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Abstract. Very often, models in biology, chemistry, physics, and engineering are systems of
polynomial or power-law ordinary differential equations, arising from a reaction network. Such
dynamical systems can be generated by many different reaction networks. On the other hand,
networks with special properties (such as reversibility or weak reversibility) are known or conjectured
to give rise to dynamical systems that have special properties: existence of positive steady states,
persistence, permanence, and (for well-chosen parameters) complex balancing or detailed balancing.
These last two are related to thermodynamic equilibrium, and therefore the positive steady states
are unique and stable. We describe a computationally efficient characterization of polynomial or
power-law dynamical systems that can be obtained as complex-balanced, detailed-balanced, weakly
reversible, and reversible mass-action systems.
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1. Introduction. Many mathematical models in biology, chemistry, physics,
and engineering are obtained from nonlinear interactions between several species or
populations, such as (bio)chemical reactions in a cell or a chemical reactor, population
dynamics in an ecosystem, or kinetic interactions in a gas or solution [4, 11, 16, 18,
19, 21, 22, 23, 24, 28, 32, 43, 44]. Very often, these models are generated by a graph
of interactions according to specific kinetic rules; mass-action kinetics for reaction
network models is one such example [50].

If the graph underlying the mass-action system in a given reaction network has
some special properties, then the associated dynamical system is known (or conjec-
tured) to have certain dynamical properties. For example, dynamical systems gener-
ated by reversible reaction networks are known to have at least one positive steady
state within each linear invariant subspace [9]. Moreover, these models are known to
be persistent and permanent if the number of species is small and are conjectured to
have these properties for any number of species [16, 40]. The same situation occurs
for weakly reversible reaction networks, i.e., for networks where each reaction is part
of a cycle (see Figure 2(b) and (c) for examples of such networks). For descriptions
of other important classes of networks, see [2].

Moreover, after some restrictions on the parameter values, weakly reversible net-
works give rise to complex-balanced systems, which are known to have a unique locally
stable steady state within each linear invariant subspace. This steady state is known
to be globally stable under some additional assumptions [1, 16, 27, 40] and is actually
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conjectured to be globally stable even without these assumptions [10, 16]. If a reaction
network is a complex-balanced system under mass-action kinetics, then other relevant
models, ranging from continuous-time Markov chain models [3] to reaction-diffusion
models [20, 38] and delay differential equation models [35], are also stable in some
sense.

It turns out that the same dynamical system can be generated by a multitude of
reaction networks [17, 29, 34, 46, 47]. Therefore, if a system is generated by a network
that does not enjoy a specific graphical property (e.g., not weakly reversible), we
can ask whether the same system may be generated by a weakly reversible network.
Others have asked this question before and formulated algorithms for a given number
of complexes [34, 42, 46, 47] and applied the results to designing control systems [44,
48]. In order to determine whether a given system is generated by a weakly reversible
or complex-balanced system, one would have to determine if it can be done using n
number of complexes for all n > 1.

In this paper we develop a theory of dynamical equivalence between mass-action
systems (or more generally, polynomial or power-law dynamical systems) and weakly
reversible and complex-balanced systems. Our results allow us to reformulate this dy-
namical equivalence problem as a linear feasibility problem whose dimension depends
only on the size of the original system.

In order to describe our main results, we need to introduce some definitions and
notations (these notions will be described in further detail in section 2). For our
purposes here, a reaction network is an oriented graph G = (Vg, E¢) with vertex set
Vi and edge set Eg such that Vg C R™. If y, ¥y’ € Vi and (y,vy’) is an edge in
E¢ C Vg x Vg, then we write y — y’ € G. With these notations, a dynamical system
generated by G (according to mass-action kinetics) is a system of ordinary differential
equations on RZ, given by

dx
(1) P > kyyat(y —y),

y—y' €G

where @ € RZ, ¥ = 228> .. . 2¥", and ky_,,y > 0 for all y — ¢y’ € G. We will

denote the dynamical system (1) by Gg, where k is the vector of parameters ky_,,
forally -y’ € G.

One of our main results is the following theorem.

THEOREM. A mass-action system Gy, is dynamically equivalent to some complex-
balanced mass-action system if and only if it is dynamically equivalent to a complez-
balanced mass-action system Gy, that only uses the vertices of G, i.e., with Vgr C V.

This theorem is useful not only for finding complex-balanced realizations of mass-
action systems but also because for the first time, it gives us a computationally feasible
way to decide if such realizations exist, as we only need to check if they exist for graphs
G’ that have Vg C V.

We will see in section 4 that we can restrict the set Vv even more: without loss of
generality we can assume that it is contained in the set of “source vertices” of G. We
have also obtained similar results for other important classes of mass-action systems:
detailed-balanced, weakly reversible, and reversible systems. Moreover, our results
are shown for flux systems, which allows for other types of kinetics beside mass-action
kinetics (section 3).

Reaction networks and mass-action systems, along with all other relevant terms,
are defined in section 2. We view a reaction network as a directed graph embedded
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in Euclidean space. In section 3, we define fluxes on a reaction network and relate
them back to mass-action systems. Section 4 contains our main results for complex-
balanced realizations, weakly reversible realizations, detailed-balanced realizations,
and reversible realizations. We make a brief comment on the implication of our results
on the network’s deficiency. Finally, we present the relevant feasibility problems in
section 5.

2. Reaction networks and mass-action systems. Chemical reaction net-
works appear at the intersection of biology, biochemistry, chemistry, engineering, and
mathematics. Different notations are used in the literature; here we explain the nota-
tions used throughout this paper. Introductions to chemical reaction network theory
can be found in [23, 28, 50].

DEFINITION 2.1. A reaction network (or simply a network) is a directed graph
G = (Vg, Eg) embedded in Euclidean space, with no self-loops, i.e., Vo C R™ and
E¢ C Vg x Vg and (y,y) € Eg for any y € V.

When there is no ambiguity, we simply write G = (V, E).

Remark. Vertices are points in R™, so an edge e € F can be regarded as a bona
fide vector in R™. We denote an edge e = (y,¥y’) as y — y’, which is associated to a
reaction vector y' —y € R™. We also write y — vy’ € G instead of y - ¢y’ € E.

The dimension n of the ambient Euclidean space is the number of chemical species
involved in the reaction network G. An edge in the set F is called a reaction. A vertex
in V is also known as a reaction complex. The source vertex of a reaction y — y’
is the vertex y, while y’ is the product vertex. Let V; C V denote the set of source
vertices, i.e., the set of vertices that is the source of some reaction.

The vector space spanned by the reaction vectors is the stoichiometric subspace
S = spang{y’ —y:y — vy € G}. For any positive vector g € RZ,, the affine
polytope (xg + S)s = (xo + 5) NR<y is known as the stoichiometric compatibility
class of xy. A reaction network G is reversible if y' — y € G whenever y — vy’ € G,
for simplicity, we denote such a pair of reactions by y = y’. It is weakly reversible if
every connected component of G is strongly connected, i.e., every reaction y — ¢y’ € G
is part of an oriented cycle.

