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ABSTRACT

Deep Neural Networks (DNNs) have been widely applied in au-

tonomous systems such as self-driving vehicles. Recently, DNN

testing has been intensively studied to automatically generate ad-

versarial examples, which inject small-magnitude perturbations into

inputs to test DNNs under extreme situations. While existing testing

techniques prove to be effective, particularly for autonomous driving,

they mostly focus on generating digital adversarial perturbations,

e.g., changing image pixels, which may never happen in the physical

world. Thus, there is a critical missing piece in the literature on

autonomous driving testing: understanding and exploiting both digi-

tal and physical adversarial perturbation generation for impacting

steering decisions. In this paper, we propose a systematic physical-

world testing approach, namely DeepBillboard, targeting at a quite

common and practical driving scenario: drive-by billboards. Deep-

Billboard is capable of generating a robust and resilient printable

adversarial billboard test, which works under dynamic changing

driving conditions including viewing angle, distance, and lighting.

The objective is to maximize the possibility, degree, and duration of

the steering-angle errors of an autonomous vehicle driving by our

generated adversarial billboard. We have extensively evaluated the

efficacy and robustness of DeepBillboard by conducting both exper-

iments with digital perturbations and physical-world case studies.

The digital experimental results show that DeepBillboard is effective
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for various steering models and scenes. Furthermore, the physical

case studies demonstrate that DeepBillboard is sufficiently robust

and resilient for generating physical-world adversarial billboard tests

for real-world driving under various weather conditions, being able

to mislead the average steering angle error up to 26.44 degrees. To

the best of our knowledge, this is the first study demonstrating the

possibility of generating realistic and continuous physical-world

tests for practical autonomous driving systems; moreover, Deep-

Billboard can be directly generalized to a variety of other physical

entities/surfaces along the curbside, e.g., a graffiti painted on a wall.
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1 INTRODUCTION

Deep Neural Networks (DNNs) are being widely applied in many au-

tonomous systems for their state-of-the-art, even human-competitive

accuracy in cognitive computing tasks. One such domain is au-

tonomous driving, where DNNs are used to map the raw pixels from

on-vehicle cameras to the steering control decisions [6, 23]. Recent

end-to-end learning frameworks make it even possible for DNNs to

learn to self-steer from limited human driving datasets [4].

Unfortunately, the reliability and correctness of systems adopt-

ing DNNs as part of their control pipeline have not been formally

guaranteed. In practice, such systems often misbehave in unexpected

or incorrect manners, particularly in certain corner cases due to

various reasons such as overfitted/underfitted DNN models, biased

training data, or incorrect runtime parameters. Such misbehaviors

may cause severe consequences given the safety-critical nature of

autonomous driving. A recent example of tragedy is that an Uber
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Figure 1: The top subfigure shows an example customizable

roadside billboard. The bottom two subfigures show an adver-

sarial billboard example, where the Dave [4] steering model di-

verges under our proposed approach.

self-driving car struck and killed an Arizona pedestrian because the

autopilot system made an incorrect control decision that “it didn’t

need to react right away” when the victim was crossing the road

at night. Even worse, recent DNN testing research has shown that

DNNs are rather vulnerable to intentional adversarial inputs with

perturbations [5, 15, 22, 27, 32]. Such adversarial inputs can be

digitally crafted by adding malicious perturbations to the original

inputs, causing the targeted DNN to output incorrect control deci-

sions. The root cause of adversarial inputs and how to systematically

generate such inputs are being studied in many recent DNN testing

works [5, 9, 18, 19, 29, 30, 33, 39]. While these works propose

various testing techniques that prove to be effective, particularly for

autonomous driving, they mainly focus on generating digital ad-

versarial perturbations, which may never happen in physical world.

The only exception is a recent set of works [9, 30], which take first

step in printing robust physical perturbations that lead to misclassi-

fication of static physical objects (i.e., printouts in [2], human face

in [30], and stop sign in [9]). Our work seeks to further enhance

physical-world testing of autonomous driving by enhancing test ef-

fectiveness during a realistic, continuous driving process. Focusing

on generating adversarial perturbations on any single snapshot of

any misclassified physical object is unlikely to work in practice, as

any real-world driving scenario may encounter driving conditions

(e.g., viewing angle/distance) that are dramatically different from

those in that static single-snapshot view.

In this paper, we propose a systematic physical-world testing

approach, namely DeepBillboard, targeting at a quite common and

practical continuous driving scenario: an autonomous vehicle drives

by roadside billboards. DeepBillboard contributes to the systematic

generation of adversarial examples for misleading steering angle

when perturbations are added to roadside billboards in either a digital

or physical manner. Note that the basic idea can also be directly

generalized to a variety of other physical entities/surfaces besides

just billboards along the roadside, e.g., a graffiti painted on a wall; in

this work, we choose the roadside billboards as our targeted physical

driving scenario for several practical considerations: (1) Billboards

are available to rent for advertising everywhere. Attackers who rent

billboards can customize their sizes and contents, as illustrated in

Fig. 1; (2) Billboards are usually considered irrelevant or benign to

the safety of transportation, and there are no strict rules regulating the

appearance of a billboard; (3) Billboards are usually large enough to

read by drivers and thus dashcams for cars with different distances,

viewing angles, and light conditions; (4) An attacker may easily

construct a physical world billboard to affect the steering decision

of driving-by autonomous vehicles without others noticing, e.g.,

the actual core adversarial painting can only be a part of the entire

billboard while the other parts of the billboard can still look normal,

e.g., some bottom text bar showing “Art Museum This Saturday”.

