
Taming Behavioral Backward Incompatibilities via
Cross-Project Testing and Analysis

Lingchao Chen
The University of Texas at Dallas

lxc170330@utdallas.edu

Foyzul Hassan
The University of Texas at San Antonio

foyzul.hassan@my.utsa.edu

Xiaoyin Wang
The University of Texas at San Antonio

Xiaoyin.Wang@utsa.edu

Lingming Zhang
The University of Texas at Dallas
lingming.zhang@utdallas.edu

ABSTRACT

In modern software development, software libraries play a cru-

cial role in reducing software development effort and improving

software quality. However, at the same time, the asynchronous

upgrades of software libraries and client software projects often

result in incompatibilities between different versions of libraries

and client projects. When libraries evolve, it is often very chal-

lenging for library developers to maintain the so-called backward

compatibility and keep all their external behavior untouched, and

behavioral backward incompatibilities (BBIs) may occur. In practice,

the regression test suites of library projects often fail to detect all

BBIs. Therefore, in this paper, we propose DeBBI to detect BBIs

via cross-project testing and analysis, i.e., using the test suites of

various client projects to detect library BBIs. Since executing all the

possible client projects can be extremely time consuming, DeBBI

transforms the problem of cross-project BBI detection into a tra-

ditional information retrieval (IR) problem to execute the client

projects with higher probability to detect BBIs earlier. Furthermore,

DeBBI considers project diversity and test relevance information

for even faster BBI detection. The experimental results show that

DeBBI can reduce the end-to-end testing time for detecting the first

and average unique BBIs by 99.1% and 70.8% for JDK compared to

naive cross-project BBI detection. Also, DeBBI has been applied to

other popular 3rd-party libraries. To date, DeBBI has detected 97

BBI bugs with 19 already confirmed as previously unknown bugs.
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1 INTRODUCTION

As software products become larger and more complicated, library

code plays an important role in almost any software. For example,
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while the sample Android app łHello World" contains only several

lines of source code, when it is executed on an Android mobile

phone, it actually invokes libraries from the Android Software

Development Kit (SDK), Java Development Kit (JDK), as well as the

underlying Linux system. Third-party libraries such as Apache [14]

and Square [13] libraries are also widely used in both open source

and commercial software projects. The prevalent usage of software

libraries has significantly reduced the software development cost

and improved software quality.

At the same time, the asynchronous upgrades of software li-

braries and client software often result in incompatibilities between

different library versions and client software. As techniques of

computation evolve faster and faster, libraries are also upgraded

more frequently, so do the occurrences of software incompatibili-

ties. For example, Google releases a new major version of Android

averagely every 11 months. After each major release, an outbreak

of incompatibility-related bug reports will occur in GitHub, so do

the version-upgrade-related negative reviews in the Google Play

Market [56].

To avoid incompatibilities, for decades, łbackward compatibilityž

has been well known as a major requirement in the upgrades of

software libraries. However, in reality, łbackward compatibilityž is

seldom fully achieved, even in widely used libraries. Some early

research efforts (e.g., Chow and Notkin [31], Balaban et al. [26],

and Dig and Johnson [33]) have confirmed the prevalence of back-

ward incompatibility between two consecutive releases of soft-

ware libraries. More recently, Cossette and Walker [32] identified

334 signature-level backward incompatibilities in 16 consecutive

version pairs from 3 popular Java libraries: struts [5], log4j [12],

and jDOM [11]. McDonnell et al. [56] identified 2,051 changes

on method signatures in 13 consecutive Android API level pairs

from API level 2-3 to API level 14-15. These studies all show that

backward incompatibilities are prevalent. Furthermore, a recent

study [58] found averagely over 12 test errors / failures from each

version pair when performing cross-version testing on 68 consecu-

tive version pairs of 15 popular Java libraries. This fact shows that,

on top of signature-level backward incompatibilities, behavioral

backward incompatibilities that may cause runtime errors instead

of compilation errors are also prevalent.

Library incompatibilities may result in runtime failures both

during the software development phase and after the software

distribution. If the upgraded library is statically packaged in the

client software product, the client developers may face some test
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so that the client projects accessing more changed APIs are tested

earlier to detect BBIs faster.

Following prior work [53, 55, 71, 87], we performed stop word

removal [40], stemming [62] for the IR document preparation. Note

that we use all Java key words as our stop word since they are

common for all Java projects. For each client project, we consider

the class/file-level dependencies on the library under test as the

document contents. For each class/file, we split its fully-qualified

name into different words in the document or query. For example,

we split java.lang.String into java, lang and String. These

three words are all fed into our document or query. To ensure

DeBBI effectiveness and efficiency, we further explore various IR

models in this work, including traditional and topic-model-based

IR models (Details shown in Section 2.2). Furthermore, the client

projects ranked high in the prioritization results may reveal similar

or even the same BBIs. Therefore, we further consider the diversity

of the IR results to detect different unique BBIs faster. To this end, we

further use the Maximal Marginal Relevance (MMR) algorithm [30]

to rank client projects with diverse library API uses.

