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ABSTRACT

While CUDA has become a mainstream parallel computing plat-

form and programming model for general-purpose GPU computing,

how to effectively and efficiently detect CUDA synchronization

bugs remains a challenging open problem. In this paper, we pro-

pose the first lightweight CUDA synchronization bug detection

framework, namely Simulee, to model CUDA program execution

by interpreting the corresponding LLVM bytecode and collecting

the memory-access information for automatically detecting gen-

eral CUDA synchronization bugs. To evaluate the effectiveness and

efficiency of Simulee, we construct a benchmark with 7 popular

CUDA-related projects from GitHub, upon which we conduct an

extensive set of experiments. The experimental results suggest that

Simulee can detect 21 out of the 24 manually identified bugs in our

preliminary study and also 24 previously unknown bugs among all

projects, 10 of which have already been confirmed by the develop-

ers. Furthermore, Simulee significantly outperforms state-of-the-art

approaches for CUDA synchronization bug detection.
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1 INTRODUCTION

CUDA [3] is a mainstream parallel computing platform and pro-

grammingmodel that allows software developers to leverage general-

purpose GPU (GPGPU) computing [4]. CUDA is advanced in sim-

plifying I/O streams to memories and dividing computations into

sub-computations since it parallelizes programs in terms of grids

and blocks. In addition, CUDA enables more flexible cache manage-

ment that speeds up the floating point computation of CPUs. CUDA

is thus considered rather powerful for accelerating deep-neural-

network-related applications where relevant matrix computations

can be efficiently loaded.

Unlike traditional CPU multi-thread programs where the syn-

chronization mechanism is built upon managing the shared re-

source that can be accessed by multiple threads, the typical syn-

chronization mechanism of GPU programs is built upon synchro-

nizing the instruction flows [1]. In particular, since GPU programs

use barriers rather than locks for synchronization and enable sim-

plified barrier-based happens-before relations, traditional lockset-

based [13, 38] and happens-before-based bug detection approaches

[18, 34] for CPUs become obsolete and expensive in detecting

parallel-computing-related bugs for GPUs.

Recently, several approaches, e.g., [6, 9, 20, 30, 31, 37, 50, 51], have

been proposed to detect synchronization bugs for CUDA kernel

functions. In general, they can be categorized into two classes: (1)

the compiler-based approaches that leverage compiler instrumenta-

tion with/without static analysis to identify race-free locations for

detecting data-race bugs [6, 20, 37, 50, 51], and (2) the SMT-solver-

based approaches that integrate static analysis and symbolic exe-

cution with SMT solver to detect data race and barrier-divergence

bugs [9, 30, 31]. Although such approaches can detect CUDA syn-

chronization bugs under their respectively defined environments,

they have limited applicability and may rely on certain assumptions.

In particular, the compiler-based approaches are limited due to re-

lying on developer-provided test inputs and detecting data races

only; while the SMT-solver-based approaches can be heavyweight

due to triggering expensive static-analysis overhead and may also

involve manually-provided test inputs.

In this paper, to address the aforementioned issues, we develop a

systematic lightweight bug detection framework, namely Simulee [7],
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1 tid = threadIdx.x;

2 ....

3 if (y > 0 && a < C)

4 f_val2reduce[tid] = f;

5 else

6 f_val2reduce[tid] = INFINITY;

+7 __syncthreads (); // fix by adding syncthreads

8 // get_block_min will write data to f_val2reduce

9 int ip = get_block_min(f_val2reduce , f_idx2reduce);

10 float up_value_p = f_val2reduce[ip];

....

Figure 2: An Example of Data Race

1 const unsigned tid = threadIdx.x;

2 s_median[tid] = FLT_MAX;

3 s_idx[tid] = 0;

-4 __syncthreads ();

5 if (i < iterations) {

6 ...

7 s_idx[tid] = i;

8 s_median[tid] = m;

9 }

....

Figure 3: An Example of Redundant Barrier

CUDA Synchronization Bugs. There are three major synchro-

nization bugs in CUDA kernel functions: data race, barrier di-

vergence [14], and redundant barrier function [1]. Specifically,

data race indicates that for accessing global or shared memory,

CUDA cannot guarantee the visit order of łread&writež actions or

łwrite&writež actions from two or more threads. For example, Fig-

ure 2 demonstrates the bug-fixing Revision no. łfebf515a82ž in the

file łsmo-kernel.cuž of the project łthundersvmž [42], one of the

highly-rated GitHub projects. It can be observed from Figure 2 that

the łifž statement writes to the memory of łf_val2reducež, while

inside the device, the function łget_block_minž writes to the same

memory. This łwrite&writež bug is fixed by adding ł__syncthreadsž

which synchronizes actions among threads.

A barrier function is considered redundant when there is no data

race after deleting it from source code. A redundant barrier func-

tion compromises the program performance in terms of time and

memory usage. For instance, Figure 3 demonstrates bug-fixing Re-

vision no. ł31761d27f01ž in file łkernel/homography.hppž from

project łarrayfirež [8]. It can be observed that the block is one-

dimensional from Line 1, the value of łtidž is assigned only by

łthreadIdx.xž. That indicates that the łtidžs are identical among

different threads from the same block. As a result, łs_median[tid]ž

and łs_idx[tid]ž can only be accessed by one thread, leading to

a redundant barrier function in Line 4 because there is no race in

łs_medianž or łs_idxž after deleting it.

A barrier divergence takes place when some threads in a block

complete their tasks and leave the barrier while the others have

not reached the barrier yet. Figure 4 demonstrates the bug-fixing

Revision no. ł0ed6cccc5ffž in the file łnearest_neighbour.hppž

from the project łarrayfirež caused by barrier divergence. It can

be indicated from Figure 4 that developers make sure all the threads

in the same block reach the same barrier in every execution of the

kernel function by moving the statement of ł__syncthreads()ž

....

1 s_dist[sid] = dist;

2 s_idx[sid] = s_idx[sid + i];

-3 __syncthreads ();

4 }

5 //fix by moving the barrier out.

+6 __syncthreads ();

7 }

....

Figure 4: An Example of Barrier Divergence

outside the given branch. Otherwise they will have to handle unde-

fined behaviors.

