2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

Simulee: Detecting CUDA Synchronization Bugs via
Memory-Access Modeling

Mingyuan Wu Yicheng Ouyang Husheng Zhou
Southern University of Science and Southern University of Science and University of Texas at Dallas
Technology Technology Dallas, USA

Shenzhen, China
11849319@mail.sustech.edu.cn

Shenzhen, China
11610313@mail.sustech.edu.cn

husheng.zhou@utdallas.edu

Lingming Zhang Cong Liu Yuqun Zhang”
University of Texas at Dallas University of Texas at Dallas Southern University of Science and
Dallas, USA Dallas, USA Technology
lingming.zhang@utdallas.edu cong@utdallas.edu Shenzhen, China
zhangyq@sustech.edu.cn

ABSTRACT

While CUDA has become a mainstream parallel computing plat-
form and programming model for general-purpose GPU computing,
how to effectively and efficiently detect CUDA synchronization
bugs remains a challenging open problem. In this paper, we pro-
pose the first lightweight CUDA synchronization bug detection
framework, namely Simulee, to model CUDA program execution
by interpreting the corresponding LLVM bytecode and collecting
the memory-access information for automatically detecting gen-
eral CUDA synchronization bugs. To evaluate the effectiveness and
efficiency of Simulee, we construct a benchmark with 7 popular
CUDA-related projects from GitHub, upon which we conduct an
extensive set of experiments. The experimental results suggest that
Simulee can detect 21 out of the 24 manually identified bugs in our
preliminary study and also 24 previously unknown bugs among all
projects, 10 of which have already been confirmed by the develop-
ers. Furthermore, Simulee significantly outperforms state-of-the-art
approaches for CUDA synchronization bug detection.

ACM Reference Format:

Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang, Cong Liu,
and Yuqun Zhang®. 2020. Simulee: Detecting CUDA Synchronization Bugs
via Memory-Access Modeling. In 42nd International Conference on Software
Engineering (ICSE °20), May 23-29, 2020, Seoul, Republic of Korea. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3377811.3380358

Yuqun Zhang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7121-6/20/05....$15.00
https://doi.org/10.1145/3377811.3380358

937

1 INTRODUCTION

CUDA [3] is a mainstream parallel computing platform and pro-
gramming model that allows software developers to leverage general-
purpose GPU (GPGPU) computing [4]. CUDA is advanced in sim-
plifying I/O streams to memories and dividing computations into
sub-computations since it parallelizes programs in terms of grids
and blocks. In addition, CUDA enables more flexible cache manage-
ment that speeds up the floating point computation of CPUs. CUDA
is thus considered rather powerful for accelerating deep-neural-
network-related applications where relevant matrix computations
can be efficiently loaded.

Unlike traditional CPU multi-thread programs where the syn-
chronization mechanism is built upon managing the shared re-
source that can be accessed by multiple threads, the typical syn-
chronization mechanism of GPU programs is built upon synchro-
nizing the instruction flows [1]. In particular, since GPU programs
use barriers rather than locks for synchronization and enable sim-
plified barrier-based happens-before relations, traditional lockset-
based [13, 38] and happens-before-based bug detection approaches
[18, 34] for CPUs become obsolete and expensive in detecting
parallel-computing-related bugs for GPUs.

Recently, several approaches, e.g., [6, 9, 20, 30, 31, 37, 50, 51], have
been proposed to detect synchronization bugs for CUDA kernel
functions. In general, they can be categorized into two classes: (1)
the compiler-based approaches that leverage compiler instrumenta-
tion with/without static analysis to identify race-free locations for
detecting data-race bugs [6, 20, 37, 50, 51], and (2) the SMT-solver-
based approaches that integrate static analysis and symbolic exe-
cution with SMT solver to detect data race and barrier-divergence
bugs [9, 30, 31]. Although such approaches can detect CUDA syn-
chronization bugs under their respectively defined environments,
they have limited applicability and may rely on certain assumptions.
In particular, the compiler-based approaches are limited due to re-
lying on developer-provided test inputs and detecting data races
only; while the SMT-solver-based approaches can be heavyweight
due to triggering expensive static-analysis overhead and may also
involve manually-provided test inputs.

In this paper, to address the aforementioned issues, we develop a
systematic lightweight bug detection framework, namely Simulee [7],

ICSE "20, May 23-29, 2020, Seoul, Republic of Korea

which automatically detects general synchronization bugs for CUDA
kernel functions. In particular, Simulee generates a Memory-Access
Model that maintains thread-wise memory-access information in-
cluding thread id, visit order, and action. Accordingly, Simulee uti-
lizes the LLVM bytecode of CUDA kernel functions to initialize the
running environmental setups including arguments, dimensions,
and global memory if necessary based on the Memory-Access Model.
Moreover, Simulee applies Evolutionary Programming [21] to ap-
proach error-inducing inputs for exposing the dangerous program
execution paths which may possibly induce synchronization bugs.
Subsequently, Simulee collects the corresponding memory-access
information from such paths. At last, by combining CUDA specifics,
such collected memory-access information are analyzed to find
whether they can potentially lead to synchronization bugs.

Compared with other CUDA synchronization bug detection ap-
proaches, Simulee can detect multiple bug types including data race,
redundant barrier function, and barrier divergence fully automati-
cally. Moreover, Simulee benefits from exploring the dangerous exe-
cution paths guided by the lightweight evolutionary search, without
incurring large overhead (e.g., for constraint solving), such that it is
more efficient than existing state-of-the-art approaches [9, 30, 31]
that usually rely on heavyweight techniques or manual inputs.

To evaluate the effectiveness and efficiency of Simulee, we first
collect 7 popular CUDA-related projects from GitHub (with a total
of 17928 commits and 1.36 million LOC by Aug, 2019) as our bench-
mark suite. Then, as a preliminary study, we manually identified
24 real-world synchronization bugs from a subset of the studied
real-world CUDA projects and the GKLEE [30] benchmark suite.
We conduct a set of experiments to explore (1) how many of those
manually identified bugs can be detected by Simulee for the prelim-
inary analysis; (2) whether Simulee can detect previously-unknown
bugs on those real-world CUDA projects; and (3) how Simulee
compares with state-of-the-art approaches in CUDA bug detection.
The experimental results suggest that Simulee can successfully de-
tect 21 of the 24 manually identified synchronization bugs in our
preliminary study. Furthermore, it even detects 24 previously un-
known bugs from all the 7 real-world CUDA projects, 10 of which
have already been confirmed by the corresponding developers. The
experimental results also demonstrate that Simulee can be much
more effective than state-of-the-art approaches, i.e., GKLEE [30],
GKLEE-SESA [31], GPUVerify [9], and RaceChecker [6], in detecting
synchronization bugs, e.g., Simulee can detect 2X more previously
unknown bugs than any of the other studied state-of-the-art ap-
proaches. In addition, Simulee can significantly outperform the
other studied approaches in terms of the runtime overhead.

In summary, our paper makes the following contributions:

o Idea. To the best of our knowledge, we propose the first idea
of CUDA synchronization bug detection via evolutionary
search guided by memory-access modeling.

e Implementation. We have implemented the proposed idea
as a lightweight, fully automated, and general-purpose de-
tection framework for CUDA synchronization bugs, namely
Simulee, that can automatically detect a wide range of syn-
chronization bugs in CUDA programs which are hard to be
captured manually.

938

Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang, Cong Liu, and Yuqun Zhang*

Grid

Block Block
(00) (10)
Block Block Thread
(01) (11) (11)
@ B =
(02) (12) K(02) (22)

Figure 1: CUDA Hierarchy

-~

[Thread

Block (10) \
Thread Thread
(10) (20)

(00)

Thread]

(21)

Thread
(01)

Thread
(12)

e Study. We evaluate Simulee under multiple experimental
setups. The results suggest that Simulee is able to detect
most of the manually identified synchronization bugs in
the benchmark. In addition, it even detects 24 previously-
unknown bugs of the entire benchmark fully automatically
and significantly outperforms state-of-the-art approaches.

2 BACKGROUND

In this section, we give an overview on CUDA, the CUDA parallel
computing mechanism, and typical CUDA synchronization bugs.
CUDA Overview. CUDA is a parallel computing platform and pro-
gramming model, which allows developers to use GPU hardware for
general-purpose computing, e.g., autonoumos driving [48, 52, 53].
CUDA is composed of a runtime library and an extended version of
C/C++. In particular, CUDA programs are executed on GPU cores,
namely “device”, while they also need to be allocated with resources
on CPUs, namely “host”, prior to execution. As a result, developers
need to retrieve allocated resources such as global memory after
CUDA program execution. To conclude, a complete CUDA program
contains 3 runtime stages: (1) host resource preparation, (2) kernel
function execution, and (3) host resource retrieve.

