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Derivative with respect to sun location

Fig. 1. We introduce path-space differentiable rendering, a new theoretical framework to estimate derivatives of radiometric measurements with respect
to arbitrary scene parameters (e.g., material properties and object geometries). By directly differentiating full path integrals, we derive the differential path
integral framework, enabling the design of new unbiased Monte Carlo methods capable of efficiently estimating derivatives in virtual scenes with complex
geometry and light transport effects. This example shows a dinning room scene lit by the sun from outside the window. On the right, we show the corresponding
derivative image with respect to the vertical location of the sun. (Please use Adobe Acrobat to view the teaser images to see them animated.)

Physics-based differentiable rendering, the estimation of derivatives of ra-
diometric measures with respect to arbitrary scene parameters, has a diverse
array of applications from solving analysis-by-synthesis problems to train-
ing machine learning pipelines incorporating forward rendering processes.
Unfortunately, general-purpose differentiable rendering remains challenging
due to the lack of efficient estimators as well as the need to identify and
handle complex discontinuities such as visibility boundaries.

In this paper, we show how path integrals can be differentiated with
respect to arbitrary differentiable changes of a scene. We provide a detailed
theoretical analysis of this process and establish new differentiable rendering
formulations based on the resulting differential path integrals. Our path-
space differentiable rendering formulation allows the design of new Monte
Carlo estimators that offer significantly better efficiency than state-of-the-art
methods in handling complex geometric discontinuities and light transport
phenomena such as caustics.
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We validate our method by comparing our derivative estimates to those
generated using the finite-difference method. To demonstrate the effective-
ness of our technique, we compare inverse-rendering performance with a
few state-of-the-art differentiable rendering methods.
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1 INTRODUCTION

Physics-based light transport simulation, a core research topic in
computer graphics since the field’s inception, focus on numerically
estimating radiometric sensor responses in fully specified virtual
scenes. Previous research efforts have led to mature forward ren-
dering algorithms that can efficiently and accurately simulate light
transport in virtual environments with high complexities.

Differentiable rendering computes the derivatives of radiometric
measurements with respect to differential changes of such environ-
ments. These techniques can enable, for example: (i) gradient-based
optimization when solving inverse-rendering problems; and (ii) ef-
ficient integration of physics-based light transport simulation in
machine learning and probabilistic inference pipelines.
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Unfortunately, unlike forward rendering, differentiable render-
ing remains challenging. One key challenge is the lack of efficient
Monte Carlo estimation techniques. In the forward case, the path
integral formulation introduced by Veach [1997] has opened the
door to the design of sophisticated rendering algorithms including
bidirectional path tracing and many Markov-Chain Monte Carlo
(MCMC) rendering techniques (e.g., [Jakob and Marschner 2012;
Pauly et al. 2000; Veach and Guibas 1997]). Similar formulations are
lacking for differentiable rendering, causing state-of-the-art tech-
niques [Li et al. 2018a; Loubet et al. 2019; Zhang et al. 2019] to rely
on unidirectional path tracing, which has been demonstrated to
be inefficient in handling complex light transport effects such as
indirect-dominated illumination and caustics.

Another challenge, which is unique to differentiable rendering,
is the need to handle discontinuities via edge or boundary inte-
grals. Previously, this was handled by either tracing expensive “side
paths” [Li et al. 2018a; Zhang et al. 2019] or using approximate
reparameterizations that introduce bias [Loubet et al. 2019]. To our
knowledge, there does not exist any prior solution to this problem
that is both efficient and unbiased.

In this paper, we address both challenges by (i) introducing the
differential path integral formulation, the differentiable-rendering
counterpart of the path integral for forward rendering; and (ii) pro-
viding comprehensive theoretical and empirical analysis.

Concretely, our contributions include:

o The differentiation of full path integrals with respect to arbitrary
scene parameterizations (§5.1), resulting in our differential path
integrals comprised of completely separated interior and boundary
components that can be estimated independently using different
Monte Carlo estimators.

o Areparameterization of the path integral (§5.2) that minimizes the
types of discontinuities to be handled by the boundary integral.

e New unbiased Monte Carlo methods that estimate, respectively,
the interior and boundary components of our differential path in-
tegrals (§6). Our technique greatly outperforms previous methods
for complex scene geometries and light transport effects.

To facilitate the derivation of our main results in §5 and §6, we
utilize mathematical tools from continuum and fluid mechanics
[Cermelli et al. 2005; Gurtin 1981], which we briefly review in §3,
for their generality and rigor. Additionally, as a warm-up, we apply
these tools to differentiate direct-illumination integrals in §4.

To validate our theory and algorithms, we compare our derivative
estimates with those produced using finite differences (Figures 12
and 13). To demonstrate the effectiveness of our method, we com-
pare (i) derivative images generated with our technique and state-
of-the-art approaches (Figures 14 and 17); and (ii) inverse-rendering
performance using gradients estimated with these methods (Fig-
ures 15, 16, and 18).

2 RELATED WORK

Path-space rendering. Veach [1997] introduced the path integral
formulation arising from recursively expanding the rendering equa-
tion [Kajiya 1986]. This formulation expresses radiometric mea-
surements as high-dimensional integrals (instead of solutions to
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integral equations), enabling the development of many new Monte
Carlo estimators (e.g., [Jakob and Marschner 2012; Veach and Guibas
1995, 1997]) that are capable of efficiently simulating challenging
effects such as indirect illumination and near-specular transport. In
this paper, we introduce a differential path integral formulation for
differentiable rendering.

Derivatives for rendering. Analytical derivatives have been used
in forward rendering to compute pixel footprints [Igehy 1999], han-
dle specular light paths [Chen and Arvo 2000; Jakob and Marschner
2012], use Hamiltonian Monte Carlo to sample paths [Li et al. 2015],
and enable interactive editing of single-scattering albedo [Hasan and
Ramamoorthi 2013]. Arvo [1994] presented an analytical method for
calculating the gradients of irradiance in diffuse scenes. Ramamoor-
thi et al. [2007] introduced a first-order analysis of light transport,
focusing on effects such as soft shadows. All these derivatives are
specialized for certain types of light transport effects, and most of
them neglect geometric discontinuities.

Physics-based differentiable rendering. Differentiable rendering
for specific light transport effects has been used to solve analysis-
by-synthesis problems in volumetric scattering [Gkioulekas et al.
2016, 2013], cloth rendering [Khungurn et al. 2015], prefiltering of
high-resolution volumes [Zhao et al. 2016], appearance modeling of
human teeth [Velinov et al. 2018], fabrication of translucent materi-
als [Sumin et al. 2019], reflectance and lighting estimation [Azinovic
et al. 2019], and 3D reconstruction [Tsai et al. 2019].

A main challenge towards developing general-purpose differen-
tiable rendering engines has been the differentiation with respect
to scene geometry, which generally requires calculating additional
boundary integrals. To address this problem, Li et al. [2018a] intro-
duced a Monte Carlo edge-sampling method that provides unbiased
estimates of these boundary integrals. This technique was then gen-
eralized by Zhang et al. [2019] to handle volumetric light transport.
Concurrently, Loubet et al. [2019] proposed a reparameterization-
based method to avoid computing boundary integrals altogether,
at the cost of introducing bias. Despite their ability to differentiate
with respect to arbitrary scene parameterizations, all these methods
are obtained by differentiating the rendering equation [Kajiya 1986]
(and the radiative transfer equation [Chandrasekhar 1960]), and rely
on unidirectional path tracing for derivative estimations, which can
be inefficient when handling complex scenes.

Derivatives for vision. Having derivatives of rendered images al-
lows physics-based rendering to be efficiently integrated into deep
learning pipelines (e.g., as the decoder of an auto-encoder architec-
ture [Che et al. 2018]). Many recent works utilize various forms of
rendering losses to regularize the training and improve generaliza-
tion of neural network models [Che et al. 2018; Kato et al. 2018; Li
et al. 2018b; Meka et al. 2018; Sengupta et al. 2018; Wu et al. 2017].
The renderers used in most of these works make restrictive sim-
plifications such as single-bounce illumination [Loper and Black
2014].

Automatic differentiation. Automatic differentiation allows the
derivative of a function specified by a computer program to be
evaluated numerically. These techniques have been widely used in
machine learning and statistical inference [Griewank and Walther



Table 1. List of symbols commonly used in this paper.

Symbol Definition

measurement contribution

path space

boundary path space
area-product measure

differential area-product measure
evolving surface

reference configuration

material point

motion

reference map

(local or global) surface parameterization

> O X Ry bsi‘:\t %D*’s
5

n(x) unit normal of a surface at x
nyz(x) unit normal of a curve oA at x
V(x) scalar normal velocity of a surface at x
Vo (x) scalar normal velocity of a curve at x

AM @] (x) discontinuity curves wrt. ¢ in M ()
W[(p] () extended boundary of M ()
O scene derivative
= normal scene derivative

2008; McClelland et al. 1986; Wengert 1964] to obtain gradients of
complex functions (e.g., neural networks). Most general-purpose dif-
ferentiable rendering techniques, including ours, utilize automated
differentiation. On the other hand, our main theory and algorithms
are orthogonal to the choice of automated differentiation method
and can benefit greatly from efficient implementations (e.g., [Nimier-
David et al. 2019]).

3 PRELIMINARIES

A main objective of this paper is to differentiate full path inte-
grals, which we review in §3.1, with respect to arbitrary differential
changes of the scene. As a path integral is comprised of nested sur-
face integrals, its differentiation largely boils down to calculating
derivatives of surface integrals. To this end, we utilize mathemat-
ical tools from continuum and fluid mechanics to (i) express the
evolution of surfaces; and (ii) differentiate integrals over evolving
surfaces. We provide a brief recap of these preliminaries in §3.2,
§3.3, and the supplemental document.

Table 1 summarizes commonly used symbols and their definitions.