Example 2.2. Figure 1 shows a reaction network G in R? with 6 vertices and 3
reactions. The reactions are

() () om0 mene ()0
AN

-— X

F1G. 1. A reaction network G in R? consisting of 3 reactions and 6 vertices. Under mass-action
kinetics, this network gives rise to the classical Lotka—Volterra model for population dynamics.
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F1c. 2. Ezamples of reaction networks (a) G, (b) G', and (c) G*, with labels of vertices shown
in (a). The dynamical systems generated by the network (a) can also be generated by (b) or (c) for
well-chosen rate constants. Note that (b) and (c) are weakly reversible, and (b) is also reversible.

The stoichiometric subspace, which is the linear span of the reaction vectors, is R%. In
particular, any stoichiometric compatibility class is all of R2>0. The reaction network
G is neither reversible nor weakly reversible.

Example 2.3. Three more examples of reaction networks are presented in Figure 2.
The reaction networks (a) G, (b) G', and (¢) G* share the vertices

O )

The reaction networks GG, G* have two additional vertices

we(l) wa w-(?).

The set of four reactions of G is Eq = {y; — Y5, Yo = Ys, Y3 — Yg, Y4 — Y}
The set of reactions of G’ is Eq' = {y; = Ya, Ys = Y3, Y3 = Yy, Yy = Y1, Y1 =
Ys, Yo = Yu}. The set of reactions of G* is Eg« = {y; = Y5 = Yy, Y3 = Yg =
Yu, Ys = Yg, Ys — Ys, Y5 — Y4 }. The networks G’ and G* are weakly reversible,
and G is also reversible. The stoichiometric subspace is S = R? for all three networks.

A reaction network G is associated to a dynamical system, by assuming that each
reaction y — y’ proceeds according to a rate function vy_,, (x), where & € RZ,
is the vector of concentrations of the chemical species in the system. One of the
most extensively studied kinetic systems is mass-action kinetics, where vy_,,/(x) is a
monomial whose exponent vector is y.

DEFINITION 2.4. Let G = (V, E) be a reaction network, and let k= (ky_.y' )y—y cc

€ REO be a vector of rate constants. We call the weighted directed graph Gy a mass-
action system, whose associated dynamical system is the system on RZ

dx
® P DRRWEL (T
y—y' €G
where ¥ = x{* x4 ... x¥". By convention, ° = 1.

It is convenient to refer to ky_,, even when y — y’ ¢ G, in which case we mean
ky/%y/ = 0. We adopt the convention that the empty sum is O, i.e., Zy%y’ez ky—y
(¥ —y)=0.

Ezample 2.5. We revisit Example 2.2 under the assumption of mass-action
kinetics. The dynamical system associated to this reaction network G = (V| E) for
an arbitrary vector of rate constants k = (kj)yj_mjgc eRE is
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de 1 -1 0\  (kiz —koxy
ar = o) i () i () = (5,210

This is the Lotka—Volterra population dynamics model.

Given a mass-action system G, (2) uniquely defines its associated dynamical
system; however, many different reaction networks can give rise to the same dynamical
system under mass-action kinetics. It has been known for a long time that if a reaction
network has some special properties (e.g., reversible, weakly reversible, deficiency
zero), then the mass-action system is known to have certain dynamical properties (e.g.,
existence of positive steady state, local and global stability). Therefore, given a mass-
action system, we are interested in networks with richer structural properties that
give rise to same dynamical systems. If two mass-action systems give rise to the same
associated dynamical systems, we say they are dynamically equivalent [17, 34, 46, 47].

DEFINITION 2.6. Two mass-action systems Gy, and Gy, are dynamically equiva-
lent if

(3) Z ky1—>y2:cy1 (y2 - y1) = Z k;/lﬁyéxyl (y'2 _ yll)

Y, —Y-€G Y, —yLeG’

for all x € RY,. We say that G}, is another realization of Gj,.

Remark. From (3), a necessary and sufficient condition for dynamical equiva-
lence is

(4) Z k‘yo%y(y—yo) = Z ké,,ﬁyf(y'—yo)

Yo—yYeG Yoy €G’

for all y, € Vo U Vgt

Note that in the associated dynamical system of a mass-action system, ‘fl—:f belongs

to the stoichiometric subspace S. Moreover, R, is forward invariant under mass-
action kinetics, i.e., if (0) € R, then x(t) € R, for all ¢ > 0 [23]. Consequently,
the trajectory a(¢) is confined to the stoichiometric compatibility class ((0) + S)~
for all t > 0.

Remark. The stoichiometric subspaces for dynamically equivalent systems can
in principle be different. However, the kinetic subspaces for the two systems must be

the same.? For example, the system in Figure 3(a), made of the reaction 2 X +ix +
Y, is dynamically equivalent to the system in Figure 3(b), consisting of the reactions

2X 5 X +Yand 02— Y £ 2. By definition, the two systems have different
stoichiometric subspaces. However, in these systems, the trajectory starting at xg €

2, is confined to the affine space o + R(—1, 1)T because their kinetic subspace is
R(-1,1)7.

Ezample 2.7. For the networks in Figure 2, let k;; > 0 be the rate constant on
the reaction y, — y; € G; let k;l’-j be the rate constant on the reaction y; — y; € G'.
Suppose k;; and k,,, satisfy the following equations:

Tt is possible that either y, & Vg or yy & Vigr. Then one side of (4) is an empty sum, which by

convention is 0.
2The kinetic subspace of a dynamical system % = f(x) on a domain  is the linear subspace

generated by {f(z): € Q} [26] For a mass-action system, the kinetic subspace is a subset of the
stoichiometric subspace S.
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(a) v (b) v

[ ]
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X X

Fic. 3. Two dynamically equivalent systems with different stoichiometric subspaces. Trajecto-
ries are confined to the same affine invariant spaces because their kinetic subspaces are the same.

0 3 3
)=k12(2)+k;3(2)+k;4(0),
0 3 3
s (3 s ) 5 2)
-3 -3 0
)2 5 (2)
—1 -3 -3 , 0
k46<1)k21<0)+k£2(2>+k43<2>.

Then Gy and G}, are dynamically equivalent. The linear constraints on the rate
constants arise from vector decomposition of the reaction vectors starting at the source
vertices of G and G'.

In fact, if k, k', and k*, where k* is a vector of rate constants for G*, satisfy
some linear relations, the three mass-action systems G, G, and G}, are dynamically
equivalent.

Mass-action systems give rise to very diverse dynamics. For example, weakly
reversible deficiency zero mass-action systems have exactly one locally asymptotically
stable steady state (within the same stoichiometric compatibility class). Yet there
are other mass-action systems that have periodic orbits or limit cycles [5, 37, 41] and
others that admit multiple steady states (within the same stoichiometric compatibility
class) [6, 12, 13], and even chaotic dynamics [45, 50]. We refer the reader to [4, 23,
28, 50] for an introduction to mass-action systems. In this paper, we focus on several
kinds of steady states of mass-action systems.