The objective of DeepBillboard is to generate a single adver-

sarial billboard image that may mislead the steering angle of an

autonomous vehicle upon every single frame captured by onboard

dashcam during the process of driving by a billboard. To generate

effective perturbations, a major challenge is to cover a set of image

frames exhibiting different conditions, including distance to the bill-

board, viewing angle, and lighting. Simply applying existing DNN

testing techniques [29, 33, 39] to generate digital perturbations upon

any specific frame clearly does not work in this case, because a

realistic driving scene may not incur any frame with same or simi-

lar conditions (e.g., inserting sky black holes as done in the recent

award-winning DeepXplore work [29]). Besides, the effectiveness of

single frame perturbation may be not effective, since a mis-steering

upon a frame may be quickly corrected by the next frame.

To resolve this critical challenge, we develop a robust and re-

silient joint optimization algorithm, which generates a printable

billboard image with perturbations that may mislead the steering

angle upon every single frame captured by the dashcam during the

entire driving process. To maximize the adversarial effectiveness,

we develop various techniques to minimize interferences among

per-frame-perturbations, and design the algorithm towards achieving

global optimality considering all frames. Moreover, by inputting

videos that record the process of driving by a roadside billboard with

different driving patterns (e.g., driving speed and route), our algo-

rithm can be easily tuned to generate printable adversarial image that

is robust and resilient considering various physical world constraints

such as changing environmental conditions and pixel printability

due to printer hardware constraints.

Contributions. Considering such a real-world driving scenario and

developing a corresponding digital and physical adversarial test

generation method yield obvious advantages in terms of test effec-

tiveness: the possibility, degree, and duration of misled steering

decisions of any driving-by vehicles due to the adversarial billboards

can be reliably increased. Our key contributions are summarized as

follow.

(1) We propose a novel angle of testing autonomous driving

systems in the physical world that can be easily deployed.

(2) We introduce a robust joint optimization method to systemat-

ically generate adversarial perturbations that can be patched

on roadside billboards both digitally and physically to consis-

tently mislead steering decisions of an autonomous vehicle

driving by the billboard with different driving patterns.

(3) We propose new evaluation metrics and methodology to mea-

sure the test effectiveness of perturbations for steering models

in both digital and physical domains.

(4) We prove the robustness and effectiveness of DeepBill-

board through conducting extensive experiments with both

digital perturbations and physical case studies. The digital

experimental results show that DeepBillboard is effective for
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various steering models and scenes, being able to mislead

the average steering angle up to 41.93 degrees under various

scenarios. The physical case studies further demonstrate that

DeepBillboard is sufficiently robust and resilient for generat-

ing physical-world adversarial billboard tests for real-world

driving under various weather conditions, being able to mis-

lead the average steering angle error from 4.86 up to 26.44

degree. To the best of our knowledge, this is the first study

demonstrating the possibility of generating realistic and con-

tinuous physical-world tests for practical autonomous driving

scenarios.

2 BACKGROUND AND RELATED WORK

DNN in Autonomous Driving. An autonomous driving system cap-

tures surrounding environmental data via multiple sensors (e.g. cam-

era, Radar, Lidar) as inputs, processes these data with DNNs and

outputs control decisions (e.g. steering). In this paper, we mainly fo-

cus on the steering angle component with camera inputs and steering

angle outputs, as adopted in NVIDIA Dave [4].

Convolutional Neural Network (CNN), which is efficient at an-

alyzing visual imagery, is the most widely used DNN for steering

angle decisions. Similar to regular neural networks, CNNs are com-

posed of multiple layers and pass information through layers in a

feed-forward way. Among all layers, the convolutional layer is a key

component in CNNs, which performs convolution with kernels on

the output of previous layers and sends the feature maps to successor

layers. Different from another widely used DNN architecture – Re-

current Neural Networks (RNNs) which is a kind of neural network

with feedback connections, CNN-based steering model makes steer-

ing decisions based only on the currently captured image. In this

paper, we focus on the testing of CNN steering models and leave

RNN testing as future work. We nonetheless note that DeepBill-

board can be adapted to apply to RNN testing. Intuitively, this can

be achieved by modifying the gradient calculation method according

to RNN’s specific characteristics.

Digital Adversarial Examples. Recent research shows that deep

neural network classifier can be tested and further fooled by adversar-

ial examples [5, 15, 20, 22, 27, 32]. Such testing can be performed

in both black-box [25, 26] and white-box [5, 15, 22, 27, 32] settings.

Goodfellow et al. proposed the fast gradient method that applies a

first-order approximation of the loss function to construct adversar-

ial samples [14]. Optimization-based methods have also been pro-

posed to create adversarial perturbations for targeted attacks [5, 16].