CUDA Parallel Computing Mechanism. A CUDA kernel func-
tion refers to the part of CUDA programs that runs on the device
side. Specifically, thread is the kernel function’s basic execution
unit. At the physical level, 32 threads are bundled as a thread warp
wherein all the threads execute the same statement at any time
except undergoing a branch divergence, while at the logic level, one
or more threads are contained in a block, and one or more blocks
are contained in a grid. The execution of kernel functions is ini-
tialized by setting runtime environments, e.g., dimensions of grids
and blocks, passing relevant arguments, such that the computation
can be divided into sub-computations and each sub-computation
can be dispatched to different threads. Eventually, the results of
sub-computations can be merged as the final result of the overall
computation through applying algorithms such as reduction [35].
The hierarchy of the parallel computing mechanism of CUDA ker-
nel functions is presented in Figure 1.

To synchronize threads, CUDA applies barriers at which all the
threads in one block must wait before any can proceed. In CUDA
kernel functions, the barrier function is “__syncthreads()” which
synchronizes threads from the same block. When a thread reaches
a barrier, it is expected to proceed to next statement if and only if
all the threads from the same block have reached the same barrier.
Otherwise, the program would be exposed to undefined behaviors.

Simulee: Detecting CUDA Synchronization Bugs via Memory-Access Modeling

tid = threadIdx.x;

1
2 ...
3 if (y > 0 && a < C)

4 f_val2reduce[tid] = f;

5 else

6 f_val2reducel[tid] = INFINITY;

7 __syncthreads(); // fix by adding syncthreads

8 // get_block_min will write data to f_val2reduce

9 int ip = get_block_min(f_val2reduce, f_idx2reduce);
10 float up_value_p = f_val2reducelip];

Figure 2: An Example of Data Race

1 const unsigned tid = threadIdx.x;
2 s_median[tid] = FLT_MAX;
3 s_idx[tid] = o;

-4 __syncthreads();

5 if (i < iterations) {
6

7 s_idx[tid] = i;

8 s_median[tid] = m;
9 %

Figure 3: An Example of Redundant Barrier

CUDA Synchronization Bugs. There are three major synchro-
nization bugs in CUDA kernel functions: data race, barrier di-
vergence [14], and redundant barrier function [1]. Specifically,
data race indicates that for accessing global or shared memory,
CUDA cannot guarantee the visit order of “read&write” actions or
“write&write” actions from two or more threads. For example, Fig-
ure 2 demonstrates the bug-fixing Revision no. “febf515a82” in the
file “smo-kernel.cu” of the project “thundersvm” [42], one of the
highly-rated GitHub projects. It can be observed from Figure 2 that
the “if” statement writes to the memory of “f_val2reduce”, while
inside the device, the function “get_block_min” writes to the same

memory. This “write&write” bug is fixed by adding “__syncthreads”

which synchronizes actions among threads.

A barrier function is considered redundant when there is no data
race after deleting it from source code. A redundant barrier func-
tion compromises the program performance in terms of time and
memory usage. For instance, Figure 3 demonstrates bug-fixing Re-
vision no. “31761d27f01” in file “kernel/homography.hpp” from
project “arrayfire” [8]. It can be observed that the block is one-
dimensional from Line 1, the value of “tid” is assigned only by
“threadIdx.x”. That indicates that the “tid”s are identical among
different threads from the same block. As a result, “s_median[tid]”
and “s_idx[tid]” can only be accessed by one thread, leading to
a redundant barrier function in Line 4 because there is no race in
“s_median” or “s_idx” after deleting it.

A barrier divergence takes place when some threads in a block
complete their tasks and leave the barrier while the others have
not reached the barrier yet. Figure 4 demonstrates the bug-fixing
Revision no. “@ed6ccec5ff” in the file “nearest_neighbour. hpp”
from the project “arrayfire” caused by barrier divergence. It can
be indicated from Figure 4 that developers make sure all the threads
in the same block reach the same barrier in every execution of the
kernel function by moving the statement of “__syncthreads()”

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

1 s_dist[sid] = dist;
s_idx[sid] = s_idx[sid + i];

=3 __syncthreads();
}
5} //fix by moving the barrier out.
+6 __syncthreads ();
7}

Figure 4: An Example of Barrier Divergence

outside the given branch. Otherwise they will have to handle unde-
fined behaviors.

3 FRAMEWORK OF SIMULEE

In this section, we introduce Simulee, a lightweight, automatic, and
device-independent framework to detect real-world CUDA synchro-
nization bugs. Typically, Simulee takes LLVM bytecode translated
from CUDA kernel function programs as input. Then, it automati-
cally generates the associated error-inducing test inputs, and yields
Memory-Access Model to detect synchronization bugs. Specifically,
Simulee is composed of two components—“Automatic Input Gener-
ation” and “Bug Detection via Memory-Access Model”. “Automatic
Input Generation" is initialized by inputting the LLVM bytecode
of CUDA kernel function programs. Next, it slices the memory-
access statements (e.g., read and write statements) and inputs them
for Evolutionary Programming [21]. Subsequently, Evolutionary
Programming helps generate error-inducing environmental setups
by iteratively mutating and sorting dimensions/arguments and
passes the acceptable ones to “Bug Detection via Memory-Access
Model”. At last, “Bug Detection via Memory-Access Model” traces
real execution paths by using the error-inducing inputs and collects
the memory-access information from the paths to detect whether
there are synchronization bugs, as it were “simulating” runtime
environment. The details can be found in Figure 5.

LLVM bytecode e <
of kernel . Automatic input generation
functions (Evolutionary Programming) i

Memory-based
synchronization
bug detection

~

\
! 1
B 1
H Initializing " !
[] sulutlons " !
| ! 1 1
| ! 1]
—_“ h i
I rverm 1" :
! m 1
! h |
! Top- rank " I
Iteratin V1=
| ¢ Q solution :-»;, — =
: acceptab\e? " N
'
----------- -~ :: Memory Memdor‘y— ! Results
Sllclng u. ' H model model- |
I H 1! construction based 1
origina] — u H
I — etection |
statements & ! H !
"
'l Mutating Mutatmg H Sorting " !
1\ arguments dimensions 1 solutions " 1
i
'

Figure 5: Framework of Simulee

3.1 Automatic Input Generation

Generating potentially error-inducing inputs is essentially equiva-
lent to generating the inputs that can lead to the memory-access

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

conflicts among threads to improve the possibility of CUDA syn-
chronization bug occurrences. However, how to automatically gen-
erate such error-inducing inputs remains challenging. Intuitive
solutions, e.g., random generation, coverage-oriented generation,
can be limited in effectiveness and efficiency, because they are not
specially designed for triggering memory-access conflicts. In this
section, we introduce how Simulee automatically generates poten-
tially error-inducing inputs for exposing the dangerous program
execution paths which could lead to synchronization bugs in an
effective and efficient manner.

3.1.1 Intuition. An effective and efficient automatic approach to
generate potentially error-inducing inputs for triggering CUDA
synchronization bugs implies generating as many memory-access
conflicts as possible within a short time limit. Given the ith mem-
ory address and the kernel function inputs, i.e., grid and block
dimensions and arguments, f(i) is defined as the number of threads
that access the ith memory address while g(i) is a function that
returns 1 when the ith memory address is accessed by any thread
and returns 0 otherwise. [start, end] denotes the memory-access
range. An intuitive target function F(dimensions, arqguments) can
be presented in Equation 1 which denotes the ratio of the total
number of the accessed memory addresses to the total number of
the memory-access threads:

end

> 9l

. . i=start
F(dimensions, arguments) =

@

end

>, fa)

i=start

It can be derived that the max value of F(dimensions, arguments)
is 1 which denotes that there is no memory-access conflict between

any thread pair. On the other hand, the smaller F(dimensions, arguments)

is, the higher chance the memory-access conflict takes place. There-
fore, F(dimensions, arguments) can be used for optimization to ob-
tain error-inducing inputs that trigger CUDA synchronization bugs.
Note that since F(dimensions, arguments) is discrete, we choose
Evolutionary Programming [44] as our optimization approach.

3.1.2 Algorithm. The framework of “Automatic Input Generation”
is presented in Algorithm 1. First, Simulee randomly initializes
arguments and dimensions to create and sort individual solutions
for evolving (Lines 3 to 7). In each generation, each solution is
mutated to generate two children, which are added to the whole
population set (Lines 8 to 14). Next, the population winners survive
for the subsequent iterations (Lines 15 to 16). The iterations can be
terminated once it finds an acceptable solution. Otherwise, after
completing the iterations, it returns the optimal solution.

Initial Solutions. The initial dimensions and arguments are ran-
domly generated and passed to fitness functions as initial solutions
for future evolution. Note that the dimensions can be extracted from
kernel functions. For instance, if a kernel function has “threadldx.x”
and “threadldx.y”, it means the block is two-dimensional.