IR models can help greatly reduce the number of client projects

for finding BBIs. However, for each client project, all its tests are still

executed. Therefore, in Section 2.3, we further use static analysis

to compute the library APIs reachable from each test, and then

compute the subset of tests which can potentially access changed

library APIs as affected tests. In this way, for each client project, we

only execute the affected tests to further speed up BBI detection.

2.2 DeBBI via Information Retrieval

Various IR models have been applied to solve software engineering

problems, such as the Vector SpaceModel (VSM) [73], Latent Seman-

tic Indexing (LSI) [47], and Latent Dirichlet Allocation (LDA) [27].

In theory, any IR model can be applied to DeBBI. In this work, we

mainly consider two widely used IR models, VSM and LDA, due

to their effectiveness [49, 83]. For each model, we studied state-of-

the-art variants for effective BBI detection. Furthermore, for each

studied variant, we further apply the Maximal Marginal Relevance

(MMR) algorithm [30] to rank client projects with diverse library

API uses.

2.2.1 Vector Space Model. Vector Space Model (VSM) [73] is

an algebraic model for representing text documents and queries

as vectors of indexed terms. TF.IDF (short for Term Frequency-

Inverse Document Frequency) is a numerical statistic widely used

to reflect word importance for a document under VSM. To date,

TF.IDF and its variants (e.g., state-of-the-art Okapi BM25 [68]) have

been widely recognized as robust and effective IR models [67].

Therefore, it has been widely studied and used in both IR and

software engineering areas [60, 74, 81, 84]. Formally, assume that

each document and query are represented by a term frequency

vector ®d and ®q respectively, and n is the total number of terms or

the size of vocabulary:

®d = (x1,x2, . . . ,xn ) (1)

®q = (y1,y2, . . . ,yn ) (2)

Element xi and yi are the frequency of term ti in document ®d and
query ®q respectively. Generally, query and document terms are
weighted not just by their raw frequencies. There is a heuristic

TF.IDF weighting formula to weight query and document term fre-
quency (TF). Also, the inverse document frequency (IDF) is used to
increase the weight of terms with low frequencies in the document
and diminish the weight of terms which have high frequencies.

Weighted vectors for ®d and ®q are computed as:

®dw = (t fd (x1)idf (t1), t fd (x2)idf (t2), . . . , t fd (xn )idf (tn )) (3)

®qw = (t fd (y1)idf (t1), t fd (y2)idf (t2), . . . , t fd (yn )idf (tn )) (4)

Given a set D of source files for the client projects considered by

DeBBI, the simplest and classic TF formulation just uses the raw

count of each term in the document, i.e., the number of times that

term t occurs in a document, which is given by ft,d . Similarly, one

simplest way to calculate IDF is given by id f (t) = log N
nt

, where nt
is the number of documents with term t and N is the total number

of documents in document collection D. Thus, one of the simplest

ways to get TF.IDF score is to just multiply ft,d and log N
nt

to get

term t ’s score in document ®d , and then compute the vector similarity

with query ®q to get document ®d’s priority.

As we mentioned before, various TF.IDF variants have been pro-

posed in practice. In this work, we use the Indri [8] framework,

which includes various advanced algorithms to achieve more ac-

curate models. The Indri’s TF.IDF variant is based on Okapi BM25,

which is a probabilistic retrieval framework model initially devel-

oped by Robertson et al. [68]. As to avoid division by zero, when

a particular term appears in all documents, the IDF value here is:

id f (t) = log N+1
nt+0.5

. Meanwhile, the TF value is:

t fd (x) =
k1x

x + k1(1 − b + b
lend
lenD

)
(5)

There are two tuning parameters k1 and b. k1 is used to calibrate

document term frequency scaling. When k1 is just a small value, the

term frequency value will quickly saturate; on the contrary, a large

k1 value corresponds to using raw term frequency. b(0 ≤ b ≤ 1)

is used to determine the scaling by document length. When value

b is 1, it corresponds to fully scaling the term weight by the docu-

ment length, while b = 0 corresponds to no length scaling. Finally,

lend and lenD represent the current document length and average

document length for the entire document collection, respectively.

Meanwhile, for the query’s TF function, the length normalization

is unnecessary because retrieval is applied with respect to a single

fixed query. Therefore, we just set b as 0 here:

t fq (y) =
k3y

x + k3
(6)

Thus, the similarity score of document ®d against query ®q is:

S( ®d, ®q) =

n∑

i=1

t fd (xi )t fq (yi )id f (ti )
2 (7)

There are various configurations that we can choose in the Indri

framework. One of them is the basic TF.IDF variant using BM25TF

term weighting. It sets k3 as 1000 in the equation 6. The only two

parameters left for tuning are k1 (for term weight) and b (for term

weight). We directly use their default values, i.e., 1.2 and 0.75, re-

spectively. Another variant is Okapi, which performs retrieval via

Okapi scoring. There are three parameters k1 (for term weight), b
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(for term weight), and k3 (for query term weight) in the variant.