3 FRAMEWORK OF SIMULEE

In this section, we introduce Simulee, a lightweight, automatic, and

device-independent framework to detect real-world CUDA synchro-

nization bugs. Typically, Simulee takes LLVM bytecode translated

from CUDA kernel function programs as input. Then, it automati-

cally generates the associated error-inducing test inputs, and yields

Memory-Access Model to detect synchronization bugs. Specifically,

Simulee is composed of two componentsÐłAutomatic Input Gener-

ationž and łBug Detection via Memory-Access Modelž. łAutomatic

Input Generation" is initialized by inputting the LLVM bytecode

of CUDA kernel function programs. Next, it slices the memory-

access statements (e.g., read and write statements) and inputs them

for Evolutionary Programming [21]. Subsequently, Evolutionary

Programming helps generate error-inducing environmental setups

by iteratively mutating and sorting dimensions/arguments and

passes the acceptable ones to łBug Detection via Memory-Access

Modelž. At last, łBug Detection via Memory-Access Modelž traces

real execution paths by using the error-inducing inputs and collects

the memory-access information from the paths to detect whether

there are synchronization bugs, as it were łsimulatingž runtime

environment. The details can be found in Figure 5.

LLVM bytecode 
of kernel 
functions

Slicing 
original 

statements

Mutating 
arguments

Mutating 
dimensions

Initializing 
solutions

Sorting 
solutions

Top-rank
solution 

acceptable?

Iterating 

Memory 
model 

construction

Memory-
model-
based 

detection

Results

Automatic input generation 
(Evolutionary Programming)

Memory-based 
synchronization
 bug detection

Figure 5: Framework of Simulee

3.1 Automatic Input Generation

Generating potentially error-inducing inputs is essentially equiva-

lent to generating the inputs that can lead to the memory-access
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conflicts among threads to improve the possibility of CUDA syn-

chronization bug occurrences. However, how to automatically gen-

erate such error-inducing inputs remains challenging. Intuitive

solutions, e.g., random generation, coverage-oriented generation,

can be limited in effectiveness and efficiency, because they are not

specially designed for triggering memory-access conflicts. In this

section, we introduce how Simulee automatically generates poten-

tially error-inducing inputs for exposing the dangerous program

execution paths which could lead to synchronization bugs in an

effective and efficient manner.

3.1.1 Intuition. An effective and efficient automatic approach to

generate potentially error-inducing inputs for triggering CUDA

synchronization bugs implies generating as many memory-access

conflicts as possible within a short time limit. Given the ith mem-

ory address and the kernel function inputs, i.e., grid and block

dimensions and arguments, f (i) is defined as the number of threads

that access the ith memory address while g(i) is a function that

returns 1 when the ith memory address is accessed by any thread

and returns 0 otherwise. [start, end] denotes the memory-access

range. An intuitive target function F (dimensions,arдuments) can
be presented in Equation 1 which denotes the ratio of the total

number of the accessed memory addresses to the total number of

the memory-access threads:

F (dimensions, arдuments) =

end
∑

i=star t

д(i)

end
∑

i=star t

f (i)

(1)

It can be derived that the max value of F (dimensions,arдuments)
is 1 which denotes that there is no memory-access conflict between

any thread pair. On the other hand, the smaller F (dimensions,arдuments)
is, the higher chance the memory-access conflict takes place. There-

fore, F (dimensions,arдuments) can be used for optimization to ob-

tain error-inducing inputs that trigger CUDA synchronization bugs.

Note that since F (dimensions,arдuments) is discrete, we choose

Evolutionary Programming [44] as our optimization approach.

3.1.2 Algorithm. The framework of łAutomatic Input Generationž

is presented in Algorithm 1. First, Simulee randomly initializes

arguments and dimensions to create and sort individual solutions

for evolving (Lines 3 to 7). In each generation, each solution is

mutated to generate two children, which are added to the whole

population set (Lines 8 to 14). Next, the population winners survive

for the subsequent iterations (Lines 15 to 16). The iterations can be

terminated once it finds an acceptable solution. Otherwise, after

completing the iterations, it returns the optimal solution.

Initial Solutions. The initial dimensions and arguments are ran-

domly generated and passed to fitness functions as initial solutions

for future evolution. Note that the dimensions can be extracted from

kernel functions. For instance, if a kernel function has łthreadIdx.xž

and łthreadIdx.yž, it means the block is two-dimensional.

Fitness Function. Equation 1 is chosen as the primary fitness

function for Evolutionary Programming. Specifically, the output

of F (dimensions,arдuments) is the fitness score for a solution of

dimensions and arguments in Evolutionary Programming. How-

ever, it is difficult to derive an optimal solution of dimensions and

Algorithm 1 Framework for Automatic Input Generation

Input : population, generation

Output: acceptable arguments and dimensions

1: function EVOLUTION_ALGORITHM

2: populationLst← list()

3: for i in population do

4: singleSolution← InitialSolution()

5: singleScore← fitness(singleSolution)

6: populationLst.append([singleSolution, singleScore])

7: sortByScore(populationLst)

8: for i in generation do

9: childLst← list()

10: for solution in populationLst do

11: childrenSolutions← mutation(solution)

12: newScores← fitness(childrenSolutions)

13: childLst.append([childrenSolutions, newScores])

14: populationLst.merge(childLst)

15: sortByScore(populationLst)

16: populationLst← populationLst[:population]

17: if populationLst[0] acceptable then

18: return populationLst

19: return populationLst

arguments by only optimizing F (dimensions,arдuments). In partic-

ular, since F (dimensions,arдuments) is non-differentiable when

the gradient does not exist, it is hard to find an optimal solu-

tion given the set of inferior solutions, e.g., all the solutions of

F (dimensions,arдuments) are ł1žs. To address such issues, we de-

sign a secondary fitness function such that they are sorted according

to their possibility to be optimal: R(start , end) = end − start . In
particular, it indicates that a smaller memory-access range leads

to a higher possibility of memory-access conflict. As a result, we

define fitness score of the primary fitness function as primary score,

and the fitness score of the secondary fitness function as secondary

score. During the population evaluation, the primary score is sorted

first; if and only if the top-ranked primary score is 1, the secondary

score is sorted to decide which solution is more likely to converge

to the minimum of F (dimensions,arдuments).
Mutation. In Simulee, solutions are generated by mutation,

where each solution generates two children in one generation.