3.1 The Path-Integral Formulation

We will be focusing on Veach’s path-integral formulation [1997]
of light transport, which has been widely used in physics-based
rendering, where a radiometric measurement I is expressed as a
path integral of the form:

I= [, f(%)du(z). 1)

In this integral, each light path x = (xp,x1,...,xy) With N > 1
is an ordered sequence of points x, € M forn =0,..., N, where
M is the union of all object surfaces in the scene. The integral
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is performed over the path space Q = Uy_, MN*1and with
respect to the area-product measure y defined as:

du(x) = [T)L, dA(xn), @

where A is the surface-area measure. We will additionally be con-
sidering order-N path integrals of the form:

In = fo, f(®) du(2), 3

where the integration domain Qn = MN*! is constrained to only
light paths' with N segments and (N + 1) vertices. Then, it follows
that the full path integral equals I = 37, In.

In both integrals (1) and (3), the measurement contribution
function f captures the amount of radiant power carried by indi-
vidual light paths, and equals

F@ = (TN 9(tne1s %no1,0) ) Welew = 2v-1)- (4)
In this equation, W, is the sensor importance (response), and
9(*n+1; Xn-1,%n) = fs(Xn-1 = xn = xn41) G(xn © xXn41),  (5)
for 0 < n < N.InEq. (5), f; is the bidirectional scattering distri-
bution function (BSDF) when n > 0, and the source emission
when n = 0 (ie, fs(x—1 > x0 — x1) = Le(xp — x1) with x_;
being a dummy variable); and G is the geometric term:

G(xn © xp11) = V(xn © xp41) Go(xn © xpnt1), (6)

where V is the mutual visibility function (which equals one if
xpn and xp41 are mutually visible and zero otherwise), and Gy is the
visibility-free component of G:

Go(xn < Xns1) == [n(xn) - @n| In(xn+1) - —wn|. )

llxn+1 — xnll?

In Eq. (7), @n = xn — Xp41 = (Xp41 — %n) /|| Xn+1 — xp| is the unit
vector pointing from x, toward x,1; n is the unit-normal field; and
“.” indicates vector inner product.

The path-integral formulation has been generalized to also incor-
porate volumetric light transport [Pauly et al. 2000], but we omit
these details as we will be focusing on the surface-only case in the
rest of this paper.

3.2 Surface Evolution and Scene Derivatives

We now briefly review some concepts developed in continuum and
fluid mechanics, which we will use to mathematically describe the
differentiable evolution of surfaces through the three-dimensional
Euclidean space R3. For more details, please refer to the supplemen-
tal document and Gurtin [1981].

Evolving surfaces. Let B be some abstract 2D manifold that we call
the reference configuration. A deformation? of 8 is a smooth
and one-to-one function that maps 8 to some regular surface M.

We focus on parametric families of deformations and call each
such family a motion of B, which, formally, is a class C3 function X
defined on B X R such that, for any fixed parameter value 7 € R,
X(, ) is a deformation of 8.3
!We hyperlink many keywords to their definitions.

?Deformations in classic continuum mechanics operate on volumes. In this paper, we
use definitions adapted for surfaces by Cermelli et al. [2005] in fluid mechanics.

3In physics, the parameter 7 is typically used to represent time; in our case, on the
contrary, 7 is an abstract parameter controlling the global scene geometry.
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Reference
configuration

Fig. 2. Deformation, motion, and evolving surface: A motion X, for
each 7 € R, provides a deformation X(-, 7r) that maps a reference config-
uration B continuously to a regular surface M () ¢ R3. The red curve
illustrates the trajectory of a single point (shown as the red dashed curve)
as the images of a material point p € 8.

Provided a motion X, each deformation X(-, ) maps the refer-
ence B to the evolving surface M(r) == {X(p,7) : p € B} C R3,
as illustrated in Figure 2. As deformations are assumed one-to-one,
X(+, ) has an inverse P(:,r) : M(x) — B that is called a refer-
ence map and transforms the evolving surface M(x) back to the
reference B.

Lastly, we call the set 7 := {(x,7) : x € M(n), = € R} c R*
the trajectory of B resulting from the motion X. We note that,
given a reference B, there may exist (infinitely) many X leading to
identical trajectories.

Material and spatial representations. Following the convention in
continuum mechanics, we introduce the following terminology:

e We call p € B a material point and x € M () a spatial point.
Given a motion X and 7 € R, the deformation X(-, 7) establishes
a continuous and one-to-one mapping from material points to
spatial ones.

e Fora given motion X, a material field is a function of the material
point and parameter 7 with domain 8 X R; a spatial field, on
the contrary, is a function defined on the trajectory 7.

Throughout the paper, we will often encounter situations where
a quantity can be defined with respect to either the evolving sur-
face M(r), or the reference B; we will use the terms “spatial” and
“material”, respectively, to distinguish between these definitions.
Additionally, the deformation X(-, 7) can be used as a change
of variables to convert surface integrals defined over the evolving
surface M () to surface integrals over the reference 8 (and vice-
versa). To distinguish between the two parameterizations, in the
following we will refer to such integrals as spatial-form integrals
and material-form integrals. We will use the same terminology
for integrals whose domain is defined based on the evolving sur-
face M (), or the reference 8—for instance, when the path space Q
is defined with respect to an evolving surface M (), we will refer
to the path integral of Eq. (1) as the spatial-form path integral.

Surface parameterizations. In order to define derivatives of an
evolving surface M(x) with respect to the parameter 7, we will
need to first have available a parameterization of M ().
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| M(7 + ¢€)
M)
| M(m —€)

Fig. 3. Local velocity: Provided a surface parameterization x, for any =
and x € M (i), assume x to have local coordinates &. Then, with £ fixed,
x(&,-) produces the local trajectory of x near 7 (illustrated as the red
dashed curve), whose derivative with respect to 7 gives the corresponding
local velocity v (x, 7).

We can parameterize the evolving surface M(x) locally based on
the corresponding trajectory 7: A local parameterization near
fixed (x,7) € 7 takes the form* of %(£, z’) that, for some open
O c R?, satisfies the following conditions:

e x(0, ) € M(x) is a neighborhood of x.

e For each fixed n’ near &, (-, ') is a smooth and one-to-one
function that maps O ¢ R? to some open subset of M(x’). For
each fixed &€ € O, x(§&, -) is smooth near 7.

Please refer to the supplemental document for example local param-
eterizations of a few simple evolving surfaces.

Alternatively, when we have available a motion X for the evolving
surface M (), a global parameterization, which is effectively a
local one that remains constant for all (x, 7) € 7, can be induced via
x(& ) == X(p(&), ) where p : O — B isasmooth and one-to-one
mapping that parameterizes the corresponding reference 5.

Velocities. Given any spatial point x € M(x) and a surface pa-
rameterization x that is either local to (x, ) or global, there exists
exactly one & € O satisfying x(&, 1) = x. We call & the local
coordinates of x and use it to define the local velocity of x as

2, ’
o(x, ) = —ax(j’,” |\ (8)
T n'=m
as illustrated in Figure 3.

Assuming the evolving surface M () to be oriented by a spatial
unit-normal field n(x, ), it is well-known that the scalar normal
velocity V = v - n is parameterization-independent, namely, it does
not depend on the choice of surface parameterization x [Grinfeld
2013]. On the contrary, the local tangential velocity viay = v—Vn
is parameterization-dependent.

We now consider an evolving curve dA () € M(x) with a unit-
normal field ny 4 (x, 7) defined to be tangent to M () and normal
to oA (7). We use “ny4” to indicate the unit-normal field over a
curve A () and “n” to denote that over some surface.

The local velocity vy 4 of dA(x) can be defined similarly to
Eq. (8),and Vy 4 = vy -ny4 indicates the scalar normal velocity
of oA (), which is parameterization-independent.

4Strictly, a local parameterization should be expressed as X (&, 7r’; x, ). We omit the
dependency on x and 7 for easier readability.
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Fig. 4. Evolution of discontinuity curves: This example illustrates an
evolving surface M(sr) on which a binary-value scalar spatial field ¢ (x, )
is defined. For some fixed 7 € R, assume ¢(x, 7r) to have discontinuity
curve AM[@] () € M(r) with respect to x (the orange curves). Assume
x to have local velocity uppq (x, 7r) resulting from some surface parameteri-
zation that ensures x to stay on AM[¢] near 7. Then, the parameterization-
independent scalar normal velocity Vaaq (x, ), which is marked red, equals
oam (x, 1) -nppq (x, ) with nppq (x, ) being the curve normal (the purple
arrow) that resides within the tangent plane at x (in light purple).

Scene derivatives. For a scalar spatial field ¢(x, ) on M(r), its
scene derivative (which is parameterization-dependent) and nor-
mal scene derivative (which is parameterization-independent) are

pom = SSeGEN )| ©)

'=m
=~ vtan - grad y((¢), (10)

respectively, where £ is the local coordinates of x, and grad ,((¢)
denotes the surface gradient of ¢.

When the surface parameterization % produces zero tangential
velocity at some x € M(x), i.e., vtan(x, ) = 0, the normal scene
derivative ()" reduces to the scene derivative ¢.

3.3 Differentiating Surface Integrals

The path integral formulation of Eq. (1) effectively reduces physics-
based rendering into a problem of evaluating surface integrals. Con-
sequently, central to deriving differentiable rendering is the problem
of differentiating these integrals. Based on the concepts described
in §3.2, we will utilize a so-called transport relation® that originated
in fluid mechanics [Cermelli et al. 2005].

