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To date, various optimization algorithms have been employed to design and improve the performance
of nanophotonic structures. Here, we propose to utilize a machine-learning algorithm viz. binary-
Additive Reinforcement Learning Algorithm (b-ARLA) coupled with finite-difference time-domain
(FDTD) simulations to design ultra-compact and efficient on-chip integrated nanophotonic 50:50 beam
splitters (T-junctions). The T-junctions reported in this paper have a footprint of only 1.2 pm x 1.2 pm.
To the best of the authors’ knowledge, these designs are amongst the smallest ever reported to date
across either simulations or experiments. For all the designs, the simulated net power transmission
efficiency is ~80%, corresponding to insertion loss < 1 dB, at A = 1.55 pm. We envision that
the design methodology, as reported herein, would be useful in general for designing any efficient

integrated-photonic device for optical communications systems.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade, the field of silicon nanophotonics has wit-
nessed major breakthroughs [1]. The critical enabler for its un-
precedented success can be attributed to the development of
advanced foundry services [1,2]. In addition to this, nanophotonic
designs have been demonstrated with very efficient structures
that can be implemented to obtain favourable characteristics like
high sensitivity, low-loss, and high index contrast in dielectric
distribution [3-5]. The integration of such all-dielectric passive
nanophotonic components such as multiplexing couplers, waveg-
uides, and so on with active devices such as lasers, LEDs, etc. onto
a single chip will ultimately lead to the miniaturization of optical
circuits with high data processing capability, very similar to what
we see in silicon chips used for integrated electronics as of today.
However, contrary to electronic circuits, there is still a lack of
effective design methodologies in nanophotonics [6,7].

Traditional nanophotonic design strategies are based upon
theoretical and scientific intuitions [8-11]. However, most of
the time, it does not provide analytical solutions for complex
nanophotonic structures and light manipulation behaviour [12].
In addition to this, device designs based on analytical methods
may also not satisfy performance requirements like compact-
ness, efficiency, bandwidth, and power transmission. For this
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reason, a wide variety of numerical approaches such as evolution-
ary algorithm [13], objective-first inverse-design algorithm [14-
17], topology optimization [ 18], nonlinear-search algorithm [19-
23], and direct-binary-search algorithm [24,25] have been imple-
mented to design integrated-nanophotonic structures. Amongst
all, inverse optimization, or objective-first inverse-design algo-
rithms have been shown to deliver the best performing nanopho-
tonic structures with adequate computational trade-offs [14-17,
26-32]. From such a perspective, we can see that inverse-design
algorithms (one such example is the adjoint method) are highly
suitable for developing next-generation, compact nanophotonic
devices with novel functionalities and features.

Machine learning has also recently emerged and attracted a
great deal of attention from both academia and industry alike
as a viable design methodology. In all areas of physics itself,
ranging from gravitational wave analysis [33], to materials de-
signs [34,35], to phase transitions in quantum physics [36,37],
machine learning have successfully been leveraged to provide for
performance comparable to some of the most advanced design
methodologies in a natural and straightforward manner. In all
these previous examples, we observe that the advantage of ma-
chine learning lies in the accurate modelling and characterization
of complex relationships within the underlying systems. To sum-
marize, the advantages of machine learning are four-fold. First,
machine learning algorithms allow for hardware parallelization.
For example, if we consider popular evolutionary algorithms,
we will observe that they heavily depend on two important
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Fig. 1. Schematic of a pixelated nanophotonic structure. (a) 3D representation of the T-junction splitter. (b) Top view of the unit cell.

factors: (a) the number of generations, and (b) diversity of ini-
tial solutions. In fact, their computational complexity rises with
each necessary operation like reproduction, mutation, recombi-
nation, selection, and survival of the fittest [38]. Combination of
these operations adversely affects the performance, probabilistic
transition, and convergence for these algorithms.

In contrast, machine-learning algorithms, even the one de-
scribed in this paper, do not require any operation of such sort.
The algorithm described in this paper is fully parallelizable. The
training phase can be divided, and the simulations can be dis-
tributed arbitrarily across multiple computers, i.e., the data is
generated and evaluated independently of each other [12,38]. This
is true not just in case of genetic algorithms only but for all class
of optimization algorithms, including inverse optimization or even
topology optimization. By transitioning from an optimization-based
design methodology to a prediction-based one, we gain computa-
tional advantage via hardware parallelization [39].

Second, machine learning also does not depend on the quality
of initial solutions to guarantee reasonable solutions. Third, in
contrast to an inverse-design algorithm like the adjoint method,
machine learning can solve the forward design problem much
faster with a neural network (deep learning). Even though this
advantage is not big enough when comparing against the ad-
joint method, which requires only two forward simulations for
the entire optimization, machine learning still has a marginal
advantage in the sense that one can restrict the design space to
manufacturable devices and physical solutions, which are harder
to find with adjoint methods. Fourth, in machine learning (es-
pecially in deep learning), the model is trained to “intelligently
learn” the non-linear relationships between the input and output
over a large dataset. The model in this way can also “intelligently
learn”, for example, Maxwell’s equations and solve them, without
explicitly knowing about them. This allows for possible discovery
of solutions outside of the boundaries of the training data, and
the ability to transfer knowledge between problems by a method
known as “transfer learning”. This approach represents a complete
paradigm shift in thinking of how nanophotonics research has
been understood till date and what it could lead to in the time
to come; to enable equally disruptive series of novel findings in
nanophotonics.

