0N LN AW~

Q19

Fatal arrhythmias: Another reason why doctors remain
cautious about chloroquine/hydroxychloroquine for

treating COVID-19 @ ©

Ilija Uzelac, PhD,* Shahriar Iravanian, MD, PhD," Hiroshi Ashikaga, MD, PhD,*
Neal K. Bhatia, MD,' Conner Herndon, MS,* Abouzar Kaboudian, PhD,*
0> James C. Gumbart, PhD,* Elizabeth M. Cherry, PhD,” Flavio H. Fenton, PhD*

From the *School of Physics, Georgia Institute of Technology, Atlanta, Georgia, "Division of Cardiology,
Section of Electrophysiology, Emory University Hospital, Atlanta, Georgia, *Cardiac Arrhythmia
Service, Johns Hopkins University School of Medicine, Baltimore, Maryland, and 5School of
Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia.

BACKGROUND Early during the current coronavirus disease 19
(COVID-19) pandemic, hydroxychloroquine (HCQ) received a signif-
icant amount of attention as a potential antiviral treatment, such
that it became one of the most commonly prescribed medications
for COVID-19 patients. However, not only has the effectiveness of
HCQ remained questionable, but mainly based on preclinical and a
few small clinical studies, HCQ is known to be potentially arrhyth-
mogenic, especially as a result of QT prolongation.

OBJECTIVE The purpose of this study was to investigate the
arrhythmic effects of HCQ, as the heightened risk is especially rele-
vant to COVID-19 patients, who are at higher risk for cardiac com-
plications and arrhythmias at baseline.

METHODS An optical mapping technique utilizing voltage-
sensitive fluorescent dyes was used to determine the arrhythmic

effects of HCQ in ex vivo guinea pig and rabbit hearts perfused
with the upper therapeutic serum dose of HCQ (1000 ng/mL).

RESULTS HCQ markedly increased action potential dispersion, re-
sulted in development of repolarization alternans, and initiated
polymorphic ventricular tachycardia.

CONCLUSION The study results further highlight the proarrhyth-
mic effects of HCQ.

KEYWORDS Action potential duration dispersion; Arrhythmias;
Experimental optical mapping; Hydroxychloroquine; Long QT syn-
drome; T-wave alternans

(Heart Rhythm 2020;M:1-7) © 2020 Heart Rhythm Society.
All rights reserved.

Introduction

The drugs chloroquine (CQ) and hydroxychloroquine
(HCQ), aless toxic derivative of QC, are used to treat malaria
and autoimmune conditions. They now have been proposed
to have antiviral activity against severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), which is responsible
for the coronavirus disease 2019 (COVID-19) pandemic.
Recent in vitro studies'~ and a small nonrandomized clinical
trial of 36 patients from France’ had promising results and
initiated the trend of using CQ/HCQ to treat COVID-19.
However, the integrity of the nonrandomized clinical trial
has been questioned by the International Society of Antimi-
crobial Chemotherapy for the trial’s unclear inclusion criteria
and triage of patients.” Although a subsequent smaller
randomized clinical trial of 30 patients showed little to no
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effect,’” a larger randomized clinical trial of 62 patients
showed that HCQ significantly reduced the incidence and
duration of COVID-19 pneumonia.® These studies do not
have sufficient statistical power to unequivocally prove the
positive effects of HCQ on COVID-19. Nevertheless, the ur-
gency of the pandemic has resulted in (1) the United States
Food and Drug Administration (FDA) issuing an emergency
use authorization for CQ/HCQ as treatment of COVID-19, an
action that has been criticized by former FDA leaders; and (2)
a call by the World Health Organization (WHO) for rapid,
large, global CQ/HCQ clinical trials.

Although CQ and HCQ have become the focus as treat-
ment of COVID-19, they remain unendorsed by many physi-
cians because of (1) limited clinical outcome data; (2)
availability of other potentially more effective antiviral and
interleukin inhibitors, such as remdesivir and tocilizumab,
respectively; and (3) potential risk of malignant arrhythmia
and sudden cardiac death (SCD) due to QT prolongation.7’8
In response to the trend of using CQ/HCQ for treatment of
COVID-19, the Mayo Clinic,” the Heart Rhythm Society
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COVID-19 Task Force in conjunction with the American
College of Cardiology and American Heart Association,'”
and other clinicians'" all independently called for urgently
needed guidance when using HCQ alone and in combination
with other drugs with regard to arrhythmias.