Fitness Function. Equation 1 is chosen as the primary fitness
function for Evolutionary Programming. Specifically, the output
of F(dimensions, arguments) is the fitness score for a solution of
dimensions and arguments in Evolutionary Programming. How-
ever, it is difficult to derive an optimal solution of dimensions and

940

Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang, Cong Liu, and Yuqun Zhang*

Algorithm 1 Framework for Automatic Input Generation

Input : population, generation
Output: acceptable arguments and dimensions

1: function EVOLUTION_ALGORITHM

2 populationLst « list()

3 for i in population do

4 singleSolution « InitialSolution()

5: singleScore « fitness(singleSolution)

6 populationLst.append([singleSolution, singleScore])
7 sortByScore(populationLst)
8 for i in generation do
9 childLst « list()

10: for solution in populationLst do

11: childrenSolutions « mutation(solution)

12: newScores « fitness(childrenSolutions)

13: childLst.append([childrenSolutions, newScores])
14: populationLst.merge(childLst)

15: sortByScore(populationLst)

16: populationLst « populationLst[:population]

17: if populationLst[0] acceptable then

18: return populationLst

19: return populationLst

arguments by only optimizing F(dimensions, arguments). In partic-
ular, since F(dimensions, arqguments) is non-differentiable when
the gradient does not exist, it is hard to find an optimal solu-
tion given the set of inferior solutions, e.g., all the solutions of
F(dimensions, arguments) are “1”s. To address such issues, we de-
sign a secondary fitness function such that they are sorted according
to their possibility to be optimal: R(start, end) = end — start. In
particular, it indicates that a smaller memory-access range leads
to a higher possibility of memory-access conflict. As a result, we
define fitness score of the primary fitness function as primary score,
and the fitness score of the secondary fitness function as secondary
score. During the population evaluation, the primary score is sorted
first; if and only if the top-ranked primary score is 1, the secondary
score is sorted to decide which solution is more likely to converge
to the minimum of F(dimensions, arguments).

Mutation. In Simulee, solutions are generated by mutation,
where each solution generates two children in one generation.
Specifically, arguments and dimensions are independent from each
other during mutation with respective mutation strategies. The
mutate strategy for dimensions is trivial: first, Simulee randomly
generates an integer vector ranging from -1 to 1 according to the
dimension size; next, the child’s dimension is mutated by summing
the parent’s dimension and the generated integer vector.

The details of the mutation strategy for arguments is presented in
Algorithm 2. Since the memory-access-relevant arguments are num-
bers, Simulee views them as floating numbers and converts them
back to their actual types when executing f(i). Accordingly, each
generation generates two children: one adds a random number gen-

.2
erated by standard Normal Distribution [5] (N(x) = ‘/%e x / 2)
T
to the arguments inherited from the parent solution, and the other
adds a random number generated by standard Cauchy Distribu-
tion [2] (C(x) = m) to the arguments inherited from the par-
ent solution. We define the search step length of the arguments as

Simulee: Detecting CUDA Synchronization Bugs via Memory-Access Modeling

Algorithm 2 Mutating Arguments

Input : parent
Output: mutation children solutions
1: function ARGUMENT_MUTATION
2 normalSolution « copy(parent)
3 cauchySolution « copy(parent)
4: for argument in parent do
5 normalSolution[argument] « parent[argument] + normal()
6 cauchySolution[argument] « parent[argument] + cauchy()
7

return normalSolution, cauchySolution

the absolute value of the number generated from the two aforemen-
tioned distributions, with the expected values shown in Equations

2 and 3.
o0 1 22
Enormal(x) =A. x\/ﬁe x / dx =0.399 (2)
* 1
Ecquchy(x) = A xmdx = +00 (3)

We next explain why we apply the above two distributions. It can
be observed from Equations 2 and 3 that, the step length generated
from standard normal distribution is expected to be small. That
indicates that if there is an optimal solution nearby, the generated
child is likely to approach it. On the contrary, the step length gener-
ated from standard cauchy distribution is expected to be large. That
indicates that if there is an inferior solution nearby, the generated
child is likely to escape from it.

Acceptable Function. The acceptable function is used to termi-
nate the whole process given an acceptable solution. In this paper,
the acceptable solution is defined as that primary score is smaller
than 0.3.

In summary, by applying Evolutionary Programming, Simulee is
expected to deliver error-inducing grid and block dimensions and
arguments that lead to memory-access conflicts and trigger CUDA
synchronization bugs.

3.2 Memory-based Synchronization Bug
Detection

With the auto-generated error-inducing inputs, the synchronization
bug detection of Simulee is established on building a Memory-Access
Model that depicts thread-wise memory-access instances. Based
on the Memory-Access Model, Simulee develops a set of criteria to
detect synchronization bugs including data race, redundant barrier
functions, and barrier divergence.

3.2.1 Memory-Access Model. The Memory-Access Model accessed
by the kernel functions is defined to be composed of a set of Memory
Units where each Memory Unit corresponds to a memory address
and is composed of a set of Unit Tuples. A Unit Tuple is defined as
a three-dimensional vector space <visit_order, thread_id, action>,
where visit_order represents the visit order to the associated mem-
ory address from different threads, thread_id represents the indices
of such threads, and action refers to the read or write action from
those threads.

An example of Memory Unit is demonstrated in Figure 6 with
four Unit Tuples <0, (1 0 0), read>, <0, (2 0 0), read>, <0, (3 0 0),
read>, and <1, (3 0 0), read> where threads (1,0,0), (2,0,0), and (3,0,0)

941

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Barrier Function

>

[<0,(100), read> | [<1.(300), read >

<0,(200), read >
<0,(300), read >

Figure 6: Memory Unit Example

read the same memory address in the same visit_order since none of
them have reached any barrier function before they read. Assume
all the threads reach a barrier function later and thread (3 0 0) reads,
the wvisit_order is then incremented from 0 to 1 for thread (3 0 0)
and the other threads afterwards.

3.22 Memory Accessing Model Construction. Since Memory-Access
Model is only associated with barrier functions and memory-access
statements, it is applicable to detect synchronization bugs by ob-
taining such statements and then extracting/analyzing the memory-
access information instead of executing the complete CUDA pro-
grams on GPUs, i.e., modeling the execution of CUDA kernel func-
tion programs. This modeling process is initiated by inputting the
auto-generated block and grid dimensions and arguments passed
to the kernel functions. Next, it constructs the Memory Unit for
each memory address by tracing back the execution path for each
thread.

The overall Memory-Access Model construction is demonstrated
in Algorithm 3. In particular, the algorithm is launched to initialize
the block and grid dimensions as well as the global and shared
memory for each thread (Lines 2 to 5). Next, for each block, the
shared memory (Line 7) and the thread-wise visit_order for each
global and shared memory address (Lines 8 to 9) are initialized.
If there are still some unterminated threads, for all of them, their
corresponding Memory Units are derived based on the collected
parameters, e.g., globalMem and visitOrderGlobal (Lines 10 to
14). The construction of the thread-wise Memory Units for shared
memory and global memory are completed if there is no running
thread left (Lines 15 to 16).

Algorithm 4 illustrates the details of Memory-Access Model con-
struction for a single thread. Specifically, given a running thread
and the parameters passed by Algorithm 3 (Lines 2 to 4), Algorithm
4 is initialized by detecting whether the current statement is the end
of file. If so, the thread would be terminated. If there is any thread
halting afterwards, we can confirm there is a “barrier divergence”
bug because that indicates at least a thread has not reached the
barrier function where the other threads of the same block all have
completed their tasks and left (Lines 5 to 9).

If the current statement calls barrier function and all the other
threads have reached the same barrier function, the visit_order for
both global and shared memory would be incremented if they have
been visited before (Lines 10 to 13), since it indicates that (1) all
the threads in one block have visited the current memory address
and (2) the subsequent visits in the same block would be made
rigorously later than the previous visits. On the other hand, if the

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Algorithm 3 Memory-Access Model construction

Input : gridDim, blockDim, arguments
Output: Memory-Access Model
: function CONSTRUCT_MEMORY_MODEL
BLOCKS « generateFromDimension(gridDim)
THREADS « generateFromDimension(blockDim)
globalMem « [MemoryUnit() for i in range(globalSize)]
sharedMemLst « list()
for blk in BLOCKS do
sharedMem « [MemoryUnit() for i in range(sharedSize)]
visitOrderGlobal « [0 for i in range(globalSize)]
visitOrderShared « [0 for i in range(sharedSize)]
while hasUnterminatedThread() do
for t in THREADS do
env «— Environment(arguments)
PROCESS_THREAD(t, globalMem, sharedMem,
visitOrderGlobal, visitOrderShared, env)
sharedMemLst.append(sharedMem)

R T A AN R oo

O S S
AN R

—_
B

return globalMem, sharedMemLst

current statement does not call barrier function, the corresponding
visit_order and the action of the associated thread is recorded to
construct the Memory-Access Model (Lines 14 to 21).