The default value of them are 1.2, 0.75 and 7 respectively. We also

use these default values in our experiment. In this work, we use

both models and denote them as TF.IDF and Okapi, respectively.

2.2.2 Latent Dirichlet Allocation. Different from VSM that di-

rectly represents documents with indexed terms, LDA further im-

plements topic modeling in the retrieval process and computes

generative statistical models to split a set of documents into corre-

sponding topics with certain probabilities. In this way, each doc-

ument is represented by the set of relevant abstract topics rather

than the raw indexed terms. In the software engineering literature,

researchers have applied LDA to deal with bug localization [87],

software categorization [80], or software repository analysis [76].

In those prior work, project source code is usually treated as LDA

input documents. In contrast, in this work, DeBBI treats each client

project’s class-level dependency on the library under test as LDA

input documents. Based on the input documents, LDA computes

different topics for each of the client projects. The different topics

indicate that there are different clusters of projects. When projects

use very similar library APIs, they are assigned into similar topics.

Figure 2 shows the graphical model of LDA. The outer box D

represents the documents. The inner boxT represents the repeated

choice of topics and words in a document. The generative process

of model can be described as follows:

(1) Choose T ∼ Poisson(ϵ)

(2) Choose a topic vector θ ∼ Dir(α ) for document D

(3) For each of the T termswi :

(a) Choose a topic zj ∼Multinomial(θD )

(b) Choose a termwi from p(wi |zj , β)

For here,α is a smoothing parameter for document-topic distribu-

tions, and β is a smoothing parameter for topic-term distributions.

The multinomial probability function p is:

p(θ , z,w |α , β) = p(θ |α)

T∏

n=1

p(zn |θ )p(wn |zn , β) (8)

Figure 2: Graphical

model for LDA

In this way, given a set of client

projects, we first generate a term-by-

document matrix ®M . Then we use

wi j to represent the weight of ith
term in the jth document. Note that

following prior work [41, 45], we

take TF.IDF as our weighting func-

tion, which can give more impor-

tance to words with high frequency

in the current document and appear-

ing in a small number of documents.

LDA further takes the ®M as input, and produces a topic-by-

document matrix ®R. For here, the probability that the jth document

belongs to the ith topic is denoted by Ri j in this matrix. Because

the number of topics is much smaller than the number of indexed

terms in the corpus. LDA is mapping a high-dimensional space of

documents into a low-dimensional space (represented using topics).

The latent topics can be clustered by shared topics.

In the implementation, we apply the fast collapsed Gibbs sam-

pling generative model [61] for LDA. The reason is that it is much

faster and has the same accuracy compared against the standard

LDA implementation [27]. There are the following parameters in

the model which may affect its performance:

• t , which is the number of topics in the result. Follow the prior

work [25], we set topic number as 10 in our experiment.

• n, which denotes the number of Gibbs iterations to train our

model. And we set it as 10000 in the experiment following

prior work [65].

• α , which influences the topic distributions per document.

The topics will have a better smoothing effect when the α

value is higher. We use the default value of 5.5.

• β , which influences the term’s distribution per topic. The

distribution of terms per topic will be more uniform with a

higher β value. We use the default value of 0.01.

2.2.3 MaximalMarginal Relevance. Both the VSM and LDA tech-

niques above will aggressively rank themost relevant client projects

high in the list. However, the highly ranked projects may access

similar library APIs and reveal the same BBIs repetitively. Therefore,

in this work, we further consider the diversity among the search

results to detect different unique BBIs faster. More specifically, we

combine both VSM and LDA models with Maximal Marginal Rel-

evance (MMR) [30] to solve this diversity issue to explore their

performance. MMR has been widely studied in the IR community

for diversified searching [38, 39, 43, 48]. Traditional IR models rank

the retrieved documents in the descending order of relevance to

the user’s query. In contrast, MMR tries to measure relevance and

novelty independently and consider them together via a linear com-

bination to solve the diversity problem. For example, it maximizes

marginal relevance in retrieval and summarization when a docu-

ment is both relevant to the query and contains minimal similarity

to the previously ranked documents. The MMR score equation can

be formally defined as:

Arд max
di ∈D\S

[λ(Sim1(di ,q) − (1 − λ)max
dj ∈S

Sim2(di ,dj ))] (9)

where D is the document collection (i.e., the set of considered client

projects for testing a library using DeBBI) and q is the query (i.e.,

the changes among different library versions). S is the subset of

documents which are already selected by IR. D \ S is the set of not

yet selected documents in D. Sim1 and Sim2 are the methods to

measure similarity between documents and query. They can be

the same or different. For here, we uniformly use BM25 [82] as

our similarity calculation method. In the above definition, when

parameter λ = 1, MMR gives us a standard relevance-ranked list. On

the contrary, when λ = 0, MMR gives us a maximal diversity result.

In addition, the sample information space is around the query when

λ is a small number, whereas the larger value of λ will produce a

result focusing on multiple potentially overlapping or reinforcing

relevant documents. In our experiment we set λ as 0.5 which gives

documents and queries the same weight.