Out of various machine learning algorithms, there are many
advantages of using reinforcement learning algorithms. First, re-
inforcement learning algorithms are generally used to solve very
complex problems that cannot be solved by conventional tech-
niques therefore it can achieve long-term results and can outper-
form humans in many tasks (e.g. Go strategy game [40]). Second,
it can correct for the errors that occurred during the training
process; therefore, once an error is corrected by the model, the

chances of occurring the same error are very less [41,42]. Third,
in the absence of a training dataset, it is bound to learn from its
experience, hence, it is intended to achieve the ideal behaviour
(similar to a real human being) within a specific context, to
maximize its performance [43]. Finally, reinforcement learning
algorithms strikes a balance between exploration and exploita-
tion. Exploration is the process of trying different things to check
if they are better than what has been tried before whereas,
exploitation is the process of trying the things that have worked
best in the past. Other learning algorithms do not perform this
balance [41,42].

Considering the advantages stated above, researchers working
in the field of optics and photonics have started harnessing ma-
chine learning to develop foundry compatible optical components
for large scale industrial rollout [39,44-49]. In this work, we uti-
lized a machine learning algorithm, namely binary-Additive Re-
inforcement Learning Algorithm (b-ARLA) coupled with a finite-
difference time-domain (FDTD) method to demonstrate efficient
and ultra-compact 50:50 beam splitters (T-junctions) as shown in
Fig. 1(a). The top view of the “unit cell”, as shown in Fig. 1(b) con-
sists of square sub-unit pixels of either silicon or air. Square pixels
have an advantage from the fabrication point-of-view. Although
electron-beam-lithography can be used to fabricate the structures
presented in this paper (minimum feature size ~ 100 nm), for
large scale fabrication of a large number of devices on wafers,
typically the industry standard is to rely on immersion projection
lithography. It is well-known that optical proximity correction is
required to ensure correct size and shape of the features [50].
Since the optical lithography industry has for a long time per-
fected this process for square and rectangular features which
are the most abundant geometrical shapes present in ICs, we
believe that our structures can be readily adapted to multi-wafer
processes. Hence, square pixels have an advantage during fabri-
cation. In addition to this, circular pixels, i.e. holes may also be
used to design similar digital metamaterial devices, as have been
demonstrated elsewhere [51].

Finally, Table 1 provides a more detailed analysis of power
splitters reported in the literature to date and compares it with
the work as described in this paper. A few noteworthy implemen-
tations of ultra-compact Y- or T-junction 50:50 power splitters
reported in the scientific literature have had area footprints >
2 pm? with < 1 dB insertion loss at the telecom wavelength of
1.55 pwm [49,52-59]. Therefore, it is evident that with a footprint
of only 1.2 wmx 1.2 wm, the designs reported in this paper are
amongst the smallest ever reported across either simulations or
experiments as of date.
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Table 1
Summary of symmetric and asymmetric nanophotonic power splitters.

Reference Splitter shape Imbalance Insertion loss Bandwidth Polarization Footprint
(split ratio) (centre wavelength =
1550 nm)

Tahersima et al. [45] Y 50:50 - 200 nm TE 6.76 pm?

(2.6 pmx2.6 wm)
Tahersima et al. [45] Y 25:75 - 200 nm TE 6.76 pwm?

(2.6 pmx2.6 pm)
Zhang et al. [52] Y 50:50 0.13 dB ~80 nm TE 2.4 pm?

(1.2 pmx2 pwm)
Kurt et al. [53] T 50:50 <0.3 dB ~200 nm ™ 16.77 pm?

(4.1 pmx4.1 pm)
Alpkilic et al. [54] T 100:0 <0.3 dB - ™ 7.84 pm?

(2.8 pmx2.8 um)
Alpkilic et al. [54] T 100:0 0.73 dB - TE 7.84 pm?

(2.8 pmx2.8 pm)
Xu et al. [55] Y 50:50 ~1dB ~30 nm - 13 pm?

(3.6 pmx3.6 pm)
Xu et al. [55] Y 40:60 ~1 dB ~30 nm - 13 wm?

(3.6 pmx3.6 pm)
Xu et al. [55] Y 25:75 ~1dB ~30 nm - 13 pm?

(3.6 pmx3.6 pm)
Lin et al. [56] Y 50:50 0.36 dB ~100 nm TE 3.2 pm?

(1.4 pmx2.3 pm)
Ren et al. [57] Y 50:50 0.33 dB ~40 nm TE 7.2 pm?

(2.4 pmx3 pm)
Xie et al. [58] Y 50:50 <15 dB ~40 nm TE 18 pm?

(4 pmx4.5 pm)
Chang et al. [59] Y 50:50 <1.5 dB ~80 nm TE 8.3 um?

(2.9 pmx2.9 pm)
This work T 50:50 0.86 dB ~40 nm TE 1.44 pm?

(1.2 pmx1.2 pm)
This work T 50:50 0.95 dB ~40 nm TE 1.44 um?

(1.2 pmx1.2 pm)

2. Design and optimization

The perceptron-like machine learning algorithm [55] used in
this study is implemented to reduce the insertion loss (splitting
the input power with minimal loss) of the power splitter at
an operating wavelength of 1.55 pwm. The algorithm developed
herein combines both the “additive updates” feature of a percep-
tron algorithm [54,60] as well as the “reward for state idea” of
reinforcement learning [60]. The flowchart of the algorithm is
shown in Fig. 2, which depicts that the algorithm consists of two
phases: training and inference.

