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AN EFFICIENT CHARACTERIZATION OF COMPLEX-BALANCED,
DETAILED-BALANCED, AND WEAKLY REVERSIBLE SYSTEMS∗
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Abstract. Very often, models in biology, chemistry, physics, and engineering are systems of
polynomial or power-law ordinary differential equations, arising from a reaction network. Such
dynamical systems can be generated by many different reaction networks. On the other hand,
networks with special properties (such as reversibility or weak reversibility) are known or conjectured
to give rise to dynamical systems that have special properties: existence of positive steady states,
persistence, permanence, and (for well-chosen parameters) complex balancing or detailed balancing.
These last two are related to thermodynamic equilibrium, and therefore the positive steady states
are unique and stable. We describe a computationally efficient characterization of polynomial or
power-law dynamical systems that can be obtained as complex-balanced, detailed-balanced, weakly
reversible, and reversible mass-action systems.
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1. Introduction. Many mathematical models in biology, chemistry, physics,
and engineering are obtained from nonlinear interactions between several species or
populations, such as (bio)chemical reactions in a cell or a chemical reactor, population
dynamics in an ecosystem, or kinetic interactions in a gas or solution [4, 11, 16, 18,
19, 21, 22, 23, 24, 28, 32, 43, 44]. Very often, these models are generated by a graph
of interactions according to specific kinetic rules; mass-action kinetics for reaction
network models is one such example [50].

If the graph underlying the mass-action system in a given reaction network has
some special properties, then the associated dynamical system is known (or conjec-
tured) to have certain dynamical properties. For example, dynamical systems gener-
ated by reversible reaction networks are known to have at least one positive steady
state within each linear invariant subspace [9]. Moreover, these models are known to
be persistent and permanent if the number of species is small and are conjectured to
have these properties for any number of species [16, 40]. The same situation occurs
for weakly reversible reaction networks, i.e., for networks where each reaction is part
of a cycle (see Figure 2(b) and (c) for examples of such networks). For descriptions
of other important classes of networks, see [2].

Moreover, after some restrictions on the parameter values, weakly reversible net-
works give rise to complex-balanced systems, which are known to have a unique locally
stable steady state within each linear invariant subspace. This steady state is known
to be globally stable under some additional assumptions [1, 16, 27, 40] and is actually
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184 GHEORGHE CRACIUN, JIAXIN JIN, AND POLLY Y. YU

conjectured to be globally stable even without these assumptions [10, 16]. If a reaction
network is a complex-balanced system under mass-action kinetics, then other relevant
models, ranging from continuous-time Markov chain models [3] to reaction-diffusion
models [20, 38] and delay differential equation models [35], are also stable in some
sense.

It turns out that the same dynamical system can be generated by a multitude of
reaction networks [17, 29, 34, 46, 47]. Therefore, if a system is generated by a network
that does not enjoy a specific graphical property (e.g., not weakly reversible), we
can ask whether the same system may be generated by a weakly reversible network.
Others have asked this question before and formulated algorithms for a given number
of complexes [34, 42, 46, 47] and applied the results to designing control systems [44,
48]. In order to determine whether a given system is generated by a weakly reversible
or complex-balanced system, one would have to determine if it can be done using n
number of complexes for all n ≥ 1.

In this paper we develop a theory of dynamical equivalence between mass-action
systems (or more generally, polynomial or power-law dynamical systems) and weakly
reversible and complex-balanced systems. Our results allow us to reformulate this dy-
namical equivalence problem as a linear feasibility problem whose dimension depends
only on the size of the original system.

In order to describe our main results, we need to introduce some definitions and
notations (these notions will be described in further detail in section 2). For our
purposes here, a reaction network is an oriented graph G = (VG, EG) with vertex set
VG and edge set EG such that VG ⊆ Rn. If y, y′ ∈ VG and (y,y′) is an edge in
EG ⊆ VG×VG, then we write y → y′ ∈ G. With these notations, a dynamical system
generated by G (according to mass-action kinetics) is a system of ordinary differential
equations on Rn>0 given by

dx

dt
=

∑
y→y′∈G

ky→y′x
y(y′ − y),(1)

where x ∈ Rn>0, xy = xy11 x
y2
2 . . . xynn , and ky→y′ > 0 for all y → y′ ∈ G. We will

denote the dynamical system (1) by Gk, where k is the vector of parameters ky→y′

for all y → y′ ∈ G.

One of our main results is the following theorem.

Theorem. A mass-action system Gk is dynamically equivalent to some complex-
balanced mass-action system if and only if it is dynamically equivalent to a complex-
balanced mass-action system G′k′ that only uses the vertices of G, i.e., with VG′ ⊆ VG.

This theorem is useful not only for finding complex-balanced realizations of mass-
action systems but also because for the first time, it gives us a computationally feasible
way to decide if such realizations exist, as we only need to check if they exist for graphs
G′ that have VG′ ⊆ VG.

We will see in section 4 that we can restrict the set VG′ even more: without loss of
generality we can assume that it is contained in the set of “source vertices” of G. We
have also obtained similar results for other important classes of mass-action systems:
detailed-balanced, weakly reversible, and reversible systems. Moreover, our results
are shown for flux systems, which allows for other types of kinetics beside mass-action
kinetics (section 3).

Reaction networks and mass-action systems, along with all other relevant terms,
are defined in section 2. We view a reaction network as a directed graph embedded
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A CHARACTERIZATION OF COMPLEX-BALANCED SYSTEMS 185

in Euclidean space. In section 3, we define fluxes on a reaction network and relate
them back to mass-action systems. Section 4 contains our main results for complex-
balanced realizations, weakly reversible realizations, detailed-balanced realizations,
and reversible realizations. We make a brief comment on the implication of our results
on the network’s deficiency. Finally, we present the relevant feasibility problems in
section 5.

2. Reaction networks and mass-action systems. Chemical reaction net-
works appear at the intersection of biology, biochemistry, chemistry, engineering, and
mathematics. Different notations are used in the literature; here we explain the nota-
tions used throughout this paper. Introductions to chemical reaction network theory
can be found in [23, 28, 50].

Definition 2.1. A reaction network (or simply a network) is a directed graph
G = (VG, EG) embedded in Euclidean space, with no self-loops, i.e., VG ⊆ Rn and
EG ⊆ VG × VG and (y,y) 6∈ EG for any y ∈ VG.

When there is no ambiguity, we simply write G = (V,E).

Remark. Vertices are points in Rn, so an edge e ∈ E can be regarded as a bona
fide vector in Rn. We denote an edge e = (y,y′) as y → y′, which is associated to a
reaction vector y′ − y ∈ Rn. We also write y → y′ ∈ G instead of y → y′ ∈ E.

The dimension n of the ambient Euclidean space is the number of chemical species
involved in the reaction network G. An edge in the set E is called a reaction. A vertex
in V is also known as a reaction complex. The source vertex of a reaction y → y′

is the vertex y, while y′ is the product vertex. Let Vs ⊆ V denote the set of source
vertices, i.e., the set of vertices that is the source of some reaction.

The vector space spanned by the reaction vectors is the stoichiometric subspace
S = spanR{y′ − y : y → y′ ∈ G}. For any positive vector x0 ∈ Rn>0, the affine
polytope (x0 + S)> = (x0 + S) ∩ R>0 is known as the stoichiometric compatibility
class of x0. A reaction network G is reversible if y′ → y ∈ G whenever y → y′ ∈ G;
for simplicity, we denote such a pair of reactions by y 
 y′. It is weakly reversible if
every connected component of G is strongly connected, i.e., every reaction y → y′ ∈ G
is part of an oriented cycle.

Example 2.2. Figure 1 shows a reaction network G in R2 with 6 vertices and 3
reactions. The reactions are

y1 → z1 =

(
1
0

)
→
(

2
0

)
, y2 → z2 =

(
1
1

)
→
(

0
2

)
, y3 → z3 =

(
0
1

)
→
(

0
0

)
.

