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basic reproductive number R0—the 

average number of secondary cases 

caused by a primary case in an 

otherwise susceptible population. 

The modelling approaches and 

resulting estimates of R0 during the 

beginning of the outbreak vary 

widely, despite relying on similar 

data sources. Here, we present a 

statistical framework for comparing 

and combining different estimates of 

R0 across a wide range of models by 

decomposing the basic reproductive 

number into three key quantities: the 

exponential growth rate, the mean 

generation interval and the 

generation-interval dispersion. We 

apply our framework to early 

estimates of R0 for the SARS-CoV-2 

outbreak, showing that many R0 

estimates are overly confident. Our 

results emphasize the importance of 

propagating uncertainties in all 

components of R0, including the 

shape of the generation-interval 

distribution, in efforts to estimate R0 

at the outset of an epidemic. 

1. Introduction 
Since December 2019, a novel 

coronavirus (SARS-CoV-2) has been 

spreading globally [1]. Although the 

virus is likely to have originated from 

animal hosts [2], the ability of SARS-

CoV-2 to directly transmit between 

humans, particularly without symptoms, 

has posed a greater threat for its spread 

[3]. As of 11 May 2020, more than 4 

million cases of the coronavirus disease 

2019 (COVID-19) have been confirmed 

internationally [4]. 
As SARS-CoV-2 began to spread in 

parts of China outside Hubei province, as 

well as in other countries, many analyses 

of the outbreak were published as pre-

prints [5–10] and in peer-reviewed 

journals [11–14]. These analyses focused 

on estimating the basic reproductive 

number R0—the average number of 

secondary cases generated by a primary 

case in a fully susceptible population [15,16]—in order to assess the pandemic potential 

of SARS-CoV-2. Rapid dissemination of these early analyses played an important role 

in shaping the response to the outbreak [17]. 

© 2020 The Authors. Published by the Royal Society under the terms of the Creative 

Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which 

permits unrestricted use, provided the original author and source are credited. 
We commend these researchers for their timely contribution and those who made 

the data publicly available. However, the estimates of R0 from different research groups 

(as well as the associated degrees of uncertainty) vary considerably even though most 

analyses rely on similar data—reports of confirmed cases from China, particularly from 

Wuhan City. Comparing a disparate set of estimates of R0 can be difficult when the 

estimation methods and their underlying assumptions vary widely. In some cases, 

similar methods can give different estimates; in other cases, different methods can give 

similar estimates. Understanding the differences between R0 estimates is critical to 

controlling an epidemic as R0 provides information about the level of intervention 

required to prevent further transmission [15], and about the potential final size of the 

outbreak [15,18]. 
Here, we show that a wide range of approaches to estimating R0 can be understood 

and compared in terms of estimates of three quantities: the exponential growth rate r, 

the mean generation interval G
 
and the generation-interval dispersion κ. The generation 

interval, defined as the interval between the time when an individual becomes infected 

and the time when that individual infects another individual [19], characterizes the 

relationship between r and R0 [20– 23]; therefore, estimates of R0 depend directly on 

their assumptions about the generation-interval distribution and the exponential growth 

rate. Early in an epidemic, information is scarce and there is uncertainty surrounding 

both case reports (affecting the estimates of the exponential growth rate) and contact 

tracing (affecting the estimates of the generation-interval distribution). Ignoring these 

uncertainties leads to overly confident conclusions. 
To formalize the estimation of uncertainty at the onset of an outbreak, we present a 

statistical framework for averaging across estimates of the basic reproductive number 

R0 from multiple studies. We apply the method to seven disparate models published 

online as pre-prints between 23 and 26 January 2020 that estimate R0 for the SARS-

CoV-2 outbreak in Wuhan City, China [5–10,24]. Previous studies have directly 

calculated the average of reported R0 values [17,25] but such methods mask differences 

in underlying model assumptions and statistical methods. Instead, we model the 

estimate of R0 (as well as the associated generation-interval parameters, G, and κ) from 

each study with probability distributions that account for the uncertainty in the 

estimates; this allows us to re-estimate the corresponding distributions of the 

exponential growth rates r. We then use a Bayesian multi-level model to average the 

three key quantities (r, G
 
and κ). The resulting pooled estimates (μr, μG and mk) are used 

to calculate the pooled estimate of the basic reproductive number, Rpool. Using pooled 

estimates allows us to average appropriately across the uncertainties present in 

modelling approaches and in their underlying assumptions. We use these pooled 

estimates to illustrate the importance of propagating different sources of error, 

particularly uncertainty in both the growth rate and the generation interval. 

