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A novel coronavirus (SARS-CoV-2) emerged as a global threat in December 2019.

As the epidemic progresses, disease modellers continue to focus on estimating the
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basic reproductive number Ro—the
average number of secondary cases
caused by a primary case in an
otherwise susceptible population.
The modelling approaches and
resulting estimates of Ro during the
beginning of the outbreak vary
widely, despite relying on similar
data sources. Here, we present a
statistical framework for comparing
and combining different estimates of
Ro across a wide range of models by
decomposing the basic reproductive
number into three key quantities: the
exponential growth rate, the mean
generation  interval and  the
generation-interval dispersion. We
apply our framework to early
estimates of Ro for the SARS-CoV-2
outbreak, showing that many Ro
estimates are overly confident. Our
results emphasize the importance of
propagating uncertainties in all
components of Ro, including the
shape of the generation-interval
distribution, in efforts to estimate Ro

at the outset of an epidemic.

1. Introduction

Since December 2019, a novel
coronavirus (SARS-CoV-2) has been
spreading globally [1]. Although the
virus is likely to have originated from
animal hosts [2], the ability of SARS-
CoV-2 to directly transmit between
humans, particularly without symptoms,
has posed a greater threat for its spread
[3]. As of 11 May 2020, more than 4
million cases of the coronavirus disease
2019 (COVID-19) have been confirmed
internationally [4].

As SARS-CoV-2 began to spread in
parts of China outside Hubei province, as
well as in other countries, many analyses
of the outbreak were published as pre-
prints [5-10] and in peer-reviewed
journals [11-14]. These analyses focused
on estimating the basic reproductive
number Ro—the average number of

secondary cases generated by a primary

case in a fully susceptible population [15,16]—in order to assess the pandemic potential
of SARS-CoV-2. Rapid dissemination of these early analyses played an important role
in shaping the response to the outbreak [17].

© 2020 The Authors. Published by the Royal Society under the terms of the Creative
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We commend these researchers for their timely contribution and those who made
the data publicly available. However, the estimates of Ro from different research groups
(as well as the associated degrees of uncertainty) vary considerably even though most
analyses rely on similar data—reports of confirmed cases from China, particularly from
Wuhan City. Comparing a disparate set of estimates of Ro can be difficult when the
estimation methods and their underlying assumptions vary widely. In some cases,

similar methods can give different estimates; in other cases, different methods CEJH%‘i%QC' Interfac

similar estimates. Understanding the differences between Ro estimates is critical to
controlling an epidemic as Ro provides information about the level of intervention
required to prevent further transmission [15], and about the potential final size of the
outbreak [15,18].

Here, we show that a wide range of approaches to estimating Ro can be understood
and compared in terms of estimates of three quantities: the exponential growth rate r,
the mean generation interval G and the generation-interval dispersion k. The generation
interval, defined as the interval between the time when an individual becomes infected
and the time when that individual infects another individual [19], characterizes the
relationship between r and Ro [20— 23]; therefore, estimates of Ro depend directly on
their assumptions about the generation-interval distribution and the exponential growth
rate. Early in an epidemic, information is scarce and there is uncertainty surrounding
both case reports (affecting the estimates of the exponential growth rate) and contact
tracing (affecting the estimates of the generation-interval distribution). Ignoring these
uncertainties leads to overly confident conclusions.

To formalize the estimation of uncertainty at the onset of an outbreak, we present a
statistical framework for averaging across estimates of the basic reproductive number
Ro from multiple studies. We apply the method to seven disparate models published
online as pre-prints between 23 and 26 January 2020 that estimate Ro for the SARS-
CoV-2 outbreak in Wuhan City, China [5-10,24]. Previous studies have directly
calculated the average of reported Ro values [17,25] but such methods mask differences
in underlying model assumptions and statistical methods. Instead, we model the
estimate of Ro (as well as the associated generation-interval parameters, G, and k) from
each study with probability distributions that account for the uncertainty in the
estimates; this allows us to re-estimate the corresponding distributions of the
exponential growth rates r. We then use a Bayesian multi-level model to average the
three key quantities (r, G and k). The resulting pooled estimates (i, hg and my) are used
to calculate the pooled estimate of the basic reproductive number, Rpool. Using pooled
estimates allows us to average appropriately across the uncertainties present in
modelling approaches and in their underlying assumptions. We use these pooled
estimates to illustrate the importance of propagating different sources of error,
particularly uncertainty in both the growth rate and the generation interval.