X

Y

•

••

Fig. 1. A reaction network G in R2 consisting of 3 reactions and 6 vertices. Under mass-action
kinetics, this network gives rise to the classical Lotka–Volterra model for population dynamics.
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X

Y

•

• •

•

• •

y1

y2 y3

y4

y5 y6

X

Y

•

• •

• X

Y

•

• •

•

• •

(a) (b) (c)

Fig. 2. Examples of reaction networks (a) G, (b) G′, and (c) G∗, with labels of vertices shown
in (a). The dynamical systems generated by the network (a) can also be generated by (b) or (c) for
well-chosen rate constants. Note that (b) and (c) are weakly reversible, and (b) is also reversible.

The stoichiometric subspace, which is the linear span of the reaction vectors, is R2. In
particular, any stoichiometric compatibility class is all of R2

>0. The reaction network
G is neither reversible nor weakly reversible.

Example 2.3. Three more examples of reaction networks are presented in Figure 2.
The reaction networks (a) G, (b) G′, and (c) G∗ share the vertices

y1 =

(
0
0

)
, y2 =

(
0
2

)
, y3 =

(
3
2

)
, and y4 =

(
3
0

)
.

The reaction networks G, G∗ have two additional vertices

y5 =

(
1
1

)
and y6 =

(
2
1

)
.

The set of four reactions of G is EG = {y1 → y5, y2 → y5, y3 → y6, y4 → y6}.
The set of reactions of G′ is EG′ = {y1 
 y2, y2 
 y3, y3 
 y4, y4 
 y1, y1 

y3, y2 
 y4}. The set of reactions of G∗ is EG∗ = {y1 
 y5 
 y2, y3 
 y6 

y4, y5 
 y6, y5 → y3, y5 → y4}. The networks G′ and G∗ are weakly reversible,
and G′ is also reversible. The stoichiometric subspace is S = R2 for all three networks.

A reaction network G is associated to a dynamical system, by assuming that each
reaction y → y′ proceeds according to a rate function νy→y′(x), where x ∈ Rn>0

is the vector of concentrations of the chemical species in the system. One of the
most extensively studied kinetic systems is mass-action kinetics, where νy→y′(x) is a
monomial whose exponent vector is y.

Definition 2.4. Let G = (V,E) be a reaction network, and let k=(ky→y′)y→y′∈G
∈ RE>0 be a vector of rate constants. We call the weighted directed graph Gk a mass-
action system, whose associated dynamical system is the system on Rn>0

dx

dt
=

∑
y→y′∈G

ky→y′x
y(y′ − y),(2)

where xy = xy11 x
y2
2 . . . xynn . By convention, x0 = 1.

It is convenient to refer to ky→y′ even when y → y′ 6∈ G, in which case we mean
ky→y′ = 0. We adopt the convention that the empty sum is 0, i.e.,

∑
y→y′∈∅ ky→y′

(y′ − y) = 0.

Example 2.5. We revisit Example 2.2 under the assumption of mass-action
kinetics. The dynamical system associated to this reaction network G = (V,E) for
an arbitrary vector of rate constants k = (kj)yj→zj∈G ∈ RE>0 is
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dx

dt
= k1x

(
1
0

)
+ k2xy

(
−1
1

)
+ k3y

(
0
−1

)
=

(
k1x − k2xy
k2xy − k3y

)
.

This is the Lotka–Volterra population dynamics model.

Given a mass-action system Gk, (2) uniquely defines its associated dynamical
system; however, many different reaction networks can give rise to the same dynamical
system under mass-action kinetics. It has been known for a long time that if a reaction
network has some special properties (e.g., reversible, weakly reversible, deficiency
zero), then the mass-action system is known to have certain dynamical properties (e.g.,
existence of positive steady state, local and global stability). Therefore, given a mass-
action system, we are interested in networks with richer structural properties that
give rise to same dynamical systems. If two mass-action systems give rise to the same
associated dynamical systems, we say they are dynamically equivalent [17, 34, 46, 47].

Definition 2.6. Two mass-action systems Gk and G′k′ are dynamically equiva-
lent if ∑

y1→y2∈G
ky1→y2

xy1(y2 − y1) =
∑

y′1→y′2∈G′
k′y′1→y′2

xy′1(y′2 − y′1)(3)

for all x ∈ Rn>0. We say that G′k′ is another realization of Gk.

Remark. From (3), a necessary and sufficient condition for dynamical equiva-
lence is ∑

y0→y∈G
ky0→y(y − y0) =

∑
y0→y′∈G′

k′y0→y′(y
′ − y0)(4)

for all y0 ∈ VG ∪ VG′ .1

Note that in the associated dynamical system of a mass-action system, dxdt belongs
to the stoichiometric subspace S. Moreover, Rn>0 is forward invariant under mass-
action kinetics, i.e., if x(0) ∈ Rn>0, then x(t) ∈ Rn>0 for all t ≥ 0 [23]. Consequently,
the trajectory x(t) is confined to the stoichiometric compatibility class (x(0) + S)>
for all t ≥ 0.

Remark. The stoichiometric subspaces for dynamically equivalent systems can
in principle be different. However, the kinetic subspaces for the two systems must be

the same.2 For example, the system in Figure 3(a), made of the reaction 2 X
k−−→ X +

Y, is dynamically equivalent to the system in Figure 3(b), consisting of the reactions

2 X
k−−→ X + Y and 0

k′←−− Y
k′−−→ 2 Y. By definition, the two systems have different

stoichiometric subspaces. However, in these systems, the trajectory starting at x0 ∈
Rn>0 is confined to the affine space x0 + R(−1, 1)T because their kinetic subspace is
R(−1, 1)T .

Example 2.7. For the networks in Figure 2, let kij > 0 be the rate constant on
the reaction yi → yj ∈ G; let k′ij be the rate constant on the reaction yi → yj ∈ G′.
Suppose kij and k′pq satisfy the following equations:

1It is possible that either y0 6∈ VG or y0 6∈ VG′ . Then one side of (4) is an empty sum, which by
convention is 0.

2The kinetic subspace of a dynamical system dx
dt

= f(x) on a domain Ω is the linear subspace
generated by {f(x) : x ∈ Ω} [26] For a mass-action system, the kinetic subspace is a subset of the
stoichiometric subspace S.
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(a)

X

Y

k

•

(b)

X

Y

k
k′

k′

•

•

Fig. 3. Two dynamically equivalent systems with different stoichiometric subspaces. Trajecto-
ries are confined to the same affine invariant spaces because their kinetic subspaces are the same.

k15

(
1
1

)
= k′12

(
0
2

)
+ k′13

(
3
2

)
+ k′14

(
3
0

)
,

k25

(
1
−1

)
= k′21

(
0
−2

)
+ k′23

(
3
0

)
+ k′24

(
3
−2

)
,

k36

(
−1
−1

)
= k′31

(
−3
−2

)
+ k′32

(
−3
0

)
+ k′34

(
0
−2

)
,

k46

(
−1
1

)
= k′41

(
−3
0

)
+ k′42

(
−3
2

)
+ k′43

(
0
2

)
.

Then Gk and G′k′ are dynamically equivalent. The linear constraints on the rate
constants arise from vector decomposition of the reaction vectors starting at the source
vertices of G and G′.

In fact, if k, k′, and k∗, where k∗ is a vector of rate constants for G∗, satisfy
some linear relations, the three mass-action systems Gk, G′k′ and G∗k∗ are dynamically
equivalent.

Mass-action systems give rise to very diverse dynamics. For example, weakly
reversible deficiency zero mass-action systems have exactly one locally asymptotically
stable steady state (within the same stoichiometric compatibility class). Yet there
are other mass-action systems that have periodic orbits or limit cycles [5, 37, 41] and
others that admit multiple steady states (within the same stoichiometric compatibility
class) [6, 12, 13], and even chaotic dynamics [45, 50]. We refer the reader to [4, 23,
28, 50] for an introduction to mass-action systems. In this paper, we focus on several
kinds of steady states of mass-action systems.

