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Abstract: Mass-action kinetics and its generalizations appear in mathematical models of (bio-
)chemical reaction networks, population dynamics, and epidemiology. The dynamical systems arising
from directed graphs are generally non-linear and difficult to analyze. One approach to studying them
is to find conditions on the network which either imply or preclude certain dynamical properties. For
example, a vertex-balanced steady state for a generalized mass-action system is a state where the net
flux through every vertex of the graph is zero. In particular, such steady states admit a monomial
parametrization. The problem of existence and uniqueness of vertex-balanced steady states can be
reformulated in two different ways, one of which is related to Birch’s theorem in statistics, and the
other one to the bijectivity of generalized polynomial maps, similar to maps appearing in geometric
modelling. We present a generalization of Birch’s theorem, by providing a sufficient condition for the
existence and uniqueness of vertex-balanced steady states.

Keywords: reaction network; generalized Birch’s theorem; generalized mass-action; vertex-balanced
steady states

1. Introduction

Reaction networks are commonly used to model natural phenomena in disciplines ranging from
chemistry, biochemistry, epidemiology to population dynamics. In these systems, entities interact to
form other entities as prescribed by a directed graph, the reaction network. For example, the reaction
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describes an enzymatic system, where a substrate S is converted into a product S; by an enzyme E via
an intermediate species ES.

The concentrations of the chemical species in a network are often modelled by a system of ordinary
differential equations. One of the most common assumptions in chemistry and biochemistry is that
of mass-action kinetics, where the reaction rate is proportional to the concentrations of its reactants.
According to mass-action kinetics, the reaction E + Sy — ES, proceeds at rate «[E][S¢], where x; > 0
is a rate constant, and [X] is the concentration of species X as a function of time z. The rates of change
of the concentrations of E, Sy and ES due to this single reaction are

dlE] _ d[Sol _ dI[ESo]
dt —  dr  dt

= ki [EI[So]l.

The rates of change due to all reactions in the network is the sum over its individual reactions, e.g.

d[E
% = —k1[E1[So] + k2[ESo] + «3[ESo],

d[So]

dt
d[ESo]

dt
d[Si]

dt

= —k1[E][So] + K2[ES],

= Kk [El[So] = k&2[ESo] — k3[ESo],
= K3 [ESO]

Mass-action systems have been studied extensively. Reaction network theory, as initially
developed by Horn, Jackson and Feinberg [1-3], tries to conclude dynamical properties from simple
characteristics of the underlying network. Moreover, as the reaction rate constant is usually obtained
empirically and thus subjected to uncertainty, an ideal theoretical result does not depend on the
precise values of the rate constants; indeed this is the case for many classical results in reaction
network theory.

Mass-action kinetics assumes that the system is dilute (having low concentrations) and
homogeneous (well-mixed). In the context of systems biology, that is not the typical environment; the
cell is typically crowded and highly structured. Various models have been developed to account for
this difference.

Biochemical systems theory [4, 5] proposes power-law kinetics, where the exponents (or kinetic
orders) in the reaction rate functions need not follow the stoichiometric coefficients. In the catalysis
example above, we may want the concentration of E to be modelled by the equation

% = =1 [E]"[So}’ + k2[ESo]” + k3[ESo]’
for some constants a, 5, v, 6 > 0. This is an example of power-law kinetics. Classical mass-action
kinetics and power-law kinetics can be incorporated into the framework of generalized mass-action
kinetics as formulated in [6] (based on [7]).
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Generalized mass-action systems can also be used to study mass-action systems that do not
obviously admit nice dynamical properties. This is done by network translation, where a mass-action
system is rewritten as a generalized mass-action system, where the underlying network has better
properties (e.g., weakly reversible) [8].

Generalized mass-action systems are essentially dynamical systems of the form

62—’; = ;K,-x"fv,-, (1.1)
where k; € R, and u;, v; € R". (For x € R”, and u € R", we are using the notation x* = x'x3” - - - x,").
For example, any polynomial dynamical system is of the form (1.1). Moreover, many classes of
nonlinear ODEs can be recast as generalized mass-action systems [9, 10]. For a complete definition of
generalized mass-action systems, see Section 2. In this work, we are interested in the existence and
uniqueness of steady states of these systems, as it relates to geometric properties of the vectors
{wi,viticr.

