2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

Taming Behavioral Backward Incompatibilities via
Cross-Project Testing and Analysis

Lingchao Chen
The University of Texas at Dallas
Ixc170330@utdallas.edu

Xiaoyin Wang
The University of Texas at San Antonio
Xiaoyin.Wang@utsa.edu

ABSTRACT

In modern software development, software libraries play a cru-
cial role in reducing software development effort and improving
software quality. However, at the same time, the asynchronous
upgrades of software libraries and client software projects often
result in incompatibilities between different versions of libraries
and client projects. When libraries evolve, it is often very chal-
lenging for library developers to maintain the so-called backward
compatibility and keep all their external behavior untouched, and
behavioral backward incompatibilities (BBIs) may occur. In practice,
the regression test suites of library projects often fail to detect all
BBIs. Therefore, in this paper, we propose DeBBI to detect BBIs
via cross-project testing and analysis, i.e., using the test suites of
various client projects to detect library BBIs. Since executing all the
possible client projects can be extremely time consuming, DeBBI
transforms the problem of cross-project BBI detection into a tra-
ditional information retrieval (IR) problem to execute the client
projects with higher probability to detect BBIs earlier. Furthermore,
DeBBI considers project diversity and test relevance information
for even faster BBI detection. The experimental results show that
DeBBI can reduce the end-to-end testing time for detecting the first
and average unique BBIs by 99.1% and 70.8% for JDK compared to
naive cross-project BBI detection. Also, DeBBI has been applied to
other popular 3rd-party libraries. To date, DeBBI has detected 97
BBI bugs with 19 already confirmed as previously unknown bugs.

ACM Reference Format:

Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang. 2020.
Taming Behavioral Backward Incompatibilities via Cross-Project Testing
and Analysis. In 42nd International Conference on Software Engineering (ICSE
’20), May 23-29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3377811.3380436

1 INTRODUCTION

As software products become larger and more complicated, library
code plays an important role in almost any software. For example,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7121-6/20/05...$15.00
https://doi.org/10.1145/3377811.3380436

112

Foyzul Hassan
The University of Texas at San Antonio
foyzul. hassan@my.utsa.edu

Lingming Zhang
The University of Texas at Dallas
lingming.zhang@utdallas.edu

while the sample Android app “Hello World" contains only several
lines of source code, when it is executed on an Android mobile
phone, it actually invokes libraries from the Android Software
Development Kit (SDK), Java Development Kit (JDK), as well as the
underlying Linux system. Third-party libraries such as Apache [14]
and Square [13] libraries are also widely used in both open source
and commercial software projects. The prevalent usage of software
libraries has significantly reduced the software development cost
and improved software quality.

At the same time, the asynchronous upgrades of software li-
braries and client software often result in incompatibilities between
different library versions and client software. As techniques of
computation evolve faster and faster, libraries are also upgraded
more frequently, so do the occurrences of software incompatibili-
ties. For example, Google releases a new major version of Android
averagely every 11 months. After each major release, an outbreak
of incompatibility-related bug reports will occur in GitHub, so do
the version-upgrade-related negative reviews in the Google Play
Market [56].

To avoid incompatibilities, for decades, “backward compatibility”
has been well known as a major requirement in the upgrades of
software libraries. However, in reality, “backward compatibility” is
seldom fully achieved, even in widely used libraries. Some early
research efforts (e.g., Chow and Notkin [31], Balaban et al. [26],
and Dig and Johnson [33]) have confirmed the prevalence of back-
ward incompatibility between two consecutive releases of soft-
ware libraries. More recently, Cossette and Walker [32] identified
334 signature-level backward incompatibilities in 16 consecutive
version pairs from 3 popular Java libraries: struts [5], log4j [12],
and jDOM [11]. McDonnell et al. [56] identified 2,051 changes
on method signatures in 13 consecutive Android API level pairs
from API level 2-3 to API level 14-15. These studies all show that
backward incompatibilities are prevalent. Furthermore, a recent
study [58] found averagely over 12 test errors / failures from each
version pair when performing cross-version testing on 68 consecu-
tive version pairs of 15 popular Java libraries. This fact shows that,
on top of signature-level backward incompatibilities, behavioral
backward incompatibilities that may cause runtime errors instead
of compilation errors are also prevalent.

Library incompatibilities may result in runtime failures both
during the software development phase and after the software
distribution. If the upgraded library is statically packaged in the
client software product, the client developers may face some test

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

failures when they try to incorporate the new release of the li-
brary. Thus they must perform extra changes and bug fixes if they
want to take advantage of the new release of the library. In such
a case, client developers may not be affected because they can
still build the software product with the earlier library version.
The case becomes worse when the upgraded library belongs to
the runtime environment (e.g., operating system libraries, Java
runtime libraries, platform libraries for plug-ins such as Chrome/-
Firefox/Eclipse libraries). In such cases, a software user may simply
perform a system/platform update (the user may even not notice it
if she turns on automatic updates) during the night, and suddenly
find one or more software applications no longer working next
morning. For example, Windows Vista is considered to be not very
successful, and its failure has been largely ascribed to its backward
incompatibility with Windows XP [1]. More recently, an upgrade of
Android platform from 4.4 to 5.0 broke Sougoulnput, the most pop-
ular Chinese-input software with more than 200 million users [2].
Users could not input any Chinese character after they upgraded
to Android 5.0, until a patch was released 4 days later.

This paper proposes to apply cross-project testing and analysis
to overcome the challenges in BBI detection with the following
two insights. First, the large number of open source client software
projects residing in open software repositories can serve as a natural
knowledge base of common usage scenario and expected semantics
of software library APIs. Second, it is difficult for natural language
documents (e.g., release notes) to achieve comprehensiveness and pre-
ciseness in describing semantic changes of library APIs. In contrast,
code (including library and client code, source and test code) can be
better media to transfer knowledge from the library side to the client
side. In particular, to avoid BBI-related software runtime failures,
to accelerate software upgrading process, and to reduce developer’s
effort in software migration, we propose DeBBI to detect BBIs on
library side. Simple cross-version regression testing with built-in
library test code may miss a lot of BBIs. For better detection of
BBIs, DeBBI leverages the large number of existing client software
projects in open software repositories, and performs large-scale
testing on these projects with their built-in test code on the newer
library version. Such largely expanded test suites may incur high
costs. Therefore, we propose to transform the problem of cross-
project BBI detection into a traditional information retrieval (IR)
problem. More specifically, we treat the library-side API upgrades
as the query, and the project-side usage of the library APIs as the
document collection. Then, the projects with more intensively up-
graded API uses will be prioritized for early execution to detect
potential BBIs faster. Also, different projects may share similar API
uses and thus detect similar BBIs. Thus, we further consider the
diversity between client projects using the diversified Maximal
Marginal Relevance (MMR) technique [30]. Finally, for each client
project, we also optimize test executions by skipping the tests that
may not touch the upgraded APIs. The paper makes the following
contributions:

e Idea. We propose to solve the BBI detection problem via
cross-project testing and analysis, and further transform the
problem into a traditional IR problem.

Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang

113

Generate Index

l B-E-E-F

Source Code

| Source Code Files Library Uses Indexer Index
Analyzer
\ 0 —
[ry—
O w—
Static Dependency
. G
RTS Results List of Ranked Retrieval
Projects I
L]
N
S = B = N
Library Vi - iz - =
R G
> Diff Class/File Query Query
Changes Construction

Generate Query

Figure 1: DeBBI structure

e Implementation. We implement the proposed approach
for testing library BBIs based on the ASM bytecode analysis
framework [6] and the Indri IR framework [8].

e Optimization. We further propose to use MMR to consider
the diversity of different client projects, and also extend tra-
ditional static regression test selection to the cross-project
scenario to automatically skip the tests useless for BBI de-
tection.

e Study. We present an extensive study on testing JDK and
other popular 3rd-party library (such as Apache libraries) up-
grades using tens of thousands of GitHub client Java projects.
The experimental results show that DeBBI can reduce the
end-to-end testing time for detecting the first and average
BBI clusters by 99.1% and 70.8% for JDK, and detect 97 real
BBI bugs (19 has been confirmed as previously unknown
bugs).

2 APPROACH

In this section, we first present the overview of our DeBBI approach
(Section 2.1). Then, we illustrate how to apply IR techniques for
efficient and effective BBI detection (Section 2.2). Finally, we present
how to extend traditional Regression Test Selection (RTS) to the
cross-project setting to further speed up DeBBI (Section 2.3).

2.1 Overview

Our DeBBI is a general approach for taming BBIs via cross-project
testing, and can be applied to any library, including Android Soft-
ware Development Kit (SDK) [4], Java Development Kit (JDK) [9],
and third-party libraries such as Apache Software [14]. Figure 1
shows the overall architecture of our DeBBI. DeBBI takes two ver-
sions of the library under test and a set of client projects that directly
use the library as input to find BBIs. DeBBI first extracts the changes
(e.g., file changes) among the two library versions via static analysis.
They are considered as queries in our IR model. Meanwhile, DeBBI
preprocesses the source code for all the client projects to obtain
the library APIs used by each project, and uses that to serve as
the document for each project during IR. Then, DeBBI queries the
library changes against the source code for all the client projects,

Taming Behavioral Backward Incompatibilities via Cross-Project Testing and AnalysidCSE ’20, May 23-29, 2020, Seoul, Republic of Korea

so that the client projects accessing more changed APIs are tested
earlier to detect BBIs faster.

Following prior work [53, 55, 71, 87], we performed stop word
removal [40], stemming [62] for the IR document preparation. Note
that we use all Java key words as our stop word since they are
common for all Java projects. For each client project, we consider
the class/file-level dependencies on the library under test as the
document contents. For each class/file, we split its fully-qualified
name into different words in the document or query. For example,
we split java.lang.String into java, lang and String. These
three words are all fed into our document or query. To ensure
DeBBI effectiveness and efficiency, we further explore various IR
models in this work, including traditional and topic-model-based
IR models (Details shown in Section 2.2). Furthermore, the client
projects ranked high in the prioritization results may reveal similar
or even the same BBIs. Therefore, we further consider the diversity
of the IR results to detect different unique BBIs faster. To this end, we
further use the Maximal Marginal Relevance (MMR) algorithm [30]
to rank client projects with diverse library API uses.