2. Methods

2.1. Description of the studies
We gathered information on estimates of Ro for the SARS-CoV-2 outbreak in Wuhan City,
China and their model assumptions from seven articles that were published online between

23 and 26 January 2020. Five studies [7-10,24] were uploaded to preprint servers (bioRxiv,
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medRxiv and SSRN); one report was
posted on the website of Imperial College
London [6]; and one report was posted on

nextstrain.org [5] (table 1).

2.2. Model assumptions

Despite a wide range of models considered
across the studies, all of them assume that
the epidemic initially grows exponentially.
The IDEA model (used in study 7) includes
a discount parameter d that allows the
model to deviate from exponential growth
when d # 0 [28], but study 7 estimates d =
0 across all parameters they consider. Even
though some studies consider reported
cases up to 26 January 2020—3 days after
the travel restriction that took place on 23
January 2020 [29]—the exponential growth
assumption can still describe the number of
reported cases reasonably well; given the
incubation period of around 5 days [30] as
well as reporting delays of around 5 days
[31], the majority of reported cases during
the study periods are likely to have been
infected prior to the travel ban.

When the epidemic is growing
exponentially, the estimated basic
reproductive number is determined by the
exponential growth rate r and the intrinsic
generation-interval distribution g(t), which
describes the infection time of secondary
cases caused by a primary case in a fully

susceptible population [32], via the Euler—Lotka equation [22]:

1

R__%d exp ( rt)g(t) dt: 2:1)

0

Therefore, it is sufficient to consider the estimates and assumptions about the exponential
growth rates and the shapes of the generation-interval distributions to understand disparate
estimates of the basic reproductive number. All model assumptions reduce to properties of
the exponential growth rate r and the shape of the generation-interval distribution g(t). For
example, if a model relies on overly confident assumptions about the underlying observation
(how new cases are reported) or process (how new cases are generated) model, the estimated
confidence/credible intervals associated with the exponential growth rates or parameters of
the generation-interval distributions (from each study) will necessarily be narrow.

As most studies do not report their estimates of the exponential growth rate, we first
summarize model outcomes using reported (either estimated or assumed) values of the basic

reproductive number Ro, mean generation interval ~ and generationinterval dispersion K,

represented by the squared coefficient of variation (table 1)—we re-estimate the
corresponding exponential growth rates from these values later. Study 2 only reports their
assumptions about the mean generation interval; for simplicity, we assume k = 0.5 in our
analysis. Study 6 presents Ro estimates under 12 different scenarios regarding reporting rates
(0-, 0.5-, one- or twofold increase in reporting rate) and the shapes of the generation-interval
distributions based on previous coronavirus outbreaks (Middle East respiratory syndrome,
MERS; severe acute respiratory syndrome, SARS; and their average)—we use their baseline
scenario in our analysis to remain consistent with other studies, which do not account for
changes in the reporting rate. While estimates of Ro and the associated confidence intervals
for study 6 in table 1 are based on G % 8 d, we account for the uncertainty they consider for
G in our formal analysis.

While most studies report confidence/credible intervals to quantify uncertainties
associated with their estimates, some use different measures. In particular, study 2 reports a
range of Ro for the worst and best case scenarios, which correspond to the values of Ro such
that 95% and 5% of the simulated total number of cases by 18 January 2020 are greater than
or equal to 4000, respectively; for simplicity, we treat these intervals as a
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Table 2. Probability distributions for Ro, G and k. We use these probability distributions to obtain a probability distribution for

the exponential growth rate r. The gamma distribution is parametrized by its mean and shape. Constant values are fixed

according to table 1.

We do not account for this uncertainty during our re-estimation of the exponential growth rate r because the reported estimate

of Roand its uncertainty

Instead of modelingowith a probability distribution and re-estimating r, we use r

Some of these studies have now been published in peer-

resolution of uncertainty in the available information during the earliest
stages of an epidemic, rather than to provide more precise or accurate
estimates of Ro, we focus strictly on estimates that were published
between 23 and 26 January 2020.