DEFINITION 2.8. Let Gy, be a mass-action system with the associated dynamical
system

dx
dat > kyoyat(y —y).

y—y' €G
A state o € R is a positive steady state if

dx
(5) P Z ky—y g (y' —y) = 0.

y—y' €G

A positive steady state €y € RZ is detailed-balanced if for everyy = y' € G, we have

’

(6) by sy T = ky syl -
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A positive steady state xg € RZ, is complex-balanced if for every vertex y, € Vg,
we have

(7) D kyoym® = Y kyy,@.

Yo~y €G Y=y €G

Intuitively, detailed balancing is when fluxes across every pair of reversible re-
actions are balanced; this is intimately related to the notion of microreversibility or
dynamical equilibrium in physical chemistry [7, 8]. Complex balancing is when fluxes
through every vertex (i.e., reaction complex) is balanced.

3. Fluxes on reaction networks. Most dynamical systems associated to re-
action networks are nonlinear [15, 32, 43]. While nonlinear dynamical systems are
generally difficult to study, the analysis of reaction networks is sometimes facilitated
by the linear constraints arising from the network structure and stoichiometry.

To illustrate what we mean, consider mass-action kinetics. The (generally non-
linear) dynamical system under mass-action kinetics has the form

&S @ ),

y—y' €G

where vy, (€) = ky_yx¥. Once the nonlinearity is hidden inside the reaction rate
function vy, (), the linear structure remaining becomes apparent.

: _ |E| _ |E|

Enumerate t.he. set of reactlons', E={y; -~ y; }i—1, and let V(:c) = (Vyjiy; (:c))j.=1

be a vector consisting of the reaction rate functions. Define the stoichiometric matrix

N € R**IE| a5 the matrix whose jth column is the jth reaction vector y; —y,. Then

the dynamical system above can be written succinctly as i% = Nv(z).
In order to deal with the underlying linear structure, we do not keep track of the
concentrations that give rise to v(x) but leave it as a vector of unknowns. For this

reason, we denote the value v(x) simply as J and call it a flux vector.

DEFINITION 3.1. A flux vector J = (Jy sy )y—yec € REy on a reaction network
G = (V,E) is a vector of positive numbers. The number Jy_,, is called the flux of
the reaction y — y’, and the pair (G, J) is called a flux system.?

As with the rate constants, it may be convenient to refer to Jy_,, even when
y =y’ ¢ G, in which case Jy_,, = 0.

This idea of fluxes on a reaction network may be familiar to anyone who has
worked with stoichiometric network analysis or flux balance analysis. One form of
the analysis is to solve the linear equation NJ = 0, where the unknown vector J
has nonnegative coordinates [39, 49]. Since we are interested in relating network
structure with dynamics, if y — y’ € G, we impose that Jy_,,» > 0. Also if y = 3y’ is
a reversible reaction in G, then Jy_,, and Jy_,, are two positive components of the
vector J. A solution J > 0 of the equation NJ = 0 corresponds to a positive steady
state if J = v(xg) for some g € RZ,. We define the flux analogues of positive steady
state, detailed-balanced steady state, and complex-balanced steady state.

DEFINITION 3.2. A steady state flux on a network G = (V, E) is a flur vector
J € RY satisfying

(8) Z Jy—y (Y —y) = 0.

y—y' €G

3The word “system” in “flux system” is in the sense of a system of linear equations, rather than

a dynamical system.
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A flux J € Rfo is said to be detailed-balanced if for every y — vy’ € G, we have
(9) Jy-}y/ = Jy/_)y.

A fluz J € RE is said to be complex-balanced if for every y, € V, we have

(10) Z Jyo—y = Z Ty—y,-

Yo~y €G Y=Yy G

A steady state flux is a positive vector J in ker N, where the stoichiometric matrix
N has the reaction vectors as its columns. As a shorthand, we refer to the flux system
(G, J) as detailed-balanced if J is a detailed-balanced flux on G. Similarly defined
is a complex-balanced flux system on G. It will be clear from context whether a
complex-balanced system refers to a mass-action system or a flux system.

Ezample 3.3. An example of a flux system (G,J) is shown in Figure 4. The
positive number labelled on each edge y — v’ is the flux J,,_,, of that reaction.

Note that this flux system could have risen from a mass-action system. For
example, suppose the numbers labelled on the edges are taken to be rate constants
k, and the state of the system is @ = 1. Then (G, J) would be the flux system based
off of the mass-action system Gy.

There is no unique mass-action system that gives rise to a fixed flux system. For
example, on the reaction network shown in Figure 4, suppose that the rate constants
are taken to be

’ _ / _ / _
0—=Y — 3, Y -X+Y T L X+Y—=0 — L

Hoo=o K =2 ' =5
Y—0 — 92’ X4+Y —=2X 2’ 2X s X+Y T %

and that the state of the system is ¢ = (1,2)7; then it can be shown that (G, J) is
the flux system of the mass-action system Gy at the state xg.

This flux system (G, J) is complex-balanced. For example, at the vertex (0,1)
corresponding to Y, there is one reaction going into it with flux value 3, and there
are two reactions leaving this vertex, with sum of fluxes being 2 +1 = 3.

Whenever a flux vector arises from mass-action kinetics, i.e., Jy_sy = Ky ¥,
classical results for mass-action systems carry over to flux systems, as summarized in
the following two lemmas.

v

»—2)0
/ \
3|1
2 5
4 X

Fic. 4. An example of a fluz system. The positive numbers on any edge y — vy’ is the flux
1 of that reaction. Note that this flux system is complez-balanced.

J,

Y-y
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LEMMA 3.4. Let Gy be a mass-action system, and fir * € R%,. For each edge
y =y € G, define Jy_y = kyyyx?, so that J = (Jy_y )y—yea s a flux vector
on the network G. The following hold:

1. The fluxz vector J is a steady state flur on G if and only if  is a positive
steady state of Gy.

2. The flux vector J is detailed-balanced if and only if © is a detailed-balanced
steady state for Gi,.

3. The flux vector J is complez-balanced if and only if x is a complex-balanced
steady state for Gy.

LEMMA 3.5. If G admits a detailed-balanced fluz, then G is reversible; if G admits
a complez-balanced flux, then G is weakly reversible. If a flux is detailed-balanced on
G, then it is also complex-balanced; if a flux is complex-balanced, then it is also a
steady state flux.

Proof. Let J be a flux vector on a network G—either detailed-balanced or complex-
balanced or merely a steady state flux. On G, define a mass-action system Gy with
rate constants ky_,, = Jy_, for each y — 3y € G. Then zo = (1,...,1)T is a
(detailed-balanced or complex-balanced or positive) steady state.