In classical mass-action systems, some classes of positive steady states enjoy certain algebraic and
dynamical properties. Dating back to Boltzmann’s kinetic theory, detailed-balanced equilibria can be
regarded as thermodynamic equilibria. Their generalization, complex-balanced equilibria, are
dynamically stable because of the existence of an associated Lyapunov function [2, 11, 12], and admit
monomial parametrizations [13].

For generalized mass-action systems, the analogue of complex-balanced equilibria are the
vertex-balanced steady states. Unsurprisingly, the theory of vertex-balanced steady states is quite
complicated. Some necessary conditions for stability have been found recently [14]. Also, they admit
monomial parametrizations that may be very useful in applications [6].

In this paper, we are interested in how many (if any) vertex-balanced steady states there are within
each invariant affine subspace of a generalized mass-action system. In particular, we aim to
understand which reaction networks admit vertex-balanced steady states, and whether they are
unique. Interestingly, this question can be reformulated in two different ways, one related to a
generalization of Birch’s theorem in statistics [15], and the other to the bijectivity of generalized
polynomial maps, similar to ones which appear in geometric modelling [7, 16]. Indeed, the following
questions are essentially equivalent:

1. When does a generalized mass-action system have exactly one vertex-balanced steady state within
each invariant affine subspace, for any choice of rate constants?

2. Given vector subspaces S, S C R", when does the intersection® (xo+S)N(x* oexp S +) consist
of exactly one point, for any xo, x* € RZ?

3. Given vectors w',...,w",w',...,w" € R? when is the generalized polynomial map on R?,
defined by

n

fe@ =) X w

i=1

bijective onto the relative interior of the polyhedral cone generated by w!,...,w", for any x* €
R2,?
>0

“Thereby, x o y denotes the component-wise product of the vectors x and y; see Section 1.1.
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These questions will be expanded upon and explained in detail in Section 4.

Among the questions above, we initially focus on question 2, which is strongly related to Birch’s
theorem. One way to state Birch’s theorem is: given a vector subspace S C R”, the intersection
(xo+S)N(x*oexpS+) consists of exactly one point, for any xg, x* € RZ,. In question 2, we have two
vector subspaces §, S, so it should not come as a surprise that an additional hypothesis is needed, in
order for this intersection to consist of exactly one point.

This additional hypothesis is given in terms of sign vectors. For a subset S € R”, its set of sign
vectors o(S) is the image of vectors in S under the coordinate-wise sign function. Its closure o(S)
contains o (S) and all sign vectors where one or more coordinates may be replaced by zeros (see
Definition 5.1).

One of our main results is the following generalization of Birch’s theorem:

Theorem 5.7. Let S, S C R" be vector subspaces of equal dimension with o(S) C 0'(3:). Then for any
positive vectors x, x* € R, the intersection (xo + S) N (x* o exp S ) consists of exactly one point.

By using this theorem, we obtain a sufficient condition for question 1 in Theorem 5.8. More precisely,
provided that certain conditions hold, we show that if a generalized mass-action system has at least
one vertex-balanced steady state, then there is exactly one vertex-balanced steady state within every
invariant affine subspace.

We introduce generalized mass-action systems and vertex-balanced steady states in Section 2 and 3
respectively. We prove Theorem 5.7 and Theorem 5.8 in Section 5, and conclude with an example in
Section 6.

1.1. Notation

There are several component-wise operations on vectors and matrices that will appear frequently. In
the list below, let x, z € R with x = (x1, X2, ..., x,)" and 2 = (21,22, ...,2,)". Let Y = Y 3V
be a n X m matrix.

We write x > 0 to mean that every component of the vector is non-negative. Similarly, x > 0 means
that every component of the vector is positive. Welet R ) = {x e R" : x > 0},and R] ) = {x e R" : x >
0}. We denote the cardinality of a set M as |M]. B

The vector and matrix operations we will use are:

n
xt = H x;', where x > 0;
i=1

x¥ =, 2, .., x"), where x > 0;
T.