Definition 2.8. Let Gk be a mass-action system with the associated dynamical
system

dx

dt
=

∑
y→y′∈G

ky→y′x
y(y′ − y).

A state x0 ∈ Rn>0 is a positive steady state if

dx

dt
=

∑
y→y′∈G

ky→y′x
y
0 (y′ − y) = 0.(5)

A positive steady state x0 ∈ Rn>0 is detailed-balanced if for every y 
 y′ ∈ G, we have

ky→y′x
y
0 = ky′→yx

y′

0 .(6)
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A positive steady state x0 ∈ Rn>0 is complex-balanced if for every vertex y0 ∈ VG,
we have ∑

y0→y′∈G
ky0→y′x

y0
0 =

∑
y→y0∈G

ky→y0
xy
0 .(7)

Intuitively, detailed balancing is when fluxes across every pair of reversible re-
actions are balanced; this is intimately related to the notion of microreversibility or
dynamical equilibrium in physical chemistry [7, 8]. Complex balancing is when fluxes
through every vertex (i.e., reaction complex) is balanced.

3. Fluxes on reaction networks. Most dynamical systems associated to re-
action networks are nonlinear [15, 32, 43]. While nonlinear dynamical systems are
generally difficult to study, the analysis of reaction networks is sometimes facilitated
by the linear constraints arising from the network structure and stoichiometry.

To illustrate what we mean, consider mass-action kinetics. The (generally non-
linear) dynamical system under mass-action kinetics has the form

dx

dt
=

∑
y→y′∈G

νy→y′(x)(y′ − y),

where νy→y′(x) = ky→y′x
y. Once the nonlinearity is hidden inside the reaction rate

function νy→y′(x), the linear structure remaining becomes apparent.

Enumerate the set of reactions, E = {yj → y′j}
|E|
j=1, and let ν(x) = (νyj→y′j

(x))
|E|
j=1

be a vector consisting of the reaction rate functions. Define the stoichiometric matrix
N ∈ Rn×|E| as the matrix whose jth column is the jth reaction vector y′j −yj . Then

the dynamical system above can be written succinctly as dx
dt = Nν(x).

In order to deal with the underlying linear structure, we do not keep track of the
concentrations that give rise to ν(x) but leave it as a vector of unknowns. For this
reason, we denote the value ν(x) simply as J and call it a flux vector.

Definition 3.1. A flux vector J = (Jy→y′)y→y′∈G ∈ RE>0 on a reaction network
G = (V,E) is a vector of positive numbers. The number Jy→y′ is called the flux of
the reaction y → y′, and the pair (G,J) is called a flux system.3

As with the rate constants, it may be convenient to refer to Jy→y′ even when
y → y′ 6∈ G, in which case Jy→y′ = 0.

This idea of fluxes on a reaction network may be familiar to anyone who has
worked with stoichiometric network analysis or flux balance analysis. One form of
the analysis is to solve the linear equation NJ = 0, where the unknown vector J
has nonnegative coordinates [39, 49]. Since we are interested in relating network
structure with dynamics, if y → y′ ∈ G, we impose that Jy→y′ > 0. Also if y 
 y′ is
a reversible reaction in G, then Jy→y′ and Jy′→y are two positive components of the
vector J . A solution J > 0 of the equation NJ = 0 corresponds to a positive steady
state if J = ν(x0) for some x0 ∈ Rn>0. We define the flux analogues of positive steady
state, detailed-balanced steady state, and complex-balanced steady state.

Definition 3.2. A steady state flux on a network G = (V,E) is a flux vector
J ∈ RE>0 satisfying ∑

y→y′∈G
Jy→y′(y

′ − y) = 0.(8)

3The word “system” in “flux system” is in the sense of a system of linear equations, rather than
a dynamical system.
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A flux J ∈ RE>0 is said to be detailed-balanced if for every y → y′ ∈ G, we have

Jy→y′ = Jy′→y.(9)

A flux J ∈ RE>0 is said to be complex-balanced if for every y0 ∈ V , we have∑
y0→y′∈G

Jy0→y′ =
∑

y→y0∈G
Jy→y0

.(10)

A steady state flux is a positive vector J in kerN , where the stoichiometric matrix
N has the reaction vectors as its columns. As a shorthand, we refer to the flux system
(G,J) as detailed-balanced if J is a detailed-balanced flux on G. Similarly defined
is a complex-balanced flux system on G. It will be clear from context whether a
complex-balanced system refers to a mass-action system or a flux system.

Example 3.3. An example of a flux system (G,J) is shown in Figure 4. The
positive number labelled on each edge y → y′ is the flux Jy→y′ of that reaction.

Note that this flux system could have risen from a mass-action system. For
example, suppose the numbers labelled on the edges are taken to be rate constants
k, and the state of the system is x = 1. Then (G,J) would be the flux system based
off of the mass-action system Gk.

There is no unique mass-action system that gives rise to a fixed flux system. For
example, on the reaction network shown in Figure 4, suppose that the rate constants
are taken to be

k′0→Y = 3, k′Y→X+Y = 1, k′X+Y→0 = 1,

k′Y→0 =
1

2
, k′X+Y→2X =

5

2
, k′2X→X+Y = 5,

and that the state of the system is x0 = (1, 2)T ; then it can be shown that (G,J) is
the flux system of the mass-action system Gk′ at the state x0.

This flux system (G,J) is complex-balanced. For example, at the vertex (0, 1)
corresponding to Y, there is one reaction going into it with flux value 3, and there
are two reactions leaving this vertex, with sum of fluxes being 2 + 1 = 3.

Whenever a flux vector arises from mass-action kinetics, i.e., Jy→y′ = ky→y′x
y,

classical results for mass-action systems carry over to flux systems, as summarized in
the following two lemmas.

X

Y

• •

••

3 1

2

2

5

5

Fig. 4. An example of a flux system. The positive numbers on any edge y → y′ is the flux
Jy→y′ of that reaction. Note that this flux system is complex-balanced.
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Lemma 3.4. Let Gk be a mass-action system, and fix x ∈ Rn>0. For each edge
y → y′ ∈ G, define Jy→y′ = ky→y′x

y, so that J = (Jy→y′)y→y′∈G is a flux vector
on the network G. The following hold:

1. The flux vector J is a steady state flux on G if and only if x is a positive
steady state of Gk.

2. The flux vector J is detailed-balanced if and only if x is a detailed-balanced
steady state for Gk.

3. The flux vector J is complex-balanced if and only if x is a complex-balanced
steady state for Gk.

Lemma 3.5. If G admits a detailed-balanced flux, then G is reversible; if G admits
a complex-balanced flux, then G is weakly reversible. If a flux is detailed-balanced on
G, then it is also complex-balanced; if a flux is complex-balanced, then it is also a
steady state flux.

Proof. Let J be a flux vector on a networkG—either detailed-balanced or complex-
balanced or merely a steady state flux. On G, define a mass-action system Gk with
rate constants ky→y′ = Jy→y′ for each y → y′ ∈ G. Then x0 = (1, . . . , 1)T is a
(detailed-balanced or complex-balanced or positive) steady state.

Lemma 3.5 follows from classical results on mass-action systems [22, 23, 24, 28,
30, 31].

As we have seen in the previous section, some mass-action systems are dynamically
equivalent; similarly there are flux equivalent systems. We define an equivalence
relation for flux systems in Rn.

Definition 3.6. Two flux systems (G,J) and (G′,J ′) are flux equivalent if for
every vertex y0 ∈ VG ∪ VG′ ,4 we have∑

y0→y∈G
Jy0→y(y − y0) =

∑
y0→y′∈G′

J ′y0→y′(y
′ − y0).(11)

We denote equivalent flux systems by (G,J) ∼ (G′,J ′) and say that (G′,J ′) is a
realization of (G,J).