The most pressing issue is determining the dosage of CQ/
HCQ that is effective yet safe, particularly in patients at risk
for drug-induced long QT syndrome (LQTS) and scp.” 2
This is especially important because HCQ is now being
used in combination with other antivirals and antibiotics
such as ritonavir, lopinavir, and azithromycin, all of which
are associated with drug-induced LQTS.'" Recent reports
have shown direct myocardial involvement in many
COVID-19 patients,'” presumably due to the abundance of
angiotensin-converting enzyme 2 receptors on the cardiac
cell surface, which is the main entry point of SARS-CoV-
2. Evidence of myocardial damage has been described in
the form of elevated troponin levels and high inflammatory
burden, which can induce vascular inflammation and
myocarditis.'>'* Computational models have proposed that
the SARS-Cov-2 envelope protein E’ forms a pentameric
ion channel, and incorporation of this channel into the cell
membrane of cardiac myocytes may contribute to the re-
ported arrhythmic events in COVID-19. Clinically, some pa-
tients with severe COVID-19 develop left ventricular
dysfunction, cardiogenic shock, and various cardiac arrhyth-
mias.'”'® Consequently, many COVID-19 patients who
already are susceptible to arrhythmias may be at even higher
risk for deadly arrhythmogenic effects from COVID-19 drug
combination treatments.

A recent clinical trial of 81 patients in Brazil that tested 2
different doses of CQ was prematurely halted because several
patients in the high-dose group developed LQTS and experi-
enced malignant arrhythmias, including ventricular tachy-
cardia (VT), within the first 3 days; 11 patients later died
within 6 days.'” Although the precise mechanisms by which
QC/HCQ initiates arrhythmia remain unclear, the electro-
physiological effects of HCQ have been investigated in iso-
lated mouse and guinea pig (GP) hearts.'® HCQ primarily
blocks the funny current I, the L-type calcium current, and
the rapid delayed rectifier potassium current I,. As a result,
the main electrophysiological manifestations of HCQ are si-
nus bradycardia (Online Figure 1) and repolarization abnor-
malities (QT prolongation, increased repolarization
dispersion), which could lead to torsades de pointes'’
(TdP) and polymorphic VT."”

In this study we used optical mapping to demonstrate the
arrhythmic effects of HCQ on GP and rabbit hearts perfused
with the upper therapeutic serum dose of HCQ (1000 ng/mL).

Methods

Tissue preparation

All experiments conformed to the current Guide for Care and
Use of Laboratory Animals, published by the National Insti-
tutes of Health (NIH Publication No. 85-23, revised 1996)
and were approved by the Office of Research and Integrity
Assurance at Georgia Institute of Technology. Animals
were lightly anesthetized with ketamine/xylazine/aceproma-
zine (17/9/0.9 mg/kg), then deeply anesthetized with 3%—
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Figure1  Arrhythmic effects of hydroxychloroquine on rabbit and guinea pig hearts. A: Top: Transmembrane voltage signal in time from the region in the heart
indicated with a white dot in the bottom frames. The voltage signal shows 5 regular activations at 250 ms, followed by initiation of fibrillation, characterized by a
fast, disorganized electrical activity signal. Bottom: Two frames of the voltage profile on the heart’s surface showing multiple fractionated waves driving fibril-
lation. B: Example of arrhythmic ectopic beats following a protocol of two S1 stimuli and a second shorter S2 originating from the apex. Top: Voltage signal
showing the first 2 beats from a stimulation protocol that emulates a quick change of rate, which creates 2 arrhythmic ectopic (premature P1 and P2) beats. Bot-
tom: Optical images showing the initiation of the S2 beat at the apex and then initiation of the first ectopic beat originating from the top center. Color bar indicates