We consider an evolving surface M (sr) oriented by a unit-normal
field n(x, 7). Let ¢(x, 7r) be a scalar spatial field defined on M ().
Assume that, for each fixed 7z, ¢(x, 7) is CY-continuous® with re-
spect to x except along a zero-measure set of discontinuity curves
AM[p](r) € M(r) that consists of jump discontinuity points of
¢(x, ) and evolve continuously (see Figure 4). We define the ex-
tended boundary of M () with respect to ¢, which we denote as
W[(p] (), as the union of the boundary dM () and the discon-
tinuity curves AM[¢] (). When the scalar spatial field ¢ (x, 7) is
clear from the context, we omit “[¢]” and write AM () and W(n)
for notational convenience.

SHere the term “transport” refers to transport phenomena that are studied by many

sub-fields of physics such as continuum mechanics and thermodynamics.
®In the rest of this paper, we omit C° and use “continuous” to indicate C° continuity.
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Cermelli et al. [2005] have shown that the derivative of the inte-
gral of ¢(x, ) over an evolving surface M () involves an interior
and a boundary term:

interior boundary

d o
— = — Ap V—rrr 11
in Mq)dA /M((p erV)dA + -/aM anaMd{’ , (11)

where dA and df are the surface-area and curve-length measures, re-
spectively; k is the total curvature (that is, the sum of the principal
curvatures); V and Vo are the scalar normal velocity of M () and

that of its extended boundary oM (), respectively. Additionally,

Ag(x, 1) = {qofx, ), for x € oM () (12)
o (x,7) — T (x,7), forx e AM(n)

where ¢~ (x, ) and ¢* (x, 7), respectively, denote the one-sided lim-
its of ¢ (x, 7) when approaching x from —np p((x, 7) and np p((x, 7).

In a special case where the surface M is independent of 7 and,
thus, exhibits no motion, it holds that V = 0 and ()" = ¢. We can
then simplify Eq. (11) to the standard Reynolds [1903] transport
relation used by Zhang et al. [2019]:

ﬁwadAszqbdA+fAMAquAMd£. (13)

Notice that, although V = 0, Vy 54 may be nonzero as the disconti-
nuity curves AM(7) can still depend on the parameter .

In physics-based rendering, a virtual scene is generally parameter-
ized with a set of (mutually independent) scene parameters 7 =
{m1, m2, ...}, where each 7 is associated with a motion X; of the
scene geometry. In the rest of this paper, we tackle the problem of
calculating partial derivatives of radiometric measurements I given
by path integrals with respect to individual 7 € .

4 DIFFERENTIAL DIRECT ILLUMINATION

As a warm-up before developing our general theory in §5, we first go
over the case of direct illumination (i.e., one-bounce light transport).
As we will see, results obtained from this section generalize nicely
to the case of full path integrals. Therefore, we can use the direct
illumination case to develop intuition about the general case.

We consider a simple scene configuration with one static ob-
ject with surface M, lit by a light source defined on an evolving
surface L (7). Then, given two points y, y" € Mp;, the reflected ra-
diance exiting y toward y’ resulting from direct illumination equals:

Lirect = L Le(x > 5) filx =y - ¥) G(x & ) dA(x), (14)
::fl‘iirect(x)

where G is the geometric term. Our goal is to derive the derivative
of Ijjrect With respect to .
To simplify our derivation, we make two assumptions:

A.1 For all x € L(x), there exists a surface parameterization such
that x has zero tangential velocity.

A2 Le(x > y) fs(x = y — y’) is continuous with respect to x in
the interior of L(rr) wheny, y" € M,p; are fixed.

ACM Trans. Graph., Vol. 39, No. 4, Article 143. Publication date: July 2020.



143:6 « Zhang, Miller, Yan, Gkioulekas, and Zhao

Based on these assumptions, applying the transport relation of
Eq. (11) to the surface integral of Eq. (14) produces:

interior boundary

Ay R
—duect [f;lirect - fdirect K V] daf+ = Af direct Vordt
! 5T oL

or
(15)
where:

o fiirect is the scene derivative of fiie and equals the normal scene
derivative (fyirect)” under Assumption A.1.

e x is the total curvature.

o 0L () denotes the extended boundary of £ () comprised of the
boundary 9L () and the discontinuity curves AL fiirect] (7).

e V and V5 are the scalar normal velocity of £(r) and that of
2L (), respectively.

o Lastly, Afgirect (%) follows the definition in Eq. (12) and indicates
the difference in fy;;ect(x) across the discontinuity curves AL (7).
Under Assumption A.2, this term equals

Afdirect (%) = Le(x = y) fs(x > y — y,) AG(x & y). (16)

Implications of assumptions. Our derivation of Eq. (15) relies on
two key assumptions (i.e., A.1 and A.2). In what follows, we discuss
the implications of these assumptions.

Our first assumption (A.1) is that, for all x € L(x), there exists
a surface parameterization x that produces zero tangential veloc-
ity. In general, writing down such x requires solving differential
equations. On the other hand, we note that, to calculate the scene
derivative f;iirect at some fixed 7, explicitly expressing the surface pa-
rameterization X is unnecessary: As long as the local velocity v (x, )
and the local change rate of the surface normal n(x, ) can be nu-
merically evaluated at 7, so can fiirect. When M () allows ray
intersection to be computed analytically, which is usually the case
in practice, these quantities can be computed numerically by dif-
ferentiating the ray tracing process (see Eq. (19) of the work by
Zhang et al. [2019] for more details).

Alternatively, when £ is independent of the scene parameter 7,
Assumption A.1 is satisfied trivially. As we will show in §4.1, this
can be achieved by leveraging material-form rendering integrals.

Our second assumption (A.2) of (Le f;) being continuous with
respect to x typically implies the emitted radiance Le (x — y) and
the BSDF f;(x — y — y’) to both be continuous (with y and
y’ fixed). This requires the absence of zero-measure (e.g., point
and directional) sources and ideal specular surfaces such as perfect
reflectors and smooth dielectric interfaces, which are also assumed
by prior works [Li et al. 2018a; Loubet et al. 2019; Zhang et al. 2019].

We notice that Le and fs can be discontinuous with respect to
x in the tangent plane of y (i.e., for x with n(y) - (y — x) = 0),
violating Assumption A.2. Fortunately, when modulated with the
cosine factor |n(y) - (y — x)| from the visibility-free geometry
term Gy, these discontinuities usually vanish.”

7 With shading normals deviating greatly from geometric ones, discontinuities within
tangent planes may not vanish. We neglect this case for cleaner derivations, and our

theory can be easily generalized by making the extended boundary curves 9.L(7) to
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Fig. 5. Our material direct-illumination integral of Eq. (17) is over the 7-
independent reference configuration 8. If the light source L is not occluded
when viewed from x, the boundary integral vanishes as AB | fiirect ] (7) = 0.

Sources of discontinuities. In Eq. (15), aL () is determined by the
boundary of £ (1), as well as the discontinuity curves A L[ fiirect] (77)
comprised of jump discontinuity points of fgjrect (). Under Assump-
tion A.2, these discontinuities are entirely due to geometric term G.
Thus, AL fiireet] () = ALIG(- )] (7).

Specifically, a discontinuous surface normal can lead to sudden
changes of the term |n(y) - (y — x)| with fixed x € Mp;. Addi-
tionally, visibility boundaries correspond to discontinuities of the
mutual visibility function V. Geometrically, the discontinuities due
to surface normals are categorized by Zhang et al. [2019] as sharp
edges, whereas those due to visibility correspond to silhouette edges.

4.1 Material-Form Integrals

Prior works [Loubet et al. 2019; Zhang et al. 2019] have shown
that the boundary term in Eq. (15) can be very costly to estimate
in complex scenes. In what follows, we introduce a reformulation
of the surface integral (14) such that, after differentiation, we can
ignore the boundary 0L () of the evolving surface £ ().

We assume L () to have a global parameterization induced from
some motion X. Then, as shown in Figure 5, we can reformulate
Eq. (14) to be over the corresponding reference configuration B,
yielding the following reparameterized integral:

Ljirect = /g fdirect(P) dA(p), (17)
where fiirect (P) = fiirect (x) J(p) with x = X(p, ) and
J(p) = |dA(x)/dA(p)I, (18)

being the Jacobian determinant for the change of variables from
spatial point x to its material representation p. Following the termi-
nology described in §3.2, we call Egs. (14) and (17) spatial-form and
material-form direct-illumination integrals, respectively.

Despite the similarity between the spatial-form (14) and the
material-form (17) integrals, the latter enjoys a key advantage that
it can be differentiated using the Reynolds transport relation (13)
because its domain of integration 8 is independent of r, yielding:

interior boundary

AMgirect A . f
irect _ f (fiirect) dA |+ / Afiirect Vag df (19)
or B AB

where AB| f:ﬁrect] (7r) contains the discontinuity curves of f:ﬁrect (p)-

also contain spatial points within the tangent plane of y (that is, all x € £ () with
n(y) - (y = x) =0).



Practical advantages. Estimating 0lirect/ 97 using the material-form
integral of Eq. (19) offers a number of advantages:

e Compared to the spatial form (15), the material form allows the
boundary curves 98 to be excluded from the boundary component,
reducing the computational cost for estimating this term.

e Compared to the solid-angle-integral formulation used by prior
works [Li et al. 2018a; Zhang et al. 2019], the material form gen-
eralizes more easily to the full path integrals (§5.2), enabling the
design of more sophisticated Monte Carlo estimators (§6).

5 DIFFERENTIAL PATH INTEGRALS

We now generalize the analysis in §4 to establish the differential
path integral framework. Our objective is to differentiate radiometric
measurements I depicted as path integrals (1) with the path space Q
defined over evolving surfaces M (). That is, we aim to calculate
al/ox where Q(7) = Uy_; M(m)N+L,

Preview. The transport relations of Egs. (11) and (13) presented
in §3.3 have shown that the derivative of a surface integral consists
of an interior and a boundary components. We will show in §5.1
that the derivative 9I/an can be expressed in a similar fashion as
the sum of (i) an interior path integral over the original path space,
and (ii) a boundary integral over the boundary path space comprised
of boundary light paths (see Figure 6-b). This result, which we will
refer to as the spatial-form differential path integral, will be shown
in Eq. (29).