Lemma 3.5 follows from classical results on mass-action systems [22, 23, 24, 28,
30, 31]. |

As we have seen in the previous section, some mass-action systems are dynamically

equivalent; similarly there are flux equivalent systems. We define an equivalence
relation for flux systems in R"™.

DEFINITION 3.6. Two flux systems (G,J) and (G',J’) are flux equivalent if for
every vertex Yy, € Vg U Ve ,* we have

(11) D Ty —wo) = D Ty (¥ — o)

Yo—YeG Yo=Yy €G’

We denote equivalent fluz systems by (G, J) ~ (G',J’) and say that (G',J') is a
realization of (G, J).

LEMMA 3.7. Fluz equivalence is an equivalence relation.

Proof. That flux equivalence is symmetric and reflexive is clear. Suppose (G, J) ~
(G",J") and (G',J') ~ (G*,J*). Transitivity follows from

Z Jyo—>y Y- yO Z yo—>y (y— yO) = Z J?joﬁy(y - yo)

Yo—YEG Yo—YyEG’ Yo—yEG*
for any y, € Vo U Ve U V. Note that if y, € Vv, then the sums above are all 0.0

Suppose a flux vector arises from a mass-action system; one expects the notion
of dynamical equivalence to line up with that of flux equivalence.

PROPOSITION 3.8. Let Gy, G}, be mass-action systems, and fix x € RZ,. For
each edge y — ¢y’ € G, let Jy_y = kyyx¥, so that J(x) = (Jy—y )yoyea 1S a
flux vector on G. Similarly, define the flux vector J'(x) = (Jéﬁy,)yﬁy/egf on G,
where Jy . = ky @Y. Then the following are equivalent:

1. The mass-action systems Gy, and G}, are dynamically equivalent.

2. The fluz systems (G, J(x)), (G',J'(z)) are fluz equivalent for all x € RZ,
3. The fluz systems (G, J(x)), (G, J'(x)) are flur equivalent for some x € RZ.

4As before, we adopt the convention that the empty sum is 0, i.e., Zy—w’ez Ty’ (y' —y) =0.
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Proof. Tt is clear that statements 1 and 2 are equivalent, and that statement 2
implies statement 3. Showing the implication of statement 1 from statement 3 will
complete the proof. Let ¢y € RZ, be a vector such that (G, J(z¢)) ~ (G',J'(z0)).
For any yq € Vg U Ve and arbitrary € RY,, we have

Z Jy(ﬁy(w)(y —Yo) — Z éoﬁy’(w)(y/ —Yo)

Yo—YyeG Yo—y €G’
= Y hyy® W —yy) — D> Ky @ (Y —yo)
Yo—yelG Yo—y' €G’
xYo
= "W Z kyoﬁngo (Y —yo) — Z k;[)_m,acg" (¥ —vo)
Lo Yo —yeG Yo~y €G’
0 0
xYo , ,
= LYo Z Jyo—y(®0) (Y —yo) — Z Jyoﬁy’ (®o)(y' — yo)
0 Yo—yeG Yyo—y €G’
=0. 0

Remark. The proof above holds for kinetics other than mass-action type. For
each (source) vertex y € Vg U Vi, define a rate function vy : R%; — Rso. Then the
above proposition holds when the flux vectors are defined to be Jy_,y = ky_yyvy(x)

for eachy — y' € G, and J,_,,, =k, vy(x) for each y — y' € G".

In the following proposition, we reduce a nonlinear problem about mass-action
systems to a linear problem about flux systems. Instead of showing that a mass-
action system is dynamically equivalent to a complex-balanced (or detailed-balanced)
system, it suffices to show that an appropriately defined flux system is flux equivalent
to a complex-balanced (or detailed-balanced) system.

PROPOSITION 3.9. Let Gy, be a mass-action system, and let Ty € RY,. For each
edge y — y' € G, define Jy_y = kyyxy, so that J = (Jy_y )y—yec is a flux
vector on the network G. Suppose (G,J) is flur equivalent to (G',J'), where J' is
complez-balanced; then Gy is dynamically equivalent to a mass-action system G},
where x is a complez-balanced steady state for Gy, . Similarly, if (G, J) is flux equiv-
alent to a detailed-balanced flux system (G',J"), then Gy is dynamically equivalent to
a mass-action system G, , where xo is a detailed-balanced steady state for G, .

Proof. For each edge y — ¢y’ € G’, define its rate constant to be

!

/ y—y’
;= > 0
Y=y xg )

so that G, is a mass-action system. By Proposition 3.8, the mass-action systems Gy,
and G}, are dynamically equivalent, and by Lemma 3.4, xo is a complex-balanced
steady state if J' is a complex-balanced flux on G/, and if J’ is detailed-balanced on
G’, then xq is a detailed-balanced steady state. 0

4. Complex balancing without additional vertices. The identification of
possible network structures associated to a biochemical system, say, from experimen-
tal data, is closely related to identifying key players in the system (e.g., enzymes in
metabolic networks, genes in genetic networks). While the general nonuniqueness
implies that network identification may often be impossible, it may still be desir-
able to compute equivalent systems—whether that be dynamical equivalence or flux
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equivalence—in order to conclude that the system has better properties than first sus-
pected, e.g., weak reversibility or complex balance. This problem is not new [17, 46].

In recent years, the engineering community has utilized properties of mass-action
systems in novel ways to designing and analyzing control systems [4, 36, 44, 48]. For
example, the controllers can be added in such a way that the resulting system is a
complex-balanced mass-action system; from this, one can conclude that the control
system has a unique positive steady state and local stability [36, 48]. Moreover, very
general results have been obtained on the stability of complex-balanced systems with
delay [35].

Thus, there is strong incentive for developing effective computational methods
to find structurally better dynamically equivalent systems. One approach uses linear
programming, but an objective function must be chosen. To reduce the search space,
one can decide to search for a realization with the maximal and minimal number of
edges [34, 47]. Nonetheless, the set of vertices to be included in the reaction network
must be chosen ahead of time.

In the examples of Figure 3, the mass-action systems systems are dynamically
equivalent, but one uses an additional source vertex, whose weighted vectors sum to
zero. Intuition may say that additional vertices can only improve the chance to find
a network with desirable properties, as additional parameters provide extra degrees
of freedom. Even if that is the case, the question of computability arises. Even if by
adding new vertices to the network, one can produce an equivalent complex-balanced
system, there is no a priori bound on the number of new vertices needed. One cannot
realistically add new vertices ad infinitum.

Fortunately, we prove that no additional vertices are needed in order to check
if a given system admits complex-balanced realizations. Thus, to check whether or
not a network can admit a complex-balanced realization becomes a finite calculation,
one that can be done by searching through the admissible domain as done in linear
programming. Although the motivation came from mass-action systems, we prove
our results in the more general setting of flux systems.

Our approach is to show that any such additional vertices in the network can be
removed without changing the properties desired, namely, complex-balanced or weak
reversibility. Such additional vertices will be called wvirtual sources.