tissue polarized (-80 mV) in blue and depolarized (+20 mV) in red.
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5% isoflurane mixed with oxygen for induction and approx-
imately 1%-3% for maintenance of deep anesthesia. Five mi-
nutes before euthanasia, heparin 300 U/kg was injected
intravenously to prevent vessel blood clots. Hearts were
excised via left thoracotomy under deep anesthesia. After
excision, hearts were perfused retrogradely via the aorta
with warm Tyrode solution (37° £ 0.5°C) for 3 minutes
and gassed with a mixture of 95% O,/5% CO, to expel all
blood and prepare the hearts for perfusion with cold cardio-
plegic solution, also gassed with a mixture of 95% O,/5%
CO,. The Tyrode solution consisted of the following (in
mmol/L): for GP: NaCl 124, KCI 4.0 , NaHCO5 24, NaH,._
PO,4-H,O 1.2, MgCl,-6H,0 1.0, CaCl, 1.8, dextrose 4.0;
and for rabbit: NaCl 124, KCl 4.0, NaHCO; 24, NaH,.
PO,4-H,0 0.9, MgCl,-6H,0 0.7, CaCl, 2.0, dextrose 4.0.
Cardioplegic cold solution contained the following (in
mmol/L): NaCl 110, KC1 16 , NaHCO; 10, MgCl,-6H,0
16, and CaCl, 1.2; and was used to induce cardiac stasis to
protect the myocardium while the hearts were transferred to
the optical mapping laboratory (within 15 minutes). For GP
hearts, a modified Tyrode solution was used for hypokalemia
as described in the Results section.

In the laboratory, the hearts were immersed in a heated
oval chamber kept at 38° = (0.5°C and Langendorft-
perfused with Tyrode solution gassed with a mixture of
95% 0,/5% CO,. Contraction motion was suppressed by
(*)-Blebbistatin (Cayman Chemicals, Ann Arbor, MI) at Ty-
rode concentration of 1.5-2 puM, previously prepared as a
stock solution dissolved with dimethylsulfoxide at the ratio
of 5 mg/mL. Voltage (Vm)-sensitive dye JPW-6003 (Dr Le-
slie Loew’s group, University at Connecticut, Farmington,
CT) was previously prepared as a stock solution dissolved
in ethanol at the ratio of 20 mg/mL. For the whole GP and
rabbit hearts, 0.4 mg of Vm dye was used. The Vm dye
was injected as a bolus in the cannulated aorta over a course
of 3 minutes in small injection intervals 15 seconds apart so
as not to interfere with the flow rate. The total accommoda-
tion time for the heart, including dye staining before the
initial measurements were taken, was 30 minutes. Forty-
five minutes after cannulation, HCQ was added into the
Tyrode solution at a concentration of 1000 ng/mL (upper
therapeutic dose of HCQ), previously dissolved in a small
volume of Tyrode solution free of organic solvents and
stirred for 15 minutes on a hot plate kept at 35°C.

Optical mapping setup

Two red LEDs (each 7 W, center wavelength 660 nm; LED
Engin, Wilmington, MA) were used as light sources for Vm
dye excitation, which was driven from a stabilized current
source (PLUMBUS [Pulsed LUMinos Bimodal Uniform
Source]; donated from Aleksa Tech). LED light was colli-
mated with a planoconvex lens (ThorLabs) and bandpass
filtered with a 660/10 OD4 filter (Edmund Optics). Emitted
florescence was filtered through a 700-nm long-pass OD6 fil-
ter (Chroma Optical) placed on the camera side. Fluorescence
signals were acquired with an EMCCD camera (Evolve 128;

Photometrics) at a resolution of 128 X 128 pixels, digitized s
at 16 bits at 500 frames per second, and transferred to a per- Q9

sonal computer via real-time uninterrupted data transfer. A
custom acquisition program was used for camera control.