2.3. Gamma approximation framework for
linking r and Ro

Here, we use the gamma approximation framework to the generation-
interval distribution [20,34-38] to (i) characterize the amount of
uncertainty present in the exponential growth rates and the shape of the
generation-interval distribution and (ii) assess the degree to which these
uncertainties affect the estimate of Ro. The gamma distribution provides
a reasonable approximation for generation-interval distributions of
many diseases, including Ebola, measles and rabies [20]. Studies 1, 5,
6 and 7 also used a gamma distribution (including the special cases of
Dirac delta and exponential distributions) to model the generation-
interval distribution for SARS-CoV-2. Assuming that generation
intervals follow a gamma distribution with mean generation interval G
and generation-interval dispersion Kk, represented by the squared
coefficient of variation of a gamma distribution, we have [20]:

Ro% (1 pkrG)'=*: (2:2)

This equation demonstrates that a generation-interval distribution that
has a larger mean (higher G) or is less variable (lower k) gives a higher
estimate of Ro for the same value of r [22].

2.4. Re-estimation of the exponential
growth rate

As most studies do not report their estimates of the exponential growth
rate, we first re-estimate the exponential growth rate that corresponds
to their model assumptions. Since the estimate of the basic reproductive

number Ro is determined by the exponential growth rate and the shape
of generation-interval distributions, we can calculate the exponential
growth rate from the basic reproductive number Ro, the mean generation

interval G and the generation-interval dispersion k. First, to account for

uncertainties in these parameters, we model reported values of the basic
reproductive number Ro, the mean generation interval G and the
generation-interval  dispersion k with appropriate probability
distributions. We use gamma distributions to model values reported
with confidence/credible intervals (CI) and uniform distributions to
model values reported with ranges; when confidence/credible intervals
are reported, we parametrize the gamma distribution such that (i) its
mean matches the estimated value and (ii) the probability that a random
variable following the specified gamma distribution falls between the
lower and upper confidence/credible limits is equal to the reported
confidence/credible level. This probability is not necessarily based on
equi-tailed quantiles. For example, study 3 estimated Ro % 2:92 (95%
CI: 2.28-3.67); we model this estimate as a gamma distribution with a
mean of 2.92 and a shape parameter of 67, which has a 95% probability
of containing a value between 2.28 and 3.67 (see table 2 for a complete
description).

For each study i, we construct a family of parameter sets by drawing
10° random samples from the corresponding probability distributions
(table 2) that represent the estimates of (Ro);,m and the assumed values
of Gimand k;,mand calculate the exponential growth rate r;m by inverting
equation (2.2):

% [(Ro)im]kim 1

Fim ki,mGi,m s (2:3)

where m = 1, ..., 10°. This allows us to approximate the probability
distributions of the exponential growth rates estimated by each study.
Uncertainties in the probability distributions that we calculate for the
estimated exponential growth rates reflect model assumptions,
statistical methods, and also the quality of the data that each study relies
on. This approach of reestimating the exponential growth rate does not
affect the uncertainty captured by our analysis because we are re-
estimating the probability distribution of r; that is consistent with the



reported values of (Ro);, Gi and k;; in other words, we still obtain the same
degree of associated uncertainty in (Ro);if we calculate it from r;, G;and
Ki.

For study 6, we fix G % 8 d and use the gamma distribution (table
2) that corresponds to Ro % 5:47 (95% CI: 4.16-7.10) during the re-
estimation step for r to remain consistent with the original study, which
assumed G % 8 d for this particular estimate. We account for
uncertainties in G for study 6 (table 1) in all other steps in order to
properly incorporate parameter uncertainties in the estimate of Ro. Study
7 uses the IDEA model [28], through which the authors effectively fit
an exponential curve to the number of confirmed cases without
propagating any statistical uncertainty. Instead of modelling Ro with a
probability distribution and recalculating r, we use r = 0.114 d-!, which
accounts for all uncertainty in the reported Ro when combined with the

considered range of G in the original article.