DEFINITION 4.1. A vertex y, € Vs is a virtual source of the fluz system (G, J) if

(12) > Tygsw (¥ — o) =0,

Yo—y' €G

where the sum is over all edges with y, as its source.

If the flux system (G, J) arises from a mass-action system, then y, € V; is a
virtual source if and only if the monomial x¥% does not appear® on the right-hand
side of the associated dynamical system (2). For example, if we consider fluxes that
arise from mass-action kinetics in the network in Figure 3(b), the vertex Y is a virtual
source.

In this section, we prove that if a flux vector on a weakly reversible reaction
network is complex-balanced and has a virtual source y*, then there is an equivalent
complex-balanced flux system that does not involve y* at all. In short, virtual sources
y* are not needed for complex balancing.

5That is, the monomial does not appear after simplifying.
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Just as an arbitrary concentration vector £ € RZ; may not be a complex-balanced
steady state for a weakly reversible mass-action system, so we may want to speak of
fluxes that are not complex-balanced. To keep track of how far a flux vector is
from being complex-balanced, we define the potential at a vertex to be the difference
between incoming and outgoing fluxes.

DEFINITION 4.2. Let G = (V. E) be a reaction network, and let J € RE be a flux
vector on G. The potential at a vertex y* € V is the scalar quantity

(13) Pe.an(y") = Z Jysys — Z Ty sy

y—y*eG y*—y'eCG

Remark. The flux vector J is complex-balanced on G if and only if Pg 5)(y) =0
for all y € V.

By an abuse of notation, if y* ¢ G, we still refer to the potential P, y)(y*) by
setting it to be Pg gy (y*) = 0.

In showing that virtual sources are not needed for complex balancing, the idea is to
redirect the fluxes flowing into a virtual source y* to other vertices while maintaining
flux equivalence. If we are doing nothing more than redirecting flow of fluxes, the
potential at every vertex does not change; therefore, we preserve complex balancing
for the resulting flux system. This type of construction appeared first in [36] to show
that new monomials were not necessary in feedback design.

We have to simultaneously keep track of the potential at each vertex and flux
equivalence. We illustrate the key idea of Lemma 4.3 in Figure 5.

LEMMA 4.3. Consider a reaction network G consisting of the reactions z — y*
and y* — y; for j = 1,2,..., M. Suppose y* is a virtual source for a flur system
(G, J) and its potential is P yy(y*) = 0. Then there exists a flux equivalent sys-
tem (G',J") such that y* & Vg, and the potential at each vertex is preserved, i.e.,
P,a(y;) = Pargn(y;) for 1 <j < M and Pig,gy(2) = Pr,an(2).

The flux system (G',J’) can be obtained constructively: remove the edges z — y*
and y* — y;, and add the edges z — y; with fluzes J;Hyj = Jy oy, -

Proof. For j =1,2,...,M,let w; = y; —y* and wy = z—y" denote the reaction
vectors. First, remove the edges y* — y; coming out of y*. Because y* is a virtual
source, E;‘il Jy sy, w; = 0, so the resulting flux system is still equivalent to the
original. Note that in this new flux system, only z is a source vertex.

(a) Yy (b) Yy
Y1 '/ \. Yy o .
Yo Y2

FIG. 5. Illustrating the idea behind Lemma 4.3 in R3. (a) Assume that y* is a virtual source
in the fluz system (G, J). In (b) is an equivalent flux system (G',J’), obtained by redirecting fluzes
from z = y* = y; as fluzes from z = y;.
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Next, we redirect the reaction z — y*. Instead of the reaction z — y* with
flux J,y+, we have M reactions z — y; with fluxes J;—>yj = Jy sy, Let (G, J)
denote this newest flux system.

Recall that flux equivalence means (11) holds at each vertex of G and G’. Here
we only need to look at the vertex z to show that (G',J’) ~ (G,J). Note that
Yy; — 2 =w; —wq. From P y(y*) = 0, we also have Z;Vil Jy—y, = Jzy-. Thus,
the weighted sum of vectors coming out of z is

M M
Z ‘];—>yj (yj - z) = Z Jy*—*yj (w; — wo)
Jj=1 j=1

= E Jy*—)yj'wj — Wy g Jy*—>yj = —J. .y wo,

and (G',J") ~ (G, J).

Finally, we prove that the potentials are unchanged. Trivially Pg g)(y*) =
P an(y*) = 0. Also Pgg)(y;) = Jysy, = J;%yj = P ay(y;) for j =
1,2,..., M. Last but not least,

M M
—P(G’,J')(z) = Z J;—>yj = Z Jy*—>yj = Jzny = P (2).
j=1

Jj=1

We have shown that the resulting flux system (G’, J') is flux equivalent to the original
flux system (G, J), and the potential at each vertex is preserved. ]

Remark. In Lemma 4.3, the source vertex z may not be distinct from y;.

We now arrive at our main technical theorem (Theorem 4.4), a generalization of
Lemma 4.3. Here, the virtual source y* may have multiple reactions coming into it
and coming out of it. The proof will be an induction on the number of edges flowing
into y*. At each step, we redirect a fraction of the fluxes flowing through y* from
one incoming edge.

THEOREM 4.4. Let (G, J) be a complez-balanced flux system on reaction network
G = (V, E). Suppose that y* € V is a virtual source. Then there exists an equivalent
complex-balanced flux system (G',J') with Vg =V \ {y*}. Moreover,

in —y*

y; 2y €G Y; ~Y”

for any y; such that y, = y* € G and any y,, such that y* — y;, € G, and J3/1—>y/ =
Jy—y for all other edges y — y'.

Proof. Let N be the number of reactions with y* as target, i.e., N = |{z = y* €
G}|. Enumerate the sources as z1, 2, ..., zy. Let M be the number of reactions with
y* as sources, i.e., M = |{y* — y € G}|. Enumerate the targets as y;,ys,..., Y-
Since y* is a virtual source, it is in the relative interior of the convex hull of the
targets y;. From complex balancing, we have P ) (y*) =0, or

M N
E :Jy*—wj = E 2oy
j=1 i=1
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le_‘y

Let 6 = 7 be the fraction of flux to be redirected from z; — y*. We
z; —y*

apply the construction described in Lemma 4.3 to the incoming edge z; — y*, and
the outgoing edges y* — y; for j =1,2,..., M. Let (G, J") denote the flux system
after the diversion. More precisely, J_, Sy =0,

! —
J21—>y - Jz1—>yj - GJy*_)yj’
! — —
Ty, =y, = 0Ty oy,

and the fluxes on all other edges unchanged from J.
Checking for flux equivalence at z; before and after the diversion, we see that

(Final flow from z;) — (Initial flow from z)

M
= Z a1y, (Y — 21) = Jzoy (¥ — 21)

—eZJy Sy, *) +6 ZJy Dy, W= 21) = Ty (¥ — 21)
7j=1
=0 = Z;'\;l ']zi—>y*
=0.