Specifically, arguments and dimensions are independent from each

other during mutation with respective mutation strategies. The

mutate strategy for dimensions is trivial: first, Simulee randomly

generates an integer vector ranging from -1 to 1 according to the

dimension size; next, the child’s dimension is mutated by summing

the parent’s dimension and the generated integer vector.

The details of the mutation strategy for arguments is presented in

Algorithm 2. Since the memory-access-relevant arguments are num-

bers, Simulee views them as floating numbers and converts them

back to their actual types when executing f (i). Accordingly, each
generation generates two children: one adds a random number gen-

erated by standard Normal Distribution [5] (N (x) = 1√
2π
e
−x 2

/

2)
to the arguments inherited from the parent solution, and the other

adds a random number generated by standard Cauchy Distribu-

tion [2] (C(x) = 1
π (1+x 2) ) to the arguments inherited from the par-

ent solution. We define the search step length of the arguments as
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Algorithm 3 Memory-Access Model construction

Input : gridDim, blockDim, arguments

Output: Memory-Access Model

1: function CONSTRUCT_MEMORY_MODEL

2: BLOCKS← generateFromDimension(gridDim)

3: THREADS← generateFromDimension(blockDim)

4: globalMem← [MemoryUnit() for i in range(globalSize)]

5: sharedMemLst← list()

6: for blk in BLOCKS do

7: sharedMem← [MemoryUnit() for i in range(sharedSize)]

8: visitOrderGlobal← [0 for i in range(globalSize)]

9: visitOrderShared← [0 for i in range(sharedSize)]

10: while hasUnterminatedThread() do

11: for t in THREADS do

12: env← Environment(arguments)

13: PROCESS_THREAD(t, globalMem, sharedMem,

14: visitOrderGlobal, visitOrderShared, env)

15: sharedMemLst.append(sharedMem)

16: return globalMem, sharedMemLst

current statement does not call barrier function, the corresponding

visit_order and the action of the associated thread is recorded to

construct the Memory-Access Model (Lines 14 to 21).

3.2.3 Bug Detection via Memory-Access Model Mechanism. The de-

sign ofMemory-Access Model can be used in Simulee to detect CUDA

synchronization bugs, i.e., data race, redundant barrier function,

and barrier divergence.

Data Race. In general parallel computing programs, a possible

data race takes place when multiple threads access the identical

memory address in the same visit order and at least one of them

writes. Specifically in CUDA kernel functions, besides the generic

circumstances, a data race also takes place when (1) the threads are

from different thread warps, or (2) the threads from the same thread

warp underwent branch divergence, or (3) the threads from the

same thread warp without undergoing branch divergence write to

the same memory address by the same statement. By combining the

data race detection criteria above and the design of Memory-Access

Model, Simulee can detect data race in CUDA kernel functions as

described in Theorem 3.1.

Theorem 3.1. Given two Unit Tuplesψi andψj from the identical

Memory Unit, a data race between them takes place if the conditions

below are met:

• ψi [visit_order] =ψj [visit_order]
• ψi [thread_id] !=ψj [thread_id]
• ψi [action] = ‘write’ orψj [action] = ‘write’

when the threads ofψi andψj are (1) from different thread warps or

(2) executing the łwritež action on the same statements in the same

thread warp or (3) underwent branch divergence before the current

łwritež action.

Redundant Barrier Function. A redundant barrier function

indicates that no data race can be detected by removing that barrier

function. In CUDA kernel functions, the visit_order is incremented

for one Unit Tuple when at least one thread reaches a barrier func-

tion. In other words, two Unit Tuples with adjacent visit_order in

oneMemory Unit indicates the presence of a barrier function, shown

in Figure 6. Therefore, to detect whether a barrier function is redun-

dant or not, it is essential to collect all the associated Unit Tuples

and analyze whether they together would lead to data race. The

barrier function is defined to be redundant if no data race can be

detected among such Unit Tuples.

The details of how to detect data race and redundant barrier

function based onMemory-Access Model are presented in Algorithm

5. For each Memory Unit, to detect data race, Simulee first groups

the Unit Tuples with the same visit_order. For all the Unit Tuples in

one group, Simulee checks whether any Unit Tuple has data race

with others according to Theorem 3.1 (Lines 4 to 16). To detect

redundant barrier function of oneMemory Unit, Simulee extracts its

visit_order and groups all the Unit Tuples with adjacent visit_order

to find out whether any data race can take place (Lines 18 to 22).

If there is no data race, Simulee identifies the associated barrier

function and increments its recorder by 1 (Lines 23 to 24). At last, it

checks whether the total recorder number matches the total number

of the changing visit_order caused by that barrier function which

can be obtained after constructing the Memory-Access Model. This

barrier function is redundant if the two numbers are equivalent

(Lines 25 to 28).

Barrier Divergence. As mentioned in Section 3.2.2, barrier di-

vergence can be detected during constructingMemory-Access Model

when there is any halting thread after the current execution is ter-

minated, because it indicates that there is at least one thread which

has not reached the barrier function while the others have already

left.

To conclude, Simulee first applies Evolutionary Programming

to generate error-inducing grid and block dimensions and argu-

ments. Next, Simulee inputs such dimensions and arguments to

construct Memory-Access Model that delivers thread-wise memory-

access information. Eventually, such information, along with the

CUDA synchronization bug detectionmechanism, are used to detect

whether there exists any CUDA synchronization bug.

4 EVALUATION

In this section, we conduct an extensive experimental study to

evaluate the effectiveness and efficiency of Simulee in detecting

synchronization bugs of CUDA kernel functions. In particular, we

first perform a preliminary study on 24 manually identified CUDA

synchronization bugs to explore the efficacy of Simulee. Next, we

explore the capability of Simulee in detecting previously-unknown

bugs from all the real-world CUDA projects in our benchmark suite.