2. Methods 
2.1. Description of the studies 
We gathered information on estimates of R0 for the SARS-CoV-2 outbreak in Wuhan City, 

China and their model assumptions from seven articles that were published online between 

23 and 26 January 2020. Five studies [7–10,24] were uploaded to preprint servers (bioRxiv, 
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medRxiv and SSRN); one report was 

posted on the website of Imperial College 

London [6]; and one report was posted on 

nextstrain.org [5] (table 1). 

2.2. Model assumptions 
Despite a wide range of models considered 

across the studies, all of them assume that 

the epidemic initially grows exponentially. 

The IDEA model (used in study 7) includes 

a discount parameter d that allows the 

model to deviate from exponential growth 

when d ≠ 0 [28], but study 7 estimates d = 

0 across all parameters they consider. Even 

though some studies consider reported 

cases up to 26 January 2020—3 days after 

the travel restriction that took place on 23 

January 2020 [29]—the exponential growth 

assumption can still describe the number of 

reported cases reasonably well; given the 

incubation period of around 5 days [30] as 

well as reporting delays of around 5 days 

[31], the majority of reported cases during 

the study periods are likely to have been 

infected prior to the travel ban. 
When the epidemic is growing 

exponentially, the estimated basic 

reproductive number is determined by the 

exponential growth rate r and the intrinsic 

generation-interval distribution g(τ), which 

describes the infection time of secondary 

cases caused by a primary case in a fully 

susceptible population [32], via the Euler–Lotka equation [22]: 

1 

 R  ¼ð exp (  rt)g(t) dt: (2:1) 

0 

Therefore, it is sufficient to consider the estimates and assumptions about the exponential 

growth rates and the shapes of the generation-interval distributions to understand disparate 

estimates of the basic reproductive number. All model assumptions reduce to properties of 

the exponential growth rate r and the shape of the generation-interval distribution g(τ). For 

example, if a model relies on overly confident assumptions about the underlying observation 

(how new cases are reported) or process (how new cases are generated) model, the estimated 

confidence/credible intervals associated with the exponential growth rates or parameters of 

the generation-interval distributions (from each study) will necessarily be narrow. 
As most studies do not report their estimates of the exponential growth rate, we first 

summarize model outcomes using reported (either estimated or assumed) values of the basic 

reproductive number R0, mean generation interval 
G 

and generationinterval dispersion κ, 

represented by the squared coefficient of variation (table 1)—we re-estimate the 

corresponding exponential growth rates from these values later. Study 2 only reports their 

assumptions about the mean generation interval; for simplicity, we assume κ = 0.5 in our 

analysis. Study 6 presents R0 estimates under 12 different scenarios regarding reporting rates 

(0-, 0.5-, one- or twofold increase in reporting rate) and the shapes of the generation-interval 

distributions based on previous coronavirus outbreaks (Middle East respiratory syndrome, 

MERS; severe acute respiratory syndrome, SARS; and their average)—we use their baseline 

scenario in our analysis to remain consistent with other studies, which do not account for 

changes in the reporting rate. While estimates of R0 and the associated confidence intervals 

for study 6 in table 1 are based on G
 
¼ 8 d, we account for the uncertainty they consider for 

G
 
in our formal analysis. 

While most studies report confidence/credible intervals to quantify uncertainties 

associated with their estimates, some use different measures. In particular, study 2 reports a 

range of R0 for the worst and best case scenarios, which correspond to the values of R0 such 

that 95% and 5% of the simulated total number of cases by 18 January 2020 are greater than 

or equal to 4000, respectively; for simplicity, we treat these intervals as a 
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Table 2. Probability distributions for R0, G and κ. We use these probability distributions to obtain a probability distribution for 

the exponential growth rate r. The gamma distribution is parametrized by its mean and shape. Constant values are fixed 

according to table 1. 

We do not account for this uncertainty during our re-estimation of the exponential growth rate r because the reported estimate 

of R0 and its uncertainty 

Instead of modeling0 with a probability distribution and re-estimating r, we use r 
Some of these studies have now been published in peer- 

resolution of uncertainty in the available information during the earliest 

stages of an epidemic, rather than to provide more precise or accurate 

estimates of R0, we focus strictly on estimates that were published 

between 23 and 26 January 2020. 

