We then examine

each pair of clusters Ci, Cj such that there exists

an edge between a node in Ci and a node in Cj , in

the graph from Section 4.2. For each such pair, we

compute the value of Φ if Ci and Cj were replaced

by Ci ∪ Cj . If no merge operation causes Φ to

decrease, we return the current πV . Otherwise, we

merge the pair that leads to the greatest reduction

in Φ, and repeat. To merge two clusters Ci and

Cj , we first compute a new encoded token r as

the w ∈ Ci ∪ Cj with largest ρ(w). We then set

πV (w) = r for all w ∈ Ci ∪ Cj . Our algorithm

thus works as follows

Algorithm 1 Objective-minimizing agglomerative

clustering

1: C ← V
2: for i in range(|V |) do

3: Cnext ← Get Best Combination(C)
4: if C = Cnext then

5: return C

6: end if

7: C ← Cnext

8: end for

9: return C

Now, we simply have to define the procedure we

use to get the best combination.

Algorithm 2 Get Best Combination(C)

1: Copt ← C
2: Φopt ← Φ(C)
3: for (Ci, Cj) ∈ Adjacent Pairs(C) do

4: Ccomb ← Ci ∪ Cj

5: Cnew ← C ∪ Ccomb \ {Ci, Cj} {New clus-

ters}
6: Φnew ← Φ(Cnew)
7: if Φnew < Φopt then

8: Φopt ← Φnew

9: Copt ← Cnew

10: end if

11: end for

12: return Copt

Recall our graph G = (G,E) used to define

the connected component clusters. We say two

clusters Ci and Cj are adjacent, and thus returned

by Adjacent Pairs, if there exists a vi ∈ Ci and a

vj ∈ Cj such that (vi, vj) ∈ GE . The runtime of

our algorithm is O(N2E) since at each of a pos-

sible N total iterations, we compute the objective

for one of at most E pairs of clusters. Computation

of the objective can be reframed as computing the

difference between Φ and Φnew, where the latter is



computed using new clusters, which can be done

in O(N) time.

A.2 Attacks

We use two heuristic attacks to compute an upper

bound for robust accuracy: one for ED1 pertur-

bations and one for internal permutations. Each

heuristic attack is a beam search, with beam width

5. However, because |B(xi)| is very large for

many tokens xi, even the beam search is intractable.

Instead, we run a beam search where the allow-

able perturbations are B′(xi) ⊆ B(xi), where

|B′(xi)| << B(xi) for sufficiently long xi. For

our ED1 attack, we define B′(xi) to be four ran-

domly sampled perturbations from B(xi) when

the length of xi is less than five, and all deletions

when xi is greater than five. Thus, the number of

perturbations of each word is bounded above by

min{4, len(xi)−2}. For our internal permutations,

B′(xi) is obtained by sampling five permutations

at random.

A.3 Datasets

We use six out of the nine tasks from GLUE:

SST, MRPC, QQP, MNLI, QNLI, and RTE, all

of which are classification tasks measured by ac-

curacy. The Stanford Sentiment Treebank (SST-

2) (Socher et al., 2013) contains movie reviews

that are classified as positive and negative. The

Microsoft Research Paraphrase Corpus (MRPC)

(Dolan and Brockett, 2005) and the Quora Ques-

tion Pairs dataset4 contain pairs of input which are

classified as semantically equivalent or not; QQP

contains question pairs from Quora, while MRPC

contains pairs from online news sources. MNLI,

and RTE are entailment tasks, where the goal is to

predict whether or not a premise sentence entails

a hypothesis (Williams et al., 2018). MNLI gath-

ers premise sentences from ten different sources,

while RTE gathers premises from entailment chal-

lenges. QNLI gives pairs of sentences and ques-

tions extracted from the Stanford Question Answer-

ing Dataset (Rajpurkar et al., 2016), and the task is

to predict whether or not the answer to the question

is in the sentence.

We use the GLUE splits for the six datasets

and evaluate on test labels when available (SST-2,

MRPC), and otherwise the publicly released de-

velopment labels. We tune hyperparameters by

4data.quora.com/First-Quora-Dataset-Release-Question-
Pairs

training on 80% of the original train set and using

the remaining 20% as a validation set. We then

retrain using the chosen hyperparameters on the

full training set.

A.4 Experimental details

For our methods using transformers, we start with

the pretrained uncased BERT (Devlin et al., 2019),

using the same hyperparameters as the pytorch-

transformers repo.5. In particular, we use the base

uncased version of BERT. We use a batch size of

8, and learning rate 2e−5. For examples where

|Bα(x)| > 10000, we assume the prediction is not

robust to make computation tractible. Each typo

corrector uses the defaults for training from6; it is

trained on a specific task using perturbations of the

training data as input and the true sentence (up to

OOV) as output. The vocabulary size of the typo

correctors is 10000 including the unknown token,

as in (Pruthi et al., 2019). The typo corrector is

chosen based on word-error rate on the validation

set.

A.5 Constrained adversaries

Using RobEn, since we can tractably compute ro-

bust accuracy, it is easy to additionally consider

adversaries that cannot perturb every input token.

We may assume that an attacker has a budget of

b ≤ L words that they may perturb as in (Pruthi

et al., 2019). Exiting methods for certification (Jia

et al., 2019; Huang et al., 2019) require attack to be

factorized over tokens, and cannot give tighter guar-

antees in the budget-constrained case compared to

the unconstrained setting explored in previous sec-

tions. However, our method lets us easily compute

robust accuracy exactly in this situation: we just

enumerate the possible perturbations that satisfy

the budget constraint, and query the model.

Figure 6 plots average robust accuracy across

the six tasks using AGGCLUST as a function of

b. Note that b = 0 is simply standard accuracy.

Interestingly, for each dataset there is an attack only

perturbing 4 tokens with attack accuracy equal to

robust accuracy.

A.6 Number of representations

We include here histograms for the datasets we did

not cover in the main body. The histograms for

5https://github.com/huggingface/

pytorch-transformers
6https://github.com/danishpruthi/

Adversarial-Misspellings





Encodings SST-2 MRPC QQP MNLI QNLI RTE Avg

Con. Comp. 86.9 71.6 72.7 45.3 54.6 40.4 61.9

Agg. Clust. 65.6 50.0 62.7 35.4 36.6 25.2 45.9

Table 2: Percentage of test examples with |Bα(x)| = 1 for each dataset.

Accuracy System SST-2 MRPC QQP MNLI QNLI RTE Avg

Standard
BERT 93.8 87.7 91.2 84.3 88.9 71.1 86.2

Con. Comp. + BERT 93.2 87.7 86.9 75.9 83.4 61.4 81.4

Attack
BERT 28.1 15.9 33.0 4.9 6.2 5.8 15.7

Con. Comp. + BERT 93.2 87.7 86.9 75.9 83.4 61.4 81.4

Robust Con. Comp. + BERT 93.2 87.7 86.9 75.9 83.4 61.4 81.4

Table 3: Results from internal permutation attacks. Internal permutation attacks bring the average performance

for BERT across the six listed tasks from 86.2 to 15.7. Our CONNCOMP encodings, generated using the internal

permutation attack surface, achieve a robust accuracy of 81.4, which is only 4.8 points below standard accuracy.