2.1. Training phase

The training phase starts with creating a photonic structure
where each constituent sub-unit of the “unit cell” is randomly
distributed. Essentially, the entire “unit cell” consists of 12 x
12 randomly distribution pixels. However, due to the inherent
symmetry of the structure itself, i.e., 50:50 split ratio, the gener-
ated random structure now consists of 12 x 6 binary pixels (flip
symmetry across the y-direction), where “1” denotes the high
refractive index Si-sub-units and low refractive index air-sub-
units are represented by “0” in the binary “unit cell”. Keeping in
mind the capability of current fabrication technologies, the design
parameters of each sub-unit within the “unit cell” are taken very
conservatively (e.g., 100 nm minimum features). Therefore, the
initial design parameters are fixed as follows: square-shaped sub-
units with a size of 0.1 wumx0.1 wm, the height of the structure
is 0.22 um (typical in SOI), and the material refractive index is
nsi = 3.46. The refractive index of air is n,; = 1. Therefore,
the size of the complete photonic structure is 1.2 pmx1.2 pum
x 0.22 wm. The size of the input and output waveguides is
fixed at 1 pm (length) x 0.44 pm x 0.22 pm (cross-section).
The substrate thickness is assumed to be 0.6 wm. Following the
creation of the “unit cell” structure along with the input and

the output waveguide ports, a 2.5D varFDTD (variational FDTD)
method [61] is incorporated to analyse the time-domain response
of the photonic structure at A = 1.55 wm. Common desktop
CPUs were employed to perform the 2.5D varFDTD simulations
(Lumerical Inc.’s Lumerical MODE solutions). A more elaborate
description of the full-wave simulation is provided in the fol-
lowing section. While extracting the response of the structure,
the insertion loss (in dB) was extracted for the nanophotonic
structure. The rationale behind considering the insertion loss as
the metric for optimization is inspired by the fact that photonic
integrated circuit designers would typically be interested in the
total amount of light that is transmitted into the fundamental
mode. To accommodate these requirements, the insertion loss is
defined as:

Insertion Loss (I. L.) = —10log;g(mean(Tpet)) (1)

where Ty is the net transmission into the fundamental mode
of the output waveguides. The difference between the numerical
value of the insertion loss in the worst possible scenario and the
insertion loss extracted from the steady state response of the
ith randomly generated photonic layout is defined as the reward
function R;, which is then defined as follows:

Ri = |[~L~worst - I~L~i| (2)

In the above expression, I.L.,yorst as stated earlier of the insertion
loss in the worst possible scenario, which essentially refers to two
different scenarios: a binary “unit cell” all of whose individual
sub-unit elements are either (a) “0” (air) or (b) “1” (silicon). The
reward function R; approaches to LL.yos only when LL; ~ 0,
i.e., when any of the ith iteration results in a structure where the
splitting of the input power is ideally lossless.

The modulus of the reward function R; generates a single
valued positive number which is then multiplied with the ith
binary square matrix (B;). One can think of this step as assigning a
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Fig. 2. Flow diagram of the binary-Additive Reinforcement Learning Algorithm (b-ARLA).

“confidence” score to the all the pixels within B;. Mathematically,
this can be expressed as,

ann - a
R; x : T (3)
Ay -0 Gk
a0 Gp
where, B = R such that
A - Gk
(a11, ..., Gj1, ..., A1k, . .., Ax) € (0, 1). For the sake of this prob-

lem, we consider j = k. This will simplify to a single matrix, say
reward matrix RM; since R; is a scalar as shown below,

Riayy -+ Riap
RM; = oo (4)
Riaye -+ Riaj

or, as RM; = R;B;. This is done for all the “n” number of randomly
generated binary square matrices as shown within the training
phase block of Fig. 2. Next, all the “n” number of such matrices
are summed together into a single matrix which is known as the
cumulative reward matrix (CRM). The CRM can be now written
as,

n
CRM = RM; + RMj + - - + RM, = ) " RM; (5)
i

The CRM is of the same dimension as the reward matrix RM or
the binary square matrix B. It contains the accumulated rewards
for each pixel i.e. the algorithm now has the information of the
specific positions within the square binary matrix which has one
of the highest “confidence” scores. This will be beneficial later. The
CRM is then saved and passed onto the final phase: The inference
phase.

2.2. Inference phase

The CRM helps the algorithm to generalize the problem. A sim-
ple way to understand this is as follows. There are two matrices
B; and B;;with reward value of R; and R;, . Here, for simplicity
Ri> Rj;1. The jth position of both B; and Bj.;can contain (1)
both “‘1”, (2) both “0” and (3) combination of “1” and “0”. The
accumulated reward for the jth position in the CRM will be (a)
(1 xR+ 1 x Riyq1), (b) (0 x R + 0 x Riy1), and (c) (0 x Ry +
1 x Riy1) or (1 x R + 0 x Riyq). Simple analysis tells that (a)
> (c) > (b). The algorithm understands the positions of “1” and

“0” based on this “confidence” scores in the CRM. Finally, what
remains is just to filter and separate it out. Therefore, the first
step is to ascertain this minimum. This is then subtracted from
the CRM. In, parallel, a final binary matrix F is created which
is initialized with all “0”’s. This takes care of “0” valued pixels
in the matrix. In the subsequent step, the mean of the CRM is
taken to handle for cases like case (1) and case (3) as shown
in the former example because a value greater than this mean
only guarantees that specific pixel to be “1” without fail as the
cumulative reward values for such pixel positions will be amongst
the highest. Nonetheless, the rationale behind evaluating the
mean here can also be understand from the perspective of signal
processing where signal averaging is carried out to extract the
real signal from a noisy channel. Hence, the final decision-making
step involves this check. If the value is found to be greater than
the mean, the matrix F is updated with a value of “1” else is kept
as it is i.e. “0".

3. Results and discussion

The designed nanophotonic structure comprises of square pix-
elated Si-sub-units that are intelligently distributed in an air
medium, i.e., the algorithm predicts the location of the Si-sub-
units to obtain the desired 50:50 power splitting of the input
power with minimal loss. The T-junctions are designed for a light
source with the fundamental TE polarization (with non-zero com-
ponents of Ey, Ey, and H,). To avoid any undesired back reflections,
perfectly matched layers (PML) surrounded the boundaries of the
computational domain.