2.3 Faster DeBBI via Testing Selection

Since the basic DeBBI only ranks client projects, all the tests within

each tested projects still have to be executed. Therefore, we further
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extend DeBBI to reduce the number of test executions within each

project. More specifically, we extend the traditional Regression Test

selection (RTS) approach [69] to further enable even faster BBI

detection. To date, various static and dynamic RTS techniques have

been proposed in the literature [36, 37, 50, 75, 86]. In this work,

we build DeBBI on top of state-of-the-art static RTS technique

STARTS [50]. We chose STARTS since it has been demonstrated

to be state-of-the-art static file-level RTS technique and can be

competitive to state-of-the-art dynamic RTS technique Ekstazi [37].

Also, STARTS does not require prior dynamic execution informa-

tion for each client project, which may not be available during BBI

detection. STARTS is based on the traditional class firewall anal-

ysis firstly proposed by Leung et al. [46, 51]. To further consider

the specific features of the Java programming language, STARTS

performs class firewall analysis on the Intertype Relation Graph

(IRG) defined by Orso et al. [59]. The following presents the formal

definition:

Definition 2.1 (Intertype Relation Graph). The intertype

relation graph of a given Java program can be formulated as a triple

⟨ε,Ni ,Nu ⟩. In the triple, N denotes the set of nodes representing

all programs’ classes or interfaces. εi ⊆ N × N denotes the set of

inheritance edges. There exists an inheritance edge ⟨n1,n2⟩ ∈ εi if

type n1 inherits from class n2, or implements interface n2. εu ⊆ N ×N

denotes the set of use edges. There exists an edge ⟨n1,n2⟩ ∈ εu if type

n1 accesses any element of n2, e.g., field references and method calls.

There are two inputs for STARTS to select affected tests: (1)

the set of changed files during software evolution, (2) the static

dependency for each test computed based on the IRG graph, i.e.,

the files that can potentially be reachable from each test based on

IRG. Then, STARTS computes all files that can potentially reach

the changed files within the class firewall, and all tests within the

firewall will be selected for execution. Formally, the class firewall

can be computed as:

Definition 2.2 (Class Firewall). The class firewall for a set of

changed types τ ⊆ N is computed over the IRG ⟨N , εi , εu ⟩ using as the

transitive closure computation: f irewall(τ ) = τ ◦ E
∗
, where ◦ is the

relational product, ∗ denotes the reflexive and transitive closure, and

E denotes the inverse of all use and inheritance edges, i.e., (εi ∪ εu )
−1.

Note that the prior STARTS approach only analyzes the nodes

within a project (ignoring all third-party and JDK libraries). On

the contrary, in this work, we explicitly consider library changes,

and aim to select the tests affected by library changes. Therefore,

we augment the STARTS analysis to include library nodes. Note

that (1) DeBBI only considers the nodes for the client projects and

the library under test, and ignores all the other library nodes, and

(2) DeBBI only considers the library nodes directly reachable from

client projects. The reason is that the nodes for other libraries

are not of interest, and the library nodes not directly reachable

from the client projects may not have clear impact on the current

project. For example, when applying DeBBI to detect JDK BBIs,

we don’t consider the third-party library dependencies and only

collect the source code and test code JDK dependencies through

jDeps [10]. Then we set the changed JDK library files as our code

changes for test selection. Note that, we further filter out the top

200 most widely used JDK files, such as java.lang.String and

Figure 3: Example IRG

java.util.List. The reason is that these files are almost used by

all projects/tests and cannot help much in test selection. Note that

we empirically validated that after filtering these JDK classes, our

test selection is still safe, i.e., not missing any unique BBI.

Figure 3 illustrates how we adapt RTS for detecting BBIs for JDK.

In the example IRG, the inheritance and use edges are marked with

label "i" and "u". L denotes a third-party library node, which uses

JDK node JDK5; C is a client project node which inherits library

L and uses JDK1 and JDK2. There are three tests T1, T2 and T3
all using JDK3. According to our approach, we do not consider

the dependencies of third-party library, and thus JDK5 will not be

considered in our dependency result (pruned by red cross mark). In

addition, we just consider one layer JDK dependency. For example,

we only collect JDK dependencies of C , T1, T2 and T3. We do not

consider the further dependencies of JDK1, JDK2, JDK3 and JDK4.

From the figure, T2 uses client C and T3 uses JDK4, respectively.

JDK1, JDK3 and JDK4 are the changed JDK classes (marked with

gray shadow). Note that JDK3 is one of the 200 most commonly

used JDK class, and it will not be considered in JDK diff results as

discussed before (marked with dashed oval). In this way, T2 can

potentially reach JDK1 and T3 is using changed class JDK4. Thus,

T2 and T3 are affected tests in our RTS technique, marked within

the dashed area (i.e., our class firewall).

3 EXPERIMENTS AND ANALYSIS

In this section, we first described our dataset for detecting JDK BBIs

(Section 3.1), followed by our evaluation environment (Section 3.2),

evaluation metrics (Section 3.3), research questions (Section 3.4),

and results (Section 3.5). Finally, we discuss the threats to validity

in Section 3.6.