Furthermore, we also compare Simulee with multiple existing state-

of-the-art approaches to explore whether Simulee can outperform

them.

4.1 Benchmark Construction

To conduct a preliminary study for evaluating Simulee, it is essential

to establish a set of CUDA synchronization bugs as the ground truth.

To this end, we first consider an existing benchmark, i.e., the GKLEE

dataset [22], and select 4 synchronization bugs that can represent

all the basic synchronization bug patterns in the dataset.

Furthermore, we augment the bug dataset with more real-world

CUDA bugs. In this paper, we aim to collect important and in-

fluential real-world CUDA benchmark projects for our evalua-

tion by defining a set of policies for selecting open-source CUDA
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Algorithm 4 Thread Processor

Input : thread, globalMem, sharedMem, visitOrderGlobal,

visitOrderShared, env

Output:None or BARRIER_DIVERGENCE

1: function PROCESS_THREAD

2: if shouldHalt() or isFinished() then

3: return

4: curStmt← env.getNextInstruction()

5: if curStmt.isEOF () then

6: thread.finish()

7: if hasHaltThreads() then

8: return BARRIER_DIVERGENCE

9: return

10: if curStmt.isSyncthreads() then

11: if all threads reach same barrier then

12: updateCurrentVisitOrder(visitOrderShared)

13: updateCurrentVisitOrder(visitOrderGlobal)

14: else

15: isGlobal, memIndex← simulateExecute(curStmt, env)

16: if isGlobal then

17: index← visitOrderGlobal[memIndex]

18: updateMemoryModel(globalMem, memIndex, index)

19: else

20: index← visitOrderShared[memIndex]

21: updateMemoryModel(sharedMem, memIndex, index)

22: return

Table 1: Subject Statistics
Projects Star Number Commit Number LoC

kaldi 6860 8681 364K

arrayfire 2791 5314 381K

thundersvm 1014 827 343K

cuda-cnn 368 135 12K

cudaSift 123 247 24K

cudpp 268 302 58K

gunrock 550 2422 178K

projects in GitHub. Specifically, we initialize our CUDA project

collection by searching the keyword łCUDAž and collect more

than 12,000 projects from GitHub in the first place. Next, we sort

these projects in terms of the star number and commit number. We

randomly select 7 projects with large star/commit numbers. As a re-

sult, we collect łkaldiž [29], łarrayfirež [8], łthundersvmž [42],

łcuda-cnnž [54], łcudaSiftž [11], łcudppž [15] and łgunrockž [24]

for augmenting our benchmark suite as listed in Table 1.

More specifically, we randomly select projects łarrayfirež, łkaldiž,

and łthundersvmž from our real-world CUDA benchmark suite

to retrieve their historical synchronization bugs. Note that we

do not consider all the projects from our benchmark suite since

the manual bug retrieval process can be quite time-consuming.

The synchronization bugs for those selected projects are identi-

fied based on their commit messages and łgit diffž results. The

specific operations are listed as follows. Following prior study on

other types of bugs [49], we first filter the commits and only keep

the commits with the messages that contain at least one keyword

in the set {łfixž, łerrorž, łsyncž} to retain the commits that have

higher chances to contain synchronization bugs. However, the

Algorithm 5 Bug Detection via Memory-Access Model

Input : memoryModel, changingVisitOrderNumber

Output:DATA_RACE, REDUNDANT_BARRIERS

1: function EXAMINE_MEMORY_MODEL

2: DATA_RACE← False

3: REDUNDANT_BARRIERS = dict()

4: for memoryUnit in memoryModel do

5: for visitOrder in memoryUnit do

6: tuples← getTuplesByOrder(visitOrder)

7: for thread performing write in tuples do

8: otherTs← getDifferentThreads(thread, tuples)

9: for t in otherTs do

10: if inSameWarp(t, thread) then

11: if usingSameStmt(t, thread) then

12: DATA_RACE← True

13: if hasBranchDivergence(t, thread) then

14: DATA_RACE← True

15: else

16: DATA_RACE← True

17: barrierDict = dict()

18: for visitOrder in memoryUnit do

19: nextOrder← visitOrder + 1

20: current← getTuplesByOrder(visitOrder)

21: target← getTuplesByOrder(nextOrder)

22: if canMergeWithoutRace(target, current) then

23: barrier← getSplitBarrier(nextOrder, memoryUnit)

24: barrierDict[barrier] ++

25: for barrier in barrierDict do

26: REDUNDANT_BARRIERS[barrier]←
27: isRedundant(barrierDict[barrier],

28: changingVisitOrderNumber[barrier])

29: return DATA_RACE, REDUNDANT_BARRIERS

commit messages only with these keywords might not be rele-

vant with CUDA bugs. Therefore, next, among the filtered com-

mit messages, we further filter them according to whether they

have at least a keyword in the set {ł__global__ž, ł__device__ž} or

match at least one regular expression in the set {łcuda\w+\s*[(]ž,

ł[ˆ<]<<<[ˆ<]ž} with its parent node’s łgit diffž results. To

illustrate, ł__global__ž is the modifier of kernel functions and

ł__device__ž is the modifier of the device functions that can be

called by kernel functions. łcuda\w+\s*[(]ž is designed in accor-

dance with the information that the resource is prepared/released

in host side before/after executing kernel functions. For instance,

łcudaMalloc((void **) &host, sizeof(int) *100)ž allocates

a global 400-byte memory for kernel functions before execution;

łcudaFree(&host)ž releases the allocated memory for kernel func-

tions after execution. ł[ˆ<]<<<[ˆ<]ž is designed in accordance

with the scenario that sets up the environment for kernel functions,

e.g., łfunction<<<grid_size, block_size>>>(arguments)ž.

All these regular expressions together deliver the complete life cy-

cle of executing kernel functions such that all the bugs of the whole

life cycle can be covered. We further manually review all the re-

maining commits after the above two rounds of filtering to remove

any potential false positive. Due to the tedious and time-consuming

manual inspection, all the selected CUDA projects are analyzed

within the most recent 1000 commits or all of them if there are less

than 1000 commits. As a result, we collected a total of 20 real-world
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CUDA bugs. By combining with the 4 synchronization bugs from

the GKLEE benchmark suite, we obtain a total of 24 CUDA bugs as

the ground truth for our preliminary study.