IR models can help greatly reduce the number of client projects
for finding BBIs. However, for each client project, all its tests are still
executed. Therefore, in Section 2.3, we further use static analysis
to compute the library APIs reachable from each test, and then
compute the subset of tests which can potentially access changed
library APIs as affected tests. In this way, for each client project, we
only execute the affected tests to further speed up BBI detection.

2.2 DeBBI via Information Retrieval

Various IR models have been applied to solve software engineering
problems, such as the Vector Space Model (VSM) [73], Latent Seman-
tic Indexing (LSI) [47], and Latent Dirichlet Allocation (LDA) [27].
In theory, any IR model can be applied to DeBBI. In this work, we
mainly consider two widely used IR models, VSM and LDA, due
to their effectiveness [49, 83]. For each model, we studied state-of-
the-art variants for effective BBI detection. Furthermore, for each
studied variant, we further apply the Maximal Marginal Relevance
(MMR) algorithm [30] to rank client projects with diverse library
API uses.

2.2.1 Vector Space Model. Vector Space Model (VSM) [73] is
an algebraic model for representing text documents and queries
as vectors of indexed terms. TF.IDF (short for Term Frequency-
Inverse Document Frequency) is a numerical statistic widely used
to reflect word importance for a document under VSM. To date,
TF.IDF and its variants (e.g., state-of-the-art Okapi BM25 [68]) have
been widely recognized as robust and effective IR models [67].
Therefore, it has been widely studied and used in both IR and
software engineering areas [60, 74, 81, 84]. Formally, assume that
each document and query are represented by a term frequency
vector d and q respectively, and n is the total number of terms or
the size of vocabulary:

-

d=(x1,x2,..

1)
G= 192, -, Yn) %)

Element x; and y; are the frequency of term ¢; in document d and
query ¢ respectively. Generally, query and document terms are
weighted not just by their raw frequencies. There is a heuristic

2 Xn)

114

TF.IDF weighting formula to weight query and document term fre-
quency (TF). Also, the inverse document frequency (IDF) is used to
increase the weight of terms with low frequencies in the document
and diminish the weight of terms which have high frequencies.

Weighted vectors for d and g are computed as:

dyw = (tfa(x))idf (1), tfa(x2)idf (t2), . . ., talxn)idf (tn)) (3)
Gw = (tfa(yDidf (n), tfa(y2)idf (t2), . . ., tfa(yn)idf (tn)) (4)
Given a set D of source files for the client projects considered by
DeBBI, the simplest and classic TF formulation just uses the raw
count of each term in the document, i.e., the number of times that
term ¢ occurs in a document, which is given by f; ;. Similarly, one
simplest way to calculate IDF is given by id f(¢) = log nﬁ,’ where n;
is the number of documents with term t and N is the total number
of documents in document collection D. Thus, one of the simplest
ways to get TF.IDF score is to just multiply f; 4 and log nE, to get

term #’s score in document d, and then compute the vector similarity
with query ¢ to get document d's priority.

As we mentioned before, various TE.IDF variants have been pro-
posed in practice. In this work, we use the Indri [8] framework,
which includes various advanced algorithms to achieve more ac-
curate models. The Indri’s TF.IDF variant is based on Okapi BM25,
which is a probabilistic retrieval framework model initially devel-
oped by Robertson et al. [68]. As to avoid division by zero, when
a particular term appears in all documents, the IDF value here is:

idf(t) = log n],\i-ﬂ:)l.S' Meanwhile, the TF value is:
kix
tfa(x) = — 5)
x+ki(1-b+b—%

lenp

There are two tuning parameters k1 and b. k1 is used to calibrate
document term frequency scaling. When k1 is just a small value, the
term frequency value will quickly saturate; on the contrary, a large
k1 value corresponds to using raw term frequency. b(0 < b < 1)
is used to determine the scaling by document length. When value
b is 1, it corresponds to fully scaling the term weight by the docu-
ment length, while b = 0 corresponds to no length scaling. Finally,
leny and lenp represent the current document length and average
document length for the entire document collection, respectively.

Meanwhile, for the query’s TF function, the length normalization
is unnecessary because retrieval is applied with respect to a single
fixed query. Therefore, we just set b as 0 here:

k3y
t = 6
fa) = 2 ©
Thus, the similarity score of document d against query q is:
R n
5(d.q) = Z t fa (i)t fo (yiid f (2:)* ™)
i=1

There are various configurations that we can choose in the Indri
framework. One of them is the basic TF.IDF variant using BM25TF
term weighting. It sets k3 as 1000 in the equation 6. The only two
parameters left for tuning are k1 (for term weight) and b (for term
weight). We directly use their default values, i.e., 1.2 and 0.75, re-
spectively. Another variant is Okapi, which performs retrieval via
Okapi scoring. There are three parameters k1 (for term weight), b

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

(for term weight), and k3 (for query term weight) in the variant.
The default value of them are 1.2, 0.75 and 7 respectively. We also
use these default values in our experiment. In this work, we use
both models and denote them as TF.IDF and Okapi, respectively.

2.2.2 Latent Dirichlet Allocation. Different from VSM that di-
rectly represents documents with indexed terms, LDA further im-
plements topic modeling in the retrieval process and computes
generative statistical models to split a set of documents into corre-
sponding topics with certain probabilities. In this way, each doc-
ument is represented by the set of relevant abstract topics rather
than the raw indexed terms. In the software engineering literature,
researchers have applied LDA to deal with bug localization [87],
software categorization [80], or software repository analysis [76].
In those prior work, project source code is usually treated as LDA
input documents. In contrast, in this work, DeBBI treats each client
project’s class-level dependency on the library under test as LDA
input documents. Based on the input documents, LDA computes
different topics for each of the client projects. The different topics
indicate that there are different clusters of projects. When projects
use very similar library APIs, they are assigned into similar topics.

Figure 2 shows the graphical model of LDA. The outer box D
represents the documents. The inner box T represents the repeated
choice of topics and words in a document. The generative process
of model can be described as follows:

Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang

(1) Choose T ~ Poisson(e)
(2) Choose a topic vector § ~ Dir(ar) for document D
(3) For each of the T terms w;:

(@) Choose a topic zj ~ Multinomial(6p)

(b) Choose a term w; from p(wj|zj, B)

For here, « is a smoothing parameter for document-topic distribu-
tions, and f is a smoothing parameter for topic-term distributions.
The multinomial probability function p is:

T
(0,2, wla, B) = p(0la) [| p(znlO)p(wnlzn, B) ®)
n=1

In this way, given a set of client
projects, we first generate a term-by-

document matrix M. Then we use
wijj to represent the weight of i,
term in the j;; document. Note that
following prior work [41, 45], we w @
take TF.IDF as our weighting func- o
tion, which can give more impor- Figure 2: Graphical
tance to words with high frequency model for LDA

in the current document and appear-

ing in a small number of documents.

©

LDA further takes the M as input, and produces a topic-by-
document matrix R. For here, the probability that the j;;, document
belongs to the i;}, topic is denoted by R;; in this matrix. Because
the number of topics is much smaller than the number of indexed
terms in the corpus. LDA is mapping a high-dimensional space of
documents into a low-dimensional space (represented using topics).
The latent topics can be clustered by shared topics.

115

In the implementation, we apply the fast collapsed Gibbs sam-
pling generative model [61] for LDA. The reason is that it is much
faster and has the same accuracy compared against the standard
LDA implementation [27]. There are the following parameters in
the model which may affect its performance:

o t, which is the number of topics in the result. Follow the prior
work [25], we set topic number as 10 in our experiment.

e 1, which denotes the number of Gibbs iterations to train our
model. And we set it as 10000 in the experiment following
prior work [65].

e o, which influences the topic distributions per document.
The topics will have a better smoothing effect when the
value is higher. We use the default value of 5.5.

e f3, which influences the term’s distribution per topic. The
distribution of terms per topic will be more uniform with a
higher f value. We use the default value of 0.01.

2.2.3 Maximal Marginal Relevance. Both the VSM and LDA tech-
niques above will aggressively rank the most relevant client projects
high in the list. However, the highly ranked projects may access
similar library APIs and reveal the same BBIs repetitively. Therefore,
in this work, we further consider the diversity among the search
results to detect different unique BBIs faster. More specifically, we
combine both VSM and LDA models with Maximal Marginal Rel-
evance (MMR) [30] to solve this diversity issue to explore their
performance. MMR has been widely studied in the IR community
for diversified searching [38, 39, 43, 48]. Traditional IR models rank
the retrieved documents in the descending order of relevance to
the user’s query. In contrast, MMR tries to measure relevance and
novelty independently and consider them together via a linear com-
bination to solve the diversity problem. For example, it maximizes
marginal relevance in retrieval and summarization when a docu-
ment is both relevant to the query and contains minimal similarity
to the previously ranked documents. The MMR score equation can
be formally defined as:

Arg d:rel%))is[/l(sjml(di’ Q-(1-4) max Simy(di. dj))] (9)

where D is the document collection (i.e., the set of considered client
projects for testing a library using DeBBI) and g is the query (i.e.,
the changes among different library versions). S is the subset of
documents which are already selected by IR. D \ S is the set of not
yet selected documents in D. Sim; and Simy are the methods to
measure similarity between documents and query. They can be
the same or different. For here, we uniformly use BM25 [82] as
our similarity calculation method. In the above definition, when
parameter A = 1, MMR gives us a standard relevance-ranked list. On
the contrary, when A = 0, MMR gives us a maximal diversity result.
In addition, the sample information space is around the query when
A is a small number, whereas the larger value of A will produce a
result focusing on multiple potentially overlapping or reinforcing
relevant documents. In our experiment we set A as 0.5 which gives
documents and queries the same weight.