Additionally, by applying the reparameterization introduced in
§4.1 to the spatial-form differential path integral, we will derive its
material-form counterpart (36) in §5.2. Similar to the direct illu-
mination case, this reparameterization simplifies both the interior
integral (by having non-evolving surfaces) and the boundary one
(by minimizing the type of discontinuities).

5.1 Spatial-form Differential Path Integral

We start with differentiating, with respect to 7, measurements Iy
defined as the spatial-form order-N path integral of Eq. (3) for some
fixed N > 1. The derivatives of the spatial-form full path integral I
will then follow from the relationship I = Zﬁzl In.

Recursive expression of path integrals. To derive 9IN/arx, we first
rewrite Eq. (3) recursively. To this end, we define

hn (xNs xN-1) = We(xn — xN-1), (20)
and, for 0 < n < N,

hn(xn; xp-1) = -/M g(xn+1; Xn—1,%n) hns1(Xne1; xn) dA(xp41),

(21)

where g is defined in Eq. (5). Then, it is easy to verify that
ho(x0) = [yn £ TIY, dA(xn). (22)
In = [, ho(x0) dA(x0). (23)

Given Eq. (23), calculating 9In/ar reduces to differentiating hy,.
Similar to our handling of direct illumination in §4, we assume the
absence of zero-measure sources or ideal specular surfaces. This
ensures that, forall 0 < n < N, hy, is continuous at all interior points
xn € M() \ o9M(7x). Then, using a surface parameterization that
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Fig. 6. Boundary light paths: Unlike their regular counterparts (a), each
boundary light path (b) has one of its vertices constrained on a curve. In
this example, the path (xo, x1, x2) € 9Q31 has its vertex x; € oMy (7r) on
the silhouette with respect to xp.

produces zero tangential velocity for all x € M(x), we can apply
the transport relation of Eq. (11) to express the scene derivative of
h, as:

hn = fM [(hnt19) — hnr1gx V] dA + fmnﬂhnﬂ Ag VW'M de,
(24)
where:
o (hp419)” is the scene derivative of (hp+1 g) and equals the normal
scene derivative (hp+1 g)" under Assumption A.1.

. Wn.,.l(ﬂ) = M () U AM[g(-; xn-1,xn)] (1) denotes the ex-
tended boundary of M (7r) comprised of the boundary oM () and
the discontinuity curves AM () with respect to the function g
(when x,—1 and x, are fixed).

e Vand Voii,., are the scalar normal velocity of M(x) and that
n+l1
of M 41 (), respectively.

e Ag follows Eq. (12) and indicates the difference in g across the
discontinuity curves. We note that Ahy,41 is not needed here, as
hpn+1 is assumed to be continuous in the interior of M(r).

Differentiating order-N path integrals. With Eqgs. (21) and (24)
at hand, we can now differentiate Iy. To this end, we use the ex-
pression of Iy in Eq. (23), and repeatedly expand h, and A, for
n=0,1,...,N — 1, resulting in:

Anfon = [ [f(®) ~ F(2) TR x(xr) V(xk)] du(x) +

(25)
SN0 [ o A Vo, () dify o ()]
where
QN k = M(m)X x aMy (1) x M(m)NK, (26)
dify (%) = deCxe) [ | dAGen), 27)
0<n<N
n#K

Afg (%) = f(%) Ag(xk: xK—2, xK-1)/9(xK: XK-2,XK-1). (28)

As a base case, as hy is assumed continuous, ie., AM[ho](r) =0,
it holds that oIMo(7) = dM(x) and Afy(x) = f(x). Please see
Appendix A for a full derivation of this result.

Completing the derivation. Finally, as I = ¥, 3_, In. it holds that
oljor = 35, 9In/or. Thus, we can sum up Eq. (25) forall N > 1
into a single expression of 9I/ax as follows.

ACM Trans. Graph., Vol. 39, No. 4, Article 143. Publication date: July 2020.



143:8 « Zhang, Miller, Yan, Gkioulekas, and Zhao

Spatial-form differential path integral

For a radiometric measurement I given by a spatial-form path
integral, its derivative with respect to scene parameter sz can be
expressed as a spatial-form differential path integral:

interior

N
ol o _ _
o= 1@ =@ Y k0 Vo | duta) |+
o Q K=o
(29)
boundary
Afic(2) Vi (xx) dp’ (%)
/BQ oMk
where 9Q C Q is the boundary path space defined as:
32 := Uy, UrZo 9Nk (30)
and p’ is the differential area-product measure given by:
¥ (D) =US_, ngoyl'w (DN oQNK), (31)

for any D c 9Q. We call light paths of this kind as boundary
light paths, and the function Afx as the boundary contribu-
tion function. We also distinguish the segment xg_; xx as the
boundary segment of boundary path x.

Analogous to the transport relation of Eq. (11), our spatial-form
differential path integral formulation involves a interior and a bound-
ary term: The interior term is a path integral over the same path
space Q and with the same area-product measure p as the original
path integral. By contrast, the boundary term is a path integral over
the boundary path space dQ and uses the differential area-product
measure y’. This is the space of light paths ¥ = (xg, x1,...,xN)
with N > 1 and one of the vertices xx being constrained to be on
the curves given by IM (1) (see Figure 6).

Sources of discontinuities. In Eqgs. (24) and (25), for 0 < n < N,
WrH.l(ﬂ') is determined by any boundaries of M(x), as well as
the discontinuity curves of g(xp+1; xn—1, x) with respect to xp41,
when holding x,,—1 and x,, fixed. Similar to the direct-illumination
case, these discontinuities generally arise from sharp and silhouette
edges.

Reciprocity. 1t is easy to verify that the interior term of our dif-
ferential path integral (29) is reciprocal.® The boundary term, on
the other hand, is not. This is primarily due to our “unidirectional”
definition of My, (r): for all k > 0, it contains the discontinuity
points of g with respect to x,, with x,—2 and x,—; fixed. If we de-
fined Wn(n) by considering discontinuities with x,4+1 and x,42
fixed, we would obtain another boundary term that takes a different
form but is mathematically equivalent.

As we will discuss in §6, the boundary term not providing reci-
procity has little impact on the design of efficient Monte Carlo

8The presence of refractive interfaces and shading normals can break the reciprocity
of BSDFs and, thus, that of measurement contribution f and its scene derivative f
Fortunately, the handling of such asymmetry by introducing additional correction
terms [Veach 1997] generalizes naturally to differentiable rendering.
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Fig. 7. Alternative parameterization: Given a motion X and a fixed 7y €
R, let P be the reference map of X. Then, composing P(-, ) and X(-, )
yields a new motion x(p, r) = X(P(p, 1), 7r) that reduces to the identity
map at 7t = .

estimators. Thus, we consider the derivation of reciprocal boundary
terms as future work.

5.2 Material-Form Path Integrals

We now generalize our material-form direct-illumination integrals
in Egs. (17) and (19) to material-form full path integrals. Similar to
the direct illumination case, our material-form differential path inte-
gral minimizes the contribution of the boundary term and improves
the effectiveness of reusing path samples when jointly estimating
the original radiometric measurements I (e.g., the original image)
and the corresponding derivatives 9I/ar (e.g., the derivative images).
Additionally, minimizing the contribution of the boundary term
reduces the computational overhead required for estimating this
term, which previously required tracing expensive “side paths” to
obtain unbiased estimations [Li et al. 2018a; Zhang et al. 2019].

Assume that evolving surfaces M () can be parameterized glob-
ally using some motion X with a reference configuration 8. By sub-
stituting each x, € M(x) using X(pp, ) with material point p,,
the original spatial-form path integral of Eq. (1) can be expressed as
another material-form path integral:

=[5 f(B)du(p), (32)

where Q = Un=1 BN+ s the material path space independent
of 7. In Eq. (32), for a material light path p = (po,..., pNn) € Q,
its material measurement contribution function f , which can
be obtained by modifying Egs. (4-7), equals:

f®) = (MY 6(Pnats -1, o)) Welpn = pnr), (33)
where
We(pn — pn-1) = J(PN) We(xn — xN-1), (34)
and, for 0 < n < N,

9(Pn+1; Pn-1, Pn) = f;(Pn—l = Pn = Pn+1) G(xp & xp11). (35)

=J(pn) fs(Xn-1—Xn—Xn41)

In Egs. (34) and (35), J is the Jacobian determinant given by Eq. (18),
and x, = X(pn, 1) is, for all n, the spatial representation of the
material point py,.



Material-form differential path integral

Assuming the Jacobian determinant J to be continuous,* differ-
entiating the material-form path integral of Eq. (32) produces
the following material-form differential path integral:

interior boundary
S| [ @ |+ [ nde) Vi (o ')
(36)
where:

e The scene derivative ( f ). of the material measurement con-
tribution f of Eq. (33) is obtained using the global paramteri-
zation of M(rr) induced by the motion X.

e The material boundary path p, its material boundary
contribution A fK( p), and the material boundary path
space 9Q are, respectively, defined in a similar fashion as
x, Afg (%), and 9Q in Egs. (28) and (30).

o Lastly, ABg () := AB[§(:; px—2, Pk—1)] () comprises the
discontinuity curves of § with respect to px, when pg_»
and pg_; are fixed. We call px_; px a material boundary
segment.

“Eq. (36) also holds when the discontinuity curves AB[J] are independent of 7.

Comparison of spatial-form and material-form. Similar to the di-
rect illumination case, estimating the partial derivative 9I/ax of
radiometric measurements I using our material-form differential
path integral offers the advantage of not having to include 68, which
is independent of 7, in the boundary term. Furthermore, by leverag-
ing proper parameterizations, the material form allows its boundary
term to involve even fewer types of discontinuities, as we discuss
below.