Two different commercially available software from Lumerical
Inc. were employed during the entire process. During the training
as well as the inference phase, Lumerical MODE solutions was
utilized to extract the response (value of insertion loss) of the
nanophotonics structure via 2.5D varFDTD. An additional post-
validation after the inference phase was employed to cross-check
the obtained results across a full 3D FDTD with Lumerical FDTD
solutions. The reason behind using 2.5D varFDTD was to speed
up the “learning” process. The 2.5D varFDTD, as well as the 3D
FDTD, had a mesh accuracy of 1/35 of the free space wavelength
to ensure accurate modelling. Parallelization during the training
phase for the 2.5D varFDTD simulations was carried out on 10
Intel Pentium i7 CPUs with 16 GB RAM each. The complete
numerical simulations took ~ 67 h (almost three days). The
number of matrices used in the learning phase (i.e., N rounds)
was empirically set to 10,000. Care was also taken to make sure
that this randomly generated binary “unit cell” matrix is unique
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Fig. 3. The insertion loss (in dB) for each guess (hollow blue dots) and final prediction (solid red dot) using 10000 guesses across both designs. The minimum
possible insertion loss achieved in the final prediction from the inference phase across both designs are (a) ~0.86 dB and (b) ~0.95 dB respectively, although the
insertion loss (in dB) for nearly all guesses during the training phase for both (a) and (b) are in the range ~2 to 5 dB.

across all the CPUs such that the same structure is not running
on two different CPUs at any given instant of time.

Two different designs for the on-chip integrated nanophotonic
in-plane incidence 50:50 T-junctions were made, each corre-
sponding to a different worst possible insertion loss (I.L.worst)
scenario as derived in Eq. (2). The 2.5D FDTD simulated LL.yorst
value for a binary “unit cell”, all of whose individual sub-unit
elements are “0” (air) was ~9.77 dB and a binary “unit cell” all
of whose individual unit elements are “1” (silicon) was ~16.62
dB. Theoretically speaking, even though this change in LL.yorst
value would neither have changed anything in relation to the
working principle of the algorithm nor the final prediction, it
was certainly interesting to cross-check this before making any
conclusive statements. As observed in Fig. 3, the insertion loss
for each guess and final prediction using 10000 guesses follows
a very similar trend. For nearly all guesses during the training
phase, the average insertion loss was in the range of ~2 to 5 dB.
The minimum insertion loss was achieved in the final prediction
from the inference phase across both the designs. The insertion
loss (efficiency in terms of total power-out as % of power-in) was
determined to be ~0.82 dB and ~0.87 dB across 2.5D varFDTD for
both the designs, respectively. The full 3D FDTD gives a slightly
worse but more accurate value for the insertion loss at ~0.86
dB and ~0.95 dB for the operational wavelength of 1.55 pm for
each design, respectively. The subsequent “unit cell” structure,
steady-state electric field distribution at A 1.55 pm, and
the insertion loss for each design under broadband operation
(1.45-1.65 wm) are plotted in Fig. 4(a-b). It can be observed
that for both the designs that the insertion loss was to some
extent, virtually wavelength insensitive with variations below
10% over the wavelength range from 1.52 pm to 1.57 pm. To
be specific, the bandwidth was from ~1.53 um to ~1.57 um
(~40 nm bandwidth) for the first design in Fig. 4(a). For the other
design in Fig. 4(b), this bandwidth was in the range of 1.52 um
to 1.56 pm (~40 nm bandwidth). One must keep in mind here
that the machine learning algorithm was trained on and the final
inference was made at only a single wavelength of 1.55 pm.
There is no crosstalk amongst the output waveguides. Scattering
was negligible, as evidenced by the steady-state response plots in
Fig. 4(a-b) with the appearance of an interference pattern at the
input end, indicating the existence of very weak back-reflection.
Furthermore, upon even more close inspection of the steady-state
intensity profile in Fig. 4(a-b) one can further conclude : (a) an
efficient splitting of the fundamental mode and (b) a strong modal
match at the output port (waveguide) with excellent coupling
efficiency for both the splitter designs.

Finally, an unbiased comparison in relation to large conven-
tional integrated beam splitters needs to be carried out to high-
light the true significance of this work, apart from the design
methodology discussed in the previous sections. We acknowledge
the fact here that the designs discussed in this study are cer-
tainly not the best in terms of power efficiency (insertion loss)
compared to what has already been reported in the literature.
An insertion loss of 0.8 to 1 dB (as in the case of the designs
reported herein) in general corresponds to a net power trans-
mission efficiency of ~80%-83%. Conventional integrated beam
splitters or even optimized 50:50 splitters (Y-shape or T-shape)
report insertion losses of < 0.3 dB (~90%-93% in terms of net
power transmission) [2,38,49,52-54]. However, we believe that
the advantage of a small area footprint outweighs such a marginal
~10% reduction in efficiency from the perspective that now a
greater number of devices can be integrated together in a single
photonic chip than what has been previously possible (analogous
to what has been seen for transistors in electronic circuits over
the last decades). This will eventually lead designers to design
complicated photonic logic circuits with more flexibility. We can
proclaim this as a “Photonic Moore’s law” [62]. This trade-off
between efficiency and footprint can be handled by utilizing “unit
cell” structures with a larger number of sub-unit pixels in the
same total area, that is a larger sub-unit density (say for example
30 x 30 or even 60 x 60) to approximate sharp bends more
gradually than what has been done with a coarse structure (12
x 12) in this paper. The geometry constraints assumed in this
work were taken so to represent what can be demonstrated
at a standard university-level fabrication facility without much
difficulty. However, at industrial foundries, one can expect to
exploit this to create even more efficient beam splitter structures
with such an ultra-compact area footprint. Apart from this, the
use of higher refractive index materials [21,23] has also been
previously shown to improve device performance and is expected
to provide the same advantages here as well.