Meanwhile, the recent DeepTest [33] and DeepRoad [39] techniques

transform original images to generate adversarial images via sim-

ple affine/filter transformations or Generative Adversarial Networks

(GANs) [13]. Overall, these methods contribute to understanding

digital adversarial examples, and the generated adversarial examples

may never exist in reality (e.g., the rainy driving scenes generated

by DeepTest [33] and DeepRoad [39] are still far from real-world

scenes). By contrast, our work examines physical perturbations on

real objects (billboards) under dynamic conditions such as changing

distances and view angles.

Physical Adversarial Examples. Kurakin et al. showed that adver-

sarial examples, when photoed by a smartphone camera, can still

lead to misclassification [15]. Athalye et al. introduced an attack-

ing algorithm to generate physical adversarial examples that are

robust to a set of synthetic transformations [3]. They further created

3D-printed replicas of perturbed objects [3]. The main differences

between aforementioned works and our work include: (1) Previous

works only use a set of synthetic transformations during optimiza-

tion, which can miss subtle physical effects; while our work can

sample from both synthetic transformations and various real-world

physical conditions. (2) Our work modifies real-world true-sized ob-

jects; and (3) Our work targets the testing of realistic and continuous

driving scenarios.

Sharif et al. presented dodging and impersonation attacks for

DNN-based face recognition systems by printing adversarial per-

turbations on the eyeglasses frames [30]. Their work demonstrated

successful physical attacks in relatively stable physical conditions

with little variation in pose, distance/angle from the camera, and

lighting. This contributes an interesting understanding of physical

examples in stable environments. However, environmental condi-

tions can vary widely in general and can contribute to reducing the

effectiveness of perturbations. Therefore, we choose the inherently

unconstrained environment of drive-by billboards classification. In

our work, we explicitly design our perturbations to be effective in

the presence of diverse and continuous physical-world conditions

(particularly, large distances/angles and resolution changes).

Lu et al. performed experiments with physical adversarial exam-

ples of road sign images against detectors and show that current

detectors can be attacked [17]. Several more recent works have

demonstrated adversarial examples against detection/segmentation

algorithms digitally [8, 21, 38]. The most recent work for attacking

autonomous driving systems are the works conducted by Eykholt

and Evtimov et al. They showed that physical robust attacks can

be constructed for road signs classifiers [9], and such attacks can

be further extended to attack YOLO detectors [10]. Our work dif-

fers from such works due to the fact that: (1) we target attacking

steering models by constructing printable perturbations on drive-by

billboards, which can be anywhere and have much more impacts

than road signs; (2) our proposed algorithm considers a sequence of

contiguous frames captured by dashcams with gradually changing

distances and viewing angles, and seeks to maximize the possibility

and the degree of misleading the steering angles of an autonomous

vehicle driving by our adversarial roadside billboard; and (3) we

introduce a new joint optimization algorithm to efficiently generate

such attacks both digitally and physically.

3 GENERATING ADVERSARIAL PATTERN

3.1 Adversarial Scenarios

The goal of DeepBillboard is to mislead the steering angle of an

autonomous vehicle, causing off-tracking from the center of the lane

by painting the adversarial perturbation on the billboard alongside

the road. Our targeted DNNs are CNN-based steering models [4, 12,

31, 35, 36], without involving detection/segmentation algorithms.

The steering model takes images captured by dashcam as inputs, and

outputs steering angle decisions.

We use off-tracking distance to measure the test effectiveness

(i.e., the strength of steering misleading), which has been applied in

Nvidia’s Dave [4] system to trigger human interventions. Assume
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the vehicle’s speed is v m/s, the decision frequency of using DNN

inference is i second(s), the ground truth steering angle is α , and

the misleading steering angle is α ′, then the off-tracking distance is

calculated by v · i · sin(α ′ − α ). In a potential physical world attack,

the speed of the vehicle usually are not controllable by the tester/at-

tacker. Thus we use steering angle error which is the steering angle

divergence between ground truth and misled steering to measure the

test effectiveness.

Instead of misleading the steering decision only at a single, fixed

distance and view angle, we consider the actual driving-by scenario.

Specifically, when a vehicle is driving towards the billboard, we

seek to generate a physical adversarial billboard that may mislead

the steering decision upon a sequence of dashcam-captured frames

viewing from different distances and angles. The number of cap-

tured frames clearly depends on the FPS of the dashcam and the

time used for the vehicle to drive from the starting position till phys-

ically passing the billboard. Considering such a real-world dynamic

driving scenario yields obvious advantage in terms of attacking

strength: the possibility and the degree of misled steering decisions

of any driving-by vehicles due to the adversarial billboards can be

reliably increased. We emphasize that this consideration also funda-

mentally differentiate the algorithmic design of DeepBillboard from

applying simpler strategies such as random search, average/max

value-pooling, different order etc. Applying such simpler methods

would improve a misleading angle for a single frame yet lowering

the overall objective. After a few iterations, such methods hardly

improve the objective.