Lemma 3.7. Flux equivalence is an equivalence relation.

Proof. That flux equivalence is symmetric and reflexive is clear. Suppose (G,J) ∼
(G′,J ′) and (G′,J ′) ∼ (G∗,J∗). Transitivity follows from∑

y0→y∈G
Jy0→y(y − y0) =

∑
y0→y∈G′

J ′y0→y(y − y0) =
∑

y0→y∈G∗
J∗y0→y(y − y0)

for any y0 ∈ VG ∪ VG′ ∪ VG∗ . Note that if y0 6∈ VG′ , then the sums above are all 0.

Suppose a flux vector arises from a mass-action system; one expects the notion
of dynamical equivalence to line up with that of flux equivalence.

Proposition 3.8. Let Gk, G′k′ be mass-action systems, and fix x ∈ Rn>0. For
each edge y → y′ ∈ G, let Jy→y′ = ky→y′x

y, so that J(x) = (Jy→y′)y→y′∈G is a
flux vector on G. Similarly, define the flux vector J ′(x) = (J ′y→y′)y→y′∈G′ on G′,
where J ′y→y′ = k′y→y′x

y. Then the following are equivalent:
1. The mass-action systems Gk and G′k′ are dynamically equivalent.
2. The flux systems (G,J(x)), (G′,J ′(x)) are flux equivalent for all x ∈ Rn>0.
3. The flux systems (G,J(x)), (G′,J ′(x)) are flux equivalent for some x ∈ Rn>0.

4As before, we adopt the convention that the empty sum is 0, i.e.,
∑

y→y′∈∅ Jy→y′ (y
′−y) = 0.
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Proof. It is clear that statements 1 and 2 are equivalent, and that statement 2
implies statement 3. Showing the implication of statement 1 from statement 3 will
complete the proof. Let x0 ∈ Rn>0 be a vector such that (G,J(x0)) ∼ (G′,J ′(x0)).
For any y0 ∈ VG ∪ VG′ and arbitrary x ∈ Rn>0, we have∑

y0→y∈G
Jy0→y(x)(y − y0) −

∑
y0→y′∈G′

J ′y0→y′(x)(y′ − y0)

=
∑

y0→y∈G
ky0→yx

y0(y − y0) −
∑

y0→y′∈G′
k′y0→y′x

y0(y′ − y0)

=
xy0

x
y0
0

 ∑
y0→y∈G

ky0→yx
y0
0 (y − y0) −

∑
y0→y′∈G′

k′y0→y′x
y0
0 (y′ − y0)


=
xy0

x
y0
0

 ∑
y0→y∈G

Jy0→y(x0)(y − y0) −
∑

y0→y′∈G′
J ′y0→y′(x0)(y′ − y0)


= 0.

Remark. The proof above holds for kinetics other than mass-action type. For
each (source) vertex y ∈ VG ∪ VG′ , define a rate function νy : Rn>0 → R>0. Then the
above proposition holds when the flux vectors are defined to be Jy→y′ = ky→y′νy(x)
for each y → y′ ∈ G, and J ′y→y′ = k′y→y′νy(x) for each y → y′ ∈ G′.

In the following proposition, we reduce a nonlinear problem about mass-action
systems to a linear problem about flux systems. Instead of showing that a mass-
action system is dynamically equivalent to a complex-balanced (or detailed-balanced)
system, it suffices to show that an appropriately defined flux system is flux equivalent
to a complex-balanced (or detailed-balanced) system.

Proposition 3.9. Let Gk be a mass-action system, and let x0 ∈ Rn>0. For each
edge y → y′ ∈ G, define Jy→y′ = ky→y′x

y
0 , so that J = (Jy→y′)y→y′∈G is a flux

vector on the network G. Suppose (G,J) is flux equivalent to (G′,J ′), where J ′ is
complex-balanced; then Gk is dynamically equivalent to a mass-action system G′k′ ,
where x0 is a complex-balanced steady state for G′k′ . Similarly, if (G,J) is flux equiv-
alent to a detailed-balanced flux system (G′,J ′), then Gk is dynamically equivalent to
a mass-action system G′k′ , where x0 is a detailed-balanced steady state for G′k′ .

Proof. For each edge y → y′ ∈ G′, define its rate constant to be

k′y→y′ =
J ′y→y′

xy
0

> 0,

so that G′k′ is a mass-action system. By Proposition 3.8, the mass-action systems Gk

and G′k′ are dynamically equivalent, and by Lemma 3.4, x0 is a complex-balanced
steady state if J ′ is a complex-balanced flux on G′, and if J ′ is detailed-balanced on
G′, then x0 is a detailed-balanced steady state.

4. Complex balancing without additional vertices. The identification of
possible network structures associated to a biochemical system, say, from experimen-
tal data, is closely related to identifying key players in the system (e.g., enzymes in
metabolic networks, genes in genetic networks). While the general nonuniqueness
implies that network identification may often be impossible, it may still be desir-
able to compute equivalent systems—whether that be dynamical equivalence or flux
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equivalence—in order to conclude that the system has better properties than first sus-
pected, e.g., weak reversibility or complex balance. This problem is not new [17, 46].

In recent years, the engineering community has utilized properties of mass-action
systems in novel ways to designing and analyzing control systems [4, 36, 44, 48]. For
example, the controllers can be added in such a way that the resulting system is a
complex-balanced mass-action system; from this, one can conclude that the control
system has a unique positive steady state and local stability [36, 48]. Moreover, very
general results have been obtained on the stability of complex-balanced systems with
delay [35].

Thus, there is strong incentive for developing effective computational methods
to find structurally better dynamically equivalent systems. One approach uses linear
programming, but an objective function must be chosen. To reduce the search space,
one can decide to search for a realization with the maximal and minimal number of
edges [34, 47]. Nonetheless, the set of vertices to be included in the reaction network
must be chosen ahead of time.

In the examples of Figure 3, the mass-action systems systems are dynamically
equivalent, but one uses an additional source vertex, whose weighted vectors sum to
zero. Intuition may say that additional vertices can only improve the chance to find
a network with desirable properties, as additional parameters provide extra degrees
of freedom. Even if that is the case, the question of computability arises. Even if by
adding new vertices to the network, one can produce an equivalent complex-balanced
system, there is no a priori bound on the number of new vertices needed. One cannot
realistically add new vertices ad infinitum.

Fortunately, we prove that no additional vertices are needed in order to check
if a given system admits complex-balanced realizations. Thus, to check whether or
not a network can admit a complex-balanced realization becomes a finite calculation,
one that can be done by searching through the admissible domain as done in linear
programming. Although the motivation came from mass-action systems, we prove
our results in the more general setting of flux systems.

Our approach is to show that any such additional vertices in the network can be
removed without changing the properties desired, namely, complex-balanced or weak
reversibility. Such additional vertices will be called virtual sources.

Definition 4.1. A vertex y0 ∈ Vs is a virtual source of the flux system (G,J) if∑
y0→y′∈G

Jy0→y′(y
′ − y0) = 0,(12)

where the sum is over all edges with y0 as its source.

If the flux system (G,J) arises from a mass-action system, then y0 ∈ Vs is a
virtual source if and only if the monomial xy0 does not appear5 on the right-hand
side of the associated dynamical system (2). For example, if we consider fluxes that
arise from mass-action kinetics in the network in Figure 3(b), the vertex Y is a virtual
source.

In this section, we prove that if a flux vector on a weakly reversible reaction
network is complex-balanced and has a virtual source y∗, then there is an equivalent
complex-balanced flux system that does not involve y∗ at all. In short, virtual sources
y∗ are not needed for complex balancing.

5That is, the monomial does not appear after simplifying.
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Just as an arbitrary concentration vector x ∈ Rn>0 may not be a complex-balanced
steady state for a weakly reversible mass-action system, so we may want to speak of
fluxes that are not complex-balanced. To keep track of how far a flux vector is
from being complex-balanced, we define the potential at a vertex to be the difference
between incoming and outgoing fluxes.