2.3 Faster DeBBI via Testing Selection

Since the basic DeBBI only ranks client projects, all the tests within
each tested projects still have to be executed. Therefore, we further

Taming Behavioral Backward Incompatibilities via Cross-Project Testing and AnalysidCSE ’20, May 23-29, 2020, Seoul, Republic of Korea

extend DeBBI to reduce the number of test executions within each
project. More specifically, we extend the traditional Regression Test
selection (RTS) approach [69] to further enable even faster BBI
detection. To date, various static and dynamic RTS techniques have
been proposed in the literature [36, 37, 50, 75, 86]. In this work,
we build DeBBI on top of state-of-the-art static RTS technique
STARTS [50]. We chose STARTS since it has been demonstrated
to be state-of-the-art static file-level RTS technique and can be
competitive to state-of-the-art dynamic RTS technique Ekstazi [37].
Also, STARTS does not require prior dynamic execution informa-
tion for each client project, which may not be available during BBI
detection. STARTS is based on the traditional class firewall anal-
ysis firstly proposed by Leung et al. [46, 51]. To further consider
the specific features of the Java programming language, STARTS
performs class firewall analysis on the Intertype Relation Graph
(IRG) defined by Orso et al. [59]. The following presents the formal
definition:

DEFINITION 2.1 (INTERTYPE RELATION GRAPH). The intertype
relation graph of a given Java program can be formulated as a triple
(¢, Ni, Ny). In the triple, N denotes the set of nodes representing
all programs’ classes or interfaces. ¢ € N X N denotes the set of
inheritance edges. There exists an inheritance edge (n1,nz) € ¢ if
type ny inherits from class ny, or implements interface ny. e, C NXN
denotes the set of use edges. There exists an edge (ny,nz) € &, if type
ny accesses any element of ny, e.g., field references and method calls.

There are two inputs for STARTS to select affected tests: (1)
the set of changed files during software evolution, (2) the static
dependency for each test computed based on the IRG graph, i.e.,
the files that can potentially be reachable from each test based on
IRG. Then, STARTS computes all files that can potentially reach
the changed files within the class firewall, and all tests within the
firewall will be selected for execution. Formally, the class firewall
can be computed as:

DEFINITION 2.2 (Crass FIREWALL). The class firewall for a set of
changed typest C N is computed over the IRG (N, ¢;, £,) using as the
transitive closure computation: firewall(t) = 7 o E", where o is the
relational product, * denotes the reflexive and transitive closure, and
& denotes the inverse of all use and inheritance edges, i.e., (¢; U eu)_l.

Note that the prior STARTS approach only analyzes the nodes
within a project (ignoring all third-party and JDK libraries). On
the contrary, in this work, we explicitly consider library changes,
and aim to select the tests affected by library changes. Therefore,
we augment the STARTS analysis to include library nodes. Note
that (1) DeBBI only considers the nodes for the client projects and
the library under test, and ignores all the other library nodes, and
(2) DeBBI only considers the library nodes directly reachable from
client projects. The reason is that the nodes for other libraries
are not of interest, and the library nodes not directly reachable
from the client projects may not have clear impact on the current
project. For example, when applying DeBBI to detect JDK BBIs,
we don’t consider the third-party library dependencies and only
collect the source code and test code JDK dependencies through
jDeps [10]. Then we set the changed JDK library files as our code
changes for test selection. Note that, we further filter out the top
200 most widely used JDK files, such as java.lang.String and

116

Figure 3: Example IRG

java.util.List. The reason is that these files are almost used by
all projects/tests and cannot help much in test selection. Note that
we empirically validated that after filtering these JDK classes, our
test selection is still safe, i.e., not missing any unique BBIL.

Figure 3 illustrates how we adapt RTS for detecting BBIs for JDK.
In the example IRG, the inheritance and use edges are marked with
label "i" and "u". L denotes a third-party library node, which uses
JDK node JDKs; C is a client project node which inherits library
L and uses JDK; and JDKj. There are three tests Ty, Tp and T3
all using JDK3. According to our approach, we do not consider
the dependencies of third-party library, and thus JDKs will not be
considered in our dependency result (pruned by red cross mark). In
addition, we just consider one layer JDK dependency. For example,
we only collect JDK dependencies of C, T, T and T3. We do not
consider the further dependencies of JDKj, JDK>, JDK3 and JDKjy.
From the figure, T> uses client C and T3 uses JDKy, respectively.
JDKj, JDK3 and JDKj4 are the changed JDK classes (marked with
gray shadow). Note that JDK3 is one of the 200 most commonly
used JDK class, and it will not be considered in JDK diff results as
discussed before (marked with dashed oval). In this way, Tz can
potentially reach JDK; and T3 is using changed class JDKj. Thus,
T, and T3 are affected tests in our RTS technique, marked within
the dashed area (i.e., our class firewall).

3 EXPERIMENTS AND ANALYSIS

In this section, we first described our dataset for detecting JDK BBIs
(Section 3.1), followed by our evaluation environment (Section 3.2),
evaluation metrics (Section 3.3), research questions (Section 3.4),
and results (Section 3.5). Finally, we discuss the threats to validity
in Section 3.6.

3.1 Dataset

To construct the dataset for detecting JDK BBIs, we first collect all
the most-forked Java projects with over 20 forks from the GitHub
repository. It returns a collection of 8,481 unique Java projects. In
these resulting projects, 4,928 of them support the Maven build
system. Finally, we use all the 2,953 remaining projects can pass
the build and test phases successfully under JDK 8 as the dataset
for this study.

Table 1 describes the dataset in more details. In particular, the
number of Java source files in a project ranges from 1 to 12,979,
and the number of test cases in a project ranges from 0 to 665,028.
The average number of Java source files and the average number of
test cases are 130.37 and 329.68, respectively. Since we would like
to find BBI issues for different versions of JDK, the same dataset is
applied to build and test with different JDK versions.

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

Table 1: Dataset summary

Description Min Max Avg.
Number of Java Files per Project 1 12979 | 130.37
Number of Test Cases per Project 0 665028 | 329.68

3.2 Experiment Settings

To perform our experiment, we need a set of confirmed JDK BBI
bugs as ground truth. We use the dataset described in Section 3.1
to detect such confirmed BBI bugs. The intuition is that, we can
confirm a BBI bug by checking whether it is fixed in the later
versions of JDK. If a test case passes in JDK 8 but fails in JDK 9.0.0,
then it reveals a BBI between JDK 8 and 9.0.0. However, we are
not sure whether this BBI is an intended behavior change by JDK
developers or a BBI bug. To confirm that such a BBI is a BBI bug,
we further run the test case on 9.0.1, and if the BBI disappears,
we confirm that the test failure in JDK 9 reveals a BBI bug. To
categorize duplicated BBI bugs, we manually cluster all the reported
BBIs caused by the same root issues to identify unique BBI bugs. In
this way, we define every reported BBI as a raw BBI bug and every
clustered BBI as a unique BBI bug. Note that we consider both raw
and clustered bugs to better measure DeBBI effectiveness.

When performing the build and testing, we use Maven 3.3.9
to build and test each project. For the JDK version, We use JDK
8.0.161, 9.0.0 and 9.0.1. We use a computer with Intel(R) Xeon(R)
CPU 2.60GHz with 528GB of Memory, and Ubuntu 16.04.3 LTS
operating system.

3.3 Evaluation Metrics

We use each of the following three metrics to evaluate the number
of projects tested, the number of test executions and time taken to
identify BBIs:

o First: This metric reports the number of client software
projects tested, the number of tests executed, or time (in
second) taken to identify the first BBI bug. This metric em-
phasizes fast detection of the first BBI, which is essential for
the developers to start debugging earlier.

e Average: This metric is the average number of client soft-
ware projects tested, tests executed, or average time taken
to find each BBL This metric emphasizes fast detection of
BBIs in average cases.

o Last: Like the First metric, this metric reports the number
of client software projects evaluated, the number of tests
executed and time taken to identify the last BBL This metric
emphasizes fast detection of all BBIs.

34

We seek to answer following four research questions:

Research Questions

e RQ1: Is DeBBI more effective than random project prioriti-
zation in identifying BBI issues?

e RQ2: How does diversity resolution technique help improve
the performance of DeBBI?

e RQ3: Can we further boost DeBBI via extending traditional
static Regression Test Selection (RTS)?

e RQ4: How does DeBBI perform in case of parallel execution?

e RQ5: Can DeBBI be generalized to other popular 3rd-party
libraries besides JDK?

Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang

117

3.5 Results

ROQ1: Basic DeBBI vs. Random Project Prioritization. To eval-
uate DeBBI on detecting BBIs for JDK, we compared the basic
IR-based DeBBI with the Random technique, which randomly sorts
client projects to identify BBIs. Also, the Random technique results
are averaged over 5 runs to isolate the impact of random factors.
We compared our results with the Random technique from three
aspects: i) effectiveness in the number of tested client software
projects, ii) effectiveness in the number of executed tests, and iii)
effectiveness in test execution time. For each aspect, we measure
the First, Average, and Last metrics of both the Random and our
IR-based techniques. The results are presented in Table 2. In the left
half of the table, we present the First, Last, and Average values
on client software projects, test executions, and execution time
without bug clustering. The values in the bracket are the relative
reduction for the corresponding metrics compared with the Ran-
dom technique. The best technique for each metric has also been
marked in gray.

We have following observations for the bugs without clustering:
First, all IR-based techniques perform much better than Random
technique on the First values, with mostly 60% to 90% reduction
on all three aspects. However, if we consider Average and Last
values, the enhancement of IR-based techniques is not that signifi-
cant, especially for execution time. This can be due to the lack of
diversity in IR-based prioritization results. Second, there is none
IR-based technique that outperforms all other techniques, but LDA
is performing better (with 4.7% to 82.3% reduction) than Random
technique on all values from all aspects.

As same BBI bugs can appear in multiple projects and test cases,
we also performed BBI clustering to check how different techniques
compare on identifying different unique BBI bugs. The right half of
Table 2 shows the effectiveness of IR based techniques and Random
technique on unique BBI bugs. The data presentation is the same
as the left half. We have similar observations compared with left
half of the table: IR-based techniques perform much better on First
values, but not so good on Last and Average values. Furthermore,
in general, IR-based techniques perform better than the Random
technique on all values in test execution time for unique BBI bugs.
The reason is that for unique BBI bugs DeBBI only need to find
the first raw BBI bug in each cluster, making it easier for IR-based
DeBBI to find unique BBI bugs faster.