Stimulation protocol

External bipolar stimuli (World Precision Instruments) 3—5
ms in duration and stimulation current twice the pacing
threshold of 3-8 mA were used to investigate the dynamic ef-
fect of HCQ. Both before and after HCQ, a down-sweep pac-
ing protocol with pacing cycle length (CL) starting from 400
ms was applied. The CL was gradually shortened in
decreasing steps ranging from 5 to 25 ms until conduction
block or fibrillation was reached. For each CL, once
steady-state conditions were achieved, 20 consecutive beats
were recorded. The programming sequence was coordinated
with the internal camera trigger clock using an Arduino Uno
board, which served to control the onset of each pacing stim-
ulus and to synchronize with the camera. With this method,
image stacking could be performed to increase the signal-
to-noise ratio and avoid using stronger spatiotemporal
filtering, which can oversmooth signals and leave small
beat-to-beat action potential differences undetected. During
alternans, stacking was performed separately for even and
odd beats. To investigate ectopic beats, S1-S2 protocols
were run (S1 of 600 ms and 450 ms for rabbit and 450 ms
for GP, with S2 varied down until conduction block, fibrilla-
tion, or ectopic beat) before and after HCQ.

When fibrillation occurred, defibrillation was performed
with low-energy antifibrillatory pacing,”’ which is a low-
energy defibrillation method to prevent tissue damage. For
the histograms, action potential duration (APD) was calcu-
lated at 50% repolarization.

Results

In both preparations, HCQ increased the minimum CL at which
pacing the hearts was possible, that is, as the wavelength
increased due to the drug’s effect, conduction block was easier
to elicit for longer periods with the drug, thereby predisposing
the heart to arrhythmia. In the GP and rabbit, no fibrillation was
obtained without the drug, and it was possible to pace with no
arrhythmias at CL as short as 130 ms for GP heart and 140 ms
for rabbit heart (Online Video 1). Shorter CLs led to conduction
block but no arrhythmias. In contrast, tachycardia/fibrillation
not only appeared in both hearts with HCQ, but it was inducible
at longer CLs. Furthermore, marked alternans in APD devel-
oped with HCQ. Although APD alternans with variations >5
ms from beat to beat can be induced in rabbit ventricles, it is
only possible at CL <220 ms. In GP, alternans is not common,
but when observed it appears at CL <160 ms. With HCQ, APD
alternans readily developed at CL <380 ms in rabbit and 350
ms in GP.

In rabbit, arrhythmias occurred with HCQ at CL <250 ms.
Figure 1A and Online Video 2 show the initiation of fibrilla-
tion (multiple waves) by conduction block. Figure 2A com-
pares the distribution of APD for CL of 250 ms between
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Figure 2  Dispersion of action potential duration (APD) as a result of hydroxychloroquine (HCQ) in rabbit and guinea pig (GP) hearts. Histograms were ob-

tained from optical mapping after steady state was reached for a constant cycle length of 250 ms for rabbit and 220 ms for GP with and without HCQ. As alternans
appeared with HCQ, 2 histograms are shown (1 for even beats and 1 for odd beats). A: APD distribution in rabbit ventricles with normal Tyrode solution and with
HCQ showing an increase in APDmax and alternans from beat to beat. Optical action potentials also show APDmax increase and alternans in duration. B: APD
distribution in GP ventricles with normal Tyrode solution and with HCQ. Optical mapping signals show similar effect as seen in rabbit. PCL = pacing cycle

length.

control and HCQ. The histograms show how APD dispersion
increased with HCQ, with APD,,,.x prolongation from 155 to
205 ms, and median APD changing from 124 ms to alter-
nating APD values with medians of 125 and 132 ms.
Morphologic changes in action potential (AP) also can be
observed in the optical mapping voltage trace comparing
the normal constant AP with the increased and alternating
APs with HCQ. Online Video 3 shows the difference in
wave propagation by periodic stimulation between control
and HCQ. Without HCQ, continuous pacing is possible
even at very short CL of 140 ms with propagation still
smooth, whereas with HCQ at even relatively longer CL of
380 ms, large heterogeneities in wave propagation are pre-
sent. These dynamic heterogeneities promote arrhythmia
initiation at CL <250 ms and in some cases complex propa-
gation at CL <350 ms (Online Video 4).

For GP, APD dispersion increased with HCQ, resulting in
conduction blocks and arrhythmias initiated at CL. <220 ms.