3.2.3 Bug Detection via Memory-Access Model Mechanism. The de-
sign of Memory-Access Model can be used in Simulee to detect CUDA
synchronization bugs, i.e., data race, redundant barrier function,
and barrier divergence.

Data Race. In general parallel computing programs, a possible
data race takes place when multiple threads access the identical
memory address in the same visit order and at least one of them
writes. Specifically in CUDA kernel functions, besides the generic
circumstances, a data race also takes place when (1) the threads are
from different thread warps, or (2) the threads from the same thread
warp underwent branch divergence, or (3) the threads from the
same thread warp without undergoing branch divergence write to
the same memory address by the same statement. By combining the
data race detection criteria above and the design of Memory-Access
Model, Simulee can detect data race in CUDA kernel functions as
described in Theorem 3.1.

THEOREM 3.1. Given two Unit Tuples y; and i/ from the identical
Memory Unit, a data race between them takes place if the conditions
below are met:

o ;i [visit_order] = Y [visit_order]

o yi[thread_id] = yj[thread_id]

e Yi[action] = ‘write’ or j[action] = “write’
when the threads of ; and /; are (1) from different thread warps or
(2) executing the “write” action on the same statements in the same
thread warp or (3) underwent branch divergence before the current
“write” action.

Redundant Barrier Function. A redundant barrier function
indicates that no data race can be detected by removing that barrier
function. In CUDA kernel functions, the visit_order is incremented
for one Unit Tuple when at least one thread reaches a barrier func-
tion. In other words, two Unit Tuples with adjacent visit_order in
one Memory Unit indicates the presence of a barrier function, shown

942

Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang, Cong Liu, and Yuqun Zhang*

in Figure 6. Therefore, to detect whether a barrier function is redun-
dant or not, it is essential to collect all the associated Unit Tuples
and analyze whether they together would lead to data race. The
barrier function is defined to be redundant if no data race can be
detected among such Unit Tuples.

The details of how to detect data race and redundant barrier
function based on Memory-Access Model are presented in Algorithm
5. For each Memory Unit, to detect data race, Simulee first groups
the Unit Tuples with the same visit_order. For all the Unit Tuples in
one group, Simulee checks whether any Unit Tuple has data race
with others according to Theorem 3.1 (Lines 4 to 16). To detect
redundant barrier function of one Memory Unit, Simulee extracts its
visit_order and groups all the Unit Tuples with adjacent visit_order
to find out whether any data race can take place (Lines 18 to 22).
If there is no data race, Simulee identifies the associated barrier
function and increments its recorder by 1 (Lines 23 to 24). At last, it
checks whether the total recorder number matches the total number
of the changing visit_order caused by that barrier function which
can be obtained after constructing the Memory-Access Model. This
barrier function is redundant if the two numbers are equivalent
(Lines 25 to 28).

Barrier Divergence. As mentioned in Section 3.2.2, barrier di-
vergence can be detected during constructing Memory-Access Model
when there is any halting thread after the current execution is ter-
minated, because it indicates that there is at least one thread which
has not reached the barrier function while the others have already
left.

To conclude, Simulee first applies Evolutionary Programming
to generate error-inducing grid and block dimensions and argu-
ments. Next, Simulee inputs such dimensions and arguments to
construct Memory-Access Model that delivers thread-wise memory-
access information. Eventually, such information, along with the
CUDA synchronization bug detection mechanism, are used to detect
whether there exists any CUDA synchronization bug.

4 EVALUATION

In this section, we conduct an extensive experimental study to
evaluate the effectiveness and efficiency of Simulee in detecting
synchronization bugs of CUDA kernel functions. In particular, we
first perform a preliminary study on 24 manually identified CUDA
synchronization bugs to explore the efficacy of Simulee. Next, we
explore the capability of Simulee in detecting previously-unknown
bugs from all the real-world CUDA projects in our benchmark suite.
Furthermore, we also compare Simulee with multiple existing state-
of-the-art approaches to explore whether Simulee can outperform
them.

4.1 Benchmark Construction

To conduct a preliminary study for evaluating Simulee, it is essential
to establish a set of CUDA synchronization bugs as the ground truth.
To this end, we first consider an existing benchmark, i.e., the GKLEE
dataset [22], and select 4 synchronization bugs that can represent
all the basic synchronization bug patterns in the dataset.
Furthermore, we augment the bug dataset with more real-world
CUDA bugs. In this paper, we aim to collect important and in-
fluential real-world CUDA benchmark projects for our evalua-
tion by defining a set of policies for selecting open-source CUDA

Simulee: Detecting CUDA Synchronization Bugs via Memory-Access Modeling

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Algorithm 4 Thread Processor

Algorithm 5 Bug Detection via Memory-Access Model

Input : thread, globalMem, sharedMem, visitOrderGlobal,
visitOrderShared, env

Output:None or BARRIER_DIVERGENCE

1: function PROCESS_THREAD

2 if shouldHalt() or isFinished() then

3 return

4: curStmt «— env.getNextInstruction()

5: if curStmt.isEOF() then

6 thread.finish()

7 if hasHaltThreads() then

8 return BARRIER_ DIVERGENCE

9

return
10: if curStmt.isSyncthreads() then
11: if all threads reach same barrier then
12: updateCurrentVisitOrder(visitOrderShared)
13: updateCurrentVisitOrder(visitOrderGlobal)
14: else
15: isGlobal, memlIndex « simulateExecute(curStmt, env)
16: if isGlobal then
17: index « visitOrderGlobal[memIndex]
18: updateMemoryModel(globalMem, memIndex, index)
19: else
20: index « visitOrderShared[memIndex]
21: updateMemoryModel(sharedMem, memIndex, index)
22: return

Table 1: Subject Statistics

Projects ‘ Star Number Commit Number LoC
kaldi 6860 8681 364K
arrayfire 2791 5314 381K
thundersvm | 1014 827 343K
cuda-cnn 368 135 12K
cudaSift 123 247 24K
cudpp 268 302 58K
gunrock 550 2422 178K

projects in GitHub. Specifically, we initialize our CUDA project
collection by searching the keyword “CUDA” and collect more
than 12,000 projects from GitHub in the first place. Next, we sort
these projects in terms of the star number and commit number. We
randomly select 7 projects with large star/commit numbers. As a re-
sult, we collect “kaldi” [29], “arrayfire” [8], “thundersvm” [42],
“cuda-cnn” [54], “cudaSift” [11], “cudpp” [15] and “gunrock” [24]
for augmenting our benchmark suite as listed in Table 1.

More specifically, we randomly select projects “arrayfire”, “kaldi”,
and “thundersvm” from our real-world CUDA benchmark suite
to retrieve their historical synchronization bugs. Note that we
do not consider all the projects from our benchmark suite since
the manual bug retrieval process can be quite time-consuming.
The synchronization bugs for those selected projects are identi-
fied based on their commit messages and “git diff” results. The
specific operations are listed as follows. Following prior study on
other types of bugs [49], we first filter the commits and only keep
the commits with the messages that contain at least one keyword
in the set {“fix”, “error”, “sync”} to retain the commits that have
higher chances to contain synchronization bugs. However, the

Input : memoryModel, changingVisitOrderNumber
Output:DATA_RACE, REDUNDANT_BARRIERS

1: function EXAMINE_MEMORY_MODEL

2 DATA_RACE « False

3 REDUNDANT_BARRIERS = dict()

4 for memoryUnit in memoryModel do

5: for visitOrder in memoryUnit do

6 tuples « getTuplesByOrder(visitOrder)

7 for thread performing write in tuples do

8 otherTs « getDifferentThreads(thread, tuples)

9 for t in otherTs do

10: if inSameWarp(t, thread) then

11: if usingSameStmt(t, thread) then

12: DATA_RACE « True

13: if hasBranchDivergence(t, thread) then
14: DATA_RACE « True

15: else

16: DATA_RACE « True

17: barrierDict = dict()

18: for visitOrder in memoryUnit do

19: nextOrder « visitOrder + 1

20: current « getTuplesByOrder(visitOrder)

21: target «— getTuplesByOrder(nextOrder)

22: if canMergeWithoutRace(target, current) then

23: barrier «— getSplitBarrier(nextOrder, memoryUnit)
24: barrierDict[barrier] ++

25: for barrier in barrierDict do

26: REDUNDANT_BARRIERS[barrier] «

27: isRedundant(barrierDict[barrier],

28: changingVisitOrderNumber[barrier])

29: return DATA_RACE, REDUNDANT_BARRIERS

commit messages only with these keywords might not be rele-
vant with CUDA bugs. Therefore, next, among the filtered com-
mit messages, we further filter them according to whether they
have at least a keyword in the set {“__global__",“__device__"} or
match at least one regular expression in the set {cuda\w+\s*[(1",
“["<J<<<["<71"} with its parent node’s “git diff” results. To
illustrate, “__global__" is the modifier of kernel functions and
“__device__" is the modifier of the device functions that can be
called by kernel functions. “cuda\w+\s*[(]” is designed in accor-
dance with the information that the resource is prepared/released
in host side before/after executing kernel functions. For instance,
“cudaMalloc((void *%) &host, sizeof(int) *100)” allocates
a global 400-byte memory for kernel functions before execution;
“cudaFree(&host)” releases the allocated memory for kernel func-
tions after execution. “[*<]<<<["<]” is designed in accordance
with the scenario that sets up the environment for kernel functions,
e.g., “function<<<grid_size, block_size>>>(arguments)”.
All these regular expressions together deliver the complete life cy-
cle of executing kernel functions such that all the bugs of the whole
life cycle can be covered. We further manually review all the re-
maining commits after the above two rounds of filtering to remove
any potential false positive. Due to the tedious and time-consuming
manual inspection, all the selected CUDA projects are analyzed
within the most recent 1000 commits or all of them if there are less
than 1000 commits. As a result, we collected a total of 20 real-world

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

CUDA bugs. By combining with the 4 synchronization bugs from
the GKLEE benchmark suite, we obtain a total of 24 CUDA bugs as
the ground truth for our preliminary study.