At all other vertices, the net flux is unchanged.
In terms of potentials, at z1, we have

Prg(z1) = Pa,a)(21) Z 2oy, TSy = _OZJz syt T2y = 0.

=1

At each y;:

P an(y;) — Pe.a(y;) = (leﬁy + Jg/; =y, ) - (Jz1—>yj + Jy*—>y_7) =0.
At y*:
M
Pran(y") = Pan (™) = =Tz sy + 0D Jye sy, = 0.
j=1
The new flux system (G’, J') after diverting the flux from z; — y* is still complex-

balanced, as the potential is unchanged from those of (G, J). Moreover, (G’, J’) and
(G, J) are flux equivalent. In addition, at y*, we have

y*—yeG’ y*—yeG’

i.e, y* is a virtual source for (G’,J").

Thus we have recovered all the hypotheses stated in the theorem. The only
difference between (G, J) and (G’,J’) is that G’ contains N — 1 = |{z — y* € G'}|
reactions with y* as target vertex. By induction on the number |{z — y* € G'} |,
there exists a flux system (G*, J*) that is flux equivalent to (G, J), and for which J*
is a complex-balanced flux on G*. Finally, because Pg- j+)(y*) = 0, but there are
no incoming reactions to y*, it follows that there are no outgoing reactions from y*,
ie., y* & Vgs. O
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When does a flux system (or a reaction network) admit a complex-balanced real-
ization? Theorem 4.4 implies that virtual sources do not need to be considered. The-
orem 4.5 below is the basis behind several relevant numerical methods in section 5 for
determining if a flux system (or a reaction network) is equivalent to complex-balanced.

THEOREM 4.5. Let (G,J) be a flux system, and Vg s its set of source vertices.
Then (G,J) is flur equivalent to some complex-balanced flux system if and only if

(G,J) is flur equivalent to some complex-balanced flux system (G',J') where Vg C
Ve,s-

Proof. One direction is trivial. To prove the other direction, suppose (G, J) is a
flux system that is flux equivalent to some complex-balanced flux system (G,J). If
y* € Vz\ Vg,s, the set {y* — y € G} is empty; flux equivalent demands that

0= > Jyoyly—v)

y*—>y€é

Theorem 4.4 implies we can maintain flux equivalence and complex balance even after
dropping the vertex y* from V. Repeating this process for all vertices not in Vg s
ultimately implies that there is a complex-balanced flux system (G’,J’) such that
(G',J') ~ (G,J) and in addition Vg C Vg s. O

THEOREM 4.6. Let G be a reaction network, and Vg s its set of source vertices.
Then the following are equivalent:
(i) There exists a flur vector J such that (G,J) is flux equivalent to some
complez-balanced flux system.
(ii) There exists a flux vector J such that (G,J) is flur equivalent to some
complez-balanced fluz system (G',J"), where Vgr C Vi s.

Proof. The proof follows immediately from Theorem 4.5. ]

THEOREM 4.7. A mass-action system Gy is dynamically equivalent to some
complez-balanced system if and only if it is dynamically equivalent to a complez-
balanced system G}, that only uses the source vertices, i.e., Vg C Vg s.

Proof. This theorem follows from Proposition 3.8 and Theorem 4.5. Suppose Gy
is dynamically equivalent to some complex-balanced mass-action system Gy. Define

the appropriate fluxes J on G and J on é; by Proposition 3.8, the two flux systems
are flux equivalent. Theorem 4.5 holds if and only if (G, J) is flux equivalent to some
complex-balanced flux system (G’,J’) where Vg C Vg . Define the appropriate
mass-action system G, (see Proposition 3.9); we have one direction of this theorem.
The other direction is trivially true. 0

All of our theorems thus far have been concerned with flux systems; in the case
of mass-action systems, implicit in everything is the existence of a complex-balanced
steady state. However, the idea of redirecting fluxes can be adapted to show the
surprising result that weak reversibility can be accomplished (if at all) with no extra
vertices.

THEOREM 4.8. A mass-action system Gy is dynamically equivalent to some weakly
reversible mass-action system if and only if it is dynamically equivalent to a weakly
reversible mass-action system Gy, that only uses its source vertices, i.e., Vor C Vg s.

Proof. Without loss of generality, we may suppose that Gy is a weakly reversible
mass-action system for which there exists a virtual source y*. As in Theorem 4.4,
we remove the vertex y* by redirecting the reactions flowing through it. Since G is

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/28/20 to 141.5.26.35. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

198 GHEORGHE CRACIUN, JIAXIN JIN, AND POLLY Y. YU

weakly reversible, there exists some vertex z such that z — y* € G. As before, we
will try to replace pairs of reactions z — y* and y* — y with z — y.

Enumerate the set {y* — y € G} as {y* — y,}M,, and enumerate the set
{z =2y e€G}las{z; — y*}é\[=1 For simplicity, let aj =k, y+, and let §; = ky«_yy. .
Informally speaking, in place of the reactions z; = y* and y* — y,, we shall have
the reaction z; — y, with rate constant k:z oy, Qj%. More precisely, let G’ be
the graph after deleting the vertex y* and its adjacent edges from G, and (if needed)
the edges z; — y, added for all i =1,2,...,M and j = 1,2,...,N. On G’, take the

rate constants to be &’ =K. =0 and

Z*)y yg)’y

Bi
/ _
kz] —Y; kzj —Y; + =, Z Bs

and all other rate constants same as in Gy.
The assumption that y* is a virtual source can be written as

M M
Z Biy; = Z Biy™
i=1 i=1

Now to check for dynamical equivalence at z;, we consider the differences due to the
reactions z; — y;:

M

Z(klzlay kz1ﬂy Zalzﬂé _Zl)

i=1 ) y
- Z Biy* — Z Biz1
Bs i=1 i=1

= al(y* 72"1)7

which is the contribution from the reaction z; — y*. Since other reactions were
untouched, we have dynamical equivalence at z;. There is nothing special about
j =1; the same holds for all source vertices z3, 23,...,2nN.

Finally, given any cycle vy — vy — -+ — vy — v; in G’, whenever an edge
z; — Yy, appears in the cycle, replace it with two edges z; — y* — y;, and obtain a
cycle in G. Therefore, G’ is still weakly reversible. ]

We extend the above results (Theorems 4.4-4.8) to detailed-balanced fluxes and /or
reversible networks. We summarize these results in the following theorems.

THEOREM 4.9. Let (G, J) be a detailed-balanced fluz: system on a reaction network

G = (V, E). Suppose that y* € V is a virtual source. Then there exists an equivalent
detailed-balanced fluz system (G',J’) with Vor =V \ {y*}. Moreover,

Jyri‘}y*

Y, Yy Yy Yk Yy Yk Zyj%y*EG Jyj—>y*
for any y;,y, connected to y* in (G,J). Let other fluxes remain unchanged from
(G,J). In particular, (G,J) is flur equivalent to some detailed-balanced flux system
if and only if (G, J) is flur equivalent to some detailed-balanced flux system (G',J")
where Vor C Vi s.