On the other hand, our material-form integrals of Egs. (19) re-
quire as input a pre-determined global parameterization induced
from some motion X. For certain applications, such as when the
evolving scene geometry M(r) is expressed implicitly, such global
parameterizations may be difficult to obtain. In these cases, it may
be necessary to resort to the spatial form of Egs. (15) and (29), which
only impose the following requirements on M(x): (i) it must allow
ray tracing (i.e., ray-surface intersection computation) to be per-
formed in a differentiable fashion; and (ii) it must allow the sampling
of points on the surface (which can be done using particle-based
methods [Witkin and Heckbert 1994] for implicit surfaces). The
second requirement is for the Monte Carlo estimation algorithms
we introduce in §6.

Alternative parameterizations. In practice, when calculating I/ox
at some fixed 7, we can define another motion X that is local to 7
and has the reference 8 = M (). Let P be the reference map of
the motion X. For any fixed 7’ € R, let

X(-, 1) = X(-, ) 0 P(-, 7mp). (37)

Namely, X(p, ) = X(P(p, 7o), ) for all p € B (see Figure 7). Then,
X(-, ) reduces to the identity map when 7 = m¢. Thus, when using
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the locally defined motion X for the material-form differential path
integral of Eq. (36), the Jacobian determinants J from Eq. (18) become
one, allowing the path integral to be efficiently estimated using
previously developed path sampling methods. Notice that the scene
derivatives J generally remain nonzero.

Another possibility is to have the reference B set to [0,1)? and
the motion X(p, 7) determined by the sampling process of points x
on the surface M(r), with p being the random numbers. Then, the
resulting material path space ) essentially becomes the primary
sample space used by many Markov-Chain Monte Carlo (MCMC)
rendering algorithms (e.g., [Kelemen et al. 2002]). We opt to use the
parameterization of Eq. (37) in this paper due to the advantage of
having unit-valued Jacobian determinants J.

Sources of discontinuities. As discussed in §5.1, for the spatial-form
differential path integral (29), discontinuities of g(xp+1; Xn—1, Xn)
arise from those in surface normal and visibility. This remains the
case for §(pn+1; Pn—1, Pn) in the material-form differential path
integral (36).

Fortunately, since the integral domain 8 is independent of the
scene parameter s, many of the jump discontinuity points of g with
respect to pp4+1 no longer moves with 7. This causes the normal ve-
locity Vag,,,, at these points to vanish, allowing them to be omitted
from the boundary integral.

In practice, when M () and B are depicted using polygonal
meshes, the motion X or its local variant X given by Eq. (37) usually
maps face edges of B to those of M (). In this case, although surface
normal can be discontinuous across face edges in B, these edges
do not have to be included in AB| f ] () as they are n-independent.
Therefore, the only type of discontinuity needed to be handled with
boundary integrals is visibility-related, i.e., the silhouette edges.

We note that the Jacobian determinant J given by Eq. (18) is usu-
ally constant within each face of a polygonal mesh but discontinuous
across the face boundaries. Fortunately, because the face bound-
aries of the reference 8 are independent of 7, our material-form
differential path integral of Eq. (36) still holds, and the discontinuity
curves ABy, () do not need to include the face boundaries.

6 MONTE CARLO ESTIMATION OF DIFFERENTIAL
PATH INTEGRALS

Our differential path integral formulations of Eq. (29) and (36) fa-
cilitate the design of efficient Monte Carlo methods for estimating
derivatives of radiometric measurements with respect to arbitrary
scene parameters ;z. We focus our derivations on the material form,
but they can be easily generalized to handle the spatial form as well.

Terminology. In the rest of this section, to simplify terminology,
we omit explicitly specifying that we use path integrals (32) and
differential path integrals (36) in their material forms.

Preview. Since the interior term integrates over the original path
space, it can be estimated by adapting existing path sampling tech-
niques such as unidirectional and bidirectional path tracing, which
we will discuss in §6.1.

The boundary path integral, on the contrary, operates over the
boundary path space. We will introduce in §6.2-§6.4 a new Monte

ACM Trans. Graph., Vol. 39, No. 4, Article 143. Publication date: July 2020.



143:10 + Zhang, Miller, Yan, Gkioulekas, and Zhao

Carlo estimator for this term. Our estimator works in a multi-
directional fashion and constructs a boundary light path starting
with its boundary segment. Then, two original light paths are sam-
pled to connect one endpoint of the boundary segment to the light
source and the other to the detector.

6.1 Estimating the Interior Integral

Thanks to the similarity between the original path integral (32) the
interior component of our differential path integral (36), the latter
can be estimated using previously developed path sampling meth-
ods. Specifically, we draw light paths p from the path space Q by
applying conventional path sampling methods to the reference con-
figuration 8. This allows us to estimate radiometric measurement I
and its derivative 9I/ax jointly by reusing the path samples.

In practice, we adopt two commonly used algorithms, unidirec-
tional and bidirectional path tracing, to obtain unbiased estimates of
the interior integral. Algorithm 1 outlines the unidirectional variant
of our algorithm. For notational clarity, we omit multiple importance
sampling (MIS) in this algorithm.

In this algorithm, we calculate the scene derivatives based the
relation between spatial and material points: x, = X(pp, 7) for
n =0, 1, 2. For instance, the scene derivatives of the BSDF equals

[fi(x0 = x1 = x2)]" = 2= f(X(po, 7) = X(p1,7) = X(p2, 7)),

(38)
with the material points pg, p1, and p; fixed.

Proper use of automatic differentiation. In practice, all the scene
derivatives from Lines 3, 8, and 15 of Algorithm 1 can be computed
numerically using automatic differentiation (autodiff) techniques.
However, precaution is needed when applying autodiff to exist-
ing path tracing implementations: When differentiating agjrect in
Line 10, for instance, we should ensure that the differentiation in-
volves the full representation of the source emission Le, the surface
BSDF f;, and the geometric term G. Traditional path tracers usu-
ally have certain components, such as the cosine factors from G,
omitted, as they are canceled out by the PDF term Py ect- Directly
applying automatic differentiation to such implementations can pro-
duce incorrect derivative estimates. These risks can be alleviated by
designing differentiable renderers in a way that allows completely
separating the computation of the measurement contribution and
PDF terms, and detaching the latter from the automatic differentia-
tion process.

6.2 Multi-Directional Form of the Boundary Integral

An important distinction between our differential path integral
formulations of Eqs. (29) and (36) and prior works [Li et al. 2018a;
Loubet et al. 2019; Zhang et al. 2019] is the complete decoupling of
the boundary integral from its interior counterpart. Leveraging this
flexibility, we introduce a new unbiased Monte Carlo method to
estimate the boundary integral in the rest of this section.

We consider a material boundary path p = (po, p1,. .., pN) € 92,
with x,, := X(pn, ) being the corresponding spatial points on the
evolving surface M (). As discussed in §5.2, we assume that one
vertex of the boundary segment of p is a jump discontinuity point
of the visibility function when the other vertex is fixed. This creates
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ALGORITHM 1: Estimating the interior integral of Eq. (36) using
unidirectional path tracing

1 MaterialDifferentiablePathTracing(xy, x2)

Input: Two spatial points x1, x3

Output: L(x; — x;) and its scene derivative L

begin

3 (L,L) « (Le(x1 = x3), [Le(x1 = x2)]°);

4 (T, T) « (1,0); // path throughput

)

5 while true do

/* Direct illumination (light sampling) */
6 Draw po ~ Plight (Po); // area measure
7 xo — X(po, 7);
8 Compute Agjrect and girect as, respectively, the value and

scene derivative of:
Le(x0 = x1) fi(x0 = x1 = x2) G(x0 & x1) J(po);

9 L « L+T agirect/Plight (Po);
10 Le—L+ (T ddirect + T Adirect) /]Plight (po);
/* Indirect illumination (BSDF sampling) */
11 Draw wj ~ Ppsar (wi); // solid-angle measure
12 xo « rayTrace(x1, wi);
13 if x¢ is valid then // Ray tracing hits
14 Po — P(xo, 7);
15 Compute ipdirect and Gindirect as, respectively, the
value and scene derivative of:
fs(xo = x1 = x2) G(x0 © x1) J(po);

/* Convert probability to area measure */
16 q — Prgar (@3) [n(x0, ) - =i/ llx0 — x1[|%

/* Update throughputs */
17 T — T Qindirect/ G5 T — (T dindirect + T Qindirect) /G

/* Continue the path */
18 X2 ¢ X1; X1 < X0,
19 else // Ray tracing misses
20 ‘ break;
21 end
22 end
23 return (L, L)
24 end

complications when building the boundary path: Constructing its
boundary segment, for instance, could require sampling one of its
vertices from the silhouette edges viewed from the other. Unfor-
tunately, identifying silhouette edges can be costly [Loubet et al.
2019], making it difficult for prior unbiased methods [Li et al. 2018a;
Zhang et al. 2019] to handle scenes with complex geometries.

To overcome this challenge without sacrificing unbiasedness, we
propose building the boundary light paths p in a multi-directional
manner.” For notational convenience, we rename path vertices so
that p = (pS, .. .,p(s), p(])), ..., pP), and accordingly for the points x5
and xD for all n. This lets us decompose the boundary light path p
into its boundary segment p> p?, preceded by a source subpath

0
pS=(ps,.. .,pf) connecting pg to the light source, and succeeded

° Anderson et al. [2017] presented a tri-directional path tracing algorithm that is con-
ceptually similar to our approach. Their method, however, estimates the original path
integral while ours focuses on the boundary term of our differential path integral.



by an detector subpath pP := ( pll), ey plt)) connecting Plo) to the
detector (i.e., the eye), respectively.