X o z = (XIZI’XZZZ’ ce. ’xnzn) )

x Xy X x,\"

1 X2

“ ===, L2, wherez > 0

Z 21 22 Zn
expx = (e, e?,...,e" T
log x = (log x1,log x», . .., log x,)", where x > 0.

When the above operations are applied to a subset of R”, they are applied to elements of the set. For
example, given a set S C R”, we have exp(S) = {exp(x) : x € S},andxo S ={xoz:z€S}.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8243-8267.
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2. Generalized mass-action systems

Consider a simple directed graph G = (V, E) and the corresponding weighted digraph G, = (V, E, k)
with k € R%, providing a positive weight for each edge in E. Let V = {vy,v,,...,v,} be the set of
vertices. Given an edge e = v; — v; € E, we call v; the source of e, and v; its target. Let us denote by
Vs € V the set of source vertices, that is, the set of vertices that are sources of some edges. The weight
k. > 0 on the edge e = v; — v, is called a rate constant, and we refer to the vector k € Rfo as the
vector of rate constants, or more simply as the rate constants. Often, we use the indices of the source
and target vertices as edge label, i.e., k,,,; = ;.

Let @ : V — R”" be a map assigning to each vertex v € V a stoichiometric complex ®(v) € R", and
let ® : V, — R” be another map that assigns to each source vertex v € V; a kinetic-order complex
5(\/) € R". An edge v; — v; is called a reaction, and the vector ®(v;) — ®(v;) is the reaction vector
associated to the edge v; — v;. For convenience, we often write y; instead of ®(v;), and y; instead
of ®(v;). The graph G and the two maps @, ®onG provide all the ingredients needed to define a
generalized reaction network, while the weighted digraph G, and the maps @, @ are all that is needed
to define a generalized mass-action system.

Definition 2.1. A generalized reacﬁt:on network is given by (G, @, 5), where G = (V, E) is a simple
directed graph, and @ : V — R", ® : V; — R” respectively assign to each vertex a stoichiometric
complex and to each source vertex a kinetic-order complex.

Remark. We follow the definition of a generalized reaction network given by Miiller and
Regensburger in [6], rather than the one given in [7]. In particular, we do not assume that the maps @
and @ are injective.

Remark. Throughout this paper, we are concerned with generalized reaction networks where V, = V.
The digraphs ®(G) and (I~)(G) are two Euclidean embedded graphs [17-19]. One of the equivalent
definitions of a (classical) reaction network is a directed graph G = (V, E), where the set V of vertices
(complexes) is a subset of R". Using the notation above, a reaction network is given by G = ®(G),
where O is injective [6].

Example 2.2. To illustrate the terminology above, we consider a directed graph G = (V, E) and the
corresponding weighted digraph G, = (V, E, k):

K12 Ks3
V1 OT. V2 V; @¢—— @ V5
21
K4N34/£45
[ ]
V4

The set of vertices is V = {v1, v», v3, V4, v5}, which coincides with the set of source vertices V. The set
of edgesis E = {vi = vy, vo = Vi, V3 = V4, V4 — V3, V4 — Vs, Vs — v3}. The maps @ and o (both
from V to R?) are given in Figure 1.

Note that the vertex v; is mapped differently by ® and ®. Indeed, vs is mapped by O to the
stoichiometric complex (1,2)” and by ® to the kinetic-order complex (3,1)”. Further, note that ®
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y, =l = (1,2)" ys =427 ¥, = (12 ys =42

O i——— 0 [ ]

//\/ "/. o/__,
yi=(0. D"\ 3, =0, 1) e/ y; =G, 1

X

y4 = (2’ O)T 3;4 = (2’ O)
(a) Graph O(G). (b) Graph 5(G).

Eigure 1. (a) the stoichiometric complex map ®(v;) = y;, (b) the kinetic-order Comple)i map
®(v;) =y, (both from V to R?), and the resulting Euclidean embedded graphs ®(G) and ®(G).

maps the vertices v, and v; to the same stoichiometric complex, whereas ) maps v, and v; to different
kinetic-order complexes. Hence, the number of connected components and the number of vertices are
different in the graphs ®(G) and O(G).