Proof. As in Theorem 4.4, we divert fluxes away from y*. We only need to check
detail balancing. Consider any two vertices y; # vy, where y, = y*,y, = y* € G.
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Using the fact that the flux system was originally detailed-balanced, i.e., Jy_, =
Jy' .y, We obtain

in —y*

/ _
Tvimue = Jvmue T Ty, > Jy sy
y;—yreG Jy;—y

J’.’Jk_yy*

= Yyp—y; +‘]y*—>yz J
Zyj—>y*€G Y; =y

o

- Jyk*)yi.
For any other pairs of reversible reaction, detail balancing is inherited from (G, J).
In other words, (G’,J’) is detailed-balanced. 0

THEOREM 4.10. A mass-action system Gy is dynamically equivalent to some re-
versible system if and only if it is dynamically equivalent to a reversible system G,
that only uses its source vertices, i.e., Vgr C Vg .

Proof. We assume that Gy, is reversible and has a virtual source y* € V. We
will replace the reactions {y* = y, € G} by modifying/adding the reactions {y, =
Yi: ¥ = Yy, = y* € G}. For any y,, y, such that y, = y*, y, = y* € G, let

/ ) —
Ky oy = ky«_y =0 and
k *_yy.
kL Ly =y oy, Ky, (”)
Y, =Y, Yi—Y; Y, —Y Z ky*%ys
Similar to Theorem 4.8, it can be shown that Gy, and G}, are dynamically equivalent.
Moreover, by symmetry of construction, G’ is reversible. O

Note that related results have been obtained recently for the problem of kinetic
feedback design involving complex-balanced and weakly reversible systems [36]. Here,
for the problem of dynamical equivalence, we show that a given system admits a
dynamically equivalent system that is complex-balanced (or weakly reversible, or
detailed-balanced, or reversible) if and only if such a system exists using only the
complexes that are already present in the original system.

4.1. Connection to deficiency theory. Within the reaction network theory
literature, deficiency is a well-known quantity defined for a network G. Equipped
with mass-action kinetics, networks with low deficiency are known to enjoy special
dynamical properties under mass-action kinetics. For example, the famous deficiency
zero theorem says that a weakly reversible deficiency zero network is complex-balanced
for any choices of rate constants [24, 32]. As we have introduced, complex-balanced
systems enjoy properties such as uniqueness and stability of steady states, existence
of a Lyapunov function, and the steady states admit a monomial parametrization [23,
25, 28, 32, 50]. Despite the strong implications, deficiency has a relatively simple
definition.

DEFINITION 4.11. Let G = (Vg, Eg) be a reaction network with ¢o connected
components. Suppose the dimension of the stoichiometric subspace S is s = dim S;
then the deficiency of the network G is the nonnegative integer

(16) (5@ = |Vgl — éG — S.

It can be shown that dg = dim(kerY Nim Ig), where Y is the stoichiometric
matrix, with the vertices as its columns, and I the incidence matrix of G [33]. It

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/28/20 to 141.5.26.35. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

200 GHEORGHE CRACIUN, JIAXIN JIN, AND POLLY Y. YU

follows that ¢ is a nonnegative integer. When the network is weakly reversible, we
also have 6 = dim(ker Y Nim Ay ), where — A7 is the Laplacian of the weighted graph
Gg [23, 28].

Deficiency continues to play an important role in the analysis of reaction networks
and mass-action systems. In our procedure for removing virtual vertices, deficiency
always decreases. This is similar to a result obtained in [36], where the removal of
additional monomials that function as controls in a feedback system also leads to a
decrease in deficiency.

THEOREM 4.12. Let G, be a weakly reversible mass-action system with deficiency
da. Suppose it has a virtual source y*. Let G}, be the weakly reversible mass-action
system as produced in Theorem 4.8, dynamically equivalent to Gy with Voo = Vg '\
{y*}. Then the deficiency of G}, is dqr = dg — 1.

Proof. In the proof of Theorem 4.8, we replaced the reactions z — y* and y* — y
with the reaction z — y by choosing appropriate rate constants. It is clear that
Ve | = |[Ve| — 1, and the number of linkage classes stays the same. We claim that the
stoichiometric subspace S remains unchanged. Thus, the drop in deficiency is due to
the removal of the vertex y*, and dgr = g — 1.

First enumerate the reactions coming out of y* as y* — y;, and enumerate the
reactions going into y* as z; — y*. Let Sy be the span of the reaction vectors
“untouched” by our procedure, more precisely,

So =spang{y »y' € G:y#y ory' £y}
Let S be the stoichiometric subspace of G, in particular,

Se = spang{S0, ¥; — ¥, ¥" — zi}ijs

and Sgr be the stoichiometric subspace of G’, where
Sgr = spang{So, Y; — Zi}ij-

Clearly, Sg: C Sg, since y; — z; = (y; — y*) + (y* — z;) € Sg. Moreover, because
G is weakly reversible, the edge y* — y; is a part of a cycle; therefore, Sg =
spang{So, y* — z;};. Finally, we note that y* is in the convex hull of the vertices
y;, and thus y* — 2z; € spang{y; — 2i};, which implies S C Sg/. In other words,
SG = SGr and 5(;/ = (SG —1. 0

5. Numerical methods. In this section, we characterize when a flux system or
a mass-action system is equivalent to a complex-balanced system. We also describe
a method to determine when a mass-action system is dynamically equivalent to a
complex-balanced or weakly reversible system.

5.1. Flux equivalence to complex-balancing. Is a steady state flux system
(G, J) flux equivalent to a complex-balanced one? The answer lies in the following
linear feasibility problem for an unknown vector J'. Enumerate the set of source
vertices in G as {y;,¥Ys,-..,Yy} Search for J' = (J! )it € RN’ =N gatisfying

Y,—Y;
(17) Z‘]Ii—n;j(yj 7:’/1) = Z beﬁy(yfyz) for 7 = 1723"'7N7
Jj#i y,—yeG
(18a) > Tyivy, = > Ty, >, fori=1,2,...,N,
J#i J#i
(19) J' >0.
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If such a flux vector J' exists, then (G, J) is flux equivalent to a complex-balanced
system. If no such flux vector J’ exists, then (G,J) is not flux equivalent to a
complex-balanced system.

Equation (17) is the flux equivalence condition, while (18a) ensures that the new
flux system is complex-balanced. Equation (17) alone checks for flux equivalence
between any two given systems (G, J) and (G’,J").

Ezample 5.1. We return to the network G in Figure 2(a) and Example 2.7. The
network has 6 vertices, 4 of which are sources, and 4 reactions. At the moment, we
consider a flux system on the graph G and ask, for what flux J is the flux system
(G, J) equivalent to a complex-balanced one? One can show that (17)—(19) hold if
and only if

<

(20) Ji=Js, Jo=Jy, and <L<s,

U] =
S

A chosen flux J that satisfies (20) is flux equivalent to a complex-balanced system,
whose network is a subgraph of G’ of Figure 2(b). The details of this characterization
will be in an upcoming paper [14].