3.1 Dataset

To construct the dataset for detecting JDK BBIs, we first collect all

the most-forked Java projects with over 20 forks from the GitHub

repository. It returns a collection of 8,481 unique Java projects. In

these resulting projects, 4,928 of them support the Maven build

system. Finally, we use all the 2,953 remaining projects can pass

the build and test phases successfully under JDK 8 as the dataset

for this study.

Table 1 describes the dataset in more details. In particular, the

number of Java source files in a project ranges from 1 to 12,979,

and the number of test cases in a project ranges from 0 to 665,028.

The average number of Java source files and the average number of

test cases are 130.37 and 329.68, respectively. Since we would like

to find BBI issues for different versions of JDK, the same dataset is

applied to build and test with different JDK versions.
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Table 1: Dataset summary
Description Min Max Avg.

# Number of Java Files per Project 1 12979 130.37

# Number of Test Cases per Project 0 665028 329.68

3.2 Experiment Settings

To perform our experiment, we need a set of confirmed JDK BBI

bugs as ground truth. We use the dataset described in Section 3.1

to detect such confirmed BBI bugs. The intuition is that, we can

confirm a BBI bug by checking whether it is fixed in the later

versions of JDK. If a test case passes in JDK 8 but fails in JDK 9.0.0,

then it reveals a BBI between JDK 8 and 9.0.0. However, we are

not sure whether this BBI is an intended behavior change by JDK

developers or a BBI bug. To confirm that such a BBI is a BBI bug,

we further run the test case on 9.0.1, and if the BBI disappears,

we confirm that the test failure in JDK 9 reveals a BBI bug. To

categorize duplicated BBI bugs, we manually cluster all the reported

BBIs caused by the same root issues to identify unique BBI bugs. In

this way, we define every reported BBI as a raw BBI bug and every

clustered BBI as a unique BBI bug. Note that we consider both raw

and clustered bugs to better measure DeBBI effectiveness.

When performing the build and testing, we use Maven 3.3.9

to build and test each project. For the JDK version, We use JDK

8.0.161, 9.0.0 and 9.0.1. We use a computer with Intel(R) Xeon(R)

CPU 2.60GHz with 528GB of Memory, and Ubuntu 16.04.3 LTS

operating system.

3.3 Evaluation Metrics

We use each of the following three metrics to evaluate the number

of projects tested, the number of test executions and time taken to

identify BBIs:

• First: This metric reports the number of client software

projects tested, the number of tests executed, or time (in

second) taken to identify the first BBI bug. This metric em-

phasizes fast detection of the first BBI, which is essential for

the developers to start debugging earlier.

• Average: This metric is the average number of client soft-

ware projects tested, tests executed, or average time taken

to find each BBI. This metric emphasizes fast detection of

BBIs in average cases.

• Last: Like the First metric, this metric reports the number

of client software projects evaluated, the number of tests

executed and time taken to identify the last BBI. This metric

emphasizes fast detection of all BBIs.

3.4 Research Questions

We seek to answer following four research questions:

• RQ1: Is DeBBI more effective than random project prioriti-

zation in identifying BBI issues?

• RQ2: How does diversity resolution technique help improve

the performance of DeBBI?

• RQ3: Can we further boost DeBBI via extending traditional

static Regression Test Selection (RTS)?

• RQ4:Howdoes DeBBI perform in case of parallel execution?

• RQ5: Can DeBBI be generalized to other popular 3rd-party

libraries besides JDK?

3.5 Results

RQ1: Basic DeBBI vs. Random Project Prioritization. To eval-

uate DeBBI on detecting BBIs for JDK, we compared the basic

IR-based DeBBI with the Random technique, which randomly sorts

client projects to identify BBIs. Also, the Random technique results

are averaged over 5 runs to isolate the impact of random factors.

We compared our results with the Random technique from three

aspects: i) effectiveness in the number of tested client software

projects, ii) effectiveness in the number of executed tests, and iii)

effectiveness in test execution time. For each aspect, we measure

the First, Average, and Last metrics of both the Random and our

IR-based techniques. The results are presented in Table 2. In the left

half of the table, we present the First, Last, and Average values

on client software projects, test executions, and execution time

without bug clustering. The values in the bracket are the relative

reduction for the corresponding metrics compared with the Ran-

dom technique. The best technique for each metric has also been

marked in gray.

We have following observations for the bugs without clustering:

First, all IR-based techniques perform much better than Random

technique on the First values, with mostly 60% to 90% reduction

on all three aspects. However, if we consider Average and Last

values, the enhancement of IR-based techniques is not that signifi-

cant, especially for execution time. This can be due to the lack of

diversity in IR-based prioritization results. Second, there is none

IR-based technique that outperforms all other techniques, but LDA

is performing better (with 4.7% to 82.3% reduction) than Random

technique on all values from all aspects.