Now we are in a position to define generalized mass-action systems and the associated dynamical
systems.

Definition 2.3. A generalized mass-action system is given by (G, @, (I~)), where (G, D, CI~)) is a
generalized reaction network, with directed graph G = (V, E), and k € Rfo 1s a vector of rate constants.

Definition 2.4. For a generalized mass-action system (G, @, (~D), the associated dynamical system on
RZ, is given by

dx

E: Z Kiijf(yj—yi). (21)

vi—v;EE

As the ODE system (2.1) is our main object of interest, we pause to make two observations. First,
the rate of change fi—f is restricted to the stoichiometric subspace S = spang{y, —y;, : vi = v; € E}.
Consequently, every trajectory x(¢#) of this dynamical system is restricted to a stoichiometric
compatibility class x(0) + §. Second, if v; — v; is a reaction and ®(v;) = ®(v;), then this particular
reaction does not contribute to the dynamics.

It is sometimes more convenient to write the ODE system (2.1) in matrix form. Let ¥ € R be
the stoichiometric complex matrix, the j-th column of which is the stoichiometric complex y;. Let the

kinetic-order complex matrix Y € R"™" be defined analogously; in particular, its j-th column is the
kinetic-order complex y; if v; € V and 0 if v; ¢ V,." Let A, € R™™ be the negative transpose of the

"The choice of y; = 0 when v; ¢ Vi is arbitrary, since the j-th column of Y does not appear in the equations that are of interest

to us [6]. In particular, it does not affect the vector A,(x? and hence does not contribute to the right-hand side YAKx7 of the system of
differential equations (2.3).
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Laplacian of the weighted directed graph G, i.e.,

Kji ifv;—>v, €L,
(Adij =9 ~ Z Kik ifi=j, (2.2)
Vj—)VkEE
0 otherwise.

The dynamical system (2.1) can be rewritten as

d —
d—’: — YA X, 2.3)

Example 2.5. Returning to Example 2.2, the dynamical system associated to (G, ©, D) is

dt \x, = K1pX2 1 K21 X1Xy 1 K34X7X2 )
-1 2 -3
+ K43X% ( ) ) + K45X% (2) + K53x‘1‘x§( 0 ) ,

where each term corresponds to an edge in the graph G. Expanding the equations, we recognize it to
be a polynomial (more generally, a power-law) dynamical system:

d.X]

— 2 3 2 2 4.2

E = KipXp — K21 X1 X5 + K34X( X2 — Kq3X] + 2/<45x1 - 3K53X1x2,

d 2.4)
X2 _ 2 3 2 2

E = KipXp — K21 X1 X5 — 2K34.x1)C2 + 2K43x1 + 2/<45x1 .

Its stoichiometric subspace is S = R?. The stoichiometric complex matrix and kinetic-order complex
matrix are

01124 = - - - — 01324
Y:(yl,yz,yg,y4,y5)=(l 2 92 0 2) and YZ@I’Y2’Y3’y4’y5):(1 210 2)’
respectively. The matrix
—Ki2 K21
K12 —Kai
A = —K34 K43 K53

Ky —Kypz—kss O
0 K45 —Ks3

is the negative transpose of the Laplacian of the weighted digraph G.

The definitions above and Example 2.2 are relatively abstract; one may wonder how generalized
mass-action systems show up in applications. Suppose we are interested in modelling the following
chemical system:

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8243-8267.
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X2 :‘X] + 2X2

44X, + 2X,

2X,

Let us assume that based on experimental data, the reaction rate functions are as shown below, with
rate constants k;; > 0:

Reaction Rate Function
X, = X +2X, Kip Xp

X +2X, —» Xy Ko1 xlxg

X +2X, - 2X; K34 X?)Cz

2X1 - X+ 2X2 K43 X%

2X; — 4X; +2X, K45 X%

44X +2X, —» X; +2X, K53 le".x%

Note that the third reaction follows power-law kinetics, but not classical mass-action kinetics.
Moreover, note that the second and third reactions are an example of branching reactions, that is, two
reactions with the same source complex, different target complexes, and (most importantly) with
different kinetics: mass-action for the second reaction and power-law for the third. Exactly this
chemical system is specified as a generalized mass-action system (G, ©, D) in Example 2.2, see
Figure 1(a) for the reaction network and Figure 1(b) for the reaction rate functions. The system of
ordinary differential equations modelling this system is precisely (2.4).