Figure 2B shows APD dispersion at this CL without HCQ o

and the development of alternans with HCQ. With HCQ, al-
ternans changed the normal APD,,;,, of 80 ms and APD,,,, of
120 ms to 70 ms and 145 ms, respectively, on alternating
beats. Mean APD also changed, alternating between 96 and
112 ms every other beat, representing a decrease and increase
in the short and long APD, respectively, compared to mean
APD of 104 ms without HCQ. Figure 2B shows the voltage
trace and increase in AP duration and alternans with HCQ.
Although there was a large dispersion of APD across the
GP heart, spatial alternans mostly developed as concordant
alternans (Figure 3), in which APD alternates from long to
short values from beat to beat. Only a small region of the tis-
sue experienced discordant alternans. However, in rabbit,

FLA 5.6.0 DTD m HRTHMS8415_proof W 20 June 2020 W 1:45 am MW ce

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544



545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
5717
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

print & web 4C/FPO

Uzelac et al  Arrhythmic Effects of Hydroxychloroquine in Ex Vivo Experiments 5
A Guinea Pig with HCQ B Rabbit with HCQ

Even Beat - 0Odd Beat - Even Beat 178 Odd Beat i
g ms ms ,"'
7 -
(] f)
g : )]
2 ’ .
O | t i - -
()]
< \ i ‘v‘.* v
< e s ke e .

00 60 63 84

Even Beat 2 Odd Beat % Even Beat Odd Beat
c ms " e 2 MS 12
o 15 i 8 e 10 10
(Z) b 8 8
() . 10 10 6 6
Q i K Rk 4 4
-UB) i \5 '$ s 2 2
=) \ 0 i ¥ i 0 0
o "" t : = -2
é “‘*-.. . [od2 ° ‘&4 % N "4‘ 15 4 4

10 - - 6
Figure 3  Spatial dispersion of action potential duration (APD) as a result of hydroxychloroquine (HCQ) in rabbit and guinea pig (GP) hearts. Maps were ob-

tained from steady-state activations at a pacing cycle length of 220 ms for GP and 250 ms for rabbit. Top row: Distribution of APD for even and odd beats.
Bottom row: Change in action potential duration (AAPD) for even and odd beats. A: GP displays mostly concordant alternans in which most of the tissue ex-
periences a short action potential, followed by a long action potential. Only a small region of discordant alternans (DA) with the opposite pattern (long—short)
appears in the lower right corner and edges of the tissue. B: Rabbit displays marked DA with different distribution of long and short APD on alternating beats. Note
that during DA, regions that have a long APD will have a short APD on the next beat, and vice versa. Black bar indicates location of the stimulus electrode; data

underneath could not be collected.

although the tissue showed a similar range of APDs across
the tissue, a more complex spatial pattern developed as
alternans was discordant, with some regions of the tissue
alternating with long—short APDs and others alternating
short—long. The large beat-to-beat changes in APD disper-
sion due to discordant alternans can be seen in the APD
maps and AAPD maps (Figure 3).

Although ectopic beats were not observed in rabbit hearts,
ectopic beats were seen in GP hearts. Figure 1B and Online
Video 5 show 2 ectopic beats generated after 3 stimulations
in GP heart. Online Video 6 shows an episode of VT initia-
tion in rabbit heart.

Because hypokalemia has been shown to be prevalent in
COVID-19 patients, we tested the effect of HCQ under hypo-
kalemia by switching the Tyrode solution in the GP experi-
ment from normal to lower potassium (from 4 to 2.5 mmol/
L) and lower magnesium (from 1 to 0.8 mmol/L). We
perfused with hypokalemia Tyrode solution twice, with
normal Tyrode solution (washout) in between. In both in-
stances, fibrillation occurred spontaneously under the hypo-
kalemic conditions (the heart was defibrillated when back
in normal Tyrode solution), highlighting a possible higher
risk of HCQ in patients with hypokalemia and thus the impor-
tance of monitoring and treating low potassium levels
because they can increase the probability of arrhythmic
events.'’