RQ2: Diversity Enhancement. To check whether diversity en-
hancement techniques such as Maximal Marginal Relevance (MMR)
can enhance IR-based project prioritization, we combine MMR with
all IR-based techniques TF.IDF, Okapi and LDA. Table 3 shows the
effectiveness of MMR-integrated IR-based techniques. From the
table, we can see that although MMR is not very helpful on some IR
techniques (TF.IDF and Okapi) in all aspects, it is able to enhance
the LDA-based technique significantly. LDA+MMR outperforms all
other techniques on almost all values from all aspects. Comparing
with results in Table 2, we can see that MMR technique can enhance
LDA-based technique on five of nine evaluated metrics without
bug clustering and seven of nine metrics with bug clustering. In
particular, when it comes to with bug clustering, LDA+MMR is able
to reduce 99.1%, 59.0%, and 65.4% of test execution time to detect

Taming Behavioral Backward Incompatibilities via Cross-Project Testing and AnalysidCSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 2: Effectiveness of the basic DeBBI

‘Without Bug Clustering ‘With Bug Clustering
Client Software Projects [Test Case [Execution Time(sec) Client Software Projects [Test Case [Execution Time(sec)
First | Last | Average | First | Last | Average | First | Last | Average First | Last | Average | First | Last | Average | First | Last | Average
Random 63 2702 1607 1253 961050 776892 1494.97 109005.21 73360.5 63 2402 1663 1253 947219 758567 1494.97 103965.45 76463.23
TFIDF 3 2487 1322 32 964053 399301 53.9 110727.5 77340.8 3 1901 1135 32 948943 413608 53.9 88637.3 67582.5
(95.2%) | (8.0%) 17.7%) | (97.4%) | (-03%) (48.6%) | (96.4%) | (-1.6%) (-5.4%) (95.2%) | (209%) | (317%) | (97.4%) | (-0.2%) (455%) | (96.4%) | (147%) (11.6%)
. 5 2379 1375 48 962737 457375 91 109132.7 74956.7 5 1888 982 48 949122 241894 91 87215.6 60150.7
Okapi (921%) (12.0%) | (14.4%) (96.2%) (-0.2%) (41.1%) (93.9%) (-0.1%) (-2.2%) (921%) | (21.4%) | (41.0%) | (96.2%) (-0.2%) (68.1%) (93.9%) (16.1%) (21.3%)
LDA 43 2445 1532 573 727141 167110 263.9 94113.1 48290.1 43 2332 1747 573 711989 108083 263.9 90799.8 64822.2
(31.7%) (9.5%) (4.7%) (54.3%) (24.3%) | (78.5%) | (82.3%) (13.7%) (34.2%) (31.7%) (2.9%) (-5.1%) (54.3%) (24.8%) | (85.8%) | (82.3%) (12.7%) (15.2%)
the First, Last, and Average unique BBI bugs, which is a huge RQ4: DeBBI Effectiveness for Parallel Execution. We fur-

enhancement over the Random technique.

RQ3: Static Regression Test Selection (RTS). When a library
gets updated, not all the tests from its client projects are affected
by the library code changes. If we can remove such irrelevant test
cases, we may further enhance the reduction on the number of test
executions and execution time. Therefore, we further exclude the
test cases that will not be affected by JDK code changes via RTS. The
results of techniques with RTS combined are presented in Table 4,
where the Random technique is used as the baseline for compar-
ison. From the table, we can see that, with RTS combined, even
Random+RTS also achieves good effectiveness (average execution
time reduced from more than 70K seconds to about 41K seconds);
meanwhile, DeBBI models tend to have even larger improvements.
In addition, on detecting clustered unique BBI bugs, the LDA+MMR
technique, which has achieved best effectiveness without RTS, still
achieves significant enhancement over the Random technique when
RTS is combined. Specifically, LDA+RTS can achieve 63.2% reduc-
tion on detecting raw BBI bugs and LDA+MMR+RTS can achieve
70.8% reduction on detecting unique BBI bugs compared with the
Random technique on Average execution time. In other words,
DeBBI can save 1017.1 hours to find all raw BBI bugs and 120.4
hours to find all unique BBI bugs.

In reality, detecting a new unique BBI bug is apparently more
important than finding another instance of a known BBI bug. There-
fore, we believe LDA+MMR+RTS is the best technique that we
recommend to be used by default in reality. To make it more con-
venient to check the necessity of each used component (i.e., LDA,
MMR, and RTS) compared to baseline techniques, we present the
comparison among four selected techniques: Random technique,
LDA, LDA+MMR, and LDA+MMR+RTS on clustered unique BBIs
in Figures 4 to 6.

In particular, Figure 4 compares all four techniques on their
First, Last, and Average values on the number of client project
executions. Figure 5 and Figure 6 present similar comparison on the
number of test executions and execution time. As shown in Figure 4,
for prioritization of the client software projects, since RTS does
not optimize project selection, LDA+MMR and LDA+MMR+RTS
show same effectiveness. However, if we compare LDA+MMR+RTS
with Random approach, it shows 98.4% 57.2% and 63.0% reduction
on First, Last, and Average values respectively over the Random
technique. As shown in Figure 5, from the aspect of test cases,
LDA+MMR+RTS achieves 99.9%, 97.6%, and 97.6% for First, Last,
and Average values over Random technique. As shown in Figure 6,
from the aspect of execution time, LDA+MMR+RTS achieves 99.1%,
68.0%, and 70.8% reduction First, Last, and Average values over
Random technique.

118

ther utilized the multiprocessing package of Python for parallel
project execution. We used Python Pool to control the different
processes to start or join in the main process and used Manager
and Queue to control the shared resource between processes. In our
experiments, the ranked project list from our IR-based result is the
shared resource. Sub-processes try to get the project from queue
and run it. As soon as one process finishes execution, it starts to get
the next one to run. Here, we use 5 sub processes in our experiment
to evaluate our technique. Table 5 shows the results of DeBBI with
and without bug clustering during parallel execution. The left part
is the execution time without bug clustering and right part is the
execution time with bug clustering. Column 1 list all techniques.
Columns 2-7 list First, Last and Average value of execution time
to find raw BBI bugs and unique BBI bugs respectively. We use the
Random technique with multiprocessing as our baseline technique.
From the results, we can see that TF.IDF with MMR, Okapi and LDA
with MMR all can find first raw BBI bug and unique BBI bug in 12.7
seconds with the 84.7% reduction compared to Random. LDA has
the best performance in Last and Average with 11.8 % and 38.4 %
reduction without bug clustering. Meanwhile, TF.IDF with MMR
has the best performance in Last and Average with 80.9 % and 63.2
% reduction with bug clustering.

Table 6 shows the results when combining our IR-based tech-
niques with RTS during parallel project execution. We still use the
Random technique with multiprocessing as our baseline to check
the results. From the results, all techniques combined with RTS can
have a huge enhancement in Last and Average value of execution
time. The reason LDA+RTS is better than Random in First is that
RTS does not have too much help here. Random and most tech-
niques can find first bug fast without RTS and executing RTS needs
extra overhead!. Thus, the performance of First is not very good
here. However, LDA+MMR+RTS is able to have 71.4 % and 83.1
% reduction in Last without and with bug clustering. LDA+RTS
can have 64.4 % and 60.8 % average time reduction to find raw BBI
bugs and unique BBI bugs. To sum up, LDA+MMR+RTS is still one
of the most effective techniques in the setting of parallel project
execution. It can save 129.3 hours to find all raw BBI bugs and 9.9
hours to find all unique BBI bugs compared to Random technique
with parallel execution.

RQ5: DeBBI Application to Other Libraries. Besides JDK,
we further use other popular libraries to thoroughly evaluate the
performance of our approach. For this experiment, we cloned all
Maven-based Java projects that are created between August 2008
and December 2019 on GitHub with at least one star, and finally
included 56,092 unique projects that can successfully pass the build

!Note that all the RTS overhead costs, including computing dependencies and per-
forming RTS analysis, are considered in the our DeBBI time measurement.

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang

Table 3: Effectiveness of DeBBI with MMR

‘Without Bug Clustering ‘With Bug Clustering
Client Software Projects Test Case Execution Time(sec) Client Software Projects Test Case Execution Time(sec)
First | Last | Average | First | Last | Average | First | Last | Average First | TLast | Average | First | Last | Average | First | Last | Average
Random 63 2702 1607 1253 961050 | 776892 14949 1090052 733605 63 2402 1663 1253 947219 | 758567 14949 | 1039655 | 76463.2
TEIDEsMMR 28 2404 1306 5791 961604 | 515462 | 41045 1096035 | 790528 28 1591 867 5791 944968 | 369206 41045 854287 | 596188
SO (556%) | (11.07) | (187%) | (3622%) | (01%) | (337%) | (1746%) | (05%) (-7.8%) (556%) | (3387) | (47.9%) | (3622%) | (02%) (513%) | (1746%) | (787%) | (2209
Okanis MMR 25 2398 1324 5759 963338 | 559859 4057.2 1095407 | 81400.4 25 1672 878 5759 949900 | 450257 4057.2 862649 | 59906.6
apie At (603%) | (1137) | (17.67) | (3596%) | (02%) | (279%) | (1714%) | (05%) (-11.0%) (603%) | (30.47) | (47.27) | (3596%) | (03%) | (406%) | (1714%) | (17.0%) | (217%)
LDAMMR 1 2340 1243 1 959254 | 759536 127 105832.7 | 55970.2 1 1029 616 1 931735 | 553400 127 12645.6 | 26433.9
* (984%) | (13.4%) | (227%) | (99.9%) | (02%) (22%) (99.1%) (2.9%) (23.7%) (984%) | (57.2%) | (63.0%) | (99.9%) | (16%) | (27.0%) (99.1%) | (59.0%) | (65.4%)
Table 4: Effectiveness of DeBBI with RTS
Without Bug Clustering With Bug Clustering
Test Case Execution Time(sec) Test Case Execution Time(sec)
First [Last [Average | First | TLast [Average First | Last [Average [First | Last [Average
Random 1253 961050 776892 1494.9 109005.2 73360.5 1253 947219 758567 1494.9 103965.5 76463.2
Random+RTS 337 27016 14402 1257.5 71083.7 40856.8 337 23985 15039 1257.5 62587.8 41810.2
andom (73.1%) | (97.2%) (98.1%) (15.9%) (34.8%) (44.3%) (731%) | (97.5%) (98.0%) (15.9%) (39.8%) (45.3%)
TEIDE+RTS 6 28013 21564 303.6 74613.8 52714.6 6 27021 18918 303.7 67659.2 46428.2
: (995%) | (971%) | (97.2%) (79.7%) (31.6%) (28.1%) 995%) | 97.1%) | (97.5%) (79.7%) (34.9%) (39.3%)
1474 27987 23073 3260.2 74642.2 54315.2 1474 26298 18922 3260.2 63198.1 41769.4
TEDFMMRARTS |17 60 | 07.0%) | (07.0%) | (118.1%) | Gy | @eon) || c176%) | ©72%) | ©075%) | (11817 | (922) | (45.4%)
Okapi+RTS 2 27719 22009 82.9 98866.6 76910.7 2 26787 17881 2783 66228.2 43050.3
+
apr (99.8%) | (97.1%) (97.2%) (94.5%) (9.3%) (-4.8%) (99.8%) | (97.2%) (97.6%) (81.4%) (36.3%) (43.7%)
Okapi+MMR+RTS 739 27996 23457 3038.8 74678.5 55316.7 739 26698 18636 3038.8 64302.9 42449.7
P 41.0%) | ©071%) | ©7.0%) | (1033%) | (31.5%) (24.6%) 1.0%) | ©72%) | 975%) | (1033%) | (-381%) | (445%)
LDA+RTS 210 9284 4020 507.3 50285.1 27010.3 210 7535 4221 507.3 46847.2 31159.9
(83.2%) | (99.0%) | (99.5%) | (66.1%) (53.9%) | (63.2%) (83.2%) | (99.2%) | (99.4%) | (66.1%) (54.9%) (59.2%)
LDA+MMR+RTS 1 26287 22274 197 69353.1 46072.8 1 22692 18003 12.7 33241.9 22300.2
99.9%) | (973%) | (97.1%) (86.8%) (36.4%) (37.2%) 99.9%) | (97.6%) | (97.7%) (99.1%) | (68.0%) | (70.8%)
Tech Random(Cluster) " LDA(Cluster) M LDA+MMR(Cluster) Ml LDA*MMR+RTS(Cluster) Tech Random(Cluster) " LDA(Cluster) M LDA+MMR(Cluster) M LDA*MMR+RTS(Cluster) Tech Random(Cluster) © LDA(Cluster) M LDA*MMR(Cluster) M LDA+MMR+RTS(Cluster)
2500 2402 947219 103965.5
2332 931735 100000
90799.8
2000 758567
750000 71198
1663 747 75000 764632
1500 o 648222
500000 50000
1000 1029 1028 426456
32419
616 616 250000 264339
500 25000 2300.2
10808
O I o 1253 57 ; 22692 18003 1495 263.9 127 127
First Last Average First Last Average First Last Average