3.2 Evaluating Matrices

Our evaluating metrics aim to reflect the attacking strength and

possibility. Vehicles may pass by our adversarial billboard with

different speeds and slightly different angles, which may impact the

number of image frames captured by the camera and the billboard

layout among different frames. Assume X̂={x0, x1, x2, ... , xn}

denotes an exhaustive set of image frames possibly captured by a

drive-by vehicle with any driving pattern (e.g., driving speed and

route), then frames captured by any drive-by vehicle are clearly a

subset X ⊆ X̂. Our objective is to generate the physical printable

billboard which can affect (almost) every frame in X̂, such that any

subset X corresponding to a potential real-world driving scenario

may have a maximized chance to be affected. To meet this objective,

we define two evaluating metrics denoted M0, M1 as follows.

M0 measures the average angle error (AAE) for frames in X̂:

M0 = Av g
0<i< ∥X̂ ∥

(f (x ′i ) − f (xi )), (1)

where f (·) denotes the prediction result of the targeted steering

model, x ′ denotes the perturbed frame. This metric measures the

average strength of attacks to the frame super set. A larger M0 intu-

itively would imply a higher chance and a larger error of misleading

the steering angle during the process of driving by the billboard.

M1 measures the percentage of frames in X whose angle error

exceeds a predefined threshold, denoted by τ . τ can be calculated

based on the physical driving behavior. A formal definition of M1 is

given by:

M1 =
∥{xi | f (x

′
i ) − f (xi ) > τ , 0 < i < ∥X̂ ∥}∥

∥X̂ ∥
. (2)

For example, if we want to mislead a 40MPH autonomous vehicle

by an off-track distance of one meter within a time interval of 0.2

seconds,1 then τ can be calculated as 16.24. We mainly adopt M1 as

an evaluating metric for our physical-world case studies, as M1 can

clearly reflect the number of frames that incur unacceptable steering

decisions (e.g., those that may cause accidents) given any reasonable

predefined threshold according to safety stands in practice.

3.3 Challenges

Physical attacks on an object should be able to work under changing

conditions and remain effective at fooling the classifier. We struc-

ture our discussion of these conditions using our targeted billboard

classification. A subset of these conditions can also be applied to

other types of physical learning systems such as drones and robots.

Spatial Constraints. Existing adversarial algorithms mostly focus

on perturbing digital images and add adversarial perturbations to

all parts of the image, including background imagery (e.g., sky).

However, for a physical billboard, the attacker cannot manipulate the

background imagery other than the billboard area. Furthermore, the

attacker cannot assume that there exists a fixed background imagery

as it will change depending on the distance and viewing angle of the

dashcam of a drive-by vehicle.

Physical Limits on Imperceptibility. An attractive feature of exist-

ing adversarial learning algorithms is that their perturbations to a

digital image are often small in magnitude such that the perturba-

tions are almost imperceptible to a casual observer. However, when

transferring such minimal perturbations to a real world physical

image, we must ensure that a camera is able to perceive the pertur-

bations. Therefore, there are physical constraints on perturbation

imperceptibility, which is also dependent on the sensing hardware.

Environmental Conditions. The distance and angle of a camera

in a drive-by autonomous vehicle with respect to a billboard may

consistently vary. The captured frames that are fed into a classifier

are taken at different distances and viewing angles. Therefore, any

perturbation that an attacker physically adds to a billboard must be

able to survive under such dynamics. Other impactful environmen-

tal factors include changes in lighting/weather conditions and the

presence of debris on the camera or on the billboard.

Fabrication Error. To physically print out an image with all con-

structed perturbations, all perturbation values must be valid colors

that can be printed in the real world. Furthermore, even if a fabrica-

tion device, such as a printer, can produce certain colors, there may

exist certain pixel mismatching errors.

Context Sensitivity. Every frame in X̂ must be perturbed consider-

ing its context in order to maximize the overall attacking strength

(maximizing M0 for instance). Each perturbed frame can be mapped

1We note that an autonomous vehicle would likely not run classification on every frame
due to performance constraints, but rather classify every j-th frame, and then perform
simple majority voting.
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to a printable adversarial image with a certain view angle and dis-

tance. Each standalone frame has its own optimal perturbation. How-

ever, we need to consider all frames’ context to generate a single

printable adversarial image that is globally optimal w.r.t. all frames.

In order to physically attack deep learning classifiers, an attacker

should account for the above physical world constraints, for other-

wise the effectiveness can be significantly weakened.

3.4 The Design of DeepBillboard

We design DeepBillboard, which generates a single printable im-

age that can be pasted on a roadside billboard by analyzing given

driving videos where vehicles drive by a roadside billboard with

different driving patterns, for continuously misleading the steering

angle decision of any drive-by autonomous vehicle. DeepBillboard

starts with generating perturbations for every frame fi of a given

video without considering frame context and other physical condi-

tions. We then describe how to update the algorithm to resolve the

aforementioned physical world challenges. We finally describe the

algorithmic pseudocode of DeepBillboard in detail. We note that

it may not be practically possible to construct the exhaustive set

of image frames (i.e. X̂), possibly captured by a drive-by vehicle

with any driving pattern (e.g., driving speed and route). Nonetheless,

processing a larger number of driving videos will clearly strengthen

the testing effectiveness of DeepBillboard due to a larger X̂, at the

cost of increased time complexity.