2.3. Gamma approximation framework for 

linking r and R0 
Here, we use the gamma approximation framework to the generation-

interval distribution [20,34–38] to (i) characterize the amount of 

uncertainty present in the exponential growth rates and the shape of the 

generation-interval distribution and (ii) assess the degree to which these 

uncertainties affect the estimate of R0. The gamma distribution provides 

a reasonable approximation for generation-interval distributions of 

many diseases, including Ebola, measles and rabies [20]. Studies 1, 5, 

6 and 7 also used a gamma distribution (including the special cases of 

Dirac delta and exponential distributions) to model the generation-

interval distribution for SARS-CoV-2. Assuming that generation 

intervals follow a gamma distribution with mean generation interval G
 

and generation-interval dispersion κ, represented by the squared 

coefficient of variation of a gamma distribution, we have [20]: 

 R0 ¼ (1 þkrG)1=k: (2:2) 

This equation demonstrates that a generation-interval distribution that 

has a larger mean (higher G) or is less variable (lower κ) gives a higher 

estimate of R0 for the same value of r [22]. 

2.4. Re-estimation of the exponential 

growth rate 
As most studies do not report their estimates of the exponential growth 

rate, we first re-estimate the exponential growth rate that corresponds 

to their model assumptions. Since the estimate of the basic reproductive 

number R0 is determined by the exponential growth rate and the shape 

of generation-interval distributions, we can calculate the exponential 

growth rate from the basic reproductive number R0, the mean generation 

interval 
G 

and the generation-interval dispersion κ. First, to account for 

uncertainties in these parameters, we model reported values of the basic 

reproductive number R0, the mean generation interval G and the 

generation-interval dispersion κ with appropriate probability 

distributions. We use gamma distributions to model values reported 

with confidence/credible intervals (CI) and uniform distributions to 

model values reported with ranges; when confidence/credible intervals 

are reported, we parametrize the gamma distribution such that (i) its 

mean matches the estimated value and (ii) the probability that a random 

variable following the specified gamma distribution falls between the 

lower and upper confidence/credible limits is equal to the reported 

confidence/credible level. This probability is not necessarily based on 

equi-tailed quantiles. For example, study 3 estimated R0 ¼ 2:92 (95% 

CI: 2.28–3.67); we model this estimate as a gamma distribution with a 

mean of 2.92 and a shape parameter of 67, which has a 95% probability 

of containing a value between 2.28 and 3.67 (see table 2 for a complete 

description). 
For each study i, we construct a family of parameter sets by drawing 

105 random samples from the corresponding probability distributions 

(table 2) that represent the estimates of (R0)i,m and the assumed values 

of Gi,m and κi,m and calculate the exponential growth rate ri,m by inverting 

equation (2.2): 

¼ [(R0)i,m]ki,m  1 

 ri,m ki,mGi,m , (2:3) 

where m = 1, …, 105. This allows us to approximate the probability 

distributions of the exponential growth rates estimated by each study. 

Uncertainties in the probability distributions that we calculate for the 

estimated exponential growth rates reflect model assumptions, 

statistical methods, and also the quality of the data that each study relies 

on. This approach of reestimating the exponential growth rate does not 

affect the uncertainty captured by our analysis because we are re-

estimating the probability distribution of ri that is consistent with the 
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reported values of (R0)i, 
G

i and κi; in other words, we still obtain the same 

degree of associated uncertainty in (R0)i if we calculate it from ri, Gi and 

κi. 
For study 6, we fix G

 
¼ 8 d and use the gamma distribution (table 

2) that corresponds to R0 ¼ 5:47 (95% CI: 4.16–7.10) during the re-

estimation step for r to remain consistent with the original study, which 

assumed G
 

¼ 8 d for this particular estimate. We account for 

uncertainties in G
 
for study 6 (table 1) in all other steps in order to 

properly incorporate parameter uncertainties in the estimate of R0. Study 

7 uses the IDEA model [28], through which the authors effectively fit 

an exponential curve to the number of confirmed cases without 

propagating any statistical uncertainty. Instead of modelling R0 with a 

probability distribution and recalculating r, we use r = 0.114 d−1, which 

accounts for all uncertainty in the reported R0 when combined with the 

considered range of G
 
in the original article. 

2.5. Pooled estimates 
We construct pooled estimates for each parameter (r, G

 
and κ) using a 

Bayesian multilevel modelling approach, which assumes that the 

parameter estimates across different studies are all drawn from the same 

gamma distributions: 

(r1, ... , r7)  gamma (mean ¼mr, shape ¼m2
r =s2

r ), =
9

>> 

(G1, ... , G7)  gamma (mean ¼
m

G, shape ¼m2
G=s2

G) and (k1, 

... , k7)  gamma (mean ¼mk, shape ¼mk
2=sk

2), ;
>> 

(2:4) 

where μr, μG, mk represent the pooled estimates, and σr, σG and sk 

represent between-study standard deviations. The pooled estimates, 

which are represented as probability distributions rather than point 

estimates, allow us to average across different modelling approaches 

while accounting for the uncertainties in their assumptions. Here, we do 

so by averaging across reported values, without explicitly re-fitting their 

models. We use a Markov chain Monte Carlo approach (cf. §2.7) and 

account for uncertainties associated with ri, 
G

i and κi (and correlations 

among them), by drawing a random set from the family of parameter 

sets (ri,m, Gi,m, ki,m) for each study i at each Metropolis– Hastings step. 