Remark. The setup for the detailed-balanced case is defined analogously. We

keep (17) and (19) and include the equation
! o . .
(18b) Sy sy, = Ty, v, for 1 <i#j<N.

5.2. Dynamical equivalence to complex balancing. We considered above a
set of equalities and inequalities necessary and sufficient for a flux system to be equiv-
alent to a complex-balanced one. If the flux system arises from mass-action kinetics,
we can write down an analogous system of equalities and inequalities necessary and
sufficient for dynamical equivalence to a complex-balanced system.

Consider a mass-action system Gy, whose vertices are points in R”, and enumerate

the set of source vertices in G as {y;,¥Ys, ..., Yy} We set up a nonlinear feasibility
problem for unknowns k' and x. Search for vectors k' = (k, ., )iz; € RN *=N and
i J

x € R" satisfying

J#i Y, —YyeG
(22) Dok @Y= Ky L, a¥i fori=1,2,...,N,
J#i j#i
(23) K >0,
(24) x > 0.

If such k' and x exist, then Gy is dynamically equivalent to a complex-balanced
system with & a complex-balanced steady state. If no such rate constants and steady
state exist, then Gk is not dynamically equivalent to a complex-balanced system.
Equation (21) enforces dynamical equivalence. Equations (22) and (24) imply that
x is a positive complex-balanced steady state for an equivalent mass-action system;
hence x is a positive steady state of Gg. Note that in the inequality (23), some k; S
can be zero, which implies that y; — y, is not a reaction in the equivalent network.
Equations (21)—(24) generally form a nonlinear problem. Despite that, for net-
works with additional structure, one may be able to extract more information about
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the rate constants. One such example is the network G in Figure 2(a). For this net-
work we can completely characterize the parameter values for which the associated
mass-action system has a complex-balanced realization.

Ezample 5.2. Consider a mass-action system on the network G of Figure 2(a) and
Example 2.7, with rate constants

by, sy, =kt Ry,oyg = ko ky,oy, = ks, and Ky, oy, = Ko
By a calculation, (21)—(24) hold if and only if

i< kiks
S ok

(25) < 25.

25

o

iy

Again, a complex-balanced realization is a subgraph of G’ in Figure 2(b). More
precisely, it is the reversible square with one pair of reversible diagonal (either y; = y4
or Yy, = y,); which diagonal is needed depends on the magnitudes of k1ks and koky.
The details of this characterization can be found in an upcoming paper [14].

The complex-balanced realization described (the subgraph of G’ in Figure 2(b))
has deficiency dg = 1. It is known that if its eight rate constants lie in a toric
ideal of codimension dgr = 1, then the mass-action system is complex-balanced [11].
While these eight rate constants are related to ki, ko, k3, and k4 by several linear
equations, we found one explicit condition (25) for when the mass-action system Gy
of Figure 2(a) is dynamically equivalent to a complex-balanced system.

Finally, note that the network of Example 5.2 gives rise to systems that are
equivalent to complex-balanced for certain choices of rate constants, but not for other
choices of rate constants. In a follow-up paper we will show that an entire class of
networks give rise to systems that are equivalent to complex-balanced for all choice
of rate constants. More precisely, we will prove that systems generated by single-
target networks that have their (unique) target vertex in the strict relative interior of
the convex hull of its source vertices are dynamically equivalent to detailed-balanced
mass-action systems for any choice of rate constants [14].

5.3. Existence of a weakly reversible realization for a mass-action
system. While complex-balanced mass-action systems are weakly reversible, not all
weakly reversible mass-action systems are complex-balanced. There has been much
work on determining when a weakly reversible mass-action system is complex-balanced
or not. Nonetheless, weakly reversible mass-action systems always have at least one
positive steady state within each stoichiometric compatibility class [9] and are con-
jectured to be persistent, and even permanent [16].

We present a simple nonlinear feasibility problem to determine when a mass-
action system is dynamically equivalent to a weakly reversible one. Recall that a
mass-action system is weakly reversible if and only if it is complex-balanced for some
choice of rate constants. We introduce a scaling factor Qy,—y, 10 order to decouple
the dynamical equivalence condition from the complex-balanced condition.

Consider a mass-action system G, whose vertices are points in R, and enumerate
the set of source vertices in G as {y1,Ys,...,yn - We set up a nonlinear feasibility
problem for unknown rate constants k' and a scaling factor a.. Search for vectors
kK = (ky,—y,)izj and a = (ay,y, )izj € RN =N satisfying

(26) D ko, Wi —y) = Y kyy(y—y) fori=1,2,...,N,
JF#i Y, —~yYeG
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(27) D oy oyky sy = Dy gy Ly fori=1,2,.. N,
J#i J#i

(28) kK >0,

(29) a > 0.

If such k" and o exist, then Gy, is dynamically equivalent to a weakly reversible mass-
action system. If no solution exists, then Gy, is not dynamically equivalent to a weakly
reversible system.

Equation (26) enforces dynamical equivalence. Equation (27) can be regarded as a

complex balancing condition that uses a different set of rate constants ayiﬁyjk
/

Y, —Y;
of G}, It is well-known that a reaction netwérk is weakly reversible if and only if it
is complex-balanced for some choice of rate constants [11]. The scaling factor o frees
the rate constants from the dynamical equivalence constraint.

Note that while (26)—(29) are simple to describe, more sophisticated, computa-
tionally efficient methods have been developed [42, 47]. Weak reversibility is a condi-
tion of the underlying directed graph. Ultimately one is imposing conditions on the
incidence matrix or the Kirchhoff matrix of the network. Algorithms to find weakly
reversible realization for a fixed vertex set have been proposed initially using mixed-
integer linear programming [34, 47] and later by a polynomial time algorithm based on
linear programming [42]. However, as with previous work on complex-balanced real-
izations, one must fix the set of vertices to be used in the computation. According to
Theorem 4.8, it suffices to find an equivalent network using the existing source vertices.
Therefore, the mixed-integer linear programming algorithms proposed in [34, 47] and
the polynomial time algorithm in [42] can be used in conjunction with Theorem 4.8
to completely characterize whether or not a mass-action system Gy is dynamically
equivalent to a weakly reversible one.

’
Y=Y,

Since ay, y, k; Sy, # 0 if and only if k = 0, we preserve the graph structure

6. Conclusion. If we are looking for a complex-balanced realization of a given
polynomial (or power-law) dynamical system, there exists no a priori limit on the
number of vertices in the objective network. Moreover, there are no a priori choices
for the locations of the vertices. Here we prove that a solution exists if and only if
the objective network can be constructed by using only the vertices that are already
present in the original system (i.e., the exponents of the monomial terms present
in the original system). We also prove that the same is true for detailed-balanced,
reversible, and weakly reversible systems.
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