Figure 4: Client project execution

Table 5: DeBBI for parallel project execution

Figure 5: Test case execution

Figure 6: Test execution time

Table 6: DeBBI with RTS for parallel project execution

‘Without Bug Clustering With Bug Clustering
Execution Time(sec) Execution Time(sec)
First | TLast [Average First | Tast [Average
Random 83.5 53122.1 15026.5 83.5 51898.8 7695.1
TEIDE 53.9 68041 15916.4 53.9 42494.4 9024.3
- (352%) | (-28.1%) (-5.9%) (35.2%) (18.1%) | (-17.3%)
12.7 497465 15634 12.7 9905.3 2832.8
TEIDEMMR | g1 70y | (6.4%) (-4.0%) 61.7%) | (80.9%) | (63.2%)
Olan 12.7 51973.8 15536.1 12.7 50407.9 74835
apt (84.7%) (2.2%) (-3.4%) 84.7%) | (2.9%) (2.7%)
) 548 521713 16080.9 548 29159.6 8037.3
Okapi+MMR | 550 90y (1.8%) (-7.0%) (-558.9%) | (5.3%) (-4.4%)
LDA 57 46837.4 9262.9 57 46180.8 6948.8
(31.4%) (11.8%) | (38.4%) (31.4%) (11.0%) 9.7%)
12.7 47886.4 10530.2 12.7 18754.7 3386.2
LDAMMR | gy 70 | (09%) | (209%) ©17%) | (639%) | (56.0%)

and test phases in our dataset. In total, there are 40,191 3rd-party
libraries used by the projects in our client project dataset. We then
sort all libraries by use frequency and randomly choose 100 libraries
from the top 300 to detect BBI bugs through DeBBI.

During our manual inspection, we found there are three types of
false positives reported by DeBBI: (1) failures triggered by Maven
POM file specifications (e.g., the specific updated library versions
are prohibited by POM. xml), (2) failures triggered by intended changes
(e.g., due to deprecated methods/implementations), and (3) failures
triggered by dependency conflicts (e.g., the library updates are not
compatible with specific versions of other libraries). Types (1) and
(2) have their corresponding specific stack traces with fixed pat-
terns. Thus, we were able to develop a rule-based method in DeBBI

119

Without Bug Clustering With Bug Clustering
Execution Time(sec) Execution Time(sec)
First | Last [Average First | Last | Average
Random 835 53122.1 150265 835 51898.8 7695.1
RandomsRTS 150.9 19495 8072.8 150.9 177124 | 44777
andom: (-80.7%) (63.3%) (46.3%) (-80.7%) | (65.9%) (41.8%)
303.6 213915 | 10575.2 3036 15991.7 5299.4
TEIDF+RTS (2636%) | (597%) | (29.6%) || (2636%) | (692%) | (31.1%)
197 181152 | 1078538 197 121768 | 41427
TEIDFsMMRRTS | 15590 | (65.9%) (28.2%) (135.9%) | (76.5%) (46.2%)
) 197 17437 10656 197 14250.2 5019.6
Okapi+RTS (-13.6%) (67.2%) (29.1%) (13.6%) | (725%) (34.8%)
; 389 20250.1 11076.6 389 16087.6 55934
Okapi+MMR+RTS | 604 7000 | (61.9%) (26.3%) (-964.7%) | (69.0%) (27.3%)
95.7 17016.2 5352.6 95.7 1141 3014.7
LDA+RTS (36.6%) | (68.0%) | (63.4%) || (36.6%) | (85%) | (60.8%)
197 15180.3 | 91355 197 87574 | 32574
LDA+MMR+RTS | 13590y | (71.4%) | (39.2%) (135.9%) | (83.1%) | (57.7%)

to automatically filter out them. However, we cannot avoid the false
positives from Type (3). After manually removing 22 Type (3) false
positives, DeBBI reported 97 unique BBI bugs. To date, 19 bugs have
been confirmed as previously unknown bugs. 54 bug has been con-
firmed as previously known bugs (e.g., for COLLECTIONS-721 [16]),
while all the other bug reports are still under active discussion. Inter-
estingly, among the bug reports still under discussion, some reports
have already been confirmed by other users (e.g. "Experiencing same
issue." for reflection-277 [23]) even though not yet confirmed by the
actual library developers.

Quantitative analysis. Due to the space limitation, we only present
partial experimental results for the library projects with confirmed

R R N, SRR CRN

Taming Behavioral Backward Incompatibilities via Cross-Project Testing and AnalysidCSE ’20, May 23-29, 2020, Seoul, Republic of Korea

@Test

public void demo() {
Map<Path, String> test = new HashMap<Path, String >();
Path path = Paths.get("/tmp/test/file");

test.put(path, "pathMD5");
assertThat (test)
.containsOnlyKeys (path)
.containsValue ("pathMD5");

Figure 7: Assertj-core-1751 [15] triggering test

previously unknown BBI bugs in Table 7. In the table, Columns
1-4 list all the libraries, the number of corresponding GitHub Stars,
the number of client projects from our dataset using the corre-
sponding libraries, and the revision ranges that we use to detect
BBIs. Columns 5-7 further present the number of unique unknown,
known, and under discussion BBI bugs reported by DeBBI for this
subset of libraries. Columns 8-13 present the First, Last, and Aver-
age values in terms of the number of test executions and execution
time for our default LDA+MMR+RTS technique (with improvement
over the Random technique shown in the parenthesis). The experi-
ment parameters used are the same as our JDK experiment. From
the table, we can observe that DeBBI can consistently improve the
BBI detection efficiency in all traced metrics, further demonstrating
the effectiveness of DeBBL.

Qualitative analysis. For the 19 confirmed previously unknown BBI
bugs, developers quickly fixed the buggy code for 4 of them, and
even added our reported test case in their regression test suites for 3
of them. For example, Figure 7 shows the test for issue Assertj-core-
1751 [15]. Method containsOnlyKeys cannot handle the case when
the containsOnlyKeys APl is invoked on a Map with key type Path.
This test is challenging to generate automatically due to the special
corner case, while DeBBI is able to directly obtain such tests for free
from client projects, demonstrating the promising future of DeBBIL
Interestingly, at first one developer found it too difficult to fix it
and wanted to just add a breaking-change notice; later on, another
developer proposed a solution to finally fix it. Issue Commons-vfs-
739 [24] is triggered when using Apache Commons-vfs to parse a
MapR File System file path (shown in Figure 8). It is also challenging
to generate this test automatically since the bug will be triggered
only when the first two parameters for method parseUri are both
null and URI includes the substring ":///". Furthermore, issue Jsoup-
1274 [20] from library Jsoup, a widely used Java HTML parser, is
incurred by the change of the method select - the developers
forgot to deal with the situation when the end of the string in
method select is a space (shown in Figure 9). The method select
should trim the space first and continue to parse the string, but it
throws an exception. DeBBI is able to detect it through a special
test case that used Jsoup to parse a specific string followed by a
whitespace. The developers were also quite active in fixing issue
mybatis-spring-427 [22] reported by DeBBI, saying: "Thanks for
your report! This issue is bug(This issue was included by 5ca5f2d). We
will revert it at 2.0.4."

11 other confirmed BBI bugs are mitigated by the developers
via changing the documents, since the developers did not realize
they were BBI bugs until we submitted the reports and could not
undo the change or fix the code. These BBI bugs were mitigated

PN P R

© ® N o G oA W N e

120

@Test

public void demo() throws FileSystemException {
final String URI =
UrlFileNameParser parser = new UrlFileNameParser ();
FileName name = parser.parseUri(null, null, URI);
assertEquals (URI, name.getURI());

"maprfs:///";

Figure 8: Commons-vfs-739 [24] triggering test

@Test

public void demo (){
String content = "<p> Select Test";
StringBuilder bodyHtml = new StringBuilder ();
bodyHtml . append(content);
Document document = Jsoup.parse(bodyHtml.toString ());
StringBuilder nav = new StringBuilder ();
Elements bodyElements = document.select("body > » ");

Figure 9: Jsoup-1274 [20] triggering test

by adding an announcement in the corresponding documents. For
example, the following comment is from the issue java-jwt-376 [18]:

“You are correct that this would be a breaking change, so should
have been targeted at a future major version or at the very least called
out the breaking change in the CHANGELOG.md file. Unfortunately,
at this point we cannot undo the change without breaking others
who are not handling the UnsupportedEncodingException. We should
update the Change log, so keeping this issue open to address that.
Apologies for the inconvenience, and thank you for raising this.”