2.5. Pooled estimates

We construct pooled estimates for each parameter (r, G and k) using a
Bayesian multilevel modelling approach, which assumes that the
parameter estimates across different studies are all drawn from the same
gamma distributions:

9
(r1, ..., r7) gamma (mean ¥%m,, shape %4m? =s%), =">>

(Gi, ... , G7) gamma (mean %", shape %m?s=s’s) and  (ki,

>>
..., k7) gamma (mean %my, shape %mi>=s:?), ;

(2:4)

where W, Mg, Mg represent the pooled estimates, and o, oc and sk
represent between-study standard deviations. The pooled estimates,
which are represented as probability distributions rather than point
estimates, allow us to average across different modelling approaches
while accounting for the uncertainties in their assumptions. Here, we do
so by averaging across reported values, without explicitly re-fitting their
models. We use a Markov chain Monte Carlo approach (cf. §2.7) and

.. . . G .
account for uncertainties associated with r;, ~;and k; (and correlations

among them), by drawing a random set from the family of parameter
sets (rim, Gim, kim) for each study i at each Metropolis— Hastings step.
Since the gamma distribution does not allow k = 0 (this corresponds to
a Dirac delta generation-interval distribution), we substitute k = 0.02 for
study 7. Although this approach nominally treats all studies equally, the
overall pooled estimate will still be weighted by the certainty of the
reported estimates (e.g. ri will be sampled from a narrow distribution
and therefore have stronger influence on p. if the reported
confidence/credible interval on r;is narrow).

Our approach does not account for non-independence between the
parameter estimates made by different modellers. In this case, most
estimates primarily depend on reported cases from China, particularly
from Wuhan City. Differences among estimates are primarily driven by
differences in estimation methods and underlying assumptions, rather
than by epidemiological differences. The pooled estimates can become
sharper (i.e. have narrower credible intervals) as we add more models
even when the models or the data no longer add more information about
the epidemic. Since SARS-CoV-2 spread primarily in Wuhan City,
China, during this period, it is not possible to include independent

sources of data from other countries. Thus, the pooled estimates should
be interpreted with care.

2.6. Prior distributions

We use weakly informative priors on hyperparameters

(my, mg, M, S, Sa, Sk):

m, gamma (mean % 1=7 d', shape % 2) 9>>> m¢

gamma (mean % 7 d, shape % 2) >=

J.Ra%c.Interfac

my gamma (mean % 0:5, shape % 2)

(sr, Se, sx) half-normal (0, 10): >>>>,
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These priors are chosen such that their 95% quantile ranges are
sufficiently wider than biologically realistic parameter ranges.
Specifically, 95% quantile ranges for W, g and myare 0:02-0:40 d',
0.8-19.5 d and 0.1-1.4, respectively; 95% prior quantile range for Ro
then corresponds to 1.05-12.00. Parameters that are outside these
ranges are biologically unrealistic for SARS-CoV-2 outbreaks.
Therefore, we do not expect our results to be sensitive to these priors.

We follow recommendations outlined in Gelman et al. [39],
parametrizing the top-level gamma distributions in terms of their means
and standard deviations and imposing weakly informative prior
distributions on between-study standard deviations, i.e. half-normal (0,
10). We initially used gamma priors with small shape parameters (<1)
on between-study shape parameters (=u?/62) but found this put too much
prior probability on large between-study variances—a known problem
[39]. Alternative choices of prior for the between-study shape
parameters are also suboptimal. Imposing strong priors (e.g. half-t (u=
0, 0 =1, v=4)) assumes a priori that between-study variance is large
(and therefore does not pool different estimates sufficiently). Overly
weak priors (e.g. half-Cauchy (0,5)) lead to inefficient sampling and
poor convergence.

2.7. Markov chain Monte Carlo

We run four independent Markov chain Monte Carlo chains each
consisting of 500 000 burnin steps and 500 000 sampling steps using
the Metropolis—Hastings algorithm. Proposal distributions are modelled
using independent normal distributions. Initial values and variances of
the proposal distributions are chosen by trial-and-error to ensure a
reasonable acceptance rate (around 10%) and convergence within 1 000
000 steps. Posterior samples are thinned to every 1000 steps to remove
autocorrelations among posterior samples. Convergence is assessed by
ensuring that the Gelman—Rubin statistic is below 1.01 [40] and the
effective sample size is greater than 1000 for all hyperparameters (m,
Mg, Mk, Sr, Se, Sk); trace plots and marginal posterior distribution plots
are presented in appendix A. Ninety-five per cent credible intervals (CI)
are calculated by computing 2.5% and 97.5% quantiles from the
marginal posterior distribution for each hyperparameter.