4.2 Environment Setups

We performed our evaluation on a desktop machine, with Intel(R)
Xeon(R) CPU E5-4610 and 320 GB memory. The operating system is
Ubuntu 16.04. For the Evolutionary Programming settings of “Auto-
matic Input Generation” in Simulee, the population and generation
are both set to be 10 by default. Note that the Simulee webpage [7]
includes more experimental results under different settings for the
Evolutionary Programming component.

We select state-of-the-art CUDA synchronization bug detection
approaches, i.e., GPUVerify [9], GKLEE [30], GKLEE-SESA [31], and
RaceChecker [6] for the performance comparison with Simulee.
More specifically, RaceChecker is the NVIDIA’s official tool and
represents state-of-the-art compiler-based approach, while the rest
approaches represent state-of-the-art SMT-solver-based approaches.
Note that the timeout for all studied techniques are uniformly set
to be 5 hours.

4.3 Result Analysis

4.3.1 Preliminary Study on Known Bugs. We first present the ex-
perimental results for detecting the 24 manually identified synchro-
nization bugs in our preliminary study in Table 2. In the table, DR,
BD, and RB respectively denote data race, barrier divergence, and
redundant barrier function. “/”, “X”, and “F” respectively denote
the successful, failed, and false-positive bug-detection attempts. TO
denotes that the associated bug detection attempt incurs timeout,
while N/A denotes that the buggy kernel function is out of the scope
of the bug-detection capability of the corresponding techniques.
Note that each row represents one kernel function, which could
include multiple bugs (indicated by Column “Bug Num”). For such
cases, we present all the reported bugs for each kernel function,
e.g., “VFFF” denotes that the corresponding technique reports four
bugs in total for the kernel function, 3 of which are false positives.

From the table, we can observe that, in terms of the overall
effectiveness, Simulee can detect 21 (87.5%) of the the 24 manu-
ally identified synchronization bugs within seconds, e.g., Simulee
at most costs 10.73 seconds (when applied on kernel function
JacobiSVD). We further analyze the 3 cases for which Simulee fails
to detect bugs. Simulee fails to detect the data race in kernel func-
tion hamming_matcher because this bug can only be exposed under
occasional branch coverage, which is out of the scope of the input
generation component of Simulee that focuses on the memory-
access conflict potentials. Simulee fails to detect bugs for kernel
function _softmax_reduce and _div_rows_vec because they are
largely reimplemented to reduce the usage of unnecessary barrier
functions while the current version of Simulee is not designed for
such challenging bugs requiring large code refactoring.

We next analyze the comparison results between Simulee and
state-of-the-art GPUVerify, GKLEE, GKLEE-SESA and RaceChecker
from the table in details. Note that GPUVerify requires user-provided
dimension settings and the other techniques require the overall
user-provided environmental settings. We provide them all with

944

Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang, Cong Liu, and Yuqun Zhang*

the ideal settings that can trigger the most possible bugs for fair
comparison with Simulee.

GPUVerify. GPUVerify is designed to detect data-race and barrier-
divergence bugs via integrating static analysis with SMT solvers.
From the table, we can observe that GPUVerify can successfully
detect 17 out of the 24 synchronization bugs.

Meanwhile, GPUVerify also reports 6 false positives. We next
manually check all such false positives and observe that GPUVer-
ify tends to report false positives due to two reasons. First, the
false positives are triggered by the bottleneck of the static anal-
ysis optimization. For instance, in kernel functions deadlock_0
and computeDescriptor, GPUVerify reports false positives due to
nonexistent execution paths. Second, its adopted SMT solvers are
used to detect data-race bugs caused by thread-wise access conflicts;
however, the thread warp mechanism adopted in CUDA kernel
functions can resolve some of such bugs, e.g., the inter-instruction
“read&write” race. Shown in Figure 7, warpSize is equal to 32 in
Revision 5cc9731af4f of function _trace_mat_mat_trans from
project kaldi. Suppose there are two threads (0 @ 9) and (1 @
0), and the tid of thread (0 @) is 0 while the tid of thread (1
@ 0) is 1. Moreover, when the loop terminates, shift is set to 1.
Meanwhile, for thread (@ @ 0), statement ssum[@] += ssum[@ +
1] is executed; for thread (1 @ 0), statement ssum[1] += ssum[1
+ 1] is executed. In traditional CPU programs, since thread (0 @
0) is reading data from thread ssum[1] while thread (1 @ 9) is at-
tempting to write data to ssum[1], it can incur a “read&write” data
race. However, in CUDA kernel functions, since thread (@ 0 0) and
thread (1 @) are located in the same thread warp without branch
divergence, they essentially are executing the same instruction at
the same time. Since the statement ssum[tid] += ssum[tid +
shift] can be compiled to the following two instructions %1 =
load ssum[tid+shift]; store %1 ssum[tid], the “read” action
is executed strictly prior to the “write” action. As a result, it turns to
be a false-positive data race in CUDA kernel functions. We issued
this case to its corresponding developers who further verified our
finding as follows:

“You are correct that ssum[0] += ssum[0 + 1] and ssum[1]
+=ssum[1 + 1] are executed at the same time. But since
we are now in a warp, all the 32 threads (tid=0..31)
are synchronized. So reading data from ssum[1] and
ssum[2] always happens before writing data to ssum[0]
and ssum[1] for thread tid=0 and tid=1"— kaldi

GKLEE and GKLEE-SESA. GKLEE and GKLEE-SESA are designed
to detect synchronization bugs via integrating concolic execution
with SMT solvers. By launching the environmental setups, they
collect “read” and “write” statements into different sets and use
SMT solvers to detect synchronization bugs accordingly. From our
preliminary study, GKLEE and GKLEE-SESA can detect 16 and 4
manually identified bugs, respectively, without any false positive. In-
terestingly, GKLEE-SESA incurs more timeouts and detects less bugs
than GKLEE. The reason is that GKLEE-SESA leverages more static
analysis techniques to reduce its dependency on the initial user-
provided environmental setups while such techniques are rather
time-consuming. Moreover, similar to GPUVerify, because they are
both SMT-solver-based approaches, they are also likely to report
false positives on data race (further confirmed by our later study

Simulee: Detecting CUDA Synchronization Bugs via Memory-Access Modeling

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 2: Detection Results of the Identified Bugs