As same BBI bugs can appear in multiple projects and test cases,

we also performed BBI clustering to check how different techniques

compare on identifying different unique BBI bugs. The right half of

Table 2 shows the effectiveness of IR based techniques and Random

technique on unique BBI bugs. The data presentation is the same

as the left half. We have similar observations compared with left

half of the table: IR-based techniques perform much better on First

values, but not so good on Last and Average values. Furthermore,

in general, IR-based techniques perform better than the Random

technique on all values in test execution time for unique BBI bugs.

The reason is that for unique BBI bugs DeBBI only need to find

the first raw BBI bug in each cluster, making it easier for IR-based

DeBBI to find unique BBI bugs faster.

RQ2: Diversity Enhancement. To check whether diversity en-

hancement techniques such as Maximal Marginal Relevance (MMR)

can enhance IR-based project prioritization, we combine MMR with

all IR-based techniques TF.IDF, Okapi and LDA. Table 3 shows the

effectiveness of MMR-integrated IR-based techniques. From the

table, we can see that although MMR is not very helpful on some IR

techniques (TF.IDF and Okapi) in all aspects, it is able to enhance

the LDA-based technique significantly. LDA+MMR outperforms all

other techniques on almost all values from all aspects. Comparing

with results in Table 2, we can see that MMR technique can enhance

LDA-based technique on five of nine evaluated metrics without

bug clustering and seven of nine metrics with bug clustering. In

particular, when it comes to with bug clustering, LDA+MMR is able

to reduce 99.1%, 59.0%, and 65.4% of test execution time to detect
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Table 2: Effectiveness of the basic DeBBI

Without Bug Clustering With Bug Clustering

Client Software Projects Test Case Execution Time(sec) Client Software Projects Test Case Execution Time(sec)

First Last Average First Last Average First Last Average First Last Average First Last Average First Last Average

Random 63 2702 1607 1253 961050 776892 1494.97 109005.21 73360.5 63 2402 1663 1253 947219 758567 1494.97 103965.45 76463.23

TF.IDF
3

(95.2%)
2487
(8.0%)

1322
(17.7%)

32
(97.4%)

964053
(-0.3%)

399301
(48.6%)

53.9
(96.4%)

110727.5
(-1.6%)

77340.8
(-5.4%)

3
(95.2%)

1901
(20.9%)

1135
(31.7%)

32
(97.4%)

948943
(-0.2%)

413608
(45.5%)

53.9
(96.4%)

88637.3
(14.7%)

67582.5
(11.6%)

Okapi
5

(92.1%)
2379
(12.0%)

1375
(14.4%)

48
(96.2%)

962737
(-0.2%)

457375
(41.1%)

91
(93.9%)

109132.7
(-0.1%)

74956.7
(-2.2%)

5
(92.1%)

1888
(21.4%)

982
(41.0%)

48
(96.2%)

949122
(-0.2%)

241894
(68.1%)

91
(93.9%)

87215.6
(16.1%)

60150.7
(21.3%)

LDA
43

(31.7%)
2445
(9.5%)

1532
(4.7%)

573
(54.3%)

727141
(24.3%)

167110
(78.5%)

263.9
(82.3%)

94113.1
(13.7%)

48290.1
(34.2%)

43
(31.7%)

2332
(2.9%)

1747
(-5.1%)

573
(54.3%)

711989
(24.8%)

108083
(85.8%)

263.9
(82.3%)

90799.8
(12.7%)

64822.2
(15.2%)

the First, Last, and Average unique BBI bugs, which is a huge

enhancement over the Random technique.

RQ3: Static Regression Test Selection (RTS).When a library

gets updated, not all the tests from its client projects are affected

by the library code changes. If we can remove such irrelevant test

cases, we may further enhance the reduction on the number of test

executions and execution time. Therefore, we further exclude the

test cases that will not be affected by JDK code changes via RTS. The

results of techniques with RTS combined are presented in Table 4,

where the Random technique is used as the baseline for compar-

ison. From the table, we can see that, with RTS combined, even

Random+RTS also achieves good effectiveness (average execution

time reduced from more than 70K seconds to about 41K seconds);

meanwhile, DeBBI models tend to have even larger improvements.

In addition, on detecting clustered unique BBI bugs, the LDA+MMR

technique, which has achieved best effectiveness without RTS, still

achieves significant enhancement over the Random technique when

RTS is combined. Specifically, LDA+RTS can achieve 63.2% reduc-

tion on detecting raw BBI bugs and LDA+MMR+RTS can achieve

70.8% reduction on detecting unique BBI bugs compared with the

Random technique on Average execution time. In other words,

DeBBI can save 1017.1 hours to find all raw BBI bugs and 120.4

hours to find all unique BBI bugs.

In reality, detecting a new unique BBI bug is apparently more

important than finding another instance of a known BBI bug. There-

fore, we believe LDA+MMR+RTS is the best technique that we

recommend to be used by default in reality. To make it more con-

venient to check the necessity of each used component (i.e., LDA,

MMR, and RTS) compared to baseline techniques, we present the

comparison among four selected techniques: Random technique,

LDA, LDA+MMR, and LDA+MMR+RTS on clustered unique BBIs

in Figures 4 to 6.