In addition to this, a smaller structure will also have a lower
heat generation “per device” in contrast to a conventional one [63].
Now, if one is interested in lowering the overall heat generation
in the photonic circuit keeping the total number of individual
structures same, a smaller footprint will have the advantage that
heat sinks can be easily accommodated within the same area
along with the device in place of a conventional larger structure
taking up the same amount of space. This will eventually lower
the operational cost and provide cost-effective solutions [64,65].
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(1.50-1.60 pwm) for the design where LL.yorst refers to a binary “unit cell” all of whose individual sub-unit elements are either (a) “0” (air) or (b) “1” (silicon).

4. Conclusion

We introduced the design of subwavelength ultra-compact
and efficient on-chip integrated nanophotonic 50:50 beam split-
ters (T-junctions) via a machine learning algorithm. We numeri-
cally investigated its power splitting effect at an operating wave-
length of A = 1.55 pm by using FDTD simulations. Despite its
low insertion loss, as indicated from the full-wave simulations,
we would like to point out that imperfections and impurities
during the fabrication step will inevitably decrease the device
efficiency and degrade its performance. However, these problems
will not have any detrimental effect in relation to the function-
ality of the designed structure. From such perspective, using the
algorithm as described in this paper one can now extend this to
realize situation dependent nanophotonic splitter designs such
as asymmetric power splitters (which are optimized for unbal-
anced power splitting i.e. 40:60, 20:80 or 100:0), splitters based
on different geometries, for example Y-branch splitters or even
polarization beam splitters by defining an appropriate reward
function. Nonetheless, reconfigurability can also be achieved with
the use of active materials in these pixelated “unit cells”. Overall,
the method employed and our results evidence that the use of
machine learning algorithms is a promising technique for the
inverse design of wide variety of efficient passive and active
integrated photonics devices.

CRediT authorship contribution statement

Sourangsu Banerji: Conceptualization, Methodology, Software,
Visualization, Writing - original draft. Apratim Majumder: Soft-
ware. Alexander Hamrick: Software. Rajesh Menon: Conceptu-
alization, Writing - review & editing. Berardi Sensale-Rodriguez:
Supervision, Conceptualization, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work was supported by the NSF awards: ECCS #1936729
and MRI #1828480.

References

[1] G.T. Reed, A.P. Knights, Silicon Photonics: An Introduction, John Wiley &
Sons, 2004.

[2] L. Chrostowski, M. Hochberg, Silicon Photonics Design: From Devices To
Systems, Cambridge University Press, 2015.

[3] H. Jia, T. Zhou, L. Zhang, ]. Ding, X. Fu, L. Yang, Optical switch compatible

with wavelength division multiplexing and mode division multiplexing for

photonic networks-on-chip, Opt. Express 25 (17) (2017) 20698-20707.

F. Ren, J. Li, Z. Wu, T. Hu, J. Yu, Q. Mo, Z. Li, et al., Three-mode mode

division-multiplexing passive optical network over 12-km low mode-

crosstalk FMF using all-fiber mode MUX/DEMUX, Opt. Commun. 383

(2017) 525-530.

I. Cerutti, N. Andriolli, P. Velha, Engineering of closely packed silicon-on-

isolator waveguide arrays for mode division multiplexing applications, J.

Opt. Soc. Amer. B 34 (2) (2017) 497-506.

[6] IEEE Standard for Verilog Hardware Description Language, IEEE, 2006.

[7] PJ. Ashenden, The Designer’s Guide To VHDL, Morgan Kaufmann, 2008.

[8] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, Micrometre-scale silicon

electro-optic modulator, Nature 435 (7040) (2005) 325-327.

L.W. Luo, G.S. Wiederhecker, J. Cardenas, C. Poitras, M. Lipson, High quality

factor etchless silicon photonic ring resonators, Opt. Express 19 (7) (2011)

6284-6289.

[10] S.A. Miller, Y.C. Chang, C.T. Phare, M.C. Shin, M. Zadka, S.P. Roberts, B. Stern,
X. Ji, A. Mohanty, O.A]. Gordillo, U.D. Dave, M. Lipson, Large-scale optical
phased array using a low-power multi-pass silicon photonic platform,
Optica 7 (1) (2020) 3-6.

[4

5

[9


http://refhub.elsevier.com/S1878-7789(20)30081-8/sb1
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb1
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb1
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb2
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb2
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb2
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb3
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb3
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb3
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb3
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb3
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb4
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb4
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb4
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb4
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb4
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb4
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb4
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb5
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb5
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb5
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb5
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb5
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb6
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb7
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb8
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb8
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb8
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb9
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb9
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb9
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb9
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb9
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb10
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb10
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb10
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb10
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb10
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb10
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb10

(1]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]
(35]
(36]
[37]

[38]

[39]

S. Banerji, A. Majumder, A. Hamrick et al. / Nano Communication Networks 25 (2020) 100312 7

M. Yu, Y. Okawachi, R. Cheng, C. Wang, M. Zhang, A.L. Gaeta, M. Loncar, Ra-
man Lasing and soliton mode-locking in lithium niobate microresonators,
Light: Sci. Appl. 9 (1) (2020) 1-7.

J. Leuthold, C. Koos, W. Freude, Nonlinear silicon photonics, Nat. Photonics
4 (8) (2010) 535.

E. Bor, M. Turduev, H. Kurt, Differential evolution algorithm based
photonic structure design: Numerical and experimental verification of
subwavelength /5 focusing of light, Sci. Rep. 6 (2016) 30871.