Project Revision Kernel Function Bug Type | Bug Num ‘ Simulee GPUVerify GKLEE GKLEE-SEAS | RaceChecker
Effect | Time(s) Effect Time(s) | Effect | Time(s) | Effect | Time(s) | Effect | Time(s)
a7a297ba814 scan_nonfinal_kernel DR 1 v 1.01 v 3.01 v 1.6 X TO v 0.78
a7a297ba814 | scan_dim_nonfinal_kernel DR 1 v 1.17 v 3.4 v 0.89 X TO v 1.17
0c5a38182b7 hamming_matcher DR 1 X 6.56 v 23.53 v 2.97 X TO v 0.37
0c5a38182b7 | hamming_matcher_unroll DR 1 v 4.01 v 24.93 v 2.38 X TO v 0.57
d7abcf2358e JacobiSVD DR 2 v 1073 | /v FFF 80.5 XX TO XX TO &4 1.21
c59116e3ec3 warp_reduce DR 1 v 1.34 v 234 v 0.69 X TO X N/A
arrayfire a515b112076 scan_dim_kernel DR 1 v 2.06 v 1.06 v 0.34 X TO v 0.28
1050816422 hamming_matcher DR 1 v 1.38 v 120.85 v 27.58 X TO v 0.47
dfbfca5fb77 select_matches BD 1 v 0.61 v 5.16 X 0.52 X TO X N/A
0e0c726d7d0 | hamming_matcher_unroll BD 1 v 0.43 X TO 4 0.65 X TO X N/A
ee4d0bd77d7 computeDescriptor BD 1 v 2.26 v FF 7.78 v 1.84 X TO X N/A
0dod7d1285a warp_reduce BD 1 v 1.42 v 2.34 v 0.69 X TO X N/A
31761d27f01 computeMedian RB 1 v 0.47 X N/A X N/A X N/A X N/A
faefa30c3a0 harris_response RB 1 v 0.66 X N/A X N/A X N/A X N/A
10eb6373d53 device_global DR 1 v 0.53 v 2.23 v 1.56 v 0.91 X N/A
GkleeTests 10eb6373d53 colonel DR 1 v 1.11 v 2.12 v 0.71 v 0.65 X N/A
10eb6373d53 dl@deadlock_0 BD 1 v 1.61 vV F 2.39 v 0.61 v 0.23 X N/A
10eb6373d53 dl@deadlock_2 BD 1 v 1.94 v 2.1 v 1.12 v 0.41 X N/A
bc13196e7fe _add_diag_mat_mat BD 1 v 9.38 v 3.41 X 181.57 X TO X N/A
kaldi 42352b63e62 _softmax_reduce RB 1 X N/A X N/A X N/A X TO X N/A
bb589475b10 _div_rows_vec RB 1 X N/A X N/A X N/A X TO X N/A
thundersvm | febf515a826 nu_smo_solve_kernel DR 2 v/ 1.23 XX TO v/ 1.93 XX TO v 1.24
Total Detection Result ‘ 21/,3X,0F 17V,7X,6F 16v/,8X,0F 4v,20X,0F 10/,14X,0F
Table 3: Detection Results of the Previously Unknown Bugs
) -) Simulee GPUVerif; GKLEE GKLEE-SEAS RaceChecker
Project Revision Kernel Function Bug Type | Bug Num Effect | Time(s) | Effect Tir:e(s) Effect Time(s) Effect | Time(s) | Effect Time(s)
cuda-cnn | c843bb2861e g_getCost_3 RB 1 v 1.39 X N/A X N/A X N/A X N/A
a2e57327dde FindMaxCorr RB 1 v FFF 0.93 X N/A X N/A X N/A X N/A
cudaSift a2e57327ddc FindMaxCorr1 RB 1 v 1.02 X N/A X N/A X N/A X N/A
a2e57327ddc FindMaxCorr2 RB 1 v 0.97 X N/A X N/A X N/A X N/A
a2e57327ddc FindMaxCorr3 RB 1 v 1.05 X N/A X N/A X N/A X N/A
9dc7357ee81 | sparseMatrixVectorFetchAndMultiply RB 1 v 0.7 X N/A X N/A X N/A X N/A
cudpp 9dc7357ee81 sparseMatrixVectorSetFlags RB 1 v 0.61 X N/A X N/A X N/A X N/A
9dc7357ee81 yGather RB 1 v 1.13 X N/A X N/A X N/A X N/A
gunrock 248a12107ef Join BD 1 v 1.21 X TO X 1.84 X TO X N/A
5cc9731af4f _add_diag_vec_mat DR 2 v 1.23 a4 1.17 a4 18.7 XX TO XX N/A
5cc9731af4f _copy_low_upp DR 1 v 27 v F 3.21 v F 0.572 v F 0.649 X N/A
5cc9731af4f _copy_upp_low DR 1 v 0.79 v F 3.11 v F 0.598 v F 0.712 X N/A
kaldi 5cc9731af4f _splice DR 1 v 0.73 v 1.31 v 23.61 X N/A X N/A
5cc9731af4f _copy_from_tp DR 3 X4 0.96 X4 1.99 X4 26.3 XXX TO XXX N/A
5cc9731afaf _copy_from_mat DR 1 v 0.69 v 2.11 v 20.59 X TO X N/A
5cc9731afaf _sum_reduce DR /RB 2/1 I 0.14 VX |28 /N/A |/ /X |1.06/NA|XX/X|TO/N/A | XX/X | 034/N/A
thundersvm | 05de37f83b6 c_smo_solve_kernel DR 3 S 3.11 XXX TO XXX 6.43 XXX TO A4 1.38
Total Detection Result 24/,0X3F 11v,13X,2F 11v,13X,2F 2V,22X2F 3V/,21X,0F

on detecting new bugs) and fail to detect any redundant-barrier-
function bugs because their detecting mechanism is not designed
for such bugs. We next discuss the failure cases for the better GKLEE
because GKLEE-SESA timed out on most cases: GKLEE fails to de-
tect barrier-divergence bugs in kernel functions select_matches
and _add_diag_mat_mat because GKLEE models the kernel func-
tions over two parametric threads and tends to ignore important
execution paths for detecting barrier-divergence bugs.
RaceChecker. RaceChecker is a device-dependent tool designed
only for detecting CUDA data-race bugs. Specifically, it can only
detect the data-race bugs incurred in shared memory. In particu-
lar, RaceChecker can detect all the 10 data-race bugs that are rele-
vant to shared memory, but fails to detect other synchronization
bugs including the data-race bugs incurred in global memory from
the manually identified bugs for our preliminary study. Note that
since RaceChecker does not involve SMT solver, it does not report
any false-positive data-race bug as the other SMT-solver-based
approaches.

4.3.2 Further Study on Previously Unknown Bugs. After our pre-
liminary study, we further apply Simulee and all the compared
techniques to detect previously unknown synchronization bugs for

945

all the 7 projects with the results demonstrated in Table 3, which
follows the same format as Table 2. From the table, we can observe
that Simulee detects 24 bugs and reports 3 false positives in total,
where all the false positives are redundant-barrier-function bugs in
kernel function FindMaxCorr. Note that Simulee reports such false
positives because it is possible that “Automatic Input Generation”
may miss some potential error-inducing inputs that can trigger
synchronization bugs such that a barrier function can be reported
as aredundant barrier function. Meanwhile, even the most effective
existing technique, i.e., GPUVerify can only detect 11 previously
unknown bugs with 2 false positives.

We have also reported all the detected bugs to the corresponding
developers and show their feedback statistics in Table 4. To date,
they have confirmed 10 bugs in total (TT), including 1 data-race
bugs (DR), 1 barrier-divergence bug (BD), and 8 redundant-barrier-
function bugs (RB). To be specific, the developers of cudpp and
CudaSift responded as follows:

‘T think you’re right... There are considerably faster
ways to do matrix multiply calls...” — cudpp

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 4: Developer Feedback Statistics

Projects ‘ Detected ‘ Confirmed ‘ Under Discussion ‘ Nonresponse
[TT DR RB BD [TT DR RB BD |[TT DR RB BD |[TT DR RB BD

kaldi 12 11 1 0 2 1 1 0 6 6 0 0 4 4 0 0
thundersvm | 3 3 0 0 0 0 0 0 3 3 0 0 0 0 0 0
CudaSift 4 0 4 0 4 0 4 0 0 0 0 0 0 0 0 0
CUDA-CNN | 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
cudpp 3 0 3 0 3 0 3 0 0 0 0 0 0 0 0 0
gunrock 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0
Total 24 14 9 1 10 1 8 1 9 9 0 0 5 4 1 0

1 const int32_cuda tid = threadIdx.y * blockDim.x

+ threadIdx.x;

2 ...

3 if (tid < warpSize) {

4 # pragma unroll

5 for (int shift = warpSize; shift > 0; shift >>= 1) {
6 ssum[tid] += ssum[tid + shift];

7 ¥

8 ...

9 2

Figure 7: An Example of False Race

“Yes, there is a bit of cleaning up to do there. Sometimes
when I detect oddities in the output, I add an unneces-
sary synchronization just in case. In fact those things
should be all run on the same thread, since it cannot be
parallelized anyway. Thank you for pointing it out.” —
CudasSift

Since barrier divergence is an undefined behavior, it may not
hang on every situation. The developers of gunrock responded as
follows and further fixed the bug in a later commit [25]:

“T do see what @Stefanlyy / @eagleShanf mean for the
divergence issue, and surprise the code didn’t hang.”

In addition, 9 data-race bugs are still being actively discussed
by developers. We label such bugs “under discussion” as stated in
Table 4.

In summary, it can be observed from Section 4.3.1 and Sec-
tion 4.3.2 that Simulee can correctly detect most of the synchroniza-
tion bugs while the other approaches are all limited in their detec-
tion scopes, failing to detect certain bugs that they are designed
for, or triggering additional false positives. We now summarize the
reasons why Simulee can outperform the other approaches: Simulee
applies lightweight evolutionary test generation (guided by effec-
tive memory-access modeling) and dynamic runtime monitoring in
tandem for powerful CUDA synchronization bug detection. On the
other hand, the other approaches are usually bounded by heavy-
weight techniques, such as constraint solvers, which prevent the
techniques from exploring all the possible cases.