royalsocietypublishing.o



2.8. Comparing estimates of the basic
reproductive number

In order to compare estimates of the basic reproductive number Ro (and
particularly their associated uncertainties) across different studies, we
need a consistent measure of uncertainty. Instead of using reported
uncertainty ranges from the original studies, we re-calculate the basic
reproductive number from the parameter sets (r;, Gjand ;) for each study
using equation (2.2) and calculate the median and 95% equi-tailed
quantile. We refer to these estimates as the base estimates. The
distribution of the basic reproductive number for each study
corresponds to the assumed distributions in table 2 for all studies except
for study 6. The assumed distribution in study 6 in table 2 neglects
uncertainty in the mean generation interval G, whereas the base
estimates account for this uncertainty. Furthermore, since the
distributions in table 2 are constructed by matching the mean and the
probabilities associated with the reported uncertainty ranges, the exact
values of the base estimates and their 95% quantiles differ slightly from
the reported values in table 1. We compare the base estimates with a
pooled estimate of the basic reproductive number (Rpool) based on the
pooled estimates of underlying parameters (by substituting p, hg, mgin
equation

(2.2)).

2.9. Sensitivity analysis

In order to understand how uncertainties in each component (r;, Gi and

ki) affect the estimate of (Ro); from each study i, we replace r;, Gjand K;
with our pooled estimates (., pgand my, respectively) one at a time and
recalculate the basic reproductive number Ro. We refer to the resulting
estimates of Ro as ‘substitute’ estimates. For example, the r-substitute
estimate for study i is computed as:

(1 pkim(Gi)1=k, (2:6)

where k;and Gi are taken from their corresponding parameter sets and p

is drawn from the posterior distribution. This procedure allows us to
assess the sensitivity of the estimates of Roacross appropriate ranges of

uncertainties. We compare
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Comparisons of the reported parameter values with our pooled estimates. We inferred point estimates (black), uniform
distributions (orange) or confidence/credible intervals (purple) for each parameter from each study, and combined them into
pooled estimates using a Bayesian multilevel model (red). Points represent medians calculated from the parameter set (r;, Gj,
ki) for each study i (orange and purple). Error bars represent 95% equi-tailed quantiles calculated from the parameter set (r;,
Gi, ki) for each study i. Red density plots represent distributions of 2000 posterior samples. Open triangle: we assumed k = 0.5
for study 2, which does not report generation-interval assumptions.
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Figure 2. Effects of the exponential growth rate r, mean generation interval G and generation-interval dispersion k on the
estimates of the basic reproductive number Ro. We compare estimates of Ro under nine scenarios that propagate different
parameter uncertainties (a) based on our pooled estimates (ur, Lsand mk) and (b) assuming a fourfold reduction in uncertainty
of our pooled estimate of the exponential growth rate (using m*:% (mrp 3 median(m:))=4 instead of ). Each uncertainty type
represents Ro estimates based the posterior distributions of one of three parameters (ur, us and mk) while using median

estimates of two other parameters. The ‘none’ type represents Ro estimate based on the median estimates of pr, pcand mx.

The ‘all’ type represents Ro estimates based on the joint posterior distributions of ur, psand m (also corresponds to R pool).
Points represent the median estimates. Vertical error bars represent the 95% credible intervals.

substitute estimates with the base estimates of Ro (based on r;, Gi and ;).



3. Results

Figure 1 compares the estimated/assumed values of the exponential
growth rate r, mean generation interval G and the generation-
interval dispersion k from different studies with the pooled
estimates that we calculate from our multilevel model: p,=0.17 d-!
(95% CI: 0.12-0.25 d"), ps = 8.51 d (95% CI: 7.60-9.63 d) and

Figure 3.

overly narrow. In this case, propagating error from the mean
generation interval has a negligible effect compared to propagating
pooled estimate.

the uncertainty in r. Uncertainty in the generation-interval

dispersion Kk also has important effects (compare pg credible

Sensitivity of the reported Ro estimates with respect to our pooled estimates of the underlying parameters. We calculate
substitute estimates by replacing the reported parameter values (growth rate r, mean generation interval G and generation-

interval dispersion k) with our corresponding pooled estimates (ur, ue and mk) one at a time and recalculating Ro. The pooledny00144

estimate represents R pool, which is calculated from the joint posterior distribution of ur, psand mk,' this corresponds to replacing