J. Lu, J. Vuckovic, Nanophotonic computational design, Opt. Express 21 (11)
(2013) 13351-13367.

AlY. Piggott, ]. Lu, T.M. Babinec, K.G. Lagoudakis, J. Petykiewicz, ]J. Vuckovic,
Inverse design and implementation of a wavelength demultiplexing grating
coupler, Sci. Rep. 4 (2014) 1-5.

AY. Piggott, J. Lu, K.G. Lagoudakis, ]. Petykiewicz, T.M. Babinec, ]J. Vuckovi¢,
Inverse design and demonstration of a compact and broadband on-chip
wavelength demultiplexer, Nat. Photon. 9 (6) (2015) 374-377.

L. Su, AY. Piggott, N.V. Sapra, ]. Petykiewicz, ]. Vuckovi¢, Inverse de-
sign and demonstration of a compact on-chip narrowband three-channel
wavelength demultiplexer, ACS Photon. 5 (2) (2017) 301-305.

P.I. Borel, A. Harpgth, LH. Frandsen, M. Kristensen, P. Shi, J.S. Jensen,
0. Sigmund, Topology optimization and fabrication of photonic crystal
structures, Opt. Express 12 (9) (2004) 1996-2001.

B. Shen, P. Wang, R. Polson, R. Menon, Integrated metamaterials for
efficient and compact free-space-to-waveguide coupling, Opt. Express 22
(22) (2014) 27175-27182.

B. Shen, R. Polson, R. Menon, Integrated digital metamaterials enables
ultra-compact optical diodes, Opt. Express 23 (8) (2015) 10847-10855.

B. Shen, P. Wang, R. Polson, R. Menon, An integrated-nanophotonics
polarization beamsplitter with 2.4x2.4um2 footprint, Nat. Photonics 9 (6)
(2015) 378-382.

A. Majumder, S. Banerji, K. Miyagawa, M. Meem, M. Mondol, B. Sensale-
Rodriguez, R. Menon, Programmable metamaterials & metasurfaces for
ultra-compact multi-functional photonics, in: CLEO: Applications and
Technology (AM4K-5), Optical Society of America, 2019.

A. Majumder, B. Shen, R. Polson, R. Menon, Ultra-compact polarization
rotation in integrated silicon photonics using digital metamaterials, Opt.
Express 25 (2017) 19721-19731.

A. Majumder, B. Shen, R. Polson, T. Andrew, R. Menon, An ultra-compact
nanophotonic optical modulator using multi-state topological optimization,
2017, arXiv preprint arXiv:1712.02835.

B. Shen, R. Polson, R. Menon, Integrated digital metamaterials enables
ultra-compact optical diodes, Opt. Express 23 (2015) 10847-10855.

H. Jia, T. Zhou, X. Fu, ]. Ding, L. Yang, Inverse-design and demonstration of
ultracompact silicon meta-structure mode exchange device, ACS Photonics
5 (5) (2018) 1833-1838.

AY. Piggott, ]. Petykiewicz, L. Su, ]J. Vuckovi¢, Fabrication-constrained
nanophotonic inverse design, Sci. Rep. 7 (1) (2017) 1-7.

F. Callewaert, S. Butun, Z. Li, K. Aydin, Inverse design of an ultra-compact
broadband optical diode based on asymmetric spatial mode conversion,
Sci. Rep. 6 (2016) 1-10.

L. Su, R. Trivedi, N.V. Sapra, A.Y. Piggott, D. Vercruysse, ]J. Vuckovi¢, Fully
automated optimization of grating couplers, Opt. Express 26, 4023-4034.
C.M. Lalau-Keraly, S. Bhargava, 0.D. Miller, E. Yablonovitch, Adjoint shape
optimization applied to electromagnetic design, Opt. Express 21 (18)
(2013) 21693-21701.

J. Wang, Y. Shi, T. Hughes, Z. Zhao, S. Fan, Adjoint-based optimization of
active nanophotonic devices, Opt. Express 26 (3) (2018) 3236-3248.

M. Meem, S. Banerji, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R.
Menon, Broadband lightweight flat lenses for long-wave infrared imaging,
Proc. Nat. Acad. Sci. 116 (43) (2019) 21375-21378.

R. Biswas, et al., Application of machine learning algorithms to the study
of noise artifacts in gravitational-wave data, Phys. Rev. D 88 (6) (2013)
062003.

S.V. Kalinin, B.G. Sumpter, RK. Archibald, Big-deep smart data in imaging
for guiding materials design, Nat. Mater. 14 (100) (2015) 973-980.

J. Carrasquilla, R.G. Melko, Machine learning phases of matter, Nat. Phys.
13 (2017) 431-434.

L. Wang, Discovering phase transitions with unsupervised learning, Phys.
Rev. B 94 (19) (2016) 195105.

D. Deng, X. Li, S. Das Sarma, Machine learning topological states, Phys. Rev.
B 96 (19) (2017) 195145.

M. Turduev, E. Bor, C. Latifoglu, I. Halil Giden, Y. Sinan Hanay, H. Kurt,
Ultracompact photonic structure design for strong light confinement and
coupling into nanowaveguide, ]. Lightwave Technol. 36 (2018) 2812-2819.
K. Yao, R. Unni, Y. Zheng, Intelligent nanophotonics: merging photonics
and artificial intelligence at the nanoscale, Nanophotonics 8 (3) (2019)
339-366.