Remark. We defined a generalized reaction network as a triple (G, @, 5). As pointed out in an
earlier remark, if @ is injective, then ®(G) is a (classical) reaction network. A classical mass-action
system can be obtained as a special case of a generalized mass-action system (G, @, @), where @ is
injective and O = ®|y, [7]. It is thus natural to extend some of the standard definitions for classical
mass-action systems to generalized mass-action systems.

We say the underlying graph G is weakly reversible if every connected component of G is strongly
connected, i.e., every edge is part of a directed cycle. We have already defined the stoichiometric
subspace S as the span of reaction vectors. Whenever V; = V (in particular, when G is weakly
reversible), we define its kinetic analogue, the kinetic-order subspace S = spang{y,;—y; : vi = v; € E}.

The stoichiometric deficiency of the generalized reaction network (G, @, CB) is the non-negative
integer

o6¢ =|V|-{€z—dimS, (2.5)

where |V| is the number of vertices in G, {; is the number of connected components of G, and S is
the stoichiometric subspace. From the equivalent definition 6 = dim(ker Y N im I¢), where I is the
incidence matrix of G, it follows that 6 is a non-negative integer [8]. In the case when G is weakly
reversible, we also have the formula [12]

0 = dim(ker Y NimA,). (2.6)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8243-8267.
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Whenever V = V, the kinetic-order deficiency is defined as the non-negative integer
06 = V|- €6 — dim S, (2.7)
where S is the kinetic-order subspace.

Remark. In the definitions above, |V| is the number of vertices in the underlying abstract graph G,
not necessarily the number of distinct stoichiometric complexes or the number of kinetic-order
complexes; {; is the number of connected components of G, not necessarily the number of connected
components in ®(G) or (ND(G).

In Example 2.2, we have a weakly reversible network with |V| = 5 vertices and {; = 2 connected
components. We already observed that the stoichiometric subspace S is all of R%. However, the
kinetic-order subspace is S = spang(1,1)". The stoichiometric deficiency in this example is
0 =5 —2 -2 =1, but the kinetic-order deficiency is Sc=5-2-1=2.

Example 2.6. We have seen earlier that generalized mass-action systems arise naturally from power-
law kinetics. This example illustrates how generalized mass-action systems also arise naturally in the
study of mass-action systems, via a process called network translation [8,20]. Network translation
produces a generalized mass-action system that has the same dynamics as the original mass-action
system. We look at the n-site distributive phosphorylation-dephosphorylation system under mass-
action kinetics.

This example first appeared in [8]; below we consider a different translation of the same mass-
action system. Under the original definition of generalized mass-action system in [7], which requires
the stoichiometric complex map @ and the kinetic-order complex map ® to be injective, the translated
network presented below would not have been a well-defined generalized reaction network. However,
the later definition in [6] removes the requirements that ® and ® are injective. As a result, many more
dynamical systems can be written as a generalized mass-action system, and for this example, a more
natural translation exists for the n-site distributive phosphorylation-dephosphorylation system.

Let E, F be enzymes that catalyze the phosphorylation and dephosphorlyation processes, by
forming  intermediates ES; and FS;  respectively. The n-site  distributive
phosphorylation-dephosphorylation system consists of the following reactions:

E + Sy ———— ES,

E + S§§ ———— ES;
E + S,y =—————— ES,

E + S,

F + Sy

FS, =——F + §,

FS,
F + Sn—l

FS, =———F + S,

We assume that the reaction rates follow classical mass-action kinetics. There are 3n + 3 species
involved, so the system of differential equations modelling their concentrations is defined on R},

We create a generalized mass-action system with the same differential equations by network