Definition 4.2. Let G = (V,E) be a reaction network, and let J ∈ RE>0 be a flux
vector on G. The potential at a vertex y∗ ∈ V is the scalar quantity

P(G,J)(y
∗) =

∑
y→y∗∈G

Jy→y∗ −
∑

y∗→y′∈G
Jy∗→y′ .(13)

Remark. The flux vector J is complex-balanced on G if and only if P(G,J)(y) = 0
for all y ∈ Vs.

By an abuse of notation, if y∗ 6∈ G, we still refer to the potential P(G,J)(y
∗) by

setting it to be P(G,J)(y
∗) = 0.

In showing that virtual sources are not needed for complex balancing, the idea is to
redirect the fluxes flowing into a virtual source y∗ to other vertices while maintaining
flux equivalence. If we are doing nothing more than redirecting flow of fluxes, the
potential at every vertex does not change; therefore, we preserve complex balancing
for the resulting flux system. This type of construction appeared first in [36] to show
that new monomials were not necessary in feedback design.

We have to simultaneously keep track of the potential at each vertex and flux
equivalence. We illustrate the key idea of Lemma 4.3 in Figure 5.

Lemma 4.3. Consider a reaction network G consisting of the reactions z → y∗

and y∗ → yj for j = 1, 2, . . . ,M . Suppose y∗ is a virtual source for a flux system
(G,J) and its potential is P(G,J)(y

∗) = 0. Then there exists a flux equivalent sys-
tem (G′,J ′) such that y∗ 6∈ VG′ , and the potential at each vertex is preserved, i.e.,
P(G,J)(yj) = P(G′,J ′)(yj) for 1 ≤ j ≤M and P(G,J)(z) = P(G′,J ′)(z).

The flux system (G′,J ′) can be obtained constructively: remove the edges z → y∗

and y∗ → yj, and add the edges z → yj with fluxes J ′z→yj
= Jy∗→yj

.

Proof. For j = 1, 2, . . . ,M , let wj = yj−y∗ and w0 = z−y∗ denote the reaction
vectors. First, remove the edges y∗ → yj coming out of y∗. Because y∗ is a virtual

source,
∑M
j=1 Jy∗→yj

wj = 0, so the resulting flux system is still equivalent to the
original. Note that in this new flux system, only z is a source vertex.

•

• •

•

•

•

y∗

y1

y3

y2

y4

z

•

• •

•

•

•

y∗

y1

y3

y2

y4

z

(a) (b)

Fig. 5. Illustrating the idea behind Lemma 4.3 in R3. (a) Assume that y∗ is a virtual source
in the flux system (G,J). In (b) is an equivalent flux system (G′,J ′), obtained by redirecting fluxes
from z → y∗ → yj as fluxes from z → yj .
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Next, we redirect the reaction z → y∗. Instead of the reaction z → y∗ with
flux Jz→y∗ , we have M reactions z → yj with fluxes J ′z→yj

= Jy∗→yj
. Let (G′,J ′)

denote this newest flux system.
Recall that flux equivalence means (11) holds at each vertex of G and G′. Here

we only need to look at the vertex z to show that (G′,J ′) ∼ (G,J). Note that

yj − z = wj −w0. From P(G,J)(y
∗) = 0, we also have

∑M
j=1 Jy∗→yj

= Jz→y∗ . Thus,
the weighted sum of vectors coming out of z is

M∑
j=1

J ′z→yj

(
yj − z

)
=

M∑
j=1

Jy∗→yj
(wj −w0)

=

M∑
j=1

Jy∗→yj
wj︸ ︷︷ ︸

= 0

− w0

M∑
j=1

Jy∗→yj
= −Jz→y∗w0,

and (G′,J ′) ∼ (G,J).
Finally, we prove that the potentials are unchanged. Trivially P(G,J)(y

∗) =
P(G′,J ′)(y

∗) = 0. Also P(G,J)(yj) = Jy∗→yj
= J ′z→yj

= P(G′,J ′)(yj) for j =

1, 2, . . . ,M . Last but not least,

−P(G′,J ′)(z) =

M∑
j=1

J ′z→yj
=

M∑
j=1

Jy∗→yj
= Jz→y∗ = −P(G,J)(z).

We have shown that the resulting flux system (G′,J ′) is flux equivalent to the original
flux system (G,J), and the potential at each vertex is preserved.

Remark. In Lemma 4.3, the source vertex z may not be distinct from yj .

We now arrive at our main technical theorem (Theorem 4.4), a generalization of
Lemma 4.3. Here, the virtual source y∗ may have multiple reactions coming into it
and coming out of it. The proof will be an induction on the number of edges flowing
into y∗. At each step, we redirect a fraction of the fluxes flowing through y∗ from
one incoming edge.

Theorem 4.4. Let (G,J) be a complex-balanced flux system on reaction network
G = (V,E). Suppose that y∗ ∈ V is a virtual source. Then there exists an equivalent
complex-balanced flux system (G′,J ′) with VG′ = V \ {y∗}. Moreover,

J ′yi→yk
= Jyi→yk

+ Jy∗→yk

Jyi→y∗∑
yj→y∗∈G Jyj→y∗

(14)

for any yi such that yi → y∗ ∈ G and any yk such that y∗ → yk ∈ G, and J ′y→y′ =
Jy→y′ for all other edges y → y′.

Proof. Let N be the number of reactions with y∗ as target, i.e., N = |{z → y∗ ∈
G}|. Enumerate the sources as z1, z2, . . . ,zN . Let M be the number of reactions with
y∗ as sources, i.e., M = |{y∗ → y ∈ G}|. Enumerate the targets as y1,y2, . . . ,yM .
Since y∗ is a virtual source, it is in the relative interior of the convex hull of the
targets yj . From complex balancing, we have P(G,J)(y

∗) = 0, or

M∑
j=1

Jy∗→yj
=

N∑
i=1

Jzi→y∗ .
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Let θ =
Jz1→y∗∑
i Jzi→y∗

be the fraction of flux to be redirected from z1 → y∗. We

apply the construction described in Lemma 4.3 to the incoming edge z1 → y∗, and
the outgoing edges y∗ → yj for j = 1, 2, . . . ,M . Let (G′,J ′) denote the flux system
after the diversion. More precisely, J ′z1→y∗ = 0,

J ′z1→yj
− Jz1→yj

= θJy∗→yj
,

J ′y∗→yj
− Jy∗→yj

= −θJy∗→yj
,

and the fluxes on all other edges unchanged from J .
Checking for flux equivalence at z1 before and after the diversion, we see that

(Final flow from z1)− (Initial flow from z1)

=

M∑
j=1

Jz1→yj
(yj − z1)− Jz1→y∗(y

∗ − z1)

= θ

M∑
j=1

Jy∗→yj
(yj − y∗)︸ ︷︷ ︸

= 0

+θ

M∑
j=1

Jy∗→yj︸ ︷︷ ︸
=

∑N
j=1 Jzi→y∗

(y∗ − z1)− Jz1→y∗(y
∗ − z1)

= 0.

At all other vertices, the net flux is unchanged.
In terms of potentials, at z1, we have

P(G′,J ′)(z1)− P(G,J)(z1) = −
M∑
j=1

J ′z1→yj
+ Jz1→y∗ = −θ

N∑
i=1

Jzi→y∗ + Jz1→y∗ = 0.

At each yj :

P(G′,J ′)(yj)− P(G,J)(yj) =
(
J ′z1→yj

+ J ′y∗→yj

)
−
(
Jz1→yj

+ Jy∗→yj

)
= 0.

At y∗:

P(G′,J ′)(y
∗)− P(G,J)(y

∗) = −Jz1→y∗ + θ

M∑
j=1

Jy∗→yj
= 0.