Since the gamma distribution does not allow κ = 0 (this corresponds to 

a Dirac delta generation-interval distribution), we substitute κ = 0.02 for 

study 7. Although this approach nominally treats all studies equally, the 

overall pooled estimate will still be weighted by the certainty of the 

reported estimates (e.g. ri will be sampled from a narrow distribution 

and therefore have stronger influence on μr if the reported 

confidence/credible interval on ri is narrow). 
Our approach does not account for non-independence between the 

parameter estimates made by different modellers. In this case, most 

estimates primarily depend on reported cases from China, particularly 

from Wuhan City. Differences among estimates are primarily driven by 

differences in estimation methods and underlying assumptions, rather 

than by epidemiological differences. The pooled estimates can become 

sharper (i.e. have narrower credible intervals) as we add more models 

even when the models or the data no longer add more information about 

the epidemic. Since SARS-CoV-2 spread primarily in Wuhan City, 

China, during this period, it is not possible to include independent 

sources of data from other countries. Thus, the pooled estimates should 

be interpreted with care. 

2.6. Prior distributions 
We use weakly informative priors on hyperparameters 
(mr, mG, mk, sr, sG, sk): 

mr  gamma (mean ¼ 1=7 d1, shape ¼ 2) 9>>> mG  

gamma (mean ¼ 7 d, shape ¼ 2) >= 

(2:5) 
mk gamma (mean ¼ 0:5, shape ¼ 2) 

 (sr, sG, sk)  half-normal (0, 10): 
>>>>

; 

These priors are chosen such that their 95% quantile ranges are 

sufficiently wider than biologically realistic parameter ranges. 

Specifically, 95% quantile ranges for μr, μG and mk are 0:02–0:40 d1, 

0.8–19.5 d and 0.1–1.4, respectively; 95% prior quantile range for R0 

then corresponds to 1.05–12.00. Parameters that are outside these 

ranges are biologically unrealistic for SARS-CoV-2 outbreaks. 

Therefore, we do not expect our results to be sensitive to these priors. 
We follow recommendations outlined in Gelman et al. [39], 

parametrizing the top-level gamma distributions in terms of their means 

and standard deviations and imposing weakly informative prior 

distributions on between-study standard deviations, i.e. half-normal (0, 

10). We initially used gamma priors with small shape parameters (<1) 

on between-study shape parameters (=μ2/σ2) but found this put too much 

prior probability on large between-study variances—a known problem 

[39]. Alternative choices of prior for the between-study shape 

parameters are also suboptimal. Imposing strong priors (e.g. half-t (μ = 

0, σ = 1, ν = 4)) assumes a priori that between-study variance is large 

(and therefore does not pool different estimates sufficiently). Overly 

weak priors (e.g. half-Cauchy (0,5)) lead to inefficient sampling and 

poor convergence. 

2.7. Markov chain Monte Carlo 
We run four independent Markov chain Monte Carlo chains each 

consisting of 500 000 burnin steps and 500 000 sampling steps using 

the Metropolis–Hastings algorithm. Proposal distributions are modelled 

using independent normal distributions. Initial values and variances of 

the proposal distributions are chosen by trial-and-error to ensure a 

reasonable acceptance rate (around 10%) and convergence within 1 000 

000 steps. Posterior samples are thinned to every 1000 steps to remove 

autocorrelations among posterior samples. Convergence is assessed by 

ensuring that the Gelman–Rubin statistic is below 1.01 [40] and the 

effective sample size is greater than 1000 for all hyperparameters (mr, 

mG, mk, sr, sG, sk); trace plots and marginal posterior distribution plots 

are presented in appendix A. Ninety-five per cent credible intervals (CI) 

are calculated by computing 2.5% and 97.5% quantiles from the 

marginal posterior distribution for each hyperparameter. 
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2.8. Comparing estimates of the basic 

reproductive number 
In order to compare estimates of the basic reproductive number R0 (and 