4.2 Environment Setups

We performed our evaluation on a desktop machine, with Intel(R)

Xeon(R) CPU E5-4610 and 320 GB memory. The operating system is

Ubuntu 16.04. For the Evolutionary Programming settings of łAuto-

matic Input Generationž in Simulee, the population and generation

are both set to be 10 by default. Note that the Simulee webpage [7]

includes more experimental results under different settings for the

Evolutionary Programming component.

We select state-of-the-art CUDA synchronization bug detection

approaches, i.e., GPUVerify [9], GKLEE [30], GKLEE-SESA [31], and

RaceChecker [6] for the performance comparison with Simulee.

More specifically, RaceChecker is the NVIDIA’s official tool and

represents state-of-the-art compiler-based approach, while the rest

approaches represent state-of-the-art SMT-solver-based approaches.

Note that the timeout for all studied techniques are uniformly set

to be 5 hours.

4.3 Result Analysis

4.3.1 Preliminary Study on Known Bugs. We first present the ex-

perimental results for detecting the 24 manually identified synchro-

nization bugs in our preliminary study in Table 2. In the table, DR,

BD, and RB respectively denote data race, barrier divergence, and

redundant barrier function. ł✓ž, ł✗ž, and łFž respectively denote

the successful, failed, and false-positive bug-detection attempts. TO

denotes that the associated bug detection attempt incurs timeout,

whileN/A denotes that the buggy kernel function is out of the scope

of the bug-detection capability of the corresponding techniques.

Note that each row represents one kernel function, which could

include multiple bugs (indicated by Column łBug Numž). For such

cases, we present all the reported bugs for each kernel function,

e.g., ł✓FFFž denotes that the corresponding technique reports four

bugs in total for the kernel function, 3 of which are false positives.

From the table, we can observe that, in terms of the overall

effectiveness, Simulee can detect 21 (87.5%) of the the 24 manu-

ally identified synchronization bugs within seconds, e.g., Simulee

at most costs 10.73 seconds (when applied on kernel function

JacobiSVD). We further analyze the 3 cases for which Simulee fails

to detect bugs. Simulee fails to detect the data race in kernel func-

tion hamming_matcher because this bug can only be exposed under

occasional branch coverage, which is out of the scope of the input

generation component of Simulee that focuses on the memory-

access conflict potentials. Simulee fails to detect bugs for kernel

function _softmax_reduce and _div_rows_vec because they are

largely reimplemented to reduce the usage of unnecessary barrier

functions while the current version of Simulee is not designed for

such challenging bugs requiring large code refactoring.

We next analyze the comparison results between Simulee and

state-of-the-art GPUVerify, GKLEE, GKLEE-SESA and RaceChecker

from the table in details. Note thatGPUVerify requires user-provided

dimension settings and the other techniques require the overall

user-provided environmental settings. We provide them all with

the ideal settings that can trigger the most possible bugs for fair

comparison with Simulee.

GPUVerify. GPUVerify is designed to detect data-race and barrier-

divergence bugs via integrating static analysis with SMT solvers.

From the table, we can observe that GPUVerify can successfully

detect 17 out of the 24 synchronization bugs.

Meanwhile, GPUVerify also reports 6 false positives. We next

manually check all such false positives and observe that GPUVer-

ify tends to report false positives due to two reasons. First, the

false positives are triggered by the bottleneck of the static anal-

ysis optimization. For instance, in kernel functions deadlock_0

and computeDescriptor, GPUVerify reports false positives due to

nonexistent execution paths. Second, its adopted SMT solvers are

used to detect data-race bugs caused by thread-wise access conflicts;

however, the thread warp mechanism adopted in CUDA kernel

functions can resolve some of such bugs, e.g., the inter-instruction

łread&writež race. Shown in Figure 7, warpSize is equal to 32 in

Revision 5cc9731af4f of function _trace_mat_mat_trans from

project kaldi. Suppose there are two threads (0 0 0) and (1 0

0), and the tid of thread (0 0 0) is 0 while the tid of thread (1

0 0) is 1. Moreover, when the loop terminates, shift is set to 1.

Meanwhile, for thread (0 0 0), statement ssum[0] += ssum[0 +

1] is executed; for thread (1 0 0), statement ssum[1] += ssum[1

+ 1] is executed. In traditional CPU programs, since thread (0 0

0) is reading data from thread ssum[1] while thread (1 0 0) is at-

tempting to write data to ssum[1], it can incur a łread&writež data

race. However, in CUDA kernel functions, since thread (0 0 0) and

thread (1 0 0) are located in the same thread warp without branch

divergence, they essentially are executing the same instruction at

the same time. Since the statement ssum[tid] += ssum[tid +

shift] can be compiled to the following two instructions %1 =

load ssum[tid+shift]; store %1 ssum[tid], the łreadž action

is executed strictly prior to the łwritež action. As a result, it turns to

be a false-positive data race in CUDA kernel functions. We issued

this case to its corresponding developers who further verified our

finding as follows:

łYou are correct that ssum[0] += ssum[0 + 1] and ssum[1]

+= ssum[1 + 1] are executed at the same time. But since

we are now in a warp, all the 32 threads (tid=0..31)

are synchronized. So reading data from ssum[1] and

ssum[2] always happens before writing data to ssum[0]

and ssum[1] for thread tid=0 and tid=1.žÐ kaldi

GKLEE and GKLEE-SESA. GKLEE and GKLEE-SESA are designed

to detect synchronization bugs via integrating concolic execution

with SMT solvers. By launching the environmental setups, they

collect łreadž and łwritež statements into different sets and use

SMT solvers to detect synchronization bugs accordingly. From our

preliminary study, GKLEE and GKLEE-SESA can detect 16 and 4

manually identified bugs, respectively, without any false positive. In-

terestingly,GKLEE-SESA incurs more timeouts and detects less bugs

than GKLEE. The reason is that GKLEE-SESA leverages more static

analysis techniques to reduce its dependency on the initial user-

provided environmental setups while such techniques are rather

time-consuming. Moreover, similar to GPUVerify, because they are

both SMT-solver-based approaches, they are also likely to report

false positives on data race (further confirmed by our later study
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Table 2: Detection Results of the Identified Bugs