In particular, Figure 4 compares all four techniques on their

First, Last, and Average values on the number of client project

executions. Figure 5 and Figure 6 present similar comparison on the

number of test executions and execution time. As shown in Figure 4,

for prioritization of the client software projects, since RTS does

not optimize project selection, LDA+MMR and LDA+MMR+RTS

show same effectiveness. However, if we compare LDA+MMR+RTS

with Random approach, it shows 98.4% 57.2% and 63.0% reduction

on First, Last, and Average values respectively over the Random

technique. As shown in Figure 5, from the aspect of test cases,

LDA+MMR+RTS achieves 99.9%, 97.6%, and 97.6% for First, Last,

and Average values over Random technique. As shown in Figure 6,

from the aspect of execution time, LDA+MMR+RTS achieves 99.1%,

68.0%, and 70.8% reduction First, Last, and Average values over

Random technique.

RQ4: DeBBI Effectiveness for Parallel Execution. We fur-

ther utilized the multiprocessing package of Python for parallel

project execution. We used Python Pool to control the different

processes to start or join in the main process and used Manager

and Queue to control the shared resource between processes. In our

experiments, the ranked project list from our IR-based result is the

shared resource. Sub-processes try to get the project from queue

and run it. As soon as one process finishes execution, it starts to get

the next one to run. Here, we use 5 sub processes in our experiment

to evaluate our technique. Table 5 shows the results of DeBBI with

and without bug clustering during parallel execution. The left part

is the execution time without bug clustering and right part is the

execution time with bug clustering. Column 1 list all techniques.

Columns 2-7 list First, Last and Average value of execution time

to find raw BBI bugs and unique BBI bugs respectively. We use the

Random technique with multiprocessing as our baseline technique.

From the results, we can see that TF.IDF with MMR, Okapi and LDA

with MMR all can find first raw BBI bug and unique BBI bug in 12.7

seconds with the 84.7% reduction compared to Random. LDA has

the best performance in Last and Average with 11.8 % and 38.4 %

reduction without bug clustering. Meanwhile, TF.IDF with MMR

has the best performance in Last andAveragewith 80.9 % and 63.2

% reduction with bug clustering.

Table 6 shows the results when combining our IR-based tech-

niques with RTS during parallel project execution. We still use the

Random technique with multiprocessing as our baseline to check

the results. From the results, all techniques combined with RTS can

have a huge enhancement in Last and Average value of execution

time. The reason LDA+RTS is better than Random in First is that

RTS does not have too much help here. Random and most tech-

niques can find first bug fast without RTS and executing RTS needs

extra overhead1. Thus, the performance of First is not very good

here. However, LDA+MMR+RTS is able to have 71.4 % and 83.1

% reduction in Last without and with bug clustering. LDA+RTS

can have 64.4 % and 60.8 % average time reduction to find raw BBI

bugs and unique BBI bugs. To sum up, LDA+MMR+RTS is still one

of the most effective techniques in the setting of parallel project

execution. It can save 129.3 hours to find all raw BBI bugs and 9.9

hours to find all unique BBI bugs compared to Random technique

with parallel execution.

RQ5: DeBBI Application to Other Libraries. Besides JDK,

we further use other popular libraries to thoroughly evaluate the

performance of our approach. For this experiment, we cloned all

Maven-based Java projects that are created between August 2008

and December 2019 on GitHub with at least one star, and finally

included 56,092 unique projects that can successfully pass the build

1Note that all the RTS overhead costs, including computing dependencies and per-
forming RTS analysis, are considered in the our DeBBI time measurement.
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1 @Test

2 public void demo ( ) {

3 Map<Path , S t r i n g > t e s t = new HashMap<Path , S t r i n g > ( ) ;

4 Path path = Pa ths . g e t ( " / tmp / t e s t / f i l e " ) ;

5 t e s t . put ( path , " pathMD5 " ) ;

6 a s s e r t T h a t ( t e s t )

7 . c on ta in sOn lyKeys ( path )

8 . c on t a i n sVa l u e ( " pathMD5 " ) ;

9 }

Figure 7: Assertj-core-1751 [15] triggering test

previously unknown BBI bugs in Table 7. In the table, Columns

1-4 list all the libraries, the number of corresponding GitHub Stars,

the number of client projects from our dataset using the corre-

sponding libraries, and the revision ranges that we use to detect

BBIs. Columns 5-7 further present the number of unique unknown,

known, and under discussion BBI bugs reported by DeBBI for this

subset of libraries. Columns 8-13 present the First, Last, and Aver-

age values in terms of the number of test executions and execution

time for our default LDA+MMR+RTS technique (with improvement

over the Random technique shown in the parenthesis). The experi-

ment parameters used are the same as our JDK experiment. From

the table, we can observe that DeBBI can consistently improve the

BBI detection efficiency in all traced metrics, further demonstrating

the effectiveness of DeBBI.