particularly their associated uncertainties) across different studies, we 

need a consistent measure of uncertainty. Instead of using reported 

uncertainty ranges from the original studies, we re-calculate the basic 

reproductive number from the parameter sets (ri, Gi and κi) for each study 

using equation (2.2) and calculate the median and 95% equi-tailed 

quantile. We refer to these estimates as the base estimates. The 

distribution of the basic reproductive number for each study 

corresponds to the assumed distributions in table 2 for all studies except 

for study 6. The assumed distribution in study 6 in table 2 neglects 

uncertainty in the mean generation interval G, whereas the base 

estimates account for this uncertainty. Furthermore, since the 

distributions in table 2 are constructed by matching the mean and the 

probabilities associated with the reported uncertainty ranges, the exact 

values of the base estimates and their 95% quantiles differ slightly from 

the reported values in table 1. We compare the base estimates with a 

pooled estimate of the basic reproductive number (Rpool) based on the 

pooled estimates of underlying parameters (by substituting μr, μG, mk in 

equation 
(2.2)). 

2.9. Sensitivity analysis 
In order to understand how uncertainties in each component (ri, 

G
i and 

κi) affect the estimate of (R0)i from each study i, we replace ri, Gi and κi 

with our pooled estimates (μr, μG and mk, respectively) one at a time and 

recalculate the basic reproductive number R0. We refer to the resulting 

estimates of R0 as ‘substitute’ estimates. For example, the r-substitute 

estimate for study i is computed as: 

 (1 þkimrGi)1=ki , (2:6) 

where κi and 
G

i are taken from their corresponding parameter sets and μr 

is drawn from the posterior distribution. This procedure allows us to 

assess the sensitivity of the estimates of R0 across appropriate ranges of 

uncertainties. We compare 
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substitute estimates with the base estimates of R0 (based on ri, 
G

i and κi). 

 0 0.1 0.2 0.3

 0.4 

 

  exponential 

Figure 1. 

Comparisons of the reported parameter values with our pooled estimates. We inferred point estimates (black), uniform 

distributions (orange) or confidence/credible intervals (purple) for each parameter from each study, and combined them into 

pooled estimates using a Bayesian multilevel model (red). Points represent medians calculated from the parameter set (r i, Gi, 

ki) for each study i (orange and purple). Error bars represent 95% equi-tailed quantiles calculated from the parameter set (ri, 

Gi, ki) for each study i. Red density plots represent distributions of 2000 posterior samples. Open triangle: we assumed κ = 0.5 

for study 2, which does not report generation-interval assumptions. 

 (a) baseline (b) reduced uncertainty in r 

 uncertainty type uncertainty type 

Figure 2. Effects of the exponential growth rate r, mean generation interval G and generation-interval dispersion κ on the 

estimates of the basic reproductive number R0. We compare estimates of R0 under nine scenarios that propagate different 

parameter uncertainties (a) based on our pooled estimates (μr, μG and mk) and (b) assuming a fourfold reduction in uncertainty 

of our pooled estimate of the exponential growth rate (using m^r ¼ (mr þ 3  median(mr))=4 instead of μr). Each uncertainty type 

represents R0 estimates based the posterior distributions of one of three parameters (μr, μG and 
m

k) while using median 

estimates of two other parameters. The ‘none’ type represents R0 estimate based on the median estimates of μr, μG and mk. 

The ‘all’ type represents R0 estimates based on the joint posterior distributions of μr, μG and 
m

k (also corresponds to R pool). 

Points represent the median estimates. Vertical error bars represent the 95% credible intervals. 
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3. Results 
Figure 1 compares the estimated/assumed values of the exponential 

growth rate r, mean generation interval G
 
and the generation-

interval dispersion κ from different studies with the pooled 

estimates that we calculate from our multilevel model: μr = 0.17 d−1 

(95% CI: 0.12–0.25 d−1), μG = 8.51 d (95% CI: 7.60–9.63 d) and 

mk¼ 0:50 (95% CI: 0.26–1.10). Despite the large uncertainty 

associated with the underlying parameters, most studies consider 

narrower ranges of uncertainties in these parameters. No studies 

take into account how uncertainty in the generation-interval 

dispersion affects their estimates of R0: all studies assumed fixed 

values for κ, ranging from 0 to 1. The estimates of the between-

study standard deviations further suggest that there is a large 

variability in the underlying parameters among the seven studies, 

particularly in r and κ: σr = 0.07 d−1 (95% CI: 0.04– 0.19 d−1), σG = 

1.02 d (95% CI: 0.54–2.50 d) and sk¼ 0:51 (95% CI: 0.24–1.52). 