Project Revision Kernel Function Bug Type Bug Num
Simulee GPUVerify GKLEE GKLEE-SEAS RaceChecker

Effect Time(s) Effect Time(s) Effect Time(s) Effect Time(s) Effect Time(s)

arrayfire

a7a297ba814 scan_nonfinal_kernel DR 1 ✓ 1.01 ✓ 3.01 ✓ 1.6 ✗ TO ✓ 0.78

a7a297ba814 scan_dim_nonfinal_kernel DR 1 ✓ 1.17 ✓ 3.4 ✓ 0.89 ✗ TO ✓ 1.17

0c5a38182b7 hamming_matcher DR 1 ✗ 6.56 ✓ 23.53 ✓ 2.97 ✗ TO ✓ 0.37

0c5a38182b7 hamming_matcher_unroll DR 1 ✓ 4.01 ✓ 24.93 ✓ 2.38 ✗ TO ✓ 0.57

d7abcf2358e JacobiSVD DR 2 ✓ ✓ 10.73 ✓ ✓ F F F 80.5 ✗ ✗ TO ✗ ✗ TO ✓ ✓ 1.21

c59116e3ec3 warp_reduce DR 1 ✓ 1.34 ✓ 2.34 ✓ 0.69 ✗ TO ✗ N/A

a515b112076 scan_dim_kernel DR 1 ✓ 2.06 ✓ 1.06 ✓ 0.34 ✗ TO ✓ 0.28

1050816e422 hamming_matcher DR 1 ✓ 1.38 ✓ 120.85 ✓ 27.58 ✗ TO ✓ 0.47

dfbfca5fb77 select_matches BD 1 ✓ 0.61 ✓ 5.16 ✗ 0.52 ✗ TO ✗ N/A

0e0c726d7d0 hamming_matcher_unroll BD 1 ✓ 0.43 ✗ TO ✓ 0.65 ✗ TO ✗ N/A

ee4d0bd77d7 computeDescriptor BD 1 ✓ 2.26 ✓ F F 7.78 ✓ 1.84 ✗ TO ✗ N/A

0d0d7d1285a warp_reduce BD 1 ✓ 1.42 ✓ 2.34 ✓ 0.69 ✗ TO ✗ N/A

31761d27f01 computeMedian RB 1 ✓ 0.47 ✗ N/A ✗ N/A ✗ N/A ✗ N/A

faefa30c3a0 harris_response RB 1 ✓ 0.66 ✗ N/A ✗ N/A ✗ N/A ✗ N/A

GkleeTests

10eb6373d53 device_global DR 1 ✓ 0.53 ✓ 2.23 ✓ 1.56 ✓ 0.91 ✗ N/A

10eb6373d53 colonel DR 1 ✓ 1.11 ✓ 2.12 ✓ 0.71 ✓ 0.65 ✗ N/A

10eb6373d53 dl@deadlock_0 BD 1 ✓ 1.61 ✓ F 2.39 ✓ 0.61 ✓ 0.23 ✗ N/A

10eb6373d53 dl@deadlock_2 BD 1 ✓ 1.94 ✓ 2.1 ✓ 1.12 ✓ 0.41 ✗ N/A

kaldi

bc13196e7fe _add_diag_mat_mat BD 1 ✓ 9.38 ✓ 3.41 ✗ 181.57 ✗ TO ✗ N/A

42352b63e62 _softmax_reduce RB 1 ✗ N/A ✗ N/A ✗ N/A ✗ TO ✗ N/A

bb589475b10 _div_rows_vec RB 1 ✗ N/A ✗ N/A ✗ N/A ✗ TO ✗ N/A

thundersvm febf515a826 nu_smo_solve_kernel DR 2 ✓ ✓ 1.23 ✗ ✗ TO ✓ ✓ 1.93 ✗ ✗ TO ✓ ✓ 1.24

Total Detection Result 21 ✓, 3 ✗, 0 F 17 ✓, 7 ✗, 6 F 16 ✓, 8 ✗, 0 F 4 ✓, 20 ✗, 0 F 10 ✓, 14 ✗, 0 F

Table 3: Detection Results of the Previously Unknown Bugs

Project Revision Kernel Function Bug Type Bug Num
Simulee GPUVerify GKLEE GKLEE-SEAS RaceChecker

Effect Time(s) Effect Time(s) Effect Time(s) Effect Time(s) Effect Time(s)

cuda-cnn c843bb2861e g_getCost_3 RB 1 ✓ 1.39 ✗ N/A ✗ N/A ✗ N/A ✗ N/A

cudaSift

a2e57327ddc FindMaxCorr RB 1 ✓ F F F 0.93 ✗ N/A ✗ N/A ✗ N/A ✗ N/A

a2e57327ddc FindMaxCorr1 RB 1 ✓ 1.02 ✗ N/A ✗ N/A ✗ N/A ✗ N/A

a2e57327ddc FindMaxCorr2 RB 1 ✓ 0.97 ✗ N/A ✗ N/A ✗ N/A ✗ N/A

a2e57327ddc FindMaxCorr3 RB 1 ✓ 1.05 ✗ N/A ✗ N/A ✗ N/A ✗ N/A

cudpp

9dc7357ee81 sparseMatrixVectorFetchAndMultiply RB 1 ✓ 0.7 ✗ N/A ✗ N/A ✗ N/A ✗ N/A