Qualitative analysis. For the 19 confirmed previously unknown BBI

bugs, developers quickly fixed the buggy code for 4 of them, and

even added our reported test case in their regression test suites for 3

of them. For example, Figure 7 shows the test for issue Assertj-core-

1751 [15]. Method containsOnlyKeys cannot handle the case when

the containsOnlyKeysAPI is invoked on a Mapwith key type Path.

This test is challenging to generate automatically due to the special

corner case, while DeBBI is able to directly obtain such tests for free

from client projects, demonstrating the promising future of DeBBI.

Interestingly, at first one developer found it too difficult to fix it

and wanted to just add a breaking-change notice; later on, another

developer proposed a solution to finally fix it. Issue Commons-vfs-

739 [24] is triggered when using Apache Commons-vfs to parse a

MapR File System file path (shown in Figure 8). It is also challenging

to generate this test automatically since the bug will be triggered

only when the first two parameters for method parseUri are both

null and URI includes the substring ":///". Furthermore, issue Jsoup-

1274 [20] from library Jsoup, a widely used Java HTML parser, is

incurred by the change of the method select ś the developers

forgot to deal with the situation when the end of the string in

method select is a space (shown in Figure 9). The method select

should trim the space first and continue to parse the string, but it

throws an exception. DeBBI is able to detect it through a special

test case that used Jsoup to parse a specific string followed by a

whitespace. The developers were also quite active in fixing issue

mybatis-spring-427 [22] reported by DeBBI, saying: "Thanks for

your report! This issue is bug(This issue was included by 5ca5f2d). We

will revert it at 2.0.4."

11 other confirmed BBI bugs are mitigated by the developers

via changing the documents, since the developers did not realize

they were BBI bugs until we submitted the reports and could not

undo the change or fix the code. These BBI bugs were mitigated

1 @Test

2 public void demo ( ) throws F i l e S y s t emEx c ep t i o n {

3 f ina l S t r i n g URI = " maprfs : / / / " ;

4 Ur l F i l eNamePa r s e r p a r s e r = new Ur l F i l eNamePa r s e r ( ) ;

5 Fi leName name = p a r s e r . p a r s eU r i ( null , null , URI ) ;

6 a s s e r t E q u a l s ( URI , name . getURI ( ) ) ;

7 }

Figure 8: Commons-vfs-739 [24] triggering test

1 @Test

2 public void demo ( ) {

3 S t r i n g con t en t = " <p> S e l e c t Te s t " ;

4 S t r i n g B u i l d e r bodyHtml = new S t r i n g B u i l d e r ( ) ;

5 bodyHtml . append ( c on t en t ) ;

6 Document document = J soup . p a r s e ( bodyHtml . t o S t r i n g ( ) ) ;

7 S t r i n g B u i l d e r nav = new S t r i n g B u i l d e r ( ) ;

8 Elements bodyElements = document . s e l e c t ( " body > ∗ " ) ;

9 }

Figure 9: Jsoup-1274 [20] triggering test

by adding an announcement in the corresponding documents. For

example, the following comment is from the issue java-jwt-376 [18]:

łYou are correct that this would be a breaking change, so should

have been targeted at a future major version or at the very least called

out the breaking change in the CHANGELOG.md file. Unfortunately,

at this point we cannot undo the change without breaking others

who are not handling the UnsupportedEncodingException. We should

update the Change log, so keeping this issue open to address that.

Apologies for the inconvenience, and thank you for raising this.ž

For the remaining 4 confirmed BBI bugs, issues lombok-2320 [21]

and HttpAsyncClient-159 [17] cannot be easily fixed by the devel-

opers for the moment. For example, the Apache HttpAsyncClient

developers said:

łThere is no much we can do about it now. If we remove the offend-

ing constructor to restore full compatibility with 4.1.3 we will break

full compatibility with 4.1.4.ž

The other 2 unfixed bugs are from Apache Commons-io and

Apache Jena. They confirmed our reported BBI bugs are source

incompatibility, but cannot afford to fix them. For example, the

Apache Jena [19] developers said:

łWe try to migrate gracefully, and it is a compile time error. There

is a balance between compatibility and building up technical debt.

Change away from use of FastDateFormat was forced on the code

(staying at the old version forever is not an option). Sometimes, our

understanding of what users do, and do not use, is incomplete. ž

3.6 Threats to Validity

The major internal threat to our evaluation is whether our ground

truth on incompatibility bugs is correct. For JDK, although large-

scale client testing reveals a lot of test failures, their causes are

different and may not always indicate incompatibilities of JDK.

For example, Raemaekers et al. [64] observed that library-breaking

changes have a huge impact on project compilation. To reduce

this threat, we use the test failures that are fixed when using Java

9.0.1 as the ground truth because they are incompatibility issues

confirmed by JDK developers. This solution is not perfect as we

may miss some real JDK incompatibilities and bugs that are not

noticed and confirmed by JDK developers. For the popular 3rd-

party libraries, we manually inspected all the reported cases (since
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