For the remaining 4 confirmed BBI bugs, issues lombok-2320 [21]
and HttpAsyncClient-159 [17] cannot be easily fixed by the devel-
opers for the moment. For example, the Apache HttpAsyncClient
developers said:

“There is no much we can do about it now. If we remove the offend-
ing constructor to restore full compatibility with 4.1.3 we will break
full compatibility with 4.1.4”

The other 2 unfixed bugs are from Apache Commons-io and
Apache Jena. They confirmed our reported BBI bugs are source
incompatibility, but cannot afford to fix them. For example, the
Apache Jena [19] developers said:

“We try to migrate gracefully, and it is a compile time error. There
is a balance between compatibility and building up technical debt.
Change away from use of FastDateFormat was forced on the code
(staying at the old version forever is not an option). Sometimes, our
understanding of what users do, and do not use, is incomplete. ”

3.6 Threats to Validity

The major internal threat to our evaluation is whether our ground
truth on incompatibility bugs is correct. For JDK, although large-
scale client testing reveals a lot of test failures, their causes are
different and may not always indicate incompatibilities of JDK.
For example, Raemacekers et al. [64] observed that library-breaking
changes have a huge impact on project compilation. To reduce
this threat, we use the test failures that are fixed when using Java
9.0.1 as the ground truth because they are incompatibility issues
confirmed by JDK developers. This solution is not perfect as we
may miss some real JDK incompatibilities and bugs that are not
noticed and confirmed by JDK developers. For the popular 3rd-
party libraries, we manually inspected all the reported cases (since

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang

Table 7: Effectiveness of DeBBI for Other Libraries

Project | Stars Client Num | Revision | Bug Num - - | - Execution Time(min) - Test Case
[Unkown [Known [Discussion | First | Last | Average | First | Last | Average |

Commons-io 616 4,308 21-26 1 0 3 5.29 (99.62%) 408.45 (93.50%) 181.6 (95.37%) 245 (99.39%) 3525 (97.49%) 1428 (98.44%)
assertj-core 1,689 1,129 380-3.14.0 2 B 0 0.04 (99.99%) | 211.6 (39.01%) | 130.86 (88.60%) 1(99.99%) | 5252 (96.01%) | 3767 (93.66%)
lombok 8,832 2,721 1.16.14 - 1.18.10 1 10 0 0.34 (99.31%) 227.74 (92.20%) 72.21(95.39%) 1(99.79%) 421 (99.25%) 175 (99.41%)
commons-vis 103 39 22-2.60 1 0 0 0.96 (98.21%) 0.96 (98.21%) 0.06 (98.21%) | 112 (92.21%) | 112 (92.21%) | 112 (92.21%)
jsoup 7,650 575 19.2-1.12.1 1 2 0 1.64 (99.60%) 39.49 (93.96%) 17.8 (96.56%) 81 (98.18%) 399 (96.25%) 243 (96.46%)
mybatis-spring 1,992 987 1.3.2-2.0.3 1 2 0 1.67 (97.30%) 48. 29 (91.64%) 32.68 (90.23%) 1(99.12%) 9(99.92%) 6(99.92%)
HitpAsyncClient 904 125 113-414 1 1 0 414 (97.27%) 9 (94.91%) 6.02 (96.08%) | 55 (98.66%) 78 (98.14%) 66 (98.41%)
JENA 618 59 | 3.12.0-3.14.0 1 0 0 1.27 (98.52%) T 27 (98.527%) 127 (98.52%) | 13 (98.57%) 13 (98.57%) 13 (98.57%)
ognl 111 70 31-32.12 1 2 0 0.8 (97.28%) 2 (95.66%) 2.34 (95.81%) 5 (99.03%) 37 (98.20%) 19 (98.26%)
asciidoctor 445 27 153-22.0 2 0 0 392 (92.09%) 4 (92.86%) 416 (92.52%) 6 (98.18%) 6 (98.27%) 6 (98.22%)
‘myDbatis 12,730 1.135 311-353 1 7 0 118 (97.85%) | 54 67 (9357%) | 11.88 (96.30%) | 13 (92.61%) | 106 (99.26%) 68 (98.71%)
Java-jwt 3323 119 3.2.0 - 3.60 1 1 0 0.63 (85.80%) 447 (96.87%) 2.55 (96.53%) (77-42%) 21 (98.47%) 14 (98.00%)
‘mybatis-generator | 4,105 202 135-14.0 1 1 1 0.27 (95.15%) 0.66 (98.95%) 0.51 (97.95%) 3(62.50%) 3(97.35%) 3(93.18%)
jOOQ 3,646 88 3.9.0 -3.12.4 1 1 1 0.74 (97.49%) 6.14 (97.22%) 3.75 (97.11%) 3 (99.23%) 27 (98.77%) 16 (98.75%)
bepkix-jdk150n 1,110 122 1.5.9-1.6.4 1 0 0 12.3 (94.66%) 12.3 (94.66%) 12.3 (94.66%) 169 (97.67%) 169 (97.67%) 169 (97.67%)
activiti-engine 6,230 39 6.0.0-7.1.0 1 0 0 0.67 (96.20%) 0.67 (96.20%) 0.67 (96.20%) 1(98.15%) 1(98.15%) 1(98.15%)
extentreports 517 13 3.0.7-412 1 0 0 3.22 (70.51%) 3.22 (70.51%) 322 (7051%) | 36 (36.86%) 36 (86.86%) 36 (36.86%)

they are more affordable than the JDK experiments) to confirm
the ground truth, and also filed corresponding bug reports for the
software developers to confirm. The major external threat to our
evaluation is whether our approach may be generalized to libraries
other than the studied ones. It should be noted that JDK is not a
single library but a collection of tens of Java packages and even
libraries developed by the 3rd-party such as SAXP libraries by XML-
DEV and DOM libraries by W3C. To reduce such threats, we have
also applied DeBBI to detect BBIs for other widely used 3rd-party
libraries from GitHub. In the future, we further plan to further apply
our DeBBI to other widely-used libraries such as the Android SDK.

4 DISCUSSIONS

Availability of Client Software In our experiment, due to the
prevalent usage of JDK, we were able to collect 2,953 client soft-
ware projects, and ran unit testing on them over JDK 8 and 9 to
detect failures. One doubt on the applicability of our approach is
whether there are also many client software projects for other li-
braries so that prioritization is necessary. Our observation is that
the popular frameworks that require extensive incompatibility de-
tection typically have lots of client software project available. For
example, Android SDK, Apache software, Eclipse API, and Chrome
API all have thousands of client projects in GitHub (as confirmed
in RQ5). On the other hand, due to the popularity of modern build
systems (Gradle/Maven) and the corresponding central repositories,
even ordinary projects can have a large number of client projects
on the central repositories. Such modern build systems support
fully automated client project retrieval, build, and test. Thus, we
can easily apply DeBBI in a fully automated way?.

Effectiveness of Client Software Testing Another issue with
client software testing is whether it is helpful when a large regres-
sion test suite is already available. From our experiment, we can
see that 79 JDK incompatibility bugs can be detected if client soft-
ware testing is applied before Java 9.0.0 is released. These bugs are
confirmed by JDK developers in 9.0.1, and cannot be detected by
the large regression test suite of JDK. Another benefit of client soft-
ware testing is that it always finds real bugs. Although regression
testing may also detect incompatibilities, the ones detected may
be on a cold spot of API that is never used by real client software,

2We can also afford discarding failing client projects as online repositories provide a
huge candidate project set.

121

java util Calendar java lang String java util Date java lang Integer java util TimeZone java text
SimpleDateFormat java util Locale java util Map java util ResourceBundle java util Collection java util Set
java lang StringBuilder java util Listiterator java util Iterator java util List java lang Double java lang Class

Figure 10: Example changed JDK query

~/ViterbiAlgorithm.cl java/util/Map,java/util/Collecti lang/Object,java/lang/StringBuilder,java
Jutil/Set java/util/Listiterator, java/lang/String java/util/Iterator, java/util/List java/lang/Double]
~/ViterbiAlgorithmTest.class:[java/lang/String,java/util /Collection java/lang/Object, java/util /Set,java/util
[iterator,java/util/Map,java/util /List java/lang/Double]
~/Utils.class:[java/util/Set,java/lang/Object,java/util/Iterator,java/util/Map,java/lang/Double]

~/Forwari dAlgorithmTest. [java/lang/String,java/util/Coll /lang/Object,java/util/
Map,java/lang/Double,java/util/List]
~/Forwari dAlgorithm. {util/Collection,java/lang/Object,java/util/Li Jjava/util/

Set,java/lang/String, java/util/Iterator,java/util/Map,java/util/List java/lang/Double]
~/SequenceState.class:[java/lang/Object, Jiva/lan;/Dnuble]
~/Transition.class:[java/lang/Object,java/lang/Stri java/lang/

ing,java/lang/Class]

Figure 11: Project hmm-lib JDK usage

~ /UmmalguraFormatData_ar.class:[java/lang/Object]

~/ egori {util/Calendar, java/lang/String, java/util/Date]
~fUmmalquraDateFormatTests.class:[java/util/Calendar, java/lang/Integer, java/lang/Object,
java/lang/String, java/util/TimeZone, java/ il java/util/Locale, java/util/Date]
~/UmmalquraCalendar.class:[java/lang/Integer, java/lang/Object, |ava/lang/5tnng, java/util/TimeZone,
java/util/Map, java/util/Locale, java/util/Date]

futil/Re

on'

“1L

ols.

java/lang/Object, java/lang/String,
java/util/Locale]

~\

‘matData_en. [iava/lang/Object]

Figure 12: Project ummalqura-calendar JDK usage

or triggered by a method-invocation sequence that is never used
by client software developers. In contrast, the incompatibilities
detected by client software testing usually indicate important bugs
of the library or the client software.