9dc7357ee81 sparseMatrixVectorSetFlags RB 1 ✓ 0.61 ✗ N/A ✗ N/A ✗ N/A ✗ N/A

9dc7357ee81 yGather RB 1 ✓ 1.13 ✗ N/A ✗ N/A ✗ N/A ✗ N/A

gunrock 248a12107ef Join BD 1 ✓ 1.21 ✗ TO ✗ 1.84 ✗ TO ✗ N/A

kaldi

5cc9731af4f _add_diag_vec_mat DR 2 ✓ ✓ 1.23 ✓ ✓ 1.17 ✓ ✓ 18.7 ✗ ✗ TO ✗ ✗ N/A

5cc9731af4f _copy_low_upp DR 1 ✓ 2.7 ✓ F 3.21 ✓ F 0.572 ✓ F 0.649 ✗ N/A

5cc9731af4f _copy_upp_low DR 1 ✓ 0.79 ✓ F 3.11 ✓ F 0.598 ✓ F 0.712 ✗ N/A

5cc9731af4f _splice DR 1 ✓ 0.73 ✓ 1.31 ✓ 23.61 ✗ N/A ✗ N/A

5cc9731af4f _copy_from_tp DR 3 ✓ ✓ ✓ 0.96 ✓ ✓ ✓ 1.99 ✓ ✓ ✓ 26.3 ✗ ✗ ✗ TO ✗ ✗ ✗ N/A

5cc9731af4f _copy_from_mat DR 1 ✓ 0.69 ✓ 2.11 ✓ 20.59 ✗ TO ✗ N/A

5cc9731af4f _sum_reduce DR / RB 2 / 1 ✓ ✓ / ✓ 0.14 ✓ ✓ / ✗ 2.86 / N/A ✓ ✓ / ✗ 1.06 / N/A ✗ ✗ / ✗ TO / N/A ✗ ✗ / ✗ 0.34 / N/A

thundersvm 05de37f83b6 c_smo_solve_kernel DR 3 ✓ ✓ ✓ 3.11 ✗ ✗ ✗ TO ✗ ✗ ✗ 6.43 ✗ ✗ ✗ TO ✓ ✓ ✓ 1.38

Total Detection Result 24 ✓, 0 ✗, 3 F 11 ✓, 13 ✗, 2 F 11 ✓, 13 ✗, 2 F 2 ✓, 22 ✗, 2 F 3 ✓, 21 ✗, 0 F

on detecting new bugs) and fail to detect any redundant-barrier-

function bugs because their detecting mechanism is not designed

for such bugs. We next discuss the failure cases for the betterGKLEE

because GKLEE-SESA timed out on most cases: GKLEE fails to de-

tect barrier-divergence bugs in kernel functions select_matches

and _add_diag_mat_mat because GKLEE models the kernel func-

tions over two parametric threads and tends to ignore important

execution paths for detecting barrier-divergence bugs.

RaceChecker. RaceChecker is a device-dependent tool designed

only for detecting CUDA data-race bugs. Specifically, it can only

detect the data-race bugs incurred in shared memory. In particu-

lar, RaceChecker can detect all the 10 data-race bugs that are rele-

vant to shared memory, but fails to detect other synchronization

bugs including the data-race bugs incurred in global memory from

the manually identified bugs for our preliminary study. Note that

since RaceChecker does not involve SMT solver, it does not report

any false-positive data-race bug as the other SMT-solver-based

approaches.

4.3.2 Further Study on Previously Unknown Bugs. After our pre-

liminary study, we further apply Simulee and all the compared

techniques to detect previously unknown synchronization bugs for

all the 7 projects with the results demonstrated in Table 3, which

follows the same format as Table 2. From the table, we can observe

that Simulee detects 24 bugs and reports 3 false positives in total,

where all the false positives are redundant-barrier-function bugs in

kernel function FindMaxCorr. Note that Simulee reports such false

positives because it is possible that łAutomatic Input Generationž

may miss some potential error-inducing inputs that can trigger

synchronization bugs such that a barrier function can be reported

as a redundant barrier function. Meanwhile, even the most effective

existing technique, i.e., GPUVerify can only detect 11 previously

unknown bugs with 2 false positives.

We have also reported all the detected bugs to the corresponding

developers and show their feedback statistics in Table 4. To date,

they have confirmed 10 bugs in total (TT), including 1 data-race

bugs (DR), 1 barrier-divergence bug (BD), and 8 redundant-barrier-

function bugs (RB). To be specific, the developers of cudpp and

CudaSift responded as follows:

łI think you’re right... There are considerably faster

ways to do matrix multiply calls...ž Ð cudpp
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Table 4: Developer Feedback Statistics

Projects
Detected Confirmed Under Discussion Nonresponse

TT DR RB BD TT DR RB BD TT DR RB BD TT DR RB BD

kaldi 12 11 1 0 2 1 1 0 6 6 0 0 4 4 0 0

thundersvm 3 3 0 0 0 0 0 0 3 3 0 0 0 0 0 0

CudaSift 4 0 4 0 4 0 4 0 0 0 0 0 0 0 0 0

CUDA-CNN 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0

cudpp 3 0 3 0 3 0 3 0 0 0 0 0 0 0 0 0

gunrock 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0

Total 24 14 9 1 10 1 8 1 9 9 0 0 5 4 1 0

1 const int32_cuda tid = threadIdx.y * blockDim.x

+ threadIdx.x;

2 ...

3 if (tid < warpSize) {

4 # pragma unroll

5 for (int shift = warpSize; shift > 0; shift >>= 1) {

6 ssum[tid] += ssum[tid + shift];

7 }

8 ...

9 }

Figure 7: An Example of False Race

łYes, there is a bit of cleaning up to do there. Sometimes

when I detect oddities in the output, I add an unneces-

sary synchronization just in case. In fact those things

should be all run on the same thread, since it cannot be

parallelized anyway. Thank you for pointing it out.ž Ð

CudaSift

Since barrier divergence is an undefined behavior, it may not

hang on every situation. The developers of gunrock responded as

follows and further fixed the bug in a later commit [25]:

łI do see what @Stefanlyy / @eagleShanf mean for the

divergence issue, and surprise the code didn’t hang.ž

In addition, 9 data-race bugs are still being actively discussed

by developers. We label such bugs łunder discussionž as stated in

Table 4.

In summary, it can be observed from Section 4.3.1 and Sec-

tion 4.3.2 that Simulee can correctly detect most of the synchroniza-

tion bugs while the other approaches are all limited in their detec-

tion scopes, failing to detect certain bugs that they are designed

for, or triggering additional false positives. We now summarize the

reasons why Simulee can outperform the other approaches: Simulee

applies lightweight evolutionary test generation (guided by effec-

tive memory-access modeling) and dynamic runtime monitoring in

tandem for powerful CUDA synchronization bug detection. On the

other hand, the other approaches are usually bounded by heavy-

weight techniques, such as constraint solvers, which prevent the

techniques from exploring all the possible cases.