The single frame adversarial example generation searches for a

perturbation σ to be added to the input x such that the perturbed

input x ′ = x + δ can be predicted by the targeted DNN steering

model f (·) as

max H (f (x + δ ),Ax ),

where H is a chosen distance function and Ax is the ground truth

steering angle. Typically, the ground truth in our evaluation is the

original prediction steering angle without applying the adversarial

billboard, which is f (x ) by our definition. To solve the above con-

strained optimization problem, we reformulate it in the Lagrangian-

relaxed form similar to prior work [9, 30]:

argmin
δ

(−L(f (x + δ ),Ax )), (3)

where L is the loss function which measures the difference between

the model’s prediction and ground truth Ax . The attacking scenario

in this paper can be treated as inference dodging which aims to not

being correctly inferred.

Joint Loss Optimization. As discussed earlier, our objective is to

generate a single adversarial image that may mislead the steering

angle of an autonomous vehicle upon every single frame the dashcam

may capture during driving by the billboard. The appearance of the

adversarial billboard may vary when being viewed from different

angles and distances. As a result, to meet the objective, we need

to generate one single printable adversarial perturbation that can

mislead every single frame captured during the driving-by process.

This is clearly an optimization problem beyond a single image. It is

thus necessary to consider all frames jointly since one modification

on the billboard affects all frames. To this end, the problem becomes

finding a single perturbation ∆ that optimizes Eq. 3 for every image

x in an image set X . We formalize this perturbation generation as

the following optimization problem.

argmin
∆

∑

0<i< ∥X ∥

(−L(f (xi + pi (∆)),Ax )), (4)

where pi is the projection function of printable perturbation ∆ into

every single frame i.

Handling Overlapped Perturbations. Every single frame may gen-

erate a set of perturbations which is composed of multiple pixels to

be updated on the ultimate printable adversarial image. Perturbations

of multiple frames may encounter overlapped pixels, which may pro-

duce interferences among those frames. To maximize the attacking

strength, DeepBillboard seeks to minimize the overlapped perturba-

tions among multiple frames by only updating a fixed number of k

pixels for each single frame in order. The k pixels are those that have

the most impact on misleading the steering decision. We assume

the final adversarial billboard image covering n dashcam-captured

frames is composed of m pixels. k is a value satisfying n · k < m,

which helps reduce the overall chance of perturbation overlapping

among frames. For each overlapped pixel, we update it by greedily

choosing a value that maximizes the objective metric (e.g., M0).

Enhancing Perturbation Printability. For the perturbation to work

in the physical world, each perturbed pixel needs to be a printable

value by existing printer hardware. Let P ⊂ [0, 1]3 be the set of

printable RGB triples. We define non-printability score (NPS) of a

pixel to reflect the maximum distance between this pixel and any

pixel in P . A larger NPS value would imply a smaller chance of

accurately printing out the corresponding pixel. Our algorithm thus

seeks to minimize NPS as part of the optimization. We define the

NPS of a pixel p′ as:

NPS(p′) =
∏

p∈P

|p′ − p |. (5)

We generalize the definition of NPS of a perturbation as the sum of

NPS values of all the pixels in this perturbation.

Adjust Color Difference under Various Environment Conditions.

For different environmental conditions, the observable color of the

same pixel belonging to the billboard image may look different in

the video captured by a dashcam. Such a difference may impact

the adversarial efficacy under different conditions. In our physical

world experiments, we pre-fill the entire billboard with unicolor

p = {r ,д,b}. Under a specific environment condition e, its actual

color shown in camera may become p′ = {r ′,д′,b ′}. Based on our

preliminary experiments, we observe that such color differences

of pixels in the same image are almost the same. To simplify the

problem, we introduce a color adjustment function ADJi = di (p,p
′)

for each image xi to adjust the color difference.

Algorithm overview. The procedure of DeepBillboard for generat-

ing an adversarial billboard image is illustrated in Fig. 2. To generate

an adversarial billboard image, we first pre-fill the billboard with

unicolor, and paint its four corners with contrasting colors for the

purpose of (1) locating the coordinates of the billboard digitally,

and (2) getting the color adjustment function ADJi . Then we record

video using dashcam and drive by the billboard with different driving

behaviors (e.g., different driving speeds and driving patterns) along
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Table 1: Studied scenes for digital experiments.

Scenes Img Size BB_min BB_max

Dave-straight1 54 455 × 256 21 × 22 41 × 49

Dave-curve1 34 455 × 256 29 × 32 51 × 49

Udacity-straight1 22 640 × 480 48 × 29 66 × 35

Udacity-curve1 80 640 × 480 51 × 51 155 × 156

Kitti-straight1 20 455 × 1392 56 × 74 121 × 162

Kitti-straight2 21 455 × 1392 80 × 46 247 × 100

Kitti-curve1 21 455 × 1392 64 × 74 173 × 223

influence to the joint objective function for all images in this scene,

seeking to maximize the average steering angle difference from

ground truth. After constraining the applicable gradients, we project

the gradient values for each image x to the proposed perturbations

of the batched images (line 13). ADJ (i.e., the input list of adjust-

ments for environment factors) is used to correct color difference

for different lighting conditions. For example, if a pure yellow color

(255, 255, 0) becomes (200, 200, 0), then ADJ is set to be (55, 55, 0).