This variability is likely driven by the differences in modelling 

approaches and assumptions. 
Figure 2 shows how propagating uncertainty in underlying 

parameters affects estimates and CIs for R0. For illustrative 

purposes, we use our pooled estimates, which may represent a 

reasonable proxy for the state of knowledge as of 23–26 January 

2020 (figure 2a). Comparing the estimates that include only some 

sources of uncertainty to the pooled estimate (Rpool ¼ 3:0; 95% CI: 

2.1–4.6; see ‘all’ in figure 2), we see that propagating error from the 

growth rate (as done by all but one of the studies reviewed) is 

absolutely crucial: uncertainty in the pooled estimates for both 

middle bars (μG and mk), which lack growth-rate uncertainty, is 

overly narrow. In this case, propagating error from the mean 

generation interval has a negligible effect compared to propagating 

pooled estimate. 

the uncertainty in r. Uncertainty in the generation-interval 

dispersion κ also has important effects (compare μG credible 

intervals with mk credible intervals in figure 2a). However, our 

estimate of Rpool is relatively insensitive to our assumption of κ = 0.5 

for study 2: assuming κ = 0.1 gives Rpool ¼ 3:0 (95% CI: 2.2–4.7), 

whereas assuming κ = 0.9 gives Rpool ¼ 2:9 (95% CI: 2.1–4.4). 

We further explore how the effects of uncertainties in 

generation-interval distributions change when the estimate of the 

exponential growth rate is more certain. This hypothetical example 

reflects scenarios, in which increased data availability allows 

researchers to estimate r with more certainty. To simulate estimates 

of the exponential growth rate with narrower uncertainty, we use 

m^r ¼ (
m

r þ 
3 

 median(
m

r))=4 instead of μr (figure 2b); then m^r has 

the same median as μr but the associated 95% CI is four times 

narrower 
(0:16–0:19 d1). As uncertainty associated with the exponential 

growth rate decreases, accounting for uncertainties in generation 

intervals becomes even more important. Propagating error only 

from the growth rate (m^r in figure 2b) gives very narrow credible 

intervals in this case. Propagating errors from the mean generation 

interval (μG in figure 2b) or generation-interval dispersion (mk in 

figure 2b) gives more realistic but still narrow credible intervals. 

Figure 3. 

Sensitivity of the reported R0 estimates with respect to our pooled estimates of the underlying parameters. We calculate 

substitute estimates by replacing the reported parameter values (growth rate r, mean generation interval G and generation-

interval dispersion κ) with our corresponding pooled estimates (μr, μG and 
m

k) one at a time and recalculating R0. The pooled 

estimate represents R pool, which is calculated from the joint posterior distribution of μr, μG and 
m

k; this corresponds to replacing 

all reported parameter values with our pooled estimates, which gives identical results across all studies. The reported estimates 

refer to estimates listed in table 1. Points represent the medians of the reported, base, substitute and pooled estimates. 

Vertical error bars represent the 95% credible intervals of our base, substitute and pooled estimates (based on 2000 posterior 

samples). Horizontal dashed lines represent the 95% credible intervals of our 
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Finally, figure 3 compares the reported estimates (table 1) with 

the base estimates (based on ri, 
G

i and κi for each study i) as well as 

21 substitute estimates (3 parameter substitutions × 7 studies). The 

base estimates, which are probability-based approximations of the 

reported estimates, are broadly consistent with the reported 

estimates. All but eight substitute estimates have wider credible 

intervals compared to their corresponding base estimates—the cases 

with more certain substitute estimates are the G-substitute estimates 

for studies 1, 5 and 7, r-substitute estimates for studies 1 and 2 and 

κ-substitute estimates for studies 3, 6 and 7. Accounting for 

uncertainties in the estimate of r has the largest effect on the 

estimates of R0 in most cases (figure 3). For example, the r-

substitute estimate of R0 for study 7 is R0 ¼ 3:9 (95% CI: 2.3–8.8), 

which is much wider than the uncertainty range reported by the 

authors (2.0–3.1). This is consistent with our earlier results (figure 

2) that demonstrated the importance of accounting for uncertainty 

in the exponential growth rate r. In addition, the pooled estimate of 

the basic reproductive number (Rpool ¼ 3:0; 95% CI: 2.1–4.6) has 

wider credible intervals than the base estimates for all studies except 

for study 6. 

4. Discussion 
Estimating the basic reproductive number R0 is crucial for 

predicting the course of an outbreak and planning intervention 

strategies. However, comparing disparate estimates of R0 can be 

difficult when they rely on different methods and assumptions. 