all reported parameter values with our pooled estimates, which gives identical results across all studies. The reported estimates
refer to estimates listed in table 1. Points represent the medians of the reported, base, substitute and pooled estimates.
Vertical error bars represent the 95% credible intervals of our base, substitute and pooled estimates (based on 2000 posterior
samples). Horizontal dashed lines represent the 95% credible intervals of our

m4 0:50 (95% CI: 0.26-1.10). Despite the large uncertainty
associated with the underlying parameters, most studies consider
narrower ranges of uncertainties in these parameters. No studies
take into account how uncertainty in the generation-interval
dispersion affects their estimates of Ro: all studies assumed fixed
values for k, ranging from 0 to 1. The estimates of the between-
study standard deviations further suggest that there is a large
variability in the underlying parameters among the seven studies,
particularly in r and k: o,= 0.07 d-! (95% CI: 0.04— 0.19 d°"), o=
1.02 d (95% CI: 0.54-2.50 d) and s% 0:51 (95% CI: 0.24-1.52).
This variability is likely driven by the differences in modelling
approaches and assumptions.

Figure 2 shows how propagating uncertainty in underlying
parameters affects estimates and CIs for Ro. For illustrative
purposes, we use our pooled estimates, which may represent a
reasonable proxy for the state of knowledge as of 23-26 January
2020 (figure 2a). Comparing the estimates that include only some
sources of uncertainty to the pooled estimate (Rpool % 3:0; 95% CI:
2.1-4.6; see ‘all’ in figure 2), we see that propagating error from the
growth rate (as done by all but one of the studies reviewed) is
absolutely crucial: uncertainty in the pooled estimates for both

middle bars (ug and my), which lack growth-rate uncertainty, is

intervals with m credible intervals in figure 2a). However, our
estimate of Rpool is relatively insensitive to our assumption of k= 0.5
for study 2: assuming k = 0.1 gives Rpool % 3:0 (95% CI: 2.2-4.7),
whereas assuming k = 0.9 gives Rpool % 2:9 (95% CI: 2.1-4.4).

We further explore how the effects of uncertainties in
generation-interval distributions change when the estimate of the
exponential growth rate is more certain. This hypothetical example
reflects scenarios, in which increased data availability allows
researchers to estimate r with more certainty. To simulate estimates
of the exponential growth rate with narrower uncertainty, we use

mA % (mrb 3 median(mr))=4 instead of p, (figure 2b); then m#, has

the same median as p, but the associated 95% CI is four times
narrower

(0:16-0:19 d'). As uncertainty associated with the exponential
growth rate decreases, accounting for uncertainties in generation
intervals becomes even more important. Propagating error only
from the growth rate (m”in figure 2b) gives very narrow credible
intervals in this case. Propagating errors from the mean generation
interval (U in figure 2b) or generation-interval dispersion (my in

figure 2b) gives more realistic but still narrow credible intervals.

Isocietypublishing.o
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Finally, figure 3 compares the reported estimates (table 1) with

the base estimates (based on r;, Gi and k; for each study i) as well as

21 substitute estimates (3 parameter substitutions x 7 studies). The
base estimates, which are probability-based approximations of the
reported estimates, are broadly consistent with the reported
estimates. All but eight substitute estimates have wider credible
intervals compared to their corresponding base estimates—the cases
with more certain substitute estimates are the G-substitute estimates
for studies 1, 5 and 7, r-substitute estimates for studies 1 and 2 and
K-substitute estimates for studies 3, 6 and 7. Accounting for
uncertainties in the estimate of r has the largest effect on the
estimates of Ro in most cases (figure 3). For example, the r-
substitute estimate of Ro for study 7 is Ro % 3:9 (95% CI: 2.3-8.8),
which is much wider than the uncertainty range reported by the
authors (2.0-3.1). This is consistent with our earlier results (figure
2) that demonstrated the importance of accounting for uncertainty
in the exponential growth rate r. In addition, the pooled estimate of
the basic reproductive number (Rpool % 3:0; 95% CI: 2.1-4.6) has
wider credible intervals than the base estimates for all studies except
for study 6.

4. Discussion

Estimating the basic reproductive number Ro is crucial for
predicting the course of an outbreak and planning intervention
strategies. However, comparing disparate estimates of Ro can be
difficult when they rely on different methods and assumptions.
Here, we use a gamma approximation framework [20] to
decompose Ro estimates into three key quantities (r, G and k) and
apply a multilevel Bayesian framework to compare estimates of Ro
for the SARS-CoV-2 outbreak. Our results demonstrate the
importance of accounting for uncertainties associated with the
underlying generation-interval distributions, including uncertainties
in the degree of dispersion in the generation intervals.