When projected to the physical billboard, the gradient value should

be increased by (55, 55, 0).

After all images in the batch get their gradients, there may exist

overlapped perturbations among them. That is, for each pixel corre-

sponding to overlapped perturbations, it may have multiple proposed

update values for the ultimate printable adversarial example. To

handle such overlaps (line 14), we implemented three methods: (1)

update the overlapped pixels with the max gradient value among pro-

posed perturbations, (2) update the overlapped pixels with the sum

of all gradient values, and (3) update the overlapped pixels with one

of the proposed values that has the greatest overall influence to the

objective function. Then at line 15, we calculate the proposed update

atmpt_pert by adding gradients to the current physical perturba-

tion perturb. After color corrections and non-printable score control

(line 16), the proposed perturbations for the physical billboard are

projected to the images according to the coordinates (line 17). We

calculate the total steering angle difference for perturbed images

(line 18). If the proposed perturbations can improve the objective,

or meet the simulated annealing to avoid the local optimum (line

19) [37] indicated by SA, we accept the proposed perturbations (line

20) and update all images with these perturbations (line 21). Then

we record the current iteration’s total steering angle divergence and

use it as the starting point in the next iteration. When all enhanced

iterations are finished, we return the physical perturbation perturb

as the resultant output. We note that, although our major goal is to

generate physical perturbations, the output can be directly patched

to digital images as well.

4 EVALUATION

In this section, we evaluate the efficacy of DeepBillboard both digi-

tally and physically for various steering models and road scenes.

4.1 Experiment Setup

Datasets and Steering Models. We use four pre-trained popular

CNNs as targeted steering models, which have been widely used

in autonomous driving testing [18, 29, 33, 39]. Specifically, we test

three models based on the DAVE self-driving car architecture from

NVIDIA, denoted as Dave_V1 [24], Dave_V2 [12], Dave_V3 [31],

and the Epoch model [35] from the Udacity challenge [34]. Specifi-

cally, Dave_V1 is the original CNN architecture presented in NVIDIA’s

Dave system [4]. Dave_V2 [12] is a variation of Dave_V1 which

normalizes the randomly initialized network weights and removes

the first batch normalization layer. Dave_V3 [31] is another publicly

available steering model which modifies the original Dave model by

removing two convolution layers and one fully connected layer, and

inserting two dropout layers among the three fully connected layers.

As the pre-trained Epoch weights are not publicly available, we train

it following the instructions provided by the corresponding authors

using the Udacity self-driving Challenge dataset [34].

The datasets used in our experiments include: (1) Udacity self-

driving car challenge dataset [34] which contains 101,396 training

images captured by a dashboard mounted camera of a driving car

and the simultaneous steering wheel angle applied by the human

driver for each image; (2) Dave testing dataset [7] which contains

45,568 images recorded by a GitHub user to test the NVIDIA Dave

model; and (3) Kitti [11] dataset which contains 14,999 images from

six different scenes captured by a VW Passat station wagon equipped

with four video cameras.

The dataset used for our physical case studies consists of videos

recorded by a tachograph mounted behind the windshield of a driving

car for driving by a pre-placed roadside billboard on campus. We use

aforementioned pre-trained steering models to predict every frame,

and use the resultant steering angle decisions as the ground truth.

Experiment Design. Based on our discussion from Section 3.2, we

evaluate the efficacy of our algorithm by measuring the Average

Angle Errors of all frames in a scene, both digitally and physically.

For digital tests, our scene selection criteria is that the billboard

should appear entirely in the first frame with more than 400 pixels

(since billboards containing less than 400 pixels, when being printed

out and applied in physical world, are too small to be meaningful

and useful towards adversarial purposes). We then randomly select

seven scenes that satisfy this criteria from aforementioned datasets,

and evaluate on all the selected scenes. The selected scenes in each

dataset cover both straight and curved lane scenarios. Since all these

datasets do not contain coordinates of billboards, we have to label the

four corners of billboards in every frame of the selected scenes. To

make the labeling process semi-automated, we use the motion tracker

functionality of Adobe After Effects [1] to automatically track the

movement of billboard’s four corners among consecutive frames.

We then perform necessary adjustments for certain frames whose

coordinates are not accurate enough. We list the statistics about all

the studied scenes in Table 1, where the first column lists the names

of scenes, the second column shows the number of images in every

scene, the third to fifth columns indicate the resolutions of images

and the min/max sizes of billboards in each scene. In digital tests,

there is no color adjustment under different environmental conditions.

The final adversarial example is patched into every frame according

to the projection function. Then we use the steering models to predict

the patched images and compare them against the ground-truth

steering decisions recorded in the given datasets.