Why does DeBBI work? A naive approach for ranking client
projects would be simply counting the number of API terms used
by each client project. In contrast to simply counting API term
frequency, our DeBBI adopts information retrieval, which not only
counts API term frequency, but also considers API importance,
diversity, and textual information. For example, there are two JDK
client projects hmm-lib [3] and ummalqura-calendar [7] from our
data set. Figure 10 shows the portion of changed JDK query which
is related to these two client projects, while Figures 11 and 12
show the JDK usage of the client projects. Interestingly, we can see
many terms (highlighted in bold) matching terms in query. If we
only count the term frequency, hmm-lib with 125 term matches
should have a higher priority than ummalqura-calendar that only
has 67 term matches. However, in our DeBBI(TF.IDF), hmm-lib is
ranked at 2,760 with no bug and ummalqura-calendar is ranked at
442 with a real BBI issue (BugID: JDK-8008577°, triggered by the

Shttps://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8008577

Taming Behavioral Backward Incompatibilities via Cross-Project Testing and AnalysidCSE ’20, May 23-29, 2020, Seoul, Republic of Korea

100%
Tech
~ DA
-~ LDA*MMR

75%

50%

Ratio of Unique Bugs

25%

. |

0 10!

00 3000
Number of Projects

Figure 13: Accumulated bugs detected

different English locale date-time long formats between JDK 8 and
JDK 9). The reason is that TF.IDF also considers the importance of
low-frequency terms Locale and Date.

Why do we need diversity enhancement? For a given query, an
information retrieval system can give us a ranked list of documents
all of which are relevant to the query. However, they might be
all the same or very similar. This is a classic diversity or novelty
issue in information retrieval. In our scenario, if DeBBI uses only
traditional information retrieval technique, the top-ranked client
projects might detect the same bugs repeatedly. Therefore, we use
the MMR algorithm to solve this issue to detect more unique bugs
faster. In Figure 13, the solid and dashed lines present the effective-
ness of detecting unique BBI bugs for JDK when applying LDA and
LDA+MMR, respectively. The x-axis is the number of projects we
need to run, the y-axis is the percentage of unique JDK BBI bugs
we can detect. We observed that LDA+MMR found the first unique
bug at the 1st position and the last unique bug at the 1029rd posi-
tion, while LDA found the first/last unique bug at the 43rd/2333rd
position, demonstrating the effectiveness of diversity enhancement
for further boosting DeBBI.

5 RELATED WORKS
5.1 Test Prioritization

Test-case prioritization is a well studied research area. As for generic
prioritization strategies, the total and additional strategies are the
most widely-used prioritization strategies [70], and reported empir-
ical results show that the additional strategy is more effective than
the total strategy in most cases. There also have been a number of
research efforts seeking for other optimal prioritization strategies.
For example, Li et al. [52] proposed a 2-optimal strategy based on
two different strategies: hill-climbing, and genetic programming.
respectively. Jiang et al. [42] proposed an adaptive random strat-
egy for test-case prioritization. Bryce and Memon [29] proposed
to prioritize test cases (i.e., event sequences) for event-based GUI
software. As each test case is an event sequence in GUI testing, their
approach tries to select event sequences to cover different event in-
teractions as early as possible. Zhang et al. [85] proposed a generic
strategy that has flavor of both total and additional strategies.
Besides proposing generic prioritization strategies, researchers
have also investigated test prioritization using different levels of
code coverage. There have been research work based on statement
and branch coverage [70], function coverage [35], block cover-
age [34], modified condition/decision coverage [34], etc. There
have also been research [44] on test-case prioritization using cov-
erage of system models. Mei et al. [57] investigated criteria based
on dataflow coverage for testing service-oriented software. More

122

recently, Saha et al. [72] utilized the textual similarity between tests
and code changes based on IR to perform test prioritization. In this
paper, we are prioritizing client software projects instead of test
cases, and thus we face two very different challenges. First, since
it takes huge amount of time to execute tests of all client software
projects, our approach must be static (i.e., not using any runtime in-
formation). Second, compared with test cases which are designed to
cover different parts of a software project, client software projects
contain much more redundancy. Therefore, to overcome these chal-
lenges, we developed an IR-based approach and further optimized
it considering the diversity of term coverage (based on MMR) and
test relevance (via extending static RTS).

5.2 Automated Test Generation

Another area that is related to our work is test generation based
on existing client code. Suresh et al. [78] proposed an approach to
automatically generate test cases by mining source code from client
software projects, and later extended the technique with mining
of dynamic execution traces [77, 79]. Bozkurt and Harman [28]
proposed an approach to generate test cases from web service
transactions. Pradel and Gross [63] combined specification mining
from client code and test generation to detect API usage bugs.
More recently, Ma et. al. [54] proposed to use library test cases to
guide test-case generation for client software. Reiss [66] proposed
to use semantic code search to find potential client code for test
generation. Research efforts in this area focuses on generating test
cases for one software project based on source code or test code
of the current or other software projects. Therefore, they actually
solve a different problem, and suffer from the general problems
of test generation, such as the test oracle and unrealistic test (i.e.,
exploration of method invocation sequences that never happens
in reality) problems, when directly used for library code testing.
In contrast, our prioritization technique opens a new dimension
via utilizing the large number of existing client project tests in the
wild for detecting library BBIs, and can be complementary to these
existing test generation techniques.

6 CONCLUSION AND FUTURE WORK

In this work, we propose to detect library backward incompati-
bilities using the large number of client project test suites in the
wild, i.e., cross-project library upgrade testing. However, it typically
involves huge testing efforts. Therefore, we further present a novel
approach to prioritizing software projects in large-scale client soft-
ware testing based on information retrieval, DeBBI. Furthermore,
we also further optimize DeBBI via considering the API-use di-
versity (based on MMR) and test relevance (via extending static
RTS). Our evaluation shows that, compared with the baseline ran-
dom project prioritization, our approach can reduce the time to
detect the first and average unique BBI bug by 99.1% and 70.8% for
JDK, and detect various previously unknown BBI bugs for popular
3rd-party libraries.

7 ACKNOWLEDGEMENTS

This work is partially supported by National Science Foundation
under Grant Nos. CCF-1763906, CCF-1846467, and CCF-1942430.

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

REFERENCES

(1]
(2]

=
it

[15

[16]

[17

[18]
[19]
[20
[21
[22
[23]
[24]
[25

[26]

[27

[28]

[29

[30]

(31

[32]

[33]

[34

[35]

[36

[37

2007. Criticism of Windows Vista. https://play.google.com/store/apps/details?
id=com.sohu.inputmethod.sogou&hl=en. (2007). Accessed: 2014-08-30.

2014. Sougou. https://play.google.com/store/apps/details?id=com.sohu.
inputmethod.sogou&hl=en. (2014). Accessed: 2014-08-30.

2016. This library implements Hidden Markov Models (HMM) for time-
inhomogeneous Markov processes. (2016). https://github.com/bmwcarit/
hmm-lib.

2018. Android Software Development Kit. (2018). https://developer.android.com/.
2018. Apache Struts. (2018). https://struts.apache.org/.

2018. ASM Bytecode Manipulation Framework. (2018). http://asm.ow2.org/.
2018. Implementation of java.util.Calendar for the Umm Al-Qura calendar system.
(2018). https://github.com/msarhan/ummalqura-calendar.

2018. Indri. (2018). http://www.lemurproject.org/indri.php.

2018. Java Development Kit. (2018). http://www.oracle.com/technetwork/java/
javase/downloads/index.html/.

2018. jDeps. (2018). https://docs.oracle.com/javase/9/tools/jdeps.htm.

2018. jdom. (2018). http://www.jdom.org/.

2018. Log4j. (2018). http://logging.apache.org/log4;j.

2018. Square Libraries. (2018). https://github.com/square.

2018. The Apache Software Foundation. (2018). http://www.apache.org/.

2019. assertj-core. https://github.com/joel-costigliola/assertj-core/issues/1751.
(2019).
2019. COLLECTIONS-721. https://issues.apache.org/jira/browse/

COLLECTIONS-721. (2019).

2019. httpasyncclient. https://issues.apache.org/jira/browse/HTTPASYNC-159.
(2019).

2019. java-jwt. https://github.com/auth0/java-jwt/issues/376. (2019).

2019. jena-arq. https://issues.apache.org/jira/browse/JENA-1819. (2019).

2019. Jsoup. https://github.com/jhy/jsoup/issues/1274. (2019).

2019. lombok. https://github.com/rzwitserloot/lombok/issues/2320. (2019).
2019. mybatis-spring. https://github.com/mybatis/spring/issues/427. (2019).
2019. reflection. https://github.com/ronmamo/reflections/issues/277. (2019).
2019. vfs. https://issues.apache.org/jira/browse/VFS-7392320. (2019).

Hazeline U Asuncion, Arthur U Asuncion, and Richard N Taylor. 2010. Software
traceability with topic modeling. In Proceedings of the 32nd ACM/IEEE interna-
tional conference on Software Engineering-Volume 1. ACM, 95-104.

Ittai Balaban, Frank Tip, and Robert Fuhrer. 2005. Refactoring Support for Class
Library Migration. In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications. 265-279.
David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research 3, Jan (2003), 993-1022.

M. Bozkurt and M. Harman. 2011. Automatically generating realistic test input
from web services. In Proceedings of 2011 IEEE 6th International Symposium
on Service Oriented System (SOSE). 13-24. https://doi.org/10.1109/SOSE.2011.
6139088

Renée C. Bryce and Atif M. Memon. 2007. Test suite prioritization by interaction
coverage. In Workshop on Domain specific approaches to software test automation:
in conjunction with the 6th ESEC/FSE joint meeting (DOSTA "07). ACM, New York,
NY, USA, 1-7. https://doi.org/10.1145/1294921.1294922

Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In Proceedings of
the 21st annual international ACM SIGIR conference on Research and development
in information retrieval. ACM, 335-336.

Kingsum Chow and D. Notkin. 1996. Semi-automatic update of applications in
response to library changes. In Software Maintenance 1996, Proceedings., Interna-
tional Conference on. 359-368.