5 THREATS TO VALIDITY

The threats to external validity mainly lie in the subjects and faults
used in our benchmark. Though the projects of our benchmark
suite may not represent the overall project distributions, they shall
be selected in order to possibly maximize the overall features of
the CUDA projects. In this way, our benchmark is derived based
on real-world programs from GitHub, i.e., we select seven popular
CUDA-related projects with a total of 17928 commits and 1.36
million LOC.

The threats to internal validity mainly lie in the potential bugs in
our implementation due to the complicated mechanism of Simulee.

946

Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang, Cong Liu, and Yuqun Zhang*

To reduce the threats, three graduate students, closely mentored by
three SE/Systems supervisors, have been carefully working for over
one year. We manually reviewed all our implementation code and
also included corresponding tests for verifying our implementation.
In addition, the effectiveness of “Automatic Input Generation” can
impact on the performance synchronization bug detection. It is
possible that the “Automatic Input Generation” component may
miss certain inputs that can trigger synchronization bugs such that
Simulee would miss detecting the bug or report a false positive. To
reduce this threat, we set a large number of suitable parameters for
the evolutionary algorithm adopted in “Automatic Input Generation”
to reduce the probability of missing error-inducing inputs.

To threats to construct validity mainly lie in the metrics used in
this work. To reduce the threats, we measure the number of both
previously known and the identified bugs detected by the studied
techniques as well as their false-positive rate and corresponding
time cost.

6 RELATED WORK

As our work investigates the automatic bug detection techniques for
CUDA programs, the related work includes the following two parts:
empirical studies on CUDA programs and techniques of CUDA bug
detection. Moreover, since Simulee essentially is a search-based
bug-detection technique, we also discuss such relevant work.

Empirical studies for CUDA programs There are several ex-
isting work that study bugs and other features on CUDA programs.
For instance, Yang et al. [43] delivered the empirical study on the
features of the performance bugs on CUDA programs, Burtscher et
al. [10] studied the control-flow irregularity and memory-access ir-
regularity and found that both irregularities are mutually dependent
and exist in most of kernels. Che et al.[12] examined the effective-
ness of CUDA to express with different sets of performance charac-
teristics. Some researchers are keen on the comparisons between
CUDA and OpenCL. For instance, Demidov et al. [17] compared
some C++ programs running on top of CUDA and OpenCL and
found that they work equally well for problems of large size. Du et
al. [19], on the other side, studied the discrepancies in the OpenCL
and CUDA compilers’ optimization that affect the associated GPU
computing performance. In our previous work, we also conducted
empirical studies to explore CUDA program features. For instance,
we investigated the features and the distribution of multiple CUDA
program bug types based on a collected GitHub dataset [41]. More-
over, we developed an approach that can automatically repair CUDA
synchronization bugs via program transformation and validated
its performance via an experimental study based on real-world
benchmarks [40].

CUDA bug detection Unlike traditional program bugs which
can be deterministically tested [39, 46] and debugged [23, 32, 47],
CUDA synchronization bugs, especially data race and barrier di-
vergence can often result in undefined behaviors. To detect such
bugs, there are typically two types of approaches—compiler-based
approaches and static analysis (SMT solver)-based approaches. In
particular, compiler-based approaches, e.g., [37][20][6], usually link
the detectors to the applications in the compiling stage and detect
the bugs in the runtime process of GPU programs. They are limited
by not being “fully automatic” because developers have to manually

Simulee: Detecting CUDA Synchronization Bugs via Memory-Access Modeling

provide test cases. Moreover, given inferior inputs, the synchroniza-
tion bugs might not be triggered and detected because such bugs
could only occur under limited conditions. They can also be expen-
sive since such runtime detection demands compiling process and
GPU computing environment. To the best of our knowledge, these
approaches fail to detect barrier divergence and redundant barrier
function because of their detection mechanisms. On the other hand,
various automatic synchronization bug detection approaches, e.g.,
[30][9], depend on static analysis and SMT solver [16] which could
lead to poor runtime performance when handling complicated GPU
programs. Besides, such approaches tend to report false positives
or false negatives because it lacks runtime information. Although
developers do not have to provide whole test inputs for them, they
still need to provide heuristic settings in order to avoid path explo-
sions, e.g., dimension settings for GPUVerify, main functions and
initial environments of kernel functions for GKLEE.

Compared with these approaches, Simulee can automate the
detection process to achieve superior detection performance by
enabling the “Automatic Input Generation” component and the
“Memory-based Synchronization Bug Detection” component.

Search-based Software Engineering. The optimization ap-
proaches such as Evolutionary Programming are widely used to
solve software engineering problem by modeling them into op-
timization problems [26]. Yu et al. [45] proposed a metric, PSet
constraint to detect CPU-based synchronization bugs. Harman et
al. [27] applied evolving pareto front approximation to refactor
software systems. Hierons et al. [28] used Many-Objective Evolu-
tionary Optimisation to optimize the process of software product
selection. McMinn et al. [33] evolved coverage criteria to improve
the performance of bug detection. Ouni et al. [36] modeled the pro-
cess of refactoring into a multiple-objective search-based problem
for generating refactor patches.

7 CONCLUSIONS

In this paper we develop a fully automated approach, namely
Simulee, that can successfully detect CUDA synchronization bugs
efficiently based on accurate memory-access modeling. More specif-
ically, Simulee consists of two different components: the “Automatic
Input Generation” component that applies Evolutionary Computa-
tion for automatically generating bug-inducing test inputs, and the
“Bug Detection via Memory-Access Model” component that builds
an accurate memory model for deriving the underlying CUDA syn-
chronization bugs. To evaluate the efficacy of Simulee, we construct
a benchmark from real-world CUDA-related projects. Our evalua-
tion results suggest that Simulee can detect most of the manually
identified synchronization bugs out of the studied projects, and
successfully detect 24 previously unknown bugs which have never
been reported/detected before. In addition, Simulee can achieve
better effectiveness and efficiency than multiple state-of-the-art
approaches.

8 ACKNOWLEDGEMENT

This work is partially supported by the National Natural Science
Foundation of China (Grant No. 61902169), Shenzhen Peacock Plan
(Grant No. KQTD2016112514355531), and Science and Technol-
ogy Innovation Committee Foundation of Shenzhen (Grant No.

947

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

JCYJ20170817110848086). This work is also partially supported by
National Science Foundation under Grant Nos. CCF-1763906 and
CCF-1942430, as well as Ant Financial Services Group.

REFERENCES

[1] 2014. Professional CUDA C Programming (1st ed.). Wrox Press Ltd., Birmingham,
UK, UK.

2019. Cauchy distribution. https://en.wikipedia.org/wiki/Cauchy_distribution.
2019. CUDA program introduction. https://en.wikipedia.org/wiki/CUDATr.
2019. GPGPU introduction. https://en.wikipedia.org/wiki/General-purpose_
computing_on_graphics_processing_units.

2019. Normal distribution. https://en.wikipedia.org/wiki/Normal_distribution.
2019. Racecheck Tool. https://docs.nvidia.com/cuda/cuda-memcheck/index.
html#racecheck-tool.

2019. The Simulee project. https://github.com/Lebronmydx/Simulee.

arrayfire. 2019. ArrayFire. https://github.com/arrayfire/arrayfire.

Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson.
2012. GPUVerify: A Verifier for GPU Kernels. SIGPLAN Not. 47, 10 (Oct. 2012),
113-132. https://doi.org/10.1145/2398857.2384625

M. Burtscher, R. Nasre, and K. Pingali. 2012. A quantitative study of irregular
programs on GPUs. In 2012 IEEE International Symposium on Workload Charac-
terization (ISWC). 141-151. https://doi.org/10.1109/IISWC.2012.6402918
Celebrandil. [n.d.]. SIFT features with CUDA. https://github.com/Celebrandil/
CudaSift.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, and
Kevin Skadron. 2008. A performance study of general-purpose applications
on graphics processors using CUDA. J. Parallel and Distrib. Comput. 68, 10
(2008), 1370 — 1380. https://doi.org/10.1016/].jpdc.2008.05.014 General-Purpose
Processing using Graphics Processing Units.

Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar,
and Manu Sridharan. 2002. Efficient and Precise Datarace Detection for Multi-
threaded Object-oriented Programs. SIGPLAN Not. 37, 5 (May 2002), 258-269.
https://doi.org/10.1145/543552.512560

Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema, and Shaz Qadeer.
2013. Interleaving and Lock-Step Semantics for Analysis and Verification of GPU
Kernels. In Programming Languages and Systems, Matthias Felleisen and Philippa
Gardner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 270-289.

cudpp. [n.d.]. cudpp. https://github.com/cudpp/cudpp.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver.
(2008), 337-340. http://dl.acm.org/citation.cfm?id=1792734.1792766

D. Demidov, K. Ahnert, K. Rupp, and P. Gottschling. 2013. Programming CUDA
and OpenCL: A Case Study Using Modern C++ Libraries. SIAM journal on
Scientific Computing 35, 5 (2013), C453-C472. https://doi.org/10.1137/120903683
arXiv:https://doi.org/10.1137/120903683

A. Dinning and E. Schonberg. 1990. An Empirical Comparison of Monitoring
Algorithms for Access Anomaly Detection. In Proceedings of the Second ACM
SIGPLAN Symposium on Principles & Amp; Practice of Parallel Programming (PPOPP
’90). ACM, New York, NY, USA, 1-10. https://doi.org/10.1145/99163.99165
Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and
Jack Dongarra. 2012. From CUDA to OpenCL: Towards a performance-portable
solution for multi-platform GPU programming. Parallel Comput. 38, 8 (2012), 391
- 407. https://doi.org/10.1016/j.parco.2011.10.002 APPLICATION ACCELERA-
TORS IN HPC.

Ariel Eizenberg, Yuanfeng Peng, Toma Pigli, William Mansky, and Joseph Devietti.
2017. BARRACUDA: Binary-level Analysis of Runtime RAces in CUDA Programs.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2017). ACM, New York, NY, USA, 126-140.
https://doi.org/10.1145/3062341.3062342

Lawrence J. Fogel. 1999. Intelligence Through Simulated Evolution: Forty Years of
Evolutionary Programming. John Wiley & Sons, Inc., New York, NY, USA.
Geof23. 2019. GkleeTests. https://github.com/Geof23/GkleeTests.

Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program re-
pair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 19-30.

gunrock. [n.d.]. Gunrock. https://github.com/gunrock/gunrock.

gunrock. [n.d.]. Gunrock Commit. https://github.com/gunrock/gunrock/commit/
16294438272cdae8bee4d2db0f4ff65e28bf4331.

Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based
Software Engineering: Trends, Techniques and Applications. ACM Comput. Surv.
45, 1, Article 11 (Dec. 2012), 61 pages. https://doi.org/10.1145/2379776.2379787
Mark Harman and Laurence Tratt. 2007. Pareto Optimal Search Based Refactoring
at the Design Level. In Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation (GECCO '07). ACM, New York, NY, USA, 1106-1113.
https://doi.org/10.1145/1276958.1277176

Robert M. Hierons, Miqing Li, Xiaohui Liu, Sergio Segura, and Wei Zheng. 2016.
SIP: Optimal Product Selection from Feature Models Using Many-Objective

—r—
At

—
o

=
&N

[13

[14

jprany
o

(17]

(18]

[19

™
=

)
=

&
2

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

[29]
[30

[31

[32]

[33]

[34]

[35]

[36

[37

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46

[47]

[48]

[49]

Evolutionary Optimization. ACM Trans. Softw. Eng. Methodol. 25, 2, Article 17
(April 2016), 39 pages. https://doi.org/10.1145/2897760

kaldi asr. [n.d.]. Kaldi. https://github.com/kaldi-asr/kaldi.

Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh,
and Sreeranga P. Rajan. 2012. GKLEE: Concolic Verification and Test Generation
for GPUs. SIGPLAN Not. 47, 8 (Feb. 2012), 215-224. https://doi.org/10.1145/
2370036.2145844

Peng Li, Guodong Li, and Ganesh Gopalakrishnan. 2014. Practical Symbolic Race
Checking of GPU Programs. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC ’14). IEEE
Press, Piscataway, NJ, USA, 179-190. https://doi.org/10.1109/SC.2014.20

Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019. 169-180. https://doi.org/10.1145/
3293882.3330574

Phil McMinn, Mark Harman, Gordon Fraser, and Gregory M. Kapfhammer. 2016.
Automated Search for Good Coverage Criteria: Moving from Code Coverage to
Fault Coverage Through Search-based Software Engineering. In Proceedings of
the 9th International Workshop on Search-Based Software Testing (SBST ’16). ACM,
New York, NY, USA, 43-44. https://doi.org/10.1145/2897010.2897013

Robert H. B. Netzer and Barton P. Miller. 1991. Improving the Accuracy of Data
Race Detection. SIGPLAN Not. 26, 7 (April 1991), 133-144. https://doi.org/10.
1145/109626.109640

Nvidia. 2019. Optimizing Parallel Reduction in CUDA.
//developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/
projects/reduction/doc/reduction.pdf.

Ali Ouni, Marouane Kessentini, Houari Sahraoui, Katsuro Inoue, and Kalyan-
moy Deb. 2016. Multi-Criteria Code Refactoring Using Search-Based Software
Engineering: An Industrial Case Study. ACM Trans. Softw. Eng. Methodol. 25, 3,
Article 23 (June 2016), 53 pages. https://doi.org/10.1145/2932631

Yuanfeng Peng, Vinod Grover, and Joseph Devietti. 2018. CURD: A Dynamic
CUDA Race Detector. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2018). ACM, New York,
NY, USA, 390-403. https://doi.org/10.1145/3192366.3192368

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. 1997. Eraser: A Dynamic Data Race Detector for Multithreaded
Programs. ACM Trans. Comput. Syst. 15, 4 (Nov. 1997), 391-411. https://doi.org/
10.1145/265924.265927

August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi
Legunsen. 2019. Reflection-aware static regression test selection. PACMPL 3,
OOPSLA (2019), 187:1-187:29. https://doi.org/10.1145/3360613

M. Wu, L. Zhang, C. Liu, S. H. Tan, and Y. Zhang. 2019. Automating CUDA
Synchronization via Program Transformation. In 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 748-759. https:
//doi.org/10.1109/ASE.2019.00075

Mingyuan Wu, Husheng Zhou, Lingming Zhang, Cong Liu, and Yuqun Zhang.
2019. Characterizing and Detecting CUDA Program Bugs. CoRR abs/1905.01833
(2019). arXiv:1905.01833 http://arxiv.org/abs/1905.01833

Xtra-Computing. [n.d.]. THUNDERSVM. https://github.com/Xtra-Computing/
thundersvm.

Y. Yang, P. Xiang, M. Mantor, and H. Zhou. 2012. Fixing Performance Bugs: An
Empirical Study of Open-Source GPGPU Programs. In 2012 41st International
Conference on Parallel Processing. 329-339. https://doi.org/10.1109/ICPP.2012.30
Xin Yao, Yong Liu, and Guangming Lin. 1999. Evolutionary Programming Made
Faster. Trans. Evol. Comp 3, 2 (July 1999), 82-102. https://doi.org/10.1109/4235.
771163

Jie Yu and Satish Narayanasamy. 2009. A Case for an Interleaving Constrained
Shared-Memory Multi-Processor. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA *09). Association for Computing Ma-
chinery, New York, NY, USA, 325-336. https://doi.org/10.1145/1555754.1555796
Lingming Zhang, Tao Xie, Lu Zhang, Nikolai Tillmann, Jonathan De Halleux, and
Hong Mei. 2010. Test generation via dynamic symbolic execution for mutation
testing. In 2010 IEEE International Conference on Software Maintenance. 1-10.
M. Zhang, Y. Li, X. Li, L. Chen, Y. Zhang, L. Zhang, and S. Khurshid. 2019. An
Empirical Study of Boosting Spectrum-based Fault Localization via PageRank.
IEEE Transactions on Software Engineering (2019), 1-1. https://doi.org/10.1109/
TSE.2019.2911283

Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018. 132-142. https://doi.org/10.1145/3238147.3238187
Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An Empirical Study on TensorFlow Program Bugs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2018).
ACM, New York, NY, USA, 129-140. https://doi.org/10.1145/3213846.3213866

http:

948

[50

[51

[52

[54

]
]

Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang, Cong Liu, and Yuqun Zhang*

Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal. 2011. GRace: A
low-overhead mechanism for detecting data races in GPU programs. In PPoPP.
M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal. 2014. GMRace: Detecting Data Races
in GPU Programs via a Low-Overhead Scheme. IEEE Transactions on Parallel and
Distributed Systems 25, 1 (Jan 2014), 104-115. https://doi.org/10.1109/TPDS.2013.
44

Husheng Zhou, Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Bei Yu, Lingming
Zhang, and Cong Liu. 2020. DeepBillboard: Systematic Physical-World Testing of
Autonomous Driving Systems. In Proceedings of the 42nd International Conference
on Software Engineering, ICSE 2020, Seoul, Korea, May 23 - 29, 2020.

Husheng Zhou, Wei Li, Yuankun Zhu, Yuqun Zhang, Bei Yu, Lingming Zhang,
and Cong Liu. 2018. DeepBillboard: Systematic Physical-World Testing of Au-
tonomous Driving Systems. CoRR abs/1812.10812 (2018). arXiv:1812.10812
http://arxiv.org/abs/1812.10812

zhxfl. 2019. CUDA-CNN. https://github.com/zhx{l/CUDA-CNN.