Our compared baseline is the inference steering angle for each

given trained model. Our approach seeks to maximize the distance

from the baseline, regardless whether baseline is ground truth or
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the adversarial impact. Unfortunately, due to lacking actualy au-

tonomous vehicles, to validate DeepBillboard in real-world settings,

we took a similar approach applied in the following state-of-the-art

autonomous-driving research [29, 33, 39], which also has not in-

volved actual autonomous vehicles in the evaluation. Specifically,

we take videos with different driving patterns as inputs, which can

be as exhaustive as possible to cover all potential viewing angles at

different vehicle-to-billboard distances. In the physical-world eval-

uation, we tried to pre-record as many abnormally-driving videos

as possible to cover a majority of the possible misled driving sce-

narios of an actual autonomous vehicle. Such videos have been

applied in the adversarial construction/training phase. We show

such an abnormally-driving video in the following anonymous link:

https://github.com/deepbillboard/DeepBillboard. This video shows

that DeepBillboard is able to continuously deviate a car within each

frame. This would mimic one of the many actual autonomous driving

scenarios where the vehicle is continuously misled by DeepBillboard

at each frame (i.e., the misled angle within each frame is similar to

the one shown in this video).

4.2 Digital Perturbation Results

The results of digital perturbations are shown in Table 2, where

each column represents a specific scene, and each row represents a

specific steering model. Every image in a cell shows a representative

frame that has the median steering angle divergence. For example,

the image in cell (Dave_V1, Udacity_Scene1) represent the image

in Udacity dataset Scene1 has the Average Angle Error among all

frames in the same scene when predicted by Dave_V1 steering

model. Two arrows show the steering angle decision divergence

in each image, where the blue one is the ground truth and the red

one is the steering angle of the generated adversarial examples. We

observe that in all scenes, DeepBillboard makes all steering models

generate observable average steering angle divergences. Specifically,

DeepBillboard misleads the Dave_V1 model by more than 10◦ in 6

out of 7 scenes, except for Kitti_Straight1 in which the billboard oc-

cupies a small space. Dave_V2 incurs the largest average divergence

– more than 16.7◦ among all scenes. The test cases of Dave_V2

model show that even with underfitted model, DeepBillboard can

still greedily enlarge such divergence. DeepBillboard causes the

smallest divergence for the Dave_V3 model – 0.44◦ − 25.01◦. The

reason is because Dave_V3 introduces three dropout layers between

four fully connected layer, and use augmented training data, which

both contribute to the enhanced robustness and generalization of

the trained model. Particularly, the adoption of dropout layer which

randomly deactivates half of the neurons, can cause part of the pertur-

bations on billboards being deactivated, thus reducing the efficacy of

adversarial perturbations. We note that the Epoch model also adopts

dropout layers, so its average angle error is also small compared

to Dave_V1 and Dave_V2 in all scenes. However, Epoch does not

apply the training data augmentation used by Dave_V3 which crops

the images to train only the road pavement, thus the perturbations on

the roadside billboard has more influence to the prediction compared

to Dave_V3, resulting in a larger average angle error.

We further show the results on steering angle error along the

timeline for each studied scene, from the first frame to the last

frame where the billboard size increases monotonically among these
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Figure 4: Convergence of AAE w.r.t different parameters.

frames. The results are shown in Fig. 3, where each sub-figure in-

dicates a specific scene, the x-axis is the indexes of images along

the timeline, and the y-axis is the steering angle error (◦). We ob-

serve that in most scenes the steering angle errors increase when the

billboard size increases, as indicated by the Dave_V1 lines shown

in Fig. 3 (d), (e), (f), (g). The reason behind is intuitive – larger

billboards in images may activate stronger perturbations. On the

contrary, certain lines do not follow this trend, as indicated by Fig. 3

(a), (b), (c). For example, in Fig. 3 (b), frames in the middle con-

tribute more steering angle errors for the Dave_V1 model. We learn

that in such scenarios, even though the billboard is quite small in

the image, it can still lead to large steering angle divergence when

applying adversarial perturbations, indicating the test effectiveness

and robustness of DeepBillboard.

4.3 Parameter Tuning

In this set of experiments, we show that how parameter tuning may

affect the AAE–average angle error. Fig. 4 shows the convergence

trend when applying different parameters. The x-axis is the enhanced

iteration, y-axis is AAE, and the lines represent different parame-

ter settings. For example, line y indicates that the iterations begin

with initializing the billboard as yellow, y(5) indicates setting the

batch size as 5. Similar settings apply to y(10), and д indicates an

initialized green billboard. Line y(10, sum) indicates that besides

using batch size 10, it also uses sum to update gradient, instead of

the default max pooling. We observe from Fig. 4(a) that starting

iterations from yellow is overall better than starting from green in

this example. Additionally, we observe that two lines behave much

better than other lines – y(5, max) and y(10, sum). To further explore

the tradeoff of batch size and sum/max method, we conduct another

set of experiments which iterate up to 1000 iterations, whose re-

sults are shown in Fig. 4(b). We observe that, two lines representing

y(5,max ) and y(10, sum) outperform the other two lines. What we

learn from these two figures are: (1) carefully choosing the initial

color of the billboard can efficiently increase the converge speed and

yield a better results; and (2) there is no clear indications showing

there exists a better parameter choice between choosing a large or

small batch, and choosing max or sum to update gradient.