The main idea of our multi-directional sampling of a boundary
light path is to first construct its boundary segment and then build
the source and detector subpaths. To this end, we first rewrite the
boundary term from Eq. (36), such that the contributions from these

three parts are decoupled, as:
Lo £ FR P, (39)
where the terms

fP = AG(x§ & x0) Vas, (40)

£ = K6} = py = pp)
[ (S, =Py = pS )GES | oxh),  (41)

fP = fi(py — ph — PP
L EPR > PR - PP HGGL o xD) (42

capture the contributions of the boundary segment pg p]OD, the
source subpath p° (given pg), and the detector subpath pP (given
pOD) to the boundary contribution function, respectively. In Egs. (40-
42), Vpg is the scalar normal velocity of pOD with pg fixed; and fs
follows the definition in Eq. (35).

By further separating the boundary path space and differential
area-product measure in Eq. (39), we obtain the multi-directional
form of the boundary integral from Eq. (36) as:

Sy s /fzfsd”(f"s>]fB [foDdu(pD)

6.3 Multi-Directional Sampling of Boundary Paths

de(ph) dA(py).
(43)

We now present our Monte Carlo solution for estimating the multi-
directional boundary integral (43). Our unbiased algorithm samples
boundary paths by drawing the boundary segment p(s) plo) first fol-
lowed by the source subpath pS (given pﬁ) and detector subpath pP

(given pOD). In what follows, we provide a detail description of this
process.

As stated in §6.2, we would like to sample boundary segments
without performing explicit searches for silhouette edges. For pg plo)
to be a boundary segment, its spatial counterpart xg x(l)) with x(s) =
X( pg, ) and x(])3 = X( p(])), ) must intersect the evolving surface
M () at exactly one point xB besides the endpoints.'® This point
is not a vertex of the path, but simply corresponds to a point on the

silhouette of M () when viewed from xg or x(l)).

Change of variables. To sample the boundary segment p% pOD,

we first perform a change of variables from pg and pOD to xP and

B = xg - xOD. It is easy to verify that the equations controlling

this change of variables are

S S D D
Po = P(xo,”)s Py = P(x0>7[)a (44)
OWhen Assumption A.2 is relaxed to allow jump discontinuities of the source emis-
sion Le and the BSDF f; within tangent planes (as discussed in footnote 7), a spatial
boundary segment can also reside within the tangent plane of one of its endpoints.
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Fig. 8. Multi-directional sampling of boundary paths: To sample a
boundary light path, we start with sampling the boundary segment pg P]o)
followed by a source subpath 5 and a detector subpath . To obtain p(sJ pOD,
we start with sampling some x® € M(x) with ©® € S? and performing
ray tracing to obtain xg and x(I)J, which in turn determine pg and pOD via
Eq. (44), respectively. The point xB itself is not a vertex of the sampled path.
In the figure, we illustrate two spatial boundary paths with x;, = X(p},, )
with * € {S,D}. The arrows indicate the direction of the flow of light (and
are independent of the sampling of the subpaths).

where x(s) = rayTrace(xB, —wB), x(l)) = rayTrace(xB, wB), and P is

the reference map of the motion X that transforms a material point
to its spatial representation.

Based on this change of variables, we then rewrite the multi-
directional boundary integral (43) as

I o £5 ana)] [ £2 1B, 0®)] [ fo £ du(p™) | deoP da®,

=i FB (xB,0P) (45)
where
BB, P = dA(x]) de(xD) || dA(p3) de(ph) e
dxP dewP dA(x3) de(xD)

is the product of two Jacobian determinants: the former captures
the change of variables from (xg, x(])j) to (xB, wPB), and the latter

from material points ( pg, pOD) to spatial ones (xg, x(l))).

Monte Carlo estimator. As depicted in Figure 8, Monte Carlo esti-
mation of Eq. (45) boils down to: (i) sampling xB, &® and converting
them to the boundary segment pg p]03 using Eq. (44); (ii) building the
two subpaths pS and p°, which are original light paths themselves,
using existing path sampling methods. With the full boundary path

available, the corresponding single-sample estimator becomes:

A A O SO B i

P(pS|xB wB) P(xBwPB) P(pP|xB wb)

(47)

where P(xB, ®®) denotes the joint probability density for sampling
xB and wP; P([)S | xB, wB) and P(pD |xB, wB) are, respectively, the
conditional probability densities for sampling the two subpaths p5
and pP, given xB and w® (which in turn determine the boundary
segment pg p}))).

We summarize the estimation of the boundary integral (45) using
Eq. (47) in Algorithm 2 (and will discuss the separation of direct
and indirect paths in §6.4). To realize this Monte Carlo estimator,
what is left now is to determine how to sample xB and P (Line 3),
which in turn requires to determine their integral domains, as well
as how to compute the first Jacobian in Eq. (46).
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Fig. 9. We apply a change of variable from (x x2) to (xB, wP) for
sampling spatial boundary segments. This figure illustrates the quantities
needed to calculate the corresponding Jacobian determinant of Eq. (48) that
is derived in Appendix B.

Jacobian determinant. When the scene geometry M () is speci-
fied using polygonal meshes, the integral domain of xB is the union
of all face edges & () of the mesh. Further, dx® and dew®, respec-
tively, equal the curve-length and the solid-angle measures. This is
because, for a boundary segment to touch a polygonal mesh at a
single point xB, this point must lie on the edge of a polygonal face.
For each xB € §(x), the direction w® needs to satisfy the following
two conditions:

o First, rayTrace(xB, —wP®) and rayTrace(xB, »®) should success-
fully intersect M () at some xg and xOD, respectively.

e Second, the segment xg x(])D should not penetrate M (). Specifi-
cally, as shown in Figure 10, if the face edge containing xB
shared by two faces with normal vectors n and n’, we need

(0® - n) (0B - 1) <0.

It follows that we can express the first Jacobian on the right-hand
side of Eq. (46) as
= [ =3[ " - =]

where 88 and 6P are the angles between w® and, respectively, the
face edge at x® and the visibility boundary at x2; and 6° is the angle

dA(xS) de(xD)

o8
q0P) do (@) | e (48)

sin @0 [cos 65

between P and the surface normal at x(s) (see Figure 9). We provide
a derivation of this result in Appendix B.

When using the global parameterization induced from the mo-
tion X of Eq. (37) for some fixed 7y € R, both X(-, 7r9) and P(-, 79)
reduce to identity maps. Then, p5 = x5 and pD = x for all n, the
second term on the RHS of Eq. (46) reduces to one, and JB(xB, wP)
equals Eq. (48).

6.4 Next-Event Estimation and Importance Sampling

Next-event estimation. To improve the efficiency of boundary-
path sampling, we adopt next-event estimation (NEE), a technique
widely used by forward rendering algorithms, as follows. We con-
sider direct boundary paths p € Uy_, Fle) N1, in analogy with
direct-illumination paths in path tracing. Then, for each such path p =
(pos p1, - - -), the boundary segment coincides with the first segment
po p1(ie, pg = po and pOD = p1), as shown in Figure 8. Accordingly,
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Fig. 10. Sampling the boundary segment: When x® lies on an edge of
a polygonal mesh that is shared by two faces with normals n and n’, the
direction w® needs to satisfy (w -n)(wP - 1) <0 (ie, the green region)
for the resulting segment xo x0 to be a (spatlal) boundary segment.

their contribution to the boundary integral (45) equals

J e = <Dy [£B PG 0P) | [ fo P du(pP) | deoP ae®,
(49)
Because xg = rayTrace(xB, —wP) needs to lie on a light source, we
restrict the sampling of P to satisfy this condition. When M (rr)
is expressed as polygonal meshes, for instance, we draw w® by
sampling a point on the light source.

In practice, this separation of direct and indirect boundary paths
can be implemented by using different probability densities in Al-
gorithm 2 and sampling the source subpaths accordingly (Lines 9
and 11).

Grid-based importance sampling. A naive way to sample the spa-
tial point xP and direction ®® (Line 3 of Algorithm 2) is by uniformly
drawing xB followed by w®. Unfortunately, this can results in es-
timates of high variance, due to the complexity of the integrand
FB(xB, wP) of Eq. (45). Instead, we would like to sample x® and
®P jointly, with a probability density proportional to the integrand:

ALGORITHM 2: Multi-directional estimation of the boundary inte-
gral of Eq. (45)

1 EstimateBoundaryIntegral (P, direct)
Input: Probability density P for sampling the boundary segment,
and a boolean direct for next-event estimation (NEE)

2 begin
/* Sample boundary segment */
3 Draw (xB, @B) ~ P(xB, 0P);
4 xg — rayTrace(xB, —(uB); x(])3 — rayTrace(xB, wB);
5 if x(s)’ and x(ll) are both valid then // Both ray tracings hit
6 T8 B JB(xB, 0P) /P(xB, 0P);
7 Py — P(x3,7m); pb — P(xD, 7); // Eq. (44)
/* Sample subpaths */
8 if direct then // For direct path
9 ‘ T5<—Le(x0—>x0)
10 else // For indirect path
11 ‘ TS EstimateSourcePath(pg; pOD);
12 end
13 TP EstimateDetectorPath(p})); pg);
14 return TS TB TP; // Eq. (47)
15 else
16 return 0;
17 end
18 end
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Fig. 11. Estimating the multi-directional boundary integral of
Eq. (45): Our unidirectional algorithm (1.1) samples the source and detector
subpaths using unidirectional tracing with next-event estimation (NEE).
The bidirectional variant (1.2), on the contrary, uses bidirectional path trac-
ing (BDPT) to construct both subpaths.

P(xB, wP) o« FB(xB, wPB). Although this probability is difficult to
compute analytically, we note that the total dimensionality of the
domains of xB and w® is only three (e.g., when M(rx) is expressed
as polygonal meshes, x® belongs to a 1D manifold of mesh face
edges, while P lies on a subset of the 2D sphere of directions).
We take advantage of this low dimensionality to develop a simple
method for importance sampling x® and ®® as follows.