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8243-8267.
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translation. The main step involves changing the stoichiometric complexes: adding enzyme F to the
series of reactions for phosphorylation by E; and adding enzyme E to the series of reactions for
dephosphorylation by F. This process produces a weakly reversible network:

F+ESO
E+F+S E+F+S;, -~

E + FS;

To define the generalized mass-action system, we take a more top-down approach, starting from a
graph G with n components and 4n vertices:

o/.\o Vi o/.\o V; Vi o/.\o
N7 N7 NV

w1 w» Wy

/

Vo Vi

Although ® and o) map vertices to vectors in R¥*3, to make this example more readable, we will
specify the images of @ and @ in terms of formal linear combination of species.
The stoichiometric complexes are

Ov)=E+F+S;, ©0)=E+F+S;, ®(z;)=F+ES;, ®w, =E+FS,
and the kinetic-order complexes are
Ov)=E+S;, ©W)=F+8; o)=ES;, ®w,)=FS;

Note that the map @ is not injective, as ®(v;) = @(v) for I < j < n — 1. The image of the graph G
under @ is connected:

[ ] [ ] [ ]
7 N7 N\ 7 NIPZRN
[ ] [ ] [ ] e [ ] [ ]
N Z N 7N 7 N\ 7
[ ] [ J [ ]
One can check that gimS = dimS = 3n; therefore, the stoichiometric deficiency and kinetic-order
deficiency are 6g = g = (4n) — (n) — (3n) = 0.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8243-8267.
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3. Vertex-balanced steady states

Given the dynamical system associated to a generalized mass-action system (G, @, @), written
either as ‘fl—’; = 2—vsee KijiX*(¥; — y;) or in matrix form % = YA,xY, it is natural to ask how many
steady states there are. We define the set of positive steady states as

Ec={xeRly: YAx" =0). 3.1)

For a classical mass-action system, an important subset of positive steady states is the set of
complex-balanced equilibria [2], also known as complex-balancing equilibria or vertex-balanced
equilibria [27]. Horn and Jackson introduced the idea of complex balancing at equilibrium to
generalize the physical assumption of detailed balancing at thermodynamic equilibrium [2].

We illustrate the intuition behind the definition of such a steady state before introducing its analogue
for a generalized mass-action system. Consider the graph G of the reaction network, and associate to
each edge v; — v; a reaction rate function «;;x*. A concentration vector x* € R is a complex-
balanced equilibrium of the classical mass-action system if at every vertex v; € V of the graph, the sum
of incoming fluxes balances the sum of outgoing fluxes, that is, for all v; € V,

D, kY= Y Ky (3.2)

Vj—)V,'GE Vi—>Vj€E

This occurs if and only if A (x*)" = 0 [2]. Clearly, a complex-balanced equilibrium is a positive
solution to a system of polynomial equations. Surprisingly, it is also a positive solution to a system of
binomial equations [13].

For a generalized mass-action system, one can define a vertex-balanced steady state analogously: it
is a positive steady state at which the net flux is zero across every vertex of the graph, where the flux is
given by generalized mass-action kinetics.

Definition 3.1. The set of vertex-balanced steady states for a generalized mass-action system
(G, D, D) is the set

Z.={xeR! : Ax" = 0}. (3.3)

Note that x* € Z, if and only if forall v; € V,

DUk = Y ke (3.4)

Vi—oViEE vi—V;EE

Remark. What we call vertex-balanced steady state here, is also called complex balancing
equilibrium [6,7] or generalized complex-balanced steady state [8].

We call such a steady state vertex-balanced instead of complex-balanced to avoid a subtle point of
confusion. In the case when @ is not injective, the balancing of in-fluxes and out-fluxes occurs at each
vertex v € V of the underlying abstract graph G. This in turn implies the balancing of fluxes at each
stoichiometric complex ®(v) € ®(V); however, the converse is generally false. For example, consider
the generalized mass-action system given by the weighted digraph G,,

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8243-8267.
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K
Vi e ———s e V)

Vo @¢—— @ V3
K

and the maps ®(v;) = ®(vy) = 0 € R!, (v,) = O(v3) = 1, D(v;) = 0, and O(v3) = 1. The associated

dynamical system is % = k — kx, which also