Here, we use a gamma approximation framework [20] to 

decompose R0 estimates into three key quantities (r, G
 
and κ) and 

apply a multilevel Bayesian framework to compare estimates of R0 

for the SARS-CoV-2 outbreak. Our results demonstrate the 

importance of accounting for uncertainties associated with the 

underlying generation-interval distributions, including uncertainties 

in the degree of dispersion in the generation intervals. 
Our analysis shows that many early estimates of R0 rely on 

overly confident assumptions. The neglect of uncertainties in the 

generation-interval dispersion is particularly important because it 

determines the shape of the r–R0 relationship (figure 1): reducing κ 

from 1 (assuming exponentially distributed generation intervals) to 

0 (assuming fixed generation intervals) changes the r–R0 

relationship from linear to exponential (see equation (2.2)). 

Assuming fixed parameter values here will lead to overly confident 

conclusions [41]. 

Omitting consideration of uncertainty in the generationinterval 

dispersion also explains the sensitivity of R0 estimates to the 

exponential growth rate, particularly in study 7 (figure 3). Since 

study 7 assumes a fixed generation interval (κ = 0), they implicitly 

assume an exponential r–R0 relationship, making their estimate too 

sensitive to r. Similarly, the credible intervals associated with the 

base estimates of studies 3 (κ = 0.2), 6 (κ = 0.2) and 7 (κ = 0) are 

wider than the credible intervals associated with their corresponding 

κsubstitute estimates, which rely on wider generation-interval 

distributions (mk¼ 0:50; 95% CI: 0.26–1.10) and, therefore, are less 

sensitive to uncertainties in r and G. One exception is study 1: this 

estimate of R0 is most sensitive to generation-interval dispersion κ, 

because the study assumes an exponentially distributed generation 

interval (κ = 1). Estimates that rely on this assumption implicitly 

assume a linear r–R0 relationship. 

As most studies rely on overly confident assumptions, the 

credible intervals associated with the base estimates of R0 should 

tend to be narrower than the credible intervals of the pooled estimate 

(Rpool ¼ 3:0; 95% CI: 2.1–4.6). While the point estimate of Rpool is 

similar to other reported values from this date range, its credible 

interval is wider than the credible intervals of the base estimates of 

all but one study. This result does not mean that assumptions 

underlying the pooled estimate are too weak; rather, this credible 

interval more accurately reflects the level of uncertainties present in 

the information that was available when these models were fitted. 

In fact, because the pooled estimate does not account for overlap in 

data sources used by the models, it is more likely to be over-

confident than under-confident. Because our median estimate 

averages over the various studies, particular studies have higher or 

lower median estimates. In particular, while the baseline example 

we used from study 6 may appear to be an outlier, the authors of 

this study also explore different scenarios involving changes in 

reporting rate over time, under which their estimates of R0 are 

similar to other reported estimates. 

Of the seven studies that we review, at least one of them directly 

fit their models to the cumulative number of confirmed cases. This 

approach is appealing because of its simplicity and apparent 

robustness, but fitting a model to cumulative incidence neglects 

autocorrelation between successive counts of cumulative cases. As 

a result, this approach both biases parameter estimates and gives 

overly narrow confidence/credible intervals [42,43]. Narrow 

uncertainties in the estimates of the exponential growth rate are 

probably driven by this approach. 
Many sources of noise affect real-world incidence data, 

including both dynamical, or ‘process’, noise (randomness that 

directly or indirectly affects the actual number of cases occurring); 

and observation noise (randomness underlying how many of these 

cases are reported). Disease modellers face the choice of 

incorporating one or both of these in their data-fitting and modelling 

steps. Neglecting one or the other is not always a serious problem, 

particularly if the goal is inferring parameters rather than directly 

making forecasts [43]. Modellers should, however, be aware that 

oversimplifying the error model can give overly narrow 

confidence/credible intervals [42,44]. 
Our simple framework neglects some other important 

phenomena. Examples that seem relevant to this outbreak include: 

changing reporting rates; reporting delays (including the effects of 

weekends and holidays); and changing generation intervals. For 

emerging pathogens such as SARS-CoV-2, there may be an early 

period of time when the reporting rate is very low due to limited 

awareness or diagnostic resources; for example, Zhao et al. [10] 

(study 6) demonstrated that estimates of R0 can change from 5.47 

(95% CI: 4.16–7.10) to 3.30 (95% CI: 2.73–3.96) when they assume 

twofold changes in the reporting rate between 17 January, when the 

official diagnostic guidelines were released [45], and 20 January. 