[40]

(41]

(42]

[43]

[44]

[45]

(46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]

[54]

(55]

[56]

(571

(58]

[59]

(60]
(61]
(62]

(63]

(64]

(65]

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, Mastering the game of go
without human knowledge, Nature 550 (7676) (2017) 354-359.

R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT press,
2018.

L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: A survey,
J. Artif. Intell. Res. 4 (1996) 237-285.

D.Silver T. Hubert, ]. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanc-
tot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play,
Science 362 (6419) (2018) 1140-1144.

D. Liu, Y. Tan, E. Khoram, Z. Yu, Training deep neural networks for
the inverse design of nanophotonic structures, ACS Photon. 5 (4) (2018)
1365-1369.

Y. Kiarashinejad, M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar,
R. Pourabolghasem, A. Adibi, Knowledge discovery in nanophotonics using
geometric deep learning, Adv. Intell. Syst. (2019) 1900132.

S. So, J. Rho, Designing nanophotonic structures using conditional deep
convolutional generative adversarial networks, Nanophotonics 8 (7) (2019)
1255-1261.

S. Chugh, S. Ghosh, A. Gulistan, B.M.A. Rahman, Machine learning re-
gression approach to the nanophotonic waveguide analyses, ]. Lightwave
Technol. 37 (24) (2019) 6080-6089.

S. So, T. Badloe, J. Noh, ]J. Rho, J. Bravo-Abad, Deep learning enabled inverse
design in nanophotonics, Nanophotonics (2020).

M.H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, K.
Parsons, Deep neural network inverse design of integrated photonic power
splitters, Sci. Rep. 9 (1) (2019) 1-9.

Y. Cai, Q. Zhou, X. Hong, R. Shi, Y. Wang, Application of optical proximity
correction technology, Sci. China Ser. F-Inf. Sci. 51 (2008) 213-224.

W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, M. Zhang,
Ultracompact dual-mode waveguide crossing based on subwavelength
multimode-interference couplers, Photon. Res. 6 (2018) 660-665.

Y. Zhang, S. Yang, A.E.-]. Lim, G.-Q. Lo, C. Galland, T. B.-Jones, M. Hochberg,
A compact and low loss Y-junction for submicron silicon waveguide, Opt.
Express 21 (2013) 1310-1316.

H. Kurt, LH. Giden, D.S. Citrin, Design of T-shaped nanophotonic wire
waveguide for optical interconnection in H-tree network, Opt. Express 19
(2011) 26827-26838.

AM. Alpkilig, Y.A. Yilmaz, H. Kurt, Parametric study of multi-outputs
T-junction spatial mode demultiplexers design with an objective-first
algorithm, in: Nanoengineering: Fabrication, Properties, Optics, Thin Films,
and Devices XVI, 11089, 110890M, International Society for Optics and
Photonics, 2019.

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, Q. Song,
Integrated photonic power divider with arbitrary power ratios, Optim. Lett.
42 (4) (2017) 855-858.

Z.. Lin, W. Shi, Broadband, low-loss silicon photonic y-junction with an
arbitrary power splitting ratio, Opt. Express 27 (10) (2019) 14338-14343.
X. Ren, W. Chang, L. Ly, M. Yan, D. Liu, M. Zhang, Digitized adjoint method
for inverse design of digital nanophotonic devices, 2019, arXiv preprint
arXiv:1902.00654.

H. Xie, Y. Liu, Y. Wang, Y. Wang, Y. Yao, Q. Song, J. Du, Z. He, K. Xu,
An ultra-compact 3-dB power splitter for three modes based on pixelated
meta-structure, IEEE Photon. Technol. Lett. 32 (6) (2020) 341-344.

W. Chang, X. Ren, Y. Ao, L. Lu, M. Cheng, L. Deng, D. Liu, M. Zhang, Inverse
design and demonstration of an ultracompact broadband dual-mode 3 dB
power splitter, Opt. Express 26 (18) (2018) 24135-24144.

C. Latifoglu, Binary matrix guessing problem, 2017, arXiv preprint, arXiv:
1701.06167.
https://www.lumerical.com/learn/whitepapers/lumericals-2-5d-fdtd-
propagation-method/.

M. M. Smit, JJ.G.M. Van der Tol, M. Hill, Moore’s law in photonics, Laser
Photonics Rev. 6 (1) (2012) 1-13.

J. Punch, Thermal challenges in photonic integrated circuits, in: 2012
13th International Thermal, Mechanical and Multi-Physics Simulation and
Experiments in Microelectronics and Microsystems, IEEE, 2012, pp. 1-6.
J.A. Hudgings, K.P. Pipe, RJ. Ram, Thermal profiling for optical char-
acterization of waveguide devices, Appl. Phys. Lett. 83 (19) (2003)
3882-3884.

G. Gilardi, W. Yao, H.R. Haghighi, X]. Leijtens, M.K. Smit, M.J. Wale, Deep
trenches for thermal crosstalk reduction in InP-based photonic integrated
circuits, J. Lightwave Technol. 32 (24) (2014) 4864-4870.