The new flux system (G′,J ′) after diverting the flux from z1 → y∗ is still complex-
balanced, as the potential is unchanged from those of (G,J). Moreover, (G′,J ′) and
(G,J) are flux equivalent. In addition, at y∗, we have∑

y∗→y∈G′
J ′y∗→y(y − y∗) = (1 + θ)

∑
y∗→y∈G′

Jy∗→y(y − y∗) = 0,

i.e, y∗ is a virtual source for (G′,J ′).
Thus we have recovered all the hypotheses stated in the theorem. The only

difference between (G,J) and (G′,J ′) is that G′ contains N − 1 = | {z → y∗ ∈ G′} |
reactions with y∗ as target vertex. By induction on the number | {z → y∗ ∈ G′} |,
there exists a flux system (G∗,J∗) that is flux equivalent to (G,J), and for which J∗

is a complex-balanced flux on G∗. Finally, because P(G∗,J∗)(y
∗) = 0, but there are

no incoming reactions to y∗, it follows that there are no outgoing reactions from y∗,
i.e., y∗ 6∈ VG∗ .
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When does a flux system (or a reaction network) admit a complex-balanced real-
ization? Theorem 4.4 implies that virtual sources do not need to be considered. The-
orem 4.5 below is the basis behind several relevant numerical methods in section 5 for
determining if a flux system (or a reaction network) is equivalent to complex-balanced.

Theorem 4.5. Let (G,J) be a flux system, and VG,s its set of source vertices.
Then (G,J) is flux equivalent to some complex-balanced flux system if and only if
(G,J) is flux equivalent to some complex-balanced flux system (G′,J ′) where VG′ ⊆
VG,s.

Proof. One direction is trivial. To prove the other direction, suppose (G,J) is a

flux system that is flux equivalent to some complex-balanced flux system (G̃, J̃). If
y∗ ∈ VG̃ \ VG,s, the set {y∗ → y ∈ G} is empty; flux equivalent demands that

0 =
∑

y∗→y∈G̃

J̃y∗→y(y − y∗).

Theorem 4.4 implies we can maintain flux equivalence and complex balance even after
dropping the vertex y∗ from VG̃. Repeating this process for all vertices not in VG,s
ultimately implies that there is a complex-balanced flux system (G′,J ′) such that
(G′,J ′) ∼ (G,J) and in addition VG′ ⊆ VG,s.

Theorem 4.6. Let G be a reaction network, and VG,s its set of source vertices.
Then the following are equivalent:

(i) There exists a flux vector J such that (G,J) is flux equivalent to some
complex-balanced flux system.

(ii) There exists a flux vector J such that (G,J) is flux equivalent to some
complex-balanced flux system (G′,J ′), where VG′ ⊆ VG,s.

Proof. The proof follows immediately from Theorem 4.5.

Theorem 4.7. A mass-action system Gk is dynamically equivalent to some
complex-balanced system if and only if it is dynamically equivalent to a complex-
balanced system G′k′ that only uses the source vertices, i.e., VG′ ⊆ VG,s.

Proof. This theorem follows from Proposition 3.8 and Theorem 4.5. Suppose Gk

is dynamically equivalent to some complex-balanced mass-action system G̃k̃. Define

the appropriate fluxes J on G and J̃ on G̃; by Proposition 3.8, the two flux systems
are flux equivalent. Theorem 4.5 holds if and only if (G,J) is flux equivalent to some
complex-balanced flux system (G′,J ′) where VG′ ⊆ VG,s. Define the appropriate
mass-action system G′k′ (see Proposition 3.9); we have one direction of this theorem.
The other direction is trivially true.

All of our theorems thus far have been concerned with flux systems; in the case
of mass-action systems, implicit in everything is the existence of a complex-balanced
steady state. However, the idea of redirecting fluxes can be adapted to show the
surprising result that weak reversibility can be accomplished (if at all) with no extra
vertices.

Theorem 4.8. A mass-action system Gk is dynamically equivalent to some weakly
reversible mass-action system if and only if it is dynamically equivalent to a weakly
reversible mass-action system G′k′ that only uses its source vertices, i.e., VG′ ⊆ VG,s.

Proof. Without loss of generality, we may suppose that Gk is a weakly reversible
mass-action system for which there exists a virtual source y∗. As in Theorem 4.4,
we remove the vertex y∗ by redirecting the reactions flowing through it. Since G is
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weakly reversible, there exists some vertex z such that z → y∗ ∈ G. As before, we
will try to replace pairs of reactions z → y∗ and y∗ → y with z → y.

Enumerate the set {y∗ → y ∈ G} as {y∗ → yi}Mi=1, and enumerate the set
{z → y∗ ∈ G} as {zj → y∗}Nj=1. For simplicity, let αj = kzj→y∗ , and let βi = ky∗→yi

.
Informally speaking, in place of the reactions zj → y∗ and y∗ → yi, we shall have

the reaction zj → yi with rate constant k′zj→yi
= αj

βi∑
βs

. More precisely, let G′ be

the graph after deleting the vertex y∗ and its adjacent edges from G, and (if needed)
the edges zj → yi added for all i = 1, 2, . . . ,M and j = 1, 2, . . . , N . On G′, take the
rate constants to be k′zj→y∗ = k′y∗→yi

= 0 and

k′zj→yi
= kzj→yi

+ αj
βi∑
βs
,

and all other rate constants same as in Gk.
The assumption that y∗ is a virtual source can be written as

M∑
i=1

βiyi =

M∑
i=1

βiy
∗.

Now to check for dynamical equivalence at z1, we consider the differences due to the
reactions z1 → yi:

M∑
i=1

(k′z1→yi
− kz1→yi

)(yi − z1) =

M∑
i=1

α1
βi∑
βs

(yi − z1)

=
α1∑
βs

(
M∑
i=1

βiy
∗ −

M∑
i=1

βiz1

)
= α1(y∗ − z1),

which is the contribution from the reaction z1 → y∗. Since other reactions were
untouched, we have dynamical equivalence at z1. There is nothing special about
j = 1; the same holds for all source vertices z2, z3, . . . ,zN .

Finally, given any cycle v1 → v2 → · · · → v` → v1 in G′, whenever an edge
zj → yi appears in the cycle, replace it with two edges zj → y∗ → yi, and obtain a
cycle in G. Therefore, G′ is still weakly reversible.

We extend the above results (Theorems 4.4–4.8) to detailed-balanced fluxes and/or
reversible networks. We summarize these results in the following theorems.

Theorem 4.9. Let (G,J) be a detailed-balanced flux system on a reaction network
G = (V,E). Suppose that y∗ ∈ V is a virtual source. Then there exists an equivalent
detailed-balanced flux system (G′,J ′) with VG′ = V \ {y∗}. Moreover,

J ′yi→yk
= Jyi→yk

+ Jy∗→yk

Jyi→y∗∑
yj→y∗∈G Jyj→y∗

(15)

for any yi,yk connected to y∗ in (G,J). Let other fluxes remain unchanged from
(G,J). In particular, (G,J) is flux equivalent to some detailed-balanced flux system
if and only if (G,J) is flux equivalent to some detailed-balanced flux system (G′,J ′)
where VG′ ⊆ VG,s.

Proof. As in Theorem 4.4, we divert fluxes away from y∗. We only need to check
detail balancing. Consider any two vertices yi 6= yk where yi 
 y∗,yk 
 y∗ ∈ G.
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Using the fact that the flux system was originally detailed-balanced, i.e., Jy→y′ =
Jy′→y, we obtain

J ′yi→yk
= Jyi→yk

+ Jy∗→yk

Jyi→y∗∑
yj→y∗∈G Jyj→y∗

= Jyk→yi
+ Jy∗→yi

Jyk→y∗∑
yj→y∗∈G Jyj→y∗

= J ′yk→yi
.

For any other pairs of reversible reaction, detail balancing is inherited from (G,J).
In other words, (G′,J ′) is detailed-balanced.