To figure out how the training set affects the convergence and the

objective, we use the same initial color, batch size and overlapping

handling (y(5,max )) for different subsets among the total 80 frames

in Udacity_Curve1. The results are shown in Fig. 5, where four sub-

figures represent (a) the first 40 frames, (b) the last 40 frames, (c)

the 40 frames with even indexes, and (d) all 80 frames, respectively.

Lines in each sub-figure represent different k values to be updated.
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Figure 5: Converge over iterations with different parameter

tunings: (a) first 40 frames; (b) 40 frames in the middle; (c) in-

terleaving half frames; (d) all frames.

We observe that all lines ascend fast at early iterations, and the

increase rates drop after around 400 iterations. The lines in Fig. 5

(a) converge to a lower AAE compared to lines in the other three

sub-figures. Lines using the last 40 frames clearly achieve better

results. From this observation, we learn that the chosen training

set does affect the final objective in the sense that images with

larger billboards can achieve better results. Additionally, a larger k

value usually achieves better results and faster convergence in most

scenarios except for Fig. 5 (a). The reason is that in this specific

scenario, the billboard occupies a rather small number of pixels.

Thus, aggressively increasing the number of updated pixels would

cause severe interferences among frames, thus leading to lower AAE.

From the parameter tuning experiments, we learn that choosing

images with larger billboard space, aggressively updating more

pixels, would result in faster convergence and better results.

4.4 Physical Case Study

As described in Section 4.1, our physical case study is composed

of two phases. Specifically, for both training and testing videos, we

start recording at 100 ft far away and stop recording when the vehicle

physically passes the billboard. The driving speed is set to be 10mph

for training videos in order to capture sufficient images, and the

speed for the testing video is 20mph to reflect ordinary on-campus

driving. We perform our physical tests on a straight lane without

curves under three different weather conditions including sunny,

cloudy, and dusk weather. To make the training robust, we record

three training videos through three slightly different routes: central,

left-shifting, and right-shifting. The billboard used in our experiment

has a size of 6′ × 4′. We adopt Dave_V 1 as the steering model due

to its proved efficacy in various real-world driving tests [4, 23, 24].

We define Exp_AAE to indicate the expected average angle error

according to the training videos, which is the M0 metric defined

in Section 3.2 based on digital perturbations. We use Test_AAE to

indicate the actual average angle error for all images in the testing
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Figure 6: Per-frame steering angle error.

video, which is the M0 metric defined in Section 3.2 for physical

perturbations. We also record the M1 metric defined in Section 3.2

for the test video. We set the steering angle error threshold to 19.8◦

since when the driving speed is 20mph, such mis-steering would

cause at least an off-track distance of one meter within a time in-

terval of 0.33 second (duration of 10 frames for a 30 FPS camera),

which is large enough for causing dangerous driving behaviors as

demonstrated by NVIDIA Dave [4].

We note that our chosen evaluation metrics using average angle

error and percentage of large angle error can reasonably reflect

the overall possibility and strength of misleading for consecutive

frames. In the physical experiment, we calculate the angle error

threshold according to the speed, which can cause at least one-meter

off-tracking (defined as dangerous driving behaviors by NVIDIA).

The visible results are shown in Table 3, where each row shows

a sunny scene of a testing video, including one video with empty

billboard and two videos with adversarial billboards. The second

column shows the printable perturbations. Columns 3-6 present

different distances between the vehicle and the billboard. We observe

that, with white billboard, the steering angles are almost straight in

all distances. With the first (bright) adversarial billboard, the steering

angles turn left to a certain degree; on the contrary, the second (dark)

adversarial billboard leads steering to the right. As mentioned in

Sec. 3.4, this is controlled by setting gradient flag(+/-).

The values of test effectiveness are shown in Table 4, where

three rows show our experiments under three weather/lighting con-

ditions – sunny, cloudy, and dusk weather. The values in this table

reflect steering angle compared to the baseline steering without

perturbation. Under each condition, the table shows the three afore-

mentioned metrics for two adversarial settings (i.e., left-misleading

(right-misleading) denoted by the “Ad_left” (“Ad_right”) column).

We use two adversarial direction settings (mis-steering to the left or

right) to show that DeepBillboard can actually control the desired

misleading direction. We observe that two adversarial perturbations

both yield relatively large Exp_AAE (denoted by “Exp” in the table)

and Test_AAE (denoted by “Test”) for all weather conditions. For

instance, DeepBillboard yields a left mis-leading steering angle of

8.88 degree for sunny weather. In many cases, the Test_AAE value

is only slightly smaller than Exp_AAE, indicating DeepBillboard’s

efficacy in physical world settings. The percentage of frames having

a mis-steering angle larger than the pre-defined threshold (i.e., M1)
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