Our analysis shows that many early estimates of Ro rely on
overly confident assumptions. The neglect of uncertainties in the
generation-interval dispersion is particularly important because it
determines the shape of the r—Ro relationship (figure 1): reducing k
from 1 (assuming exponentially distributed generation intervals) to
0 (assuming fixed generation intervals) changes the r—Ro
relationship from linear to exponential (see equation (2.2)).
Assuming fixed parameter values here will lead to overly confident
conclusions [41].

Omitting consideration of uncertainty in the generationinterval
dispersion also explains the sensitivity of Ro estimates to the
exponential growth rate, particularly in study 7 (figure 3). Since
study 7 assumes a fixed generation interval (k = 0), they implicitly
assume an exponential r—Ro relationship, making their estimate too
sensitive to r. Similarly, the credible intervals associated with the
base estimates of studies 3 (k= 0.2), 6 (k=0.2) and 7 (k = 0) are
wider than the credible intervals associated with their corresponding
ksubstitute estimates, which rely on wider generation-interval
distributions (my% 0:50; 95% CI: 0.26—1.10) and, therefore, are less
sensitive to uncertainties in r and G. One exception is study 1: this

estimate of Ro is most sensitive to generation-interval dispersion K,
because the study assumes an exponentially distributed generation
interval (k = 1). Estimates that rely on this assumption implicitly
assume a linear r—Ro relationship.

As most studies rely on overly confident assumptions, the

credible intervals associated with the base estinilg}e% %%E?éf\?ﬂlﬁlblishing. 0

tend to be narrower than the credible intervals of the pooled estimate
(Rpool % 3:0; 95% CI: 2.1-4.6). While the point estimate of Rpool is
similar to other reported values from this date range, its credible
interval is wider than the credible intervals of the base estimates of
all but one study. This result does not mean that assumptions
underlying the pooled estimate are too weak; rather, this credible
interval more accurately reflects the level of uncertainties present in

the information that was available when these models wereJfiite&C.Interfac

In fact, because the pooled estimate does not account for overlap in
data sources used by the models, it is more likely to be over-
confident than under-confident. Because our median estimate
averages over the various studies, particular studies have higher or
lower median estimates. In particular, while the baseline example
we used from study 6 may appear to be an outlier, the authors of
this study also explore different scenarios involving changes in
reporting rate over time, under which their estimates of Ro are
similar to other reported estimates.

Of'the seven studies that we review, at least one of them directly
fit their models to the cumulative number of confirmed cases. This
approach is appealing because of its simplicity and apparent
robustness, but fitting a model to cumulative incidence neglects
autocorrelation between successive counts of cumulative cases. As
a result, this approach both biases parameter estimates and gives
overly narrow confidence/credible intervals [42,43]. Narrow
uncertainties in the estimates of the exponential growth rate are
probably driven by this approach.

Many sources of noise affect real-world incidence data,
including both dynamical, or ‘process’, noise (randomness that
directly or indirectly affects the actual number of cases occurring);
and observation noise (randomness underlying how many of these
cases are reported). Disease modellers face the choice of
incorporating one or both of these in their data-fitting and modelling
steps. Neglecting one or the other is not always a serious problem,
particularly if the goal is inferring parameters rather than directly
making forecasts [43]. Modellers should, however, be aware that
oversimplifying the error model can give overly narrow
confidence/credible intervals [42,44].