We discretize P(xB, wP) as a regular 3D grid that is precomputed
before the rendering process. Inspired from standard path guiding
using photon maps [Jensen 1995], we start the preprocessing with
generating a photon map (by tracing photons carrying radiance
information from the light source) and an importon map (by trac-
ing importons carrying importance information from the detector).
Then, we integrate FB(xB, wP) within each cell C; by uniformly
sampling xP and wP:

P; = /Ci FB(xB, wB) dwP dxB, (50)

which provides a piecewise constant representation of P(xB, wP).

Fig. 12. Validation of our unidirectional algorithm (I.1). In this example, the
derivative is computed with respect to the rotation angle of the branches
around the vertical axis. Derivatives estimated with our method closely
match those obtained using the finite-difference (FD) approach with the
main difference due to the FD bias.
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Fig. 13. Validation of our bidirectional algorithm (I.2). In the top example,
the differentiation is with respect to the horizontal displacement of both
area light sources. In the bottom example, the derivatives are computed with
respect to the vertical location of a spot light. Both examples involve light
transport effects that are challenging for unidirectional methods. Derivatives
estimated with our method closely match those obtained using the finite-
difference (FD) approach with the main difference due to the FD bias.

To approximate the two integrals in FB (xB, wB), we leverage
kernel density estimation using the pre-generated photon and im-
porton maps. Specifically, given xg and x(I]), by performing a nearest-
neighbor (NN) search in the photon map around xg, Wwe can approx-
imate the contribution of the source subpath as

Jo fSdu~ 2p filxg, wp, ) @y, (51)

where A is the surface area of the search neighborhood, ®;, denotes
the power of the p-th photon in the neighborhood, and w;, is the
photon’s incident direction. A similar estimate can be formed using
the importon map for the contribution fQ f D dy of the detector
subpath.

We emphasize that, even though our estimate ]P’(xB, wB) is biased,
the resulting estimator of the boundary integral (45) remains unbi-
ased, as P(xB, wP) is only used to importance sample x® and ®®. In
practice, we precompute two probability densities Piyect (x5, @P)
and Pipgirect (x5, @®) for importance sampling the direct and the
indirect boundary paths, respectively.

7 RESULTS

To evaluate the effectiveness of our technique, we implement two
path-space algorithms based on the Monte Carlo methods intro-
duced in §6 as follows.
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Fig. 14. Evaluation of the effectiveness of our unidirectional algorithm (I.1). Images in the left column visualize the overall scene configurations. All derivative
images (other than the finite-difference reference) are generated under equal sample. Our method runs much faster than edge sampling and produces much

cleaner derivative images.

I.1 Our unidirectional algorithm uses differentiable unidirec-
tional path tracing (Algorithm 1) for the interior integral and a
multi-directional estimator (Algorithm 2) with next-event esti-
mation and grid-based importance sampling for the boundary
integral. When building the source and detector subpaths, it uses
a unidirectional scheme (that starts from pg and pl()) for the two
subpaths, respectively), as illustrated on the left of Figure 11.

I.2 Our bidirectional algorithm estimates the interior integral
using bidirectional path tracing (that is, the bidirectional coun-
terpart of Algorithm 1). For the boundary integral, the source
and detector subpaths are both sampled in a bidirectional fash-
ion, as shown on the right of Figure 11. The source subpath, for
instance, is constructed by sampling from both pg and a light
source.

7.1 Validation

To validate the correctness of our derivations and implementations,
we compare radiance derivatives estimated with our method to
those obtained using the finite difference (FD) method.

We validate our unidirectional algorithm (I.1) in Figure 12 using a
test scene that contains an object comprised of many branches. We
compute the derivative images with respect to the rotation angle of
the object.

Our bidirectional algorithm (I.2) is validated in Figure 13. The first
example in this figure contains a Cornell-box-like scene lit by two
area light sources with the right one facing upward. The derivative
images are computed with respect to horizontal displacements of
both lights. The second example is modeled after the well known
scene created by Veach [1997] for demonstrating the effectiveness
of bidirectional path tracing (BDPT). This scene involves a large
floor lamp, a small spot light, and a glass egg on a table, and we use
a camera setting to focus on the egg. We compute the derivatives
with respect to the vertical displacement of the spot light.
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In both figures, our results match those generated by the finite-
difference method in much longer time. The small differences are
due to the bias introduced by applying finite difference. This bias can
be reduced by using smaller spacing but at the cost of significantly
higher Monte Carlo noise. Our technique is capable of producing
much cleaner and unbiased derivative estimation.

7.2 Evaluations

Thanks to our differential path integral formulations, our Monte
Carlo algorithms (I.1 and 1.2) are capable of handling efficiently
complex geometric discontinuities and light transport effects. In
what follows, we evaluate the effectiveness of our method on both
aspects. We compare our results to those generated using the (unbi-
ased) edge-sampling method [Li et al. 2018a; Zhang et al. 2019] and
the (biased) reparameterization method [Loubet et al. 2019]. We use
two kinds of configurations for these comparisons: (i) scenes with
complex geometry and occlusion; and (ii) those with light transport
effects that are known to make unidirectional methods inefficient
(e.g., caustics).

Complex geometry. Previously, sampling points from silhouette
edges of a surface point (i.e., edge sampling) was generally required
to obtain unbiased derivative estimates [Li et al. 2018a; Zhang et al.
2019] with respect to the scene geometry. This process, however, can
be highly expensive for scenes with complex geometries. Another
solution is to trade unbiasedness for computational efficiency by
applying a local reparameterization [Loubet et al. 2019]. This method
relies on a number of simplifying assumptions that can be violated
in scenes with complex motions, making the resulting derivatives
too biased for inverse rendering applications.

We use two test scenes with complex geometry to evaluate the
performance of our unidirectional algorithm (I.1) as follows. The
branches scene, which has been used in Figure 12, contains sev-
eral branches lit by a small area source, causing complex visibility
changes that can be observed from the shadows on the ground;
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Fig. 15. Inverse rendering comparisons using the branches scene with the object’s rotation angle being optimized. All methods are configured to have
equal sample count per pixel. We show rendered images produced by each method after the last iteration with ours marked in purple, edge sampling in orange,
and reparameterization in green. Notice that these images are noisy as we use low sample count during optimization. The image and parameter RMSE plots
are color-coded the same way, and the latter is not used for optimization. Our unidirectional implementation runs much faster than edge sampling while
preserving unbiasedness. The reparameterization-based method fails to converge to the correct solution under the second configuration due to its bias.

and the differentiation is with respect to the rotation angle of
the branches around the vertical axis. The puffer ball scene in-
volves a highly-detailed mesh generated via physics-based simula-
tion [Zheng and James 2012]. This model contains over one million
faces and is illuminated by three area emitters of red, green, and
blue colors, creating the colored shadows on the ground. For each
light, we use a single parameter to control its size and intensity such
that the total power remains constant. The derivative images are
computed with respect to the parameter controlling the red light
(which casts a blue shadow).

We show in Figure 14 equal-sample comparisons'! of derivative
images computed by our method as well as the state-of-the-art edge
sampling [Li et al. 2018a; Zhang et al. 2019] and reparameteriza-
tion [Loubet et al. 2019] methods. For both scenes, our results closely
matches the references generated using the finite-difference method.
Edge sampling, despite being unbiased, struggled to produce clean
results. Compared to edge sampling, our method is both faster and
provides derivative estimates with much lower noise. The reparame-
terization method, on the other hand, generates clean results but
with high bias.

We use CPU-based implementations of both our algorithms (L1 and 1.2) and the edge-
sampling ones [Li et al. 2018a; Zhang et al. 2019]. The reparameterization method [Lou-
bet et al. 2019], on the other hand, replies on a GPU-based implementation. Due to this
architectural difference, we opt for equal-sample instead of equal-time comparisons, as
the former are more representative of different methods’ relative performance.

Additionally, we show inverse rendering comparisons using the
same test scenes. We use the Adam method [Kingma and Ba 2014]
implemented in PyTorch for the optimizations. In each compari-
son, we use derivative images generated at equal sample with prior
methods and ours. To ensure fairness, we fix all inverse-rendering
parameters other than the derivative images such as initial state and
learning rate. Please refer to Table 2 for performance statistics and
the supplemental material for animated versions of these results.

Figure 15 shows inverse rendering results using the branches
scene with two settings that have identical initial configurations but
different targets that are, respectively, 0.2 and 0.6 radian from the
initial. Under the first setting, all methods including the biased repa-
rameterization method, manage to converge to the global optimum;
under the second setting, on the other hand, the reparameterization
approach fails converge properly due to its high bias. Under both
settings, our method runs significantly faster than edge sampling
while producing much cleaner derivatives.

In Figure 16, we show inverse-rendering processes of the puffer
ball scene. Due to the very high face count, edge sampling produces
too much noise for the optimization to converge properly. Our
technique again produces clean and unbiased derivative estimates,
allowing the optimization to converge easily.

Complex light transport effect. Another major benefit of our the-
ory is to allow the interior term (and subpath contributions in the
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Fig. 16. Inverse rendering comparisons using the puffer ball scene with the light source sizes being optimized. All methods are configured to use equal
sample count per pixel, and the visualization scheme follows that of Figure 15. Because of the high geometric complexity of this scene, edge sampling suffers

from very high noise and fails to converge.

boundary term) to be estimated using sophisticated methods such
as bidirectional path tracing. We use the Veach egg scene to evalu-
ate the performance of our bidirectional algorithm (I.2). This scene
remains largely identical to the one used for validation in Figure 13,
except for using a lower roughness for the glass egg.

In Figure 17, we show derivatives with respect to the vertical
displacement of the spot light estimated using our bidirectional algo-
rithm (I.2), unidirectional algorithm (I.1), edge sampling, and biased
reparameterization. All results (other than the finite-difference refer-
ence) are generated under equal sample per pixel. Our bidirectional
algorithm (I.2) outperforms the others significantly by producing
clean derivatives estimates in the caustics area.