Bradley Cossette and Robert J. Walker. 2012. Seeking the ground truth: a retroac-
tive study on the evolution and migration of software libraries. In 20th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-20), SIG-
SOFT/FSE’12, Cary, NC, USA - November 11 - 16, 2012. 55.

D. Dig and R. Johnson. 2005. The role of refactorings in API evolution. In Software
Maintenance, 2005. ICSM05. Proceedings of the 21st IEEE International Conference
on. 389-398.

Hyunsook Do, Gregg Rothermel, and Alex Kinneer. 2004. Empirical Studies of
Test Case Prioritization in a JUnit Testing Environment. In ISSRE. 113-124.
Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2000. Priori-
tizing test cases for regression testing. In Proceedings of the 2000 ACM SIGSOFT
international symposium on Software testing and analysis (ISSTA "00). ACM, New
York, NY, USA, 102-112. https://doi.org/10.1145/347324.348910

Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-
proving regression testing in continuous integration development environments.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 235-245.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical regression test
selection with dynamic file dependencies. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis. ACM, 211-222.

Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang

123

(38]

'@
22

[43

[44

[45

=
&

[47

[48

[49

[50

[57

(58]

[59

[60]

Jade Goldstein, Vibhu Mittal, Jaime Carbonell, and Mark Kantrowitz. 2000. Multi-
document summarization by sentence extraction. In Proceedings of the 2000
NAACL-ANLP Workshop on Automatic summarization. Association for Computa-
tional Linguistics, 40-48.

Shengbo Guo and Scott Sanner. 2010. Probabilistic latent maximal marginal rele-
vance. In Proceedings of the 33rd international ACM SIGIR conference on Research
and development in information retrieval. ACM, 833-834.

Djoerd Hiemstra. 2001. Using language models for information retrieval. (2001).
Liangjie Hong, Ovidiu Dan, and Brian D Davison. 2011. Predicting popular
messages in twitter. In Proceedings of the 20th international conference companion
on World wide web. ACM, 57-58.

Bo Jiang, Zhenyu Zhang, W. K. Chan, and T. H. Tse. 2009. Adaptive Random
Test Case Prioritization. In Proceedings of the 2009 IEEE/ACM International Con-
ference on Automated Software Engineering (ASE °09). IEEE Computer Society,
Washington, DC, USA, 233-244. https://doi.org/10.1109/ASE.2009.77
Seokhwan Kim, Yu Song, Kyungduk Kim, Jeong-Won Cha, and Gary Geunbae
Lee. 2006. Mmr-based active machine learning for bio named entity recognition.
In Proceedings of the Human Language Technology Conference of the NAACL,
Companion Volume: Short Papers. Association for Computational Linguistics,
69-72.

Bogdan Korel, Luay Ho Tahat, and Mark Harman. 2005. Test Prioritization Using
System Models. In ICSM. 559-568.

Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. 2009. Latent dirichlet allo-
cation for tag recommendation. In Proceedings of the third ACM conference on
Recommender systems. ACM, 61-68.

David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima.
1995. Class firewall, test order, and regression testing of object-oriented programs.
JOOP 8, 2 (1995), 51-65.

Thomas K Landauer, Peter W Foltz, and Darrell Laham. 1998. An introduction to
latent semantic analysis. Discourse processes 25, 2-3 (1998), 259-284.

Changki Lee and Gary Geunbae Lee. 2006. Information gain and divergence-based
feature selection for machine learning-based text categorization. Information
processing & management 42, 1 (2006), 155-165.

Dik L Lee, Huei Chuang, and Kent Seamons. 1997. Document ranking and the
vector-space model. IEEE software 14, 2 (1997), 67-75.

Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An extensive study of static regression test selection
in modern software evolution. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 583-594.
Hareton KN Leung and Lee White. 1990. A study of integration testing and
software regression at the integration level. In ICSM. 290-301.

Zheng Li, Mark Harman, and Robert M. Hierons. 2007. Search Algorithms for
Regression Test Case Prioritization. IEEE Trans. Software Eng. 33, 4 (2007), 225—
237.

Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. 2007.
Recovering traceability links in software artifact management systems using
information retrieval methods. ACM Transactions on Software Engineering and
Methodology (TOSEM) 16, 4 (2007), 13.

Lei Ma, Cheng Zhang, Bing Yu, and Jianjun Zhao. 2016. Retrofitting automatic
testing through library tests reusing. In 2016 IEEE 24th International Conference
on Program Comprehension (ICPC). 1-4.

Yoélle S Maarek, Daniel M Berry, and Gail E Kaiser. 1991. An information retrieval
approach for automatically constructing software libraries. IEEE Transactions on
software Engineering 17, 8 (1991), 800-813.

Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study of
API Stability and Adoption in the Android Ecosystem. In Proceedings of the 2013
IEEE International Conference on Software Maintenance (ICSM ’13). 70-79.

Lijun Mei, Zhenyu Zhang, W. K. Chan, and T. H. Tse. 2009. Test case prioritization
for regression testing of service-oriented business applications. In Proceedings
of the 18th international conference on World wide web (WWW °09). ACM, New
York, NY, USA, 901-910. https://doi.org/10.1145/1526709.1526830

Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2015. A Study on Behav-
ioral Backward Incompatibilities of Java Software Libraries. In Proceedings of the
2017 International Symposium on Software Testing and Analysis. 215-225.
Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In FSE. 241-251.

Tadh Ounis, Gianni Amati, Vassilis Plachouras, Ben He, Craig Macdonald, and
Christina Lioma. 2006. Terrier: A high performance and scalable information
retrieval platform. In Proceedings of the OSIR Workshop. 18-25.

Tan Porteous, David Newman, Alexander Thler, Arthur Asuncion, Padhraic Smyth,
and Max Welling. 2008. Fast collapsed gibbs sampling for latent dirichlet alloca-
tion. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 569-577.

Martin F Porter. 2001. Snowball: A language for stemming algorithms. (2001).
Michael Pradel and Thomas R. Gross. 2012. Leveraging Test Generation and
Specification Mining for Automated Bug Detection Without False Positives. In
Proceedings of the 34th International Conference on Software Engineering (ICSE
’12). IEEE Press, Piscataway, NJ, USA, 288-298. http://dl.acm.org/citation.cfm?
1d=2337223.2337258

Taming Behavioral Backward Incompatibilities via Cross-Project Testing and AnalysidCSE ’20, May 23-29, 2020, Seoul, Republic of Korea

[64]

[65]

[66]

[69]

[70

71

[72]

[73]

[74

[75

[76]

S. Raemaekers, A. van Deursen, and J. Visser. 2017. Semantic Versioning and
Impact of Breaking Changes in the Maven Repository. 7. Syst. Softw. 129, C (July
2017), 140-158. https://doi.org/10.1016/].jss.2016.04.008

Adrian E Raftery and Steven Lewis. 1991. How many iterations in the Gibbs sam-
pler? Technical Report. WASHINGTON UNIV SEATTLE DEPT OF STATISTICS.
Steven P. Reiss. 2014. Towards Creating Test Cases Using Code Search. In 30th
IEEE International Conference on Software Maintenance and Evolution, Victoria,
BC, Canada, September 29 - October 3, 2014. 436-440. https://doi.org/10.1109/
ICSME.2014.69

Stephen Robertson, Hugo Zaragoza, and Michael Taylor. 2004. Simple BM25
extension to multiple weighted fields. In Proceedings of the thirteenth ACM inter-
national conference on Information and knowledge management. ACM, 42-49.
Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,
Mike Gatford, et al. 1995. Okapi at TREC-3. Nist Special Publication Sp 109 (1995),
109.

Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing regression test selec-
tion techniques. IEEE Transactions on software engineering 22, 8 (1996), 529-551.
Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test Case Prioritization: An Empirical Study. In ICSM. 179-188.

Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013.
Improving bug localization using structured information retrieval. In ASE. 345—
355.

R.K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. 2015. An Information Retrieval
Approach for Regression Test Prioritization Based on Program Changes. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
268-279. https://doi.org/10.1109/ICSE.2015.47

Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model
for automatic indexing. Commun. ACM 18, 11 (1975), 613-620.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
A latent semantic model with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management. ACM, 101-110.

August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and
combining test-suite reduction and regression test selection. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering. ACM, 237-247.
Stephen W Thomas. 2011. Mining software repositories using topic models. In
Proceedings of the 33rd International Conference on Software Engineering. ACM,

1138-1139.

Suresh Thummalapenta, Jonathan de Halleux, Nikolai Tillmann, and Scott
Wadsworth. 2010. DyGen: Automatic Generation of High-Coverage Tests via
Mining Gigabytes of Dynamic Traces. In Tests and Proofs, Gordon Fraser and
Angelo Gargantini (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 77-93.
Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and
Wolfram Schulte. 2009. MSeqGen: Object-oriented Unit-test Generation via
Mining Source Code. In Proceedings of the the 7th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (ESEC/FSE "09). ACM, New York, NY, USA,
193-202. https://doi.org/10.1145/1595696.1595725

Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and
Zhendong Su. 2011. Synthesizing Method Sequences for High-coverage Testing.
In Proceedings of the 2011 ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications (OOPSLA °11). ACM, New York,
NY, USA, 189-206.

Kai Tian, Meghan Revelle, and Denys Poshyvanyk. 2009. Using latent dirichlet al-
location for automatic categorization of software. In Mining Software Repositories,
2009. MSR’09. 6th IEEE International Working Conference on. IEEE, 163-166.
Yuan Tian, David Lo, and Chengnian Sun. 2012. Information retrieval based
nearest neighbor classification for fine-grained bug severity prediction. In Reverse
Engineering (WCRE), 2012 19th Working Conference on. IEEE, 215-224.

Ellen M Voorhees, Donna K Harman, et al. 2005. TREC: Experiment and evaluation
in information retrieval. Vol. 1. MIT press Cambridge.

Xiaogang Wang and Eric Grimson. 2008. Spatial latent dirichlet allocation. In
Advances in neural information processing systems. 1577-1584.

Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for lan-
guage models applied to information retrieval. ACM Transactions on Information
Systems (TOIS) 22, 2 (2004), 179-214.

Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. 2013.
Bridging the gap between the total and additional test-case prioritization strate-
gies. In ICSE. 192-201.

Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In ICSM. 23-32.

Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug reports.
In ICSE. 14-24.