Discussion

These experiments show that as QT interval/APD increased
with HCQ, arrhythmias could be induced at CLs closer to
physiological heart rates, thus demonstrating the potential
dangers of HCQ. In particular, immediate arrhythmia initia-
tion was observed when hypokalemia was induced with
HCQ, but not only in the hypokalemia case. This is important
because of particular concern about hypokalemia in COVID-
19 disease.”’ Hypokalemia seems to be present in almost all
COVID-19 patients,”” likely due to the interaction of SARS-
CoV2 with the renin-angiotensin system (RAS), binding to

angiotensin I converting enzyme 2 receptor of RAS and g

causing prevalent hypokalemia.

With HCQ alone, spatial alternans was observed at longer
CLs, including those of normal sinus heart rates without the
drug. Although HCQ produces bradycardia that, in principle,
may not allow these CLs to be reachable, sympathetic surges
can easily lead to sudden increased heart rates that induce
pause/bradycardia arrhythmias such as TdP. Furthermore,
the increased APD heterogeneity induced by HCQ at brady-
cardic CLs also showed dramatic anisotropic conduction
slowing even before alternans developed. This phenomenon
can be seen clearly in Online Video 3. At CL of 380 ms, a
marked slowing in conduction velocity is observed in a re-
gion of the heart that produces a nonsmooth propagation
compared to the case without HCQ at a very short CL of
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140 ms. Thus, HCQ induced complex repolarization hetero-
geneities and a substrate for arrhythmias such as TdP.

Study limitations

The most important limitation is the low number of experi-
ments for rabbit and GP, and we are aware that our results
are more descriptive because statistical analysis cannot be
performed. However, because our results in normal rabbit
and GP hearts compare well with those of other studies in
both species,”>* and in general when healthy these hearts
do not go into fibrillation when slowly paced down (until
conduction block) but did so under HCQ, we believe that
our study has provided some mechanistic insights. Neverthe-
less, this study needs to be extended to allow for complete
statistical analysis that can solidify the proarrhythmic mech-
anisms of HCQ as well as the possibility of any differences
related to sex, given that female sex is known to be an inde-
pendent risk factor for developing TdP.

Another limitation of our study is the use of animal models
with small hearts and electrophysiologies different from hu-
man hearts. A major problem with using small hearts is the
difficulty in inducing reentrant tachycardias due to the size
mismatch between ventricles and reentrant wavelength.
Therefore, a negative result in small hearts is not reassuring
for the absence of arrhythmogenicity in humans. However,
we observed polymorphic VT with characteristics similar
to clinical TdP, which is a finding of concern because typi-
cally induction of TdP is easier in humans than in these
models.

The most important ion channels in the genesis of TdP are
the delayed rectifier potassium channels, especially Ik,. Both
rabbit and GP ventricles have dofetilide-sensitive I, and are
prone to exhibiting repolarization alternans as a result of po-
tassium channel blockade.>> >’ Therefore, these species are
commonly used to test for drug-induced repolarization ab-
normalities”**” that could affect humans.

Conclusion
A challenging aspect of COVID-19 treatment with respect to

oz heart problems is the use of unusual drug combinations, such

as HCQ with antibiotics such as azithromycin, which before
the COVID-19 pandemic were rarely used together. The risk
profiles of individual drugs with regard to QT prolongation
have been characterized, but data on the combinations of
those drugs are lacking. Only a few studies, just becoming
available,” indicate prolongation of LQTS. Although current
trials have seldom required discontinuation of therapy, it re-
mains imperative to investigate the safety of potentially
effective drugs such as CQ/HCQ and their combinations
before their widespread clinical use as treatment against
SARS-CoV-2.

Based on the limited and contradictory evidence reported
to date, the efficacy of CQ/HCQ against COVID-19 is ques-
tionable at best, and the safety is unclear due to the propensity
for fatal arrhythmia. Until the results of large, well-designed
clinical trials (such as the WHO Solidarity Trial) are

available, clinicians have compelling reasons not to treat
COVID-19 patients with CQ/HCQ.

Appendix

Supplementary data

Supplementary data associated with this article can be found s
in the online version at .https://doi.org/10.1016/j.hrthm.202
0.05.030.
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