http://refhub.elsevier.com/S1878-7789(20)30081-8/sb11
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb11
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb11
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb11
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb11
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb12
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb12
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb12
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb13
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb13
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb13
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb13
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb13
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb14
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb14
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb14
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb15
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb15
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb15
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb15
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb15
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb16
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb16
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb16
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb16
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb16
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb17
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb17
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb17
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb17
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb17
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb18
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb18
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb18
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb18
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb18
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb19
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb19
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb19
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb19
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb19
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb20
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb20
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb20
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb21
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb21
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb21
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb21
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb21
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb22
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb22
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb22
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb22
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb22
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb22
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb22
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb23
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb23
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb23
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb23
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb23
http://arxiv.org/abs/1712.02835
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb25
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb25
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb25
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb26
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb26
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb26
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb26
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb26
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb27
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb27
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb27
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb28
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb28
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb28
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb28
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb28
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb30
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb30
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb30
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb30
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb30
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb31
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb31
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb31
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb32
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb32
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb32
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb32
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb32
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb33
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb33
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb33
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb33
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb33
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb34
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb34
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb34
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb35
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb35
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb35
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb36
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb36
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb36
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb37
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb37
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb37
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb38
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb38
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb38
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb38
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb38
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb39
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb39
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb39
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb39
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb39
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb40
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb40
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb40
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb40
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb40
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb41
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb41
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb41
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb42
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb42
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb42
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb43
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb43
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb43
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb43
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb43
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb43
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb43
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb44
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb44
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb44
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb44
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb44
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb45
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb45
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb45
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb45
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb45
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb46
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb46
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb46
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb46
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb46
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb47
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb47
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb47
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb47
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb47
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb48
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb48
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb48
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb49
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb49
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb49
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb49
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb49
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb50
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb50
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb50
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb51
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb51
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb51
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb51
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb51
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb52
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb52
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb52
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb52
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb52
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb53
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb53
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb53
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb53
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb53
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb54
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb54
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb54
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb54
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb54
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb54
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb54
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb54
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb54
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb55
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb55
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb55
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb55
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb55
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb56
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb56
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb56
http://arxiv.org/abs/1902.00654
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb58
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb58
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb58
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb58
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb58
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb59
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb59
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb59
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb59
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb59
http://arxiv.org/abs/1701.06167
http://arxiv.org/abs/1701.06167
http://arxiv.org/abs/1701.06167
https://www.lumerical.com/learn/whitepapers/lumericals-2-5d-fdtd-propagation-method/
https://www.lumerical.com/learn/whitepapers/lumericals-2-5d-fdtd-propagation-method/
https://www.lumerical.com/learn/whitepapers/lumericals-2-5d-fdtd-propagation-method/
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb62
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb62
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb62
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb63
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb63
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb63
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb63
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb63
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb64
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb64
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb64
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb64
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb64
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb65
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb65
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb65
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb65
http://refhub.elsevier.com/S1878-7789(20)30081-8/sb65

8 S. Banerji, A. Majumder, A. Hamrick et al. / Nano Communication Networks 25 (2020) 100312

Sourangsu Banerji is a fourth year Ph.D. student
in the Department of Electrical and Computer Engi-
neering at the University of Utah, currently advised
by Prof. Berardi Sensale-Rodriguez and Prof. Rajesh
Menon. His current research interests are in the ar-
eas of diffractive optics, metamaterials, plasmonics,
nanotechnology and nanophotonics with an emphasis
on utilizing computational approaches towards their
design. He has extensively worked on translating and
exploiting well-established methods and concepts from
computer science and engineering right up to the realm
of optics and photonics by demonstrating the computational design of planar
passive and reconfigurable nano-scale devices in the THz/visible regime. His
work also includes looking into several different optimization algorithms as
well as machine learning techniques for possible use in designing on-chip
integrated nanophotonic and free space optical devices. His work caters to the
growing need for designing challenging and complicated devices/systems by
employing computational approaches which are neither time consuming not
memory intensive yet readily scalable.

Apratim Majumder is a Postdoctoral Scholar in the
Department of Electrical and Computer Engineering at
the University of Utah. He completed his Ph.D. in Elec-
trical and Computer Engineering also at the University
of Utah in December of 2016 with a focus on optics
and photonics-based nanotechnology.

Alexander Hamrick is an undergraduate student
studying Computer Science at the University of Utah.
His interests include software engineering, machine
learning, and big data.

Rajesh Menon is an Associate Professor of Electrical
and Computer Engineering at the University of Utah.
Prior to joining the University of Utah in August
2009, Prof. Menon was a research engineer and a
post-doctoral scientist in the Research Laboratory of
Electronics at MIT. He received the S.M and Ph.D.
degrees, both from MIT. From 2005 to 2009, Prof.
Menon was the Chief Technology Officer of LumArray,
Inc, a company he co-founded with colleagues at MIT.
Prof. Menon has pioneered several technologies that
will enable far-field optics to manipulate and image
matter with nanoscale resolution. His research has spawned numerous publica-
tions (some which have had extensive media coverage), patents, and a spin-off
company. He has led several projects in nanopatterning and nanoscopy with
support from DARPA, the NSF and the MIT Deshpande Center for Technological
Innovation.

Berardi Sensale-Rodriguez is a tenured Associate Pro-
fessor at the University of Utah, with an appointment
with the Department of Electrical & Computer En-
gineering. He joined the faculty at the University
of Utah in 2013, after earning his Ph.D. in Electrical
Engineering from the University of Notre Dame (UND).
During his research career, he has received the National
Science Foundation (NSF) CAREER Award, the Eli J. and
Helen Shaheen Graduate School Award in Engineering
at UND, and the Best Student Paper Award at the
37th International Conference on Infrared, Millimeter
and Terahertz Waves (IRMMW-THz), the best paper in Imaging Systems and
Applications at the 2019 OSA Imaging and Applied Optics Congress, and the 2019
ECE department Outstanding Teaching award. Sensale-Rodriguez’s research and
teaching interests are in the area of (opto)electronic devices and materials. His
research projects involve (i) simulation and design of electronic and photonic
devices, in particular employing emerging materials, (ii) growth, fabrication and
characterization of electronic and optical materials and devices, (iii) system
integration of these devices.



	Machine learning enables design of on-chip integrated silicon T-junctions with footprint of 1.2 m× 1.2 m
	Introduction
	Design and optimization
	Training phase 
	Inference phase

	Results and discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