We further demonstrate the advantage of our bidirectional algo-
rithm (I.2) using an inverse-rendering setup where the position of
the spot light and the refractive index of the glass egg are optimized
jointly. We compare the performance of our unidirectional (I.1) and
bidirectional (1.2) methods as well as edge sampling. We adjust the
sample count so that each iteration takes roughly equal time for all
methods. We do not include the reparameterization method [Lou-
bet et al. 2019] for this comparison as its implementation does not
support derivatives with respect to refractive indices.

As shown in Figure 18, gradients estimated with edge sampling
are too noisy for the optimization to converge properly. Those pro-
duced by our unidirectional algorithm (I.1) have higher quality but
are still noisy, preventing the optimization from finding to the exact
solution. The bidirectional variant (I.2), on the other hand, produce
significantly cleaner gradient estimates that allow the optimization
to converge smoothly to the global optimum.

7.3 Additional Inverse-Rendering Results

We now provide two extra inverse-rendering results generated using
our bidirectional algorithm (I.2).

Figure 19 shows an example where a glass mug is lit from the
inside by a small area light, creating complex caustics patterns on
the table below. We jointly optimize the orientation and roughness
of the mug as well as the placement of the small area light. Figure 20
contains a silver ring illuminated by four area lights with different
colors. We optimize the cross-sectional shape of the ring, which is
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Table 2. Performance statistics for the inverse-rendering comparisons in
Figures 15, 16, and 18. The “time” numbers indicate average computation
time (in seconds) per iteration, including the overhead (shown in parenthe-
ses) for precomputing importance-sampling grid (discussed in §6.4). The
“RMSE” numbers measure the differences between estimated derivatives
and the corresponding groundtruth (calculated under initial configurations
shared by all methods). The experiments are conducted on a workstation
equipped with an octa-core Intel i7-7820X CPU and an Nvidia Titan RTX
graphics card.

Scene Branches Puffer ball Veach egg
# param./# iter. 1/140 3/160 3/200
time RMSE time RMSE time RMSE
Our unidir.  05(0.1) 052 4.5(2.0) 0.09 19.7(0.2) 9.73
Our bidir. - - - - 19.7(0.2) 2.43
Edge 5.7 3.60 28.6 1.16 19.7 112
Reparam. 0.3 0.57 1.5 0.08 - -

parameterized by 100 free variables, to match the caustics pattern
in the target image.

In both examples, small perturbations of the scene geometry can
yield much more significant changes in the images. Our method
is capable of producing low-noise derivative estimations, allowing
the inverse-rendering optimizations in both examples to converge
smoothly. Please refer to the supplemental material for animated
versions of these results.

8 DISCUSSION AND CONCLUSION

Limitations and future work. Our derivations in §4 and §5 have
focused on the surface-only case, and generalizing them to handle
volumetric light transport governed by radiative transfer [Chan-
drasekhar 1960] will be an important future direction. Additionally,
although our material-form reformulation theoretically captures
primary-sample-space rendering, the algorithms we realized in §6
have largely focused on the path space. Thus, developing advanced
Monte Carlo estimators that work in the primary sample space is
an interesting future topic. Furthermore, the original path integral
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Fig. 17. Evaluation of the effectiveness of our bidirectional algorithm (I.2) using the Veach egg scene. All derivative images (other than the finite-difference
reference) are generated under equal sample. Previous methods all rely on unidirectional path tracing, which works poorly in this example. Our bidirectional
method, on the other hand, utilizes bidirectional path tracing and produces much cleaner results.
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Fig. 18. Inverse rendering comparison using the Veach egg scene with the spot light’s location and the glass egg’s refractive index optimized jointly. The
optimizations are configured so that each iteration takes equal time for all methods, and the visualization scheme follows that of Figure 15. Edge sampling
produces too much noise for the optimization to converge properly. Our unidirectional algorithm (1.1) offers gradient estimates that are much cleaner but still
too noisy for a convergence to the exact solution. Our the bidirectional method (1.2), on the contrary, allows the optimization to converge smoothly to the

correct solution.

formulation has been the foundation of many Markov-Chain Monte
Carlo (MCMC) rendering algorithms. Therefore, introducing new
MCMC techniques based on our theory will enable differentiable
rendering for even more challenging situations.

Conclusion. In this paper, we introduced the theoretical frame-
work of differential path integral (in spatial and material forms) for
physics-based differentiable rendering. We showed that the deriva-
tive of a path integral (with respect to arbitrary differential change
of the scene) equals the sum of completely separated interior and
boundary components expressed as path integrals over the original
and boundary path spaces, respectively. This path-integral expres-
sion allows the design of new Monte Carlo estimators for the interior
and boundary integrals. Specifically, based on our material-form for-
mulation, we adapted unidirectional and bidirectional path tracing
for the interior integral, and developed a multi-directional method to
estimate the boundary component without explicitly searching for
silhouettes. We demonstrated the effectiveness of our Monte Carlo
methods via a few derivative-estimation and inverse-rendering ex-
amples.
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sectional shape of a ring parameterized with 100 variables to match the
colored caustics on the ground. The image marked with “Config” visualizes
the overall configuration, and the cross-sectional displacements are exagger-
ated by 20 times for visualization. Each iteration of this shape optimization
takes 69.3 seconds.
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A DERIVATION OF Iy

We now derive 9In/ax in Eq. (25) using the recursive relations pro-
vided by Egs. (21) and (24). Let

B = [T, 9(ws Xw—g, Xw—1)| Welen — xn-1), (52)

A = SN k() V(xw), (53)
AR B O A .

o = Mm% X3 Xt <X 1[G (Xt s X X 1), (54)

for 0 < n < n’ < N. We omit the dependencies of h,(lo), hf,l), and

Ah’(loz, on Xp+1,. .., xN for notational convenience.
We now show that, for all 0 < n < N, it holds that

hn(ns xn1) = fynen b TIN 0 dAGor),  (59)

and

fln(an Xp-1) = fMN’” [(h£10)) (0) (1)] I_In =n+1 dA(xn)

+ 3N [ on, Vo, () de) T1 dAGw), - (56)
i#n’

where the integral domain of the second term on the right-hand
side, which is omitted for notational clarity, is M () for each x;
with i # n’ and Wn/ (), which depends on x,/_1, for x;.

It is easy to verify that Egs. (55) and (56) hold for n = N — 1. We
now show that, if they hold for some 0 < n < N, then it is also
the case for n — 1. Let gp—1 := g(xn; xp—2,xp—1) forall 0 < n < N.
Then,

hp—1(xp-1; xp—2) = /M gn— 1/MN n (O) H ' =n+1 dA(xp) dA(xy)
= [y B TN, dAGew), (57)
and

I:ln—l(xn—ﬁ xn—Z)
= fM [gn—l hn + gn—1 (hn — hn k(xp) V(xn))] dA(xy)
+ an Agn-1 hn Vorr de(xn)
= Lyiwvons {gn-1 B+ gy | () = B R, | TN, dAGen)
FIN r [ gnmt AR Vart (o) de(x) TT dAGx0)
n<i<N
izn
+ [ Agnoy by Vazz den) TN,y dAGo)

= Fyvnn |[H0) -

e S0 S N Vi G ) T dAGr). 69)
i#n

h(O) h(l) ] H]r:{:n dA(x,y)

n-1"n-1

Thus, using mathematical induction, we know that Egs. (55) and
(56) hold for all 0 < n < N.
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Notice that h(()o) f and Ah(o) = Afy, where Af, follows the
definition in Eq. (28). Letting n = 0 in Eq. (56) yields

ho(x0) = [yon [f(®) = ) ZN_ xew) Vw) | TIN., dAGen)
FIN L [ A () Vagg deGew) TT dAGx). (59)
" 0<i<N
i#n
Lastly, based on the assumption that Ay is continuous in xo, Eq. (25)
can be obtained by differentiating Eq. (23):

I = 2 [ ho(xo) dA(xo)
= [ [Ro(x0) = ho(x0) k(x0) V (x0) ] dA(x0)

+ fmﬂ ho(x0) VWO (x0) d£(x0) (60)
= jQN [£(2) = f(2) ZX_ k(xx) V(xg)] dp(%)

N
+ ko /QN'
B DERIVATION OF CHANGE-OF-VARIABLE RATIO

In what follows, we derive the change-of-variable ratio given by
Eq. (48). Given some function ¢ : M ()% — R, consider the follow-
ing integral:

AfK(x) My d}l;\]’K(fc).

In /AM[V] 0(xg, x0) de(xp) dA(x), (61)

where AM[V] () consists of the discontinuity curves of the mutual
visibility function V with respect to xOD when xg is fixed.

When M () is depicted using polygonal meshes, as illustrated
in Figure 9, the interior of the segment xo x0 will always intersect
M () at one point xB that belongs to a face edge. Let & ¢ M ()
denote the union of all face edges, we can apply a change of variable
from x(])) € AM[V] to xB € & to Eq. (61), producing

|Ix -%;|| sing®
I Je 05, % ) T sinf dr(xB) dA(xS),  (62)

where xOD = rayTrace(xB, x(s) — xB), and the added terms result

from the Jacobian determinant corresponding to this change of
variable. Compared to Eq. (61), Eq. (62) enjoys a key advantage that
the inner integral has a domain independent of x(s). This allows us
to (i) exchange the ordering of the two integrals in Eq. (62), and
(ii) apply another change of variable from xg € M(x) to P € §2,
yielding:

Jo Sy ool IR S8 aa ) dece?) (63)

D__S i B_.S|?
— ./5 ,/éZ (p(xg,x(l))) |E xq| S}HGB [l xo‘” da(wB) d{’(xB),

[xB-x3|| sin6 [cos 65|

=Eq. (48)

where o is the solid-angle measure.
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