Delays between key epidemiological timings (e.g. infection, 
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symptom onset and detection) can also shift the shape of an 

observed epidemic curve and, therefore, affect parameter estimates 

as well as predictions of the course of an outbreak [46]. Even though 

a time-invariant delay between infection and detection may not 

affect the estimate of the growth rate, it can still affect the associated 

credible intervals. Other factors related to reporting—including 

changes in case definition, saturation in diagnostic test capacity, 

transparency of data, and representativeness of samples—will also 

affect estimation and inference. Finally, generation intervals can 

become shorter throughout an epidemic, as intervention strategies 

such as isolation of detected cases can reduce the infectious period 

[47]; since we are primarily focusing on the outbreak in Wuhan City 

before confinement, generation intervals are unlikely to change 

significantly. All of these factors, including fitting to cumulative 

curves or ignoring process error, affect the estimation of the 

exponential growth rate (as well as the associated uncertainties), 

which in turn affects the estimation of the basic reproductive 

number. Emergence of a new strain with different transmissibility 

could also affect disease dynamics, and complicate inference; this 

study does not address this possibility. 
Here, we focus on the estimates of R0 that are published within 

a very short time frame (23–26 January 2020). Since these estimates 

were published as pre-prints, rather than in peer-reviewed journals, 

the quality of the analyses as well as the resulting estimates were 

not necessarily finalized. For example, study 4 initially estimated R0 

¼ 3:8 (95% CI: 3.6– 4.0; Read et al. [9]) but revised their estimate 

on 28 January 2020 to R0 ¼ 3:11 (95% CI: 2.39–4.13; Read et al. 

[33]); we do not include their revised estimates in our analysis in 

order to focus on information available at the very beginning of the 

outbreak. Some studies also lack detailed description of their 

methods, data, and/or assumptions. The variation in quality of these 

analyses adds further uncertainty to their results that is not captured 

by their uncertainty quantification (e.g. 
reported confidence/credible intervals) or by our analysis. 

During early phases of an outbreak, it is reasonable to assume 

that the epidemic grows exponentially [15]. However, as the 

number of susceptible individuals decreases or behaviour changes 

in response to perception of the epidemic, the growth rate will 

decrease: estimates of r used for R0 should account for the possibility 

that r is decreasing through time. Although our analysis applies 

strictly to the earliest stages of an epidemic, we expect certain 

lessons to hold more generally: confidence/credible intervals must 

combine as many sources of uncertainty as possible. In fact, as 

epidemics progress and more data become available, it is likely that 

inferences about exponential growth rate (and other 

epidemiological parameters) will generally become more precise; 

thus the risk of over-confidence (when uncertainty about the 

generation-interval distribution is neglected) will become greater. 

Incorporating estimates of the dynamics of susceptibility (e.g. using 

properly calibrated serological studies [48]) is also important for 

characterizing transmission as the outbreak progresses. 
We strongly emphasize the value of attention to accurate 

characterization of the transmission chains via both contact tracing 

and improved statistical frameworks for inferring generation-

interval distributions from such data [49]. A combined effort 

between public-health workers and modellers in this direction is 

crucial both for predicting the course of an epidemic and for 

controlling it. We also emphasize the value of transparency from 

modellers. Model estimates during an outbreak, even in pre-prints, 

should include code links and complete explanations. Methods 

based on open-source tools allow for maximal reproducibility [50]. 
Despite our focus on estimating R0 at the onset of an outbreak, 

many of the issues persist now. For example, Flaxman et al. [51] 

recently estimated the basic reproductive number for SARS-CoV-2 

outbreaks in 11 European countries to be around 3.8 (2.4-5.6), on 

average. While these estimates appear to be broadly consistent with 

earlier estimates from China, comparing the exponential growth rate 

and the underlying generation-interval distributions suggest 

otherwise. The later paper assumes a shorter mean generation 

interval (G
 
¼ 6:5 d) but similar generation-interval dispersion (κ = 

0.38); based on these values, the exponential growth rate has to be 

considerably higher (r = 0.27 d−1) to obtain R0 ¼ 3:8 than the 

exponential growth rate observed in China (μr = 0.17 d−1; 95% CI: 

0:12–0:25 d1). Naively comparing estimates of the basic 

reproductive number without accounting for differences in 

underlying assumptions can lead to over-interpretation of apparent 

differences in the estimates. 
We have provided a basis for comparing exponentialgrowth 

based estimates of R0 and its associated uncertainty in terms of three 

components: the exponential growth rate, mean generation interval 

and generation interval dispersion. We hope this framework will 

help researchers understand and reconcile disparate estimates of 

disease transmission early in an epidemic. 
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Figure 4. Trace plots of the multilevel model. Each chain is represented by a different colour. 
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