5 THREATS TO VALIDITY

The threats to external validity mainly lie in the subjects and faults

used in our benchmark. Though the projects of our benchmark

suite may not represent the overall project distributions, they shall

be selected in order to possibly maximize the overall features of

the CUDA projects. In this way, our benchmark is derived based

on real-world programs from GitHub, i.e., we select seven popular

CUDA-related projects with a total of 17928 commits and 1.36

million LOC.

The threats to internal validity mainly lie in the potential bugs in

our implementation due to the complicated mechanism of Simulee.

To reduce the threats, three graduate students, closely mentored by

three SE/Systems supervisors, have been carefully working for over

one year. We manually reviewed all our implementation code and

also included corresponding tests for verifying our implementation.

In addition, the effectiveness of łAutomatic Input Generationž can

impact on the performance synchronization bug detection. It is

possible that the łAutomatic Input Generationž component may

miss certain inputs that can trigger synchronization bugs such that

Simulee would miss detecting the bug or report a false positive. To

reduce this threat, we set a large number of suitable parameters for

the evolutionary algorithm adopted in łAutomatic Input Generationž

to reduce the probability of missing error-inducing inputs.

To threats to construct validity mainly lie in the metrics used in

this work. To reduce the threats, we measure the number of both

previously known and the identified bugs detected by the studied

techniques as well as their false-positive rate and corresponding

time cost.

6 RELATED WORK

As our work investigates the automatic bug detection techniques for

CUDA programs, the related work includes the following two parts:

empirical studies on CUDA programs and techniques of CUDA bug

detection. Moreover, since Simulee essentially is a search-based

bug-detection technique, we also discuss such relevant work.

Empirical studies for CUDA programs There are several ex-

isting work that study bugs and other features on CUDA programs.

For instance, Yang et al. [43] delivered the empirical study on the

features of the performance bugs on CUDA programs, Burtscher et

al. [10] studied the control-flow irregularity and memory-access ir-

regularity and found that both irregularities aremutually dependent

and exist in most of kernels. Che et al.[12] examined the effective-

ness of CUDA to express with different sets of performance charac-

teristics. Some researchers are keen on the comparisons between

CUDA and OpenCL. For instance, Demidov et al. [17] compared

some C++ programs running on top of CUDA and OpenCL and

found that they work equally well for problems of large size. Du et

al. [19], on the other side, studied the discrepancies in the OpenCL

and CUDA compilers’ optimization that affect the associated GPU

computing performance. In our previous work, we also conducted

empirical studies to explore CUDA program features. For instance,

we investigated the features and the distribution of multiple CUDA

program bug types based on a collected GitHub dataset [41]. More-

over, we developed an approach that can automatically repair CUDA

synchronization bugs via program transformation and validated

its performance via an experimental study based on real-world

benchmarks [40].

CUDA bug detection Unlike traditional program bugs which

can be deterministically tested [39, 46] and debugged [23, 32, 47],

CUDA synchronization bugs, especially data race and barrier di-

vergence can often result in undefined behaviors. To detect such

bugs, there are typically two types of approachesÐcompiler-based

approaches and static analysis (SMT solver)-based approaches. In

particular, compiler-based approaches, e.g., [37][20][6], usually link

the detectors to the applications in the compiling stage and detect

the bugs in the runtime process of GPU programs. They are limited

by not being łfully automaticž because developers have to manually
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provide test cases. Moreover, given inferior inputs, the synchroniza-

tion bugs might not be triggered and detected because such bugs

could only occur under limited conditions. They can also be expen-

sive since such runtime detection demands compiling process and

GPU computing environment. To the best of our knowledge, these

approaches fail to detect barrier divergence and redundant barrier

function because of their detection mechanisms. On the other hand,

various automatic synchronization bug detection approaches, e.g.,

[30][9], depend on static analysis and SMT solver [16] which could

lead to poor runtime performance when handling complicated GPU

programs. Besides, such approaches tend to report false positives

or false negatives because it lacks runtime information. Although

developers do not have to provide whole test inputs for them, they

still need to provide heuristic settings in order to avoid path explo-

sions, e.g., dimension settings for GPUVerify, main functions and

initial environments of kernel functions for GKLEE.

Compared with these approaches, Simulee can automate the

detection process to achieve superior detection performance by

enabling the łAutomatic Input Generationž component and the

łMemory-based Synchronization Bug Detectionž component.

Search-based Software Engineering. The optimization ap-

proaches such as Evolutionary Programming are widely used to

solve software engineering problem by modeling them into op-

timization problems [26]. Yu et al. [45] proposed a metric, PSet

constraint to detect CPU-based synchronization bugs. Harman et

al. [27] applied evolving pareto front approximation to refactor

software systems. Hierons et al. [28] used Many-Objective Evolu-

tionary Optimisation to optimize the process of software product

selection. McMinn et al. [33] evolved coverage criteria to improve

the performance of bug detection. Ouni et al. [36] modeled the pro-

cess of refactoring into a multiple-objective search-based problem

for generating refactor patches.

7 CONCLUSIONS

In this paper we develop a fully automated approach, namely

Simulee, that can successfully detect CUDA synchronization bugs

efficiently based on accurate memory-access modeling. More specif-

ically, Simulee consists of two different components: the łAutomatic

Input Generationž component that applies Evolutionary Computa-

tion for automatically generating bug-inducing test inputs, and the

łBug Detection via Memory-Access Modelž component that builds

an accurate memory model for deriving the underlying CUDA syn-

chronization bugs. To evaluate the efficacy of Simulee, we construct

a benchmark from real-world CUDA-related projects. Our evalua-

tion results suggest that Simulee can detect most of the manually

identified synchronization bugs out of the studied projects, and

successfully detect 24 previously unknown bugs which have never

been reported/detected before. In addition, Simulee can achieve

better effectiveness and efficiency than multiple state-of-the-art

approaches.
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