Theorem 4.10. A mass-action system Gk is dynamically equivalent to some re-
versible system if and only if it is dynamically equivalent to a reversible system G′k′
that only uses its source vertices, i.e., VG′ ⊆ VG,s.

Proof. We assume that Gk is reversible and has a virtual source y∗ ∈ VG. We
will replace the reactions {y∗ 
 yi ∈ G} by modifying/adding the reactions {yi 

yk : yi 
 y∗,yk 
 y∗ ∈ G}. For any yi, yj such that yi 
 y∗, yk 
 y∗ ∈ G, let
k′yi→y∗ = k′y∗→yi

= 0 and

k′yi→yj
= kyi→yj

+ kyi→y∗

(
ky∗→yj∑
ky∗→ys

)
.

Similar to Theorem 4.8, it can be shown that Gk and G′k′ are dynamically equivalent.
Moreover, by symmetry of construction, G′ is reversible.

Note that related results have been obtained recently for the problem of kinetic
feedback design involving complex-balanced and weakly reversible systems [36]. Here,
for the problem of dynamical equivalence, we show that a given system admits a
dynamically equivalent system that is complex-balanced (or weakly reversible, or
detailed-balanced, or reversible) if and only if such a system exists using only the
complexes that are already present in the original system.

4.1. Connection to deficiency theory. Within the reaction network theory
literature, deficiency is a well-known quantity defined for a network G. Equipped
with mass-action kinetics, networks with low deficiency are known to enjoy special
dynamical properties under mass-action kinetics. For example, the famous deficiency
zero theorem says that a weakly reversible deficiency zero network is complex-balanced
for any choices of rate constants [24, 32]. As we have introduced, complex-balanced
systems enjoy properties such as uniqueness and stability of steady states, existence
of a Lyapunov function, and the steady states admit a monomial parametrization [23,
25, 28, 32, 50]. Despite the strong implications, deficiency has a relatively simple
definition.

Definition 4.11. Let G = (VG, EG) be a reaction network with `G connected
components. Suppose the dimension of the stoichiometric subspace S is s = dimS;
then the deficiency of the network G is the nonnegative integer

δG = |VG| − `G − s.(16)

It can be shown that δG = dim(kerY ∩ im IG), where Y is the stoichiometric
matrix, with the vertices as its columns, and IG the incidence matrix of G [33]. It
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follows that δG is a nonnegative integer. When the network is weakly reversible, we
also have δG = dim(kerY ∩ imAk), where −ATk is the Laplacian of the weighted graph
Gk [23, 28].

Deficiency continues to play an important role in the analysis of reaction networks
and mass-action systems. In our procedure for removing virtual vertices, deficiency
always decreases. This is similar to a result obtained in [36], where the removal of
additional monomials that function as controls in a feedback system also leads to a
decrease in deficiency.

Theorem 4.12. Let Gk be a weakly reversible mass-action system with deficiency
δG. Suppose it has a virtual source y∗. Let G′k′ be the weakly reversible mass-action
system as produced in Theorem 4.8, dynamically equivalent to Gk with VG′ = VG \
{y∗}. Then the deficiency of G′k′ is δG′ = δG − 1.

Proof. In the proof of Theorem 4.8, we replaced the reactions z → y∗ and y∗ → y
with the reaction z → y by choosing appropriate rate constants. It is clear that
|VG′ | = |VG|−1, and the number of linkage classes stays the same. We claim that the
stoichiometric subspace S remains unchanged. Thus, the drop in deficiency is due to
the removal of the vertex y∗, and δG′ = δG − 1.

First enumerate the reactions coming out of y∗ as y∗ → yj , and enumerate the
reactions going into y∗ as zi → y∗. Let S0 be the span of the reaction vectors
“untouched” by our procedure, more precisely,

S0 = spanR{y → y′ ∈ G : y 6= y∗ or y′ 6= y∗}.

Let SG be the stoichiometric subspace of G, in particular,

SG = spanR{S0, yj − y∗, y∗ − zi}i,j ,

and SG′ be the stoichiometric subspace of G′, where

SG′ = spanR{S0, yj − zi}i,j .

Clearly, SG′ ⊆ SG, since yj − zi = (yj − y∗) + (y∗ − zi) ∈ SG. Moreover, because
G is weakly reversible, the edge y∗ → yj is a part of a cycle; therefore, SG =
spanR{S0, y

∗ − zi}i. Finally, we note that y∗ is in the convex hull of the vertices
yj , and thus y∗ − zi ∈ spanR{yj − zi}j , which implies SG ⊆ SG′ . In other words,
SG = SG′ and δG′ = δG − 1.

5. Numerical methods. In this section, we characterize when a flux system or
a mass-action system is equivalent to a complex-balanced system. We also describe
a method to determine when a mass-action system is dynamically equivalent to a
complex-balanced or weakly reversible system.

5.1. Flux equivalence to complex-balancing. Is a steady state flux system
(G,J) flux equivalent to a complex-balanced one? The answer lies in the following
linear feasibility problem for an unknown vector J ′. Enumerate the set of source
vertices in G as {y1,y2, . . . ,yN}. Search for J ′ = (J ′yi→yj

)i6=j ∈ RN2−N satisfying∑
j 6=i

J ′yi→yj
(yj − yi) =

∑
yi→y∈G

Jyi→y(y − yi) for i = 1, 2, . . . , N,(17)

∑
j 6=i

J ′yi→yj
=
∑
j 6=i

J ′yj→yi
for i = 1, 2, . . . , N,(18a)

J ′ ≥ 0.(19)
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If such a flux vector J ′ exists, then (G,J) is flux equivalent to a complex-balanced
system. If no such flux vector J ′ exists, then (G,J) is not flux equivalent to a
complex-balanced system.

Equation (17) is the flux equivalence condition, while (18a) ensures that the new
flux system is complex-balanced. Equation (17) alone checks for flux equivalence
between any two given systems (G,J) and (G′,J ′).

Example 5.1. We return to the network G in Figure 2(a) and Example 2.7. The
network has 6 vertices, 4 of which are sources, and 4 reactions. At the moment, we
consider a flux system on the graph G and ask, for what flux J is the flux system
(G,J) equivalent to a complex-balanced one? One can show that (17)–(19) hold if
and only if

J1 = J3, J2 = J4, and
1

5
≤ J1
J2
≤ 5.(20)

A chosen flux J that satisfies (20) is flux equivalent to a complex-balanced system,
whose network is a subgraph of G′ of Figure 2(b). The details of this characterization
will be in an upcoming paper [14].

Remark. The setup for the detailed-balanced case is defined analogously. We
keep (17) and (19) and include the equation

J ′yi→yj
= J ′yj→yi

for 1 ≤ i 6= j ≤ N.(18b)

5.2. Dynamical equivalence to complex balancing. We considered above a
set of equalities and inequalities necessary and sufficient for a flux system to be equiv-
alent to a complex-balanced one. If the flux system arises from mass-action kinetics,
we can write down an analogous system of equalities and inequalities necessary and
sufficient for dynamical equivalence to a complex-balanced system.

Consider a mass-action systemGk, whose vertices are points in Rn, and enumerate
the set of source vertices in G as {y1,y2, . . . ,yN}. We set up a nonlinear feasibility

problem for unknowns k′ and x. Search for vectors k′ = (k′yi→yj
)i 6=j ∈ RN2−N and

x ∈ Rn satisfying∑
j 6=i

k′yi→yj
(yj − yi) =

∑
yi→y∈G

kyi→y(y − yi) for i = 1, 2, . . . , N,(21)

∑
j 6=i

k′yi→yj
xyi =

∑
j 6=i

k′yj→yi
xyj for i = 1, 2, . . . , N,(22)

k′ ≥ 0,(23)

x > 0.(24)

If such k′ and x exist, then Gk is dynamically equivalent to a complex-balanced
system with x a complex-balanced steady state. If no such rate constants and steady
state exist, then Gk is not dynamically equivalent to a complex-balanced system.