Our simple framework neglects some other important
phenomena. Examples that seem relevant to this outbreak include:
changing reporting rates; reporting delays (including the effects of
weekends and holidays); and changing generation intervals. For
emerging pathogens such as SARS-CoV-2, there may be an early
period of time when the reporting rate is very low due to limited
awareness or diagnostic resources; for example, Zhao et al. [10]
(study 6) demonstrated that estimates of Ro can change from 5.47
(95% CI: 4.16-7.10) to 3.30 (95% CI: 2.73-3.96) when they assume
twofold changes in the reporting rate between 17 January, when the
official diagnostic guidelines were released [45], and 20 January.
Delays between key epidemiological timings (e.g. infection,
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symptom onset and detection) can also shift the shape of an
observed epidemic curve and, therefore, affect parameter estimates
as well as predictions of the course of an outbreak [46]. Even though
a time-invariant delay between infection and detection may not
affect the estimate of the growth rate, it can still affect the associated
credible intervals. Other factors related to reporting—including
changes in case definition, saturation in diagnostic test capacity,
transparency of data, and representativeness of samples—will also
affect estimation and inference. Finally, generation intervals can
become shorter throughout an epidemic, as intervention strategies
such as isolation of detected cases can reduce the infectious period
[47]; since we are primarily focusing on the outbreak in Wuhan City
before confinement, generation intervals are unlikely to change
significantly. All of these factors, including fitting to cumulative
curves or ignoring process error, affect the estimation of the
exponential growth rate (as well as the associated uncertainties),
which in turn affects the estimation of the basic reproductive
number. Emergence of a new strain with different transmissibility
could also affect disease dynamics, and complicate inference; this
study does not address this possibility.

Here, we focus on the estimates of Ro that are published within
avery short time frame (23-26 January 2020). Since these estimates
were published as pre-prints, rather than in peer-reviewed journals,
the quality of the analyses as well as the resulting estimates were
not necessarily finalized. For example, study 4 initially estimated Ro
% 3:8 (95% CI: 3.6—4.0; Read et al. [9]) but revised their estimate
on 28 January 2020 to Ro % 3:11 (95% CI: 2.39-4.13; Read et al.
[33]); we do not include their revised estimates in our analysis in
order to focus on information available at the very beginning of the
outbreak. Some studies also lack detailed description of their
methods, data, and/or assumptions. The variation in quality of these
analyses adds further uncertainty to their results that is not captured
by their uncertainty quantification (e.g.
reported confidence/credible intervals) or by our analysis.

During early phases of an outbreak, it is reasonable to assume
that the epidemic grows exponentially [15]. However, as the
number of susceptible individuals decreases or behaviour changes
in response to perception of the epidemic, the growth rate will
decrease: estimates of r used for Ro should account for the possibility
that r is decreasing through time. Although our analysis applies
strictly to the earliest stages of an epidemic, we expect certain
lessons to hold more generally: confidence/credible intervals must
combine as many sources of uncertainty as possible. In fact, as
epidemics progress and more data become available, it is likely that
inferences about exponential growth rate (and other
epidemiological parameters) will generally become more precise;
thus the risk of over-confidence (when uncertainty about the
generation-interval distribution is neglected) will become greater.
Incorporating estimates of the dynamics of susceptibility (e.g. using
properly calibrated serological studies [48]) is also important for
characterizing transmission as the outbreak progresses.

We strongly emphasize the value of attention to accurate
characterization of the transmission chains via both contact tracing

and improved statistical frameworks for inferring generation-
interval distributions from such data [49]. A combined effort
between public-health workers and modellers in this direction is
crucial both for predicting the course of an epidemic and for
controlling it. We also emphasize the value of transparency from
modellers. Model estimates during an outbreak, even in pre-prints,

should include code links and complete expldifviatzo Vadupasblishing.o

based on open-source tools allow for maximal reproducibility [50].

Despite our focus on estimating Ro at the onset of an outbreak,
many of the issues persist now. For example, Flaxman et al. [51]
recently estimated the basic reproductive number for SARS-CoV-2
outbreaks in 11 European countries to be around 3.8 (2.4-5.6), on
average. While these estimates appear to be broadly consistent with

earlier estimates from China, comparing the exponential grovxjtkkrgg c.interfac

and the underlying generation-interval distributions suggest
otherwise. The later paper assumes a shorter mean generation
interval (G % 6:5 d) but similar generation-interval dispersion (kK =
0.38); based on these values, the exponential growth rate has to be

considerably higher (r = 0.27 d-') to obtain Ro % 3:8 than th20200144

exponential growth rate observed in China (= 0.17 d-'; 95% CI:
0:12-0:25 d'). Naively comparing estimates of the basic
reproductive number without accounting for differences in
underlying assumptions can lead to over-interpretation of apparent
differences in the estimates.

We have provided a basis for comparing exponentialgrowth
based estimates of Roand its associated uncertainty in terms of three
components: the exponential growth rate, mean generation interval
and generation interval dispersion. We hope this framework will
help researchers understand and reconcile disparate estimates of
disease transmission early in an epidemic.
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