Equation (21) enforces dynamical equivalence. Equations (22) and (24) imply that
x is a positive complex-balanced steady state for an equivalent mass-action system;
hence x is a positive steady state of Gk. Note that in the inequality (23), some k′yi→yj

can be zero, which implies that yi → yj is not a reaction in the equivalent network.
Equations (21)–(24) generally form a nonlinear problem. Despite that, for net-

works with additional structure, one may be able to extract more information about
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the rate constants. One such example is the network G in Figure 2(a). For this net-
work we can completely characterize the parameter values for which the associated
mass-action system has a complex-balanced realization.

Example 5.2. Consider a mass-action system on the network G of Figure 2(a) and
Example 2.7, with rate constants

ky1→y5
= k1, ky2→y5

= k2, ky3→y6
= k3, and ky4→y6

= k4.

By a calculation, (21)–(24) hold if and only if

1

25
≤ k1k3
k2k4

≤ 25.(25)

Again, a complex-balanced realization is a subgraph of G′ in Figure 2(b). More
precisely, it is the reversible square with one pair of reversible diagonal (either y1 
 y3

or y2 
 y4); which diagonal is needed depends on the magnitudes of k1k3 and k2k4.
The details of this characterization can be found in an upcoming paper [14].

The complex-balanced realization described (the subgraph of G′ in Figure 2(b))
has deficiency δG′ = 1. It is known that if its eight rate constants lie in a toric
ideal of codimension δG′ = 1, then the mass-action system is complex-balanced [11].
While these eight rate constants are related to k1, k2, k3, and k4 by several linear
equations, we found one explicit condition (25) for when the mass-action system Gk

of Figure 2(a) is dynamically equivalent to a complex-balanced system.
Finally, note that the network of Example 5.2 gives rise to systems that are

equivalent to complex-balanced for certain choices of rate constants, but not for other
choices of rate constants. In a follow-up paper we will show that an entire class of
networks give rise to systems that are equivalent to complex-balanced for all choice
of rate constants. More precisely, we will prove that systems generated by single-
target networks that have their (unique) target vertex in the strict relative interior of
the convex hull of its source vertices are dynamically equivalent to detailed-balanced
mass-action systems for any choice of rate constants [14].

5.3. Existence of a weakly reversible realization for a mass-action
system. While complex-balanced mass-action systems are weakly reversible, not all
weakly reversible mass-action systems are complex-balanced. There has been much
work on determining when a weakly reversible mass-action system is complex-balanced
or not. Nonetheless, weakly reversible mass-action systems always have at least one
positive steady state within each stoichiometric compatibility class [9] and are con-
jectured to be persistent, and even permanent [16].

We present a simple nonlinear feasibility problem to determine when a mass-
action system is dynamically equivalent to a weakly reversible one. Recall that a
mass-action system is weakly reversible if and only if it is complex-balanced for some
choice of rate constants. We introduce a scaling factor αyi→yj

in order to decouple
the dynamical equivalence condition from the complex-balanced condition.

Consider a mass-action systemGk, whose vertices are points in Rn, and enumerate
the set of source vertices in G as {y1,y2, . . . ,yN}. We set up a nonlinear feasibility
problem for unknown rate constants k′ and a scaling factor α. Search for vectors
k′ = (kyi→yj

)i 6=j and α = (αyi→yj
)i 6=j ∈ RN2−N satisfying∑

j 6=i
k′yi→yj

(yj − yi) =
∑

yi→y∈G
kyi→y(y − yi) for i = 1, 2, . . . , N,(26)
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j 6=i

αyi→yj
k′yi→yj

=
∑
j 6=i

αyj→yi
k′yj→yi

for i = 1, 2, . . . , N,(27)

k′ ≥ 0,(28)

α > 0.(29)

If such k′ and α exist, then Gk is dynamically equivalent to a weakly reversible mass-
action system. If no solution exists, then Gk is not dynamically equivalent to a weakly
reversible system.

Equation (26) enforces dynamical equivalence. Equation (27) can be regarded as a
complex balancing condition that uses a different set of rate constants αyi→yj

k′yi→yj
.

Since αyi→yj
k′yi→yj

6= 0 if and only if k′yi→yj
6= 0, we preserve the graph structure

of G′k′ . It is well-known that a reaction network is weakly reversible if and only if it
is complex-balanced for some choice of rate constants [11]. The scaling factor α frees
the rate constants from the dynamical equivalence constraint.

Note that while (26)–(29) are simple to describe, more sophisticated, computa-
tionally efficient methods have been developed [42, 47]. Weak reversibility is a condi-
tion of the underlying directed graph. Ultimately one is imposing conditions on the
incidence matrix or the Kirchhoff matrix of the network. Algorithms to find weakly
reversible realization for a fixed vertex set have been proposed initially using mixed-
integer linear programming [34, 47] and later by a polynomial time algorithm based on
linear programming [42]. However, as with previous work on complex-balanced real-
izations, one must fix the set of vertices to be used in the computation. According to
Theorem 4.8, it suffices to find an equivalent network using the existing source vertices.
Therefore, the mixed-integer linear programming algorithms proposed in [34, 47] and
the polynomial time algorithm in [42] can be used in conjunction with Theorem 4.8
to completely characterize whether or not a mass-action system Gk is dynamically
equivalent to a weakly reversible one.

6. Conclusion. If we are looking for a complex-balanced realization of a given
polynomial (or power-law) dynamical system, there exists no a priori limit on the
number of vertices in the objective network. Moreover, there are no a priori choices
for the locations of the vertices. Here we prove that a solution exists if and only if
the objective network can be constructed by using only the vertices that are already
present in the original system (i.e., the exponents of the monomial terms present
in the original system). We also prove that the same is true for detailed-balanced,
reversible, and weakly reversible systems.
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[29] V. Hars and J. Tóth, On the inverse problem of reaction kinetics, Colloq. Math. Soc. János
Bolyai, 30 (1981), pp. 363–379.

[30] F. Horn, Necessary and sufficient conditions for complex balancing in chemical-kinetics, Arch.
Ration. Mech. Anal., 49 (1972), pp. 172–186.

[31] F. Horn, The dynamics of open reaction systems, in Mathematical Aspects of Chemical and
Biochemical Problems and Quantum Chemistry, D. S. Cohen, ed., American Mathematical
Society, Providence, RI, 1974, pp. 125–137.

[32] F. Horn and R. Jackson, General mass action kinetics, Arch. Ration. Mech. Anal., 47 (1972),
pp. 81–116.

[33] M. D. Johnston, Translated chemical reaction networks, Bull. Math. Biol., 76 (2014), pp. 1081–
1116.

[34] M. D. Johnston, D. Siegel, and G. Szederkényi, A linear programming approach to weak
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[48] G. Szederkényi, G. Lipták, J. Rudan, and K. M. Hangos, Optimization-based design of
kinetic feedbacks for nonnegative polynomial systems, in Proceedings of the 2013 IEEE 9th
International Conference on Computational Cybernetics (ICCC), 2013, pp. 67–72.

[49] A. Varma and B. Ø. Palsson, Metabolic flux balancing: Basic concepts, scientific and prac-
tical use, Nat. Biotechnol., 12 (1994), pp. 994–998.

[50] P. Y. Yu and G. Craciun, Mathematical analysis of chemical reaction systems, Israel
J. Chem., 58 (2018), pp. 733–741.

D
ow

nl
oa

de
d 

02
/2

8/
20

 to
 1

41
.5

.2
6.

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


	Introduction
	Reaction networks and mass-action systems
	Fluxes on reaction networks
	Complex balancing without additional vertices
	Connection to deficiency theory

	Numerical methods
	Flux equivalence to complex-balancing
	Dynamical equivalence to complex balancing
	Existence of a weakly reversible realization for a mass-actionsystem

	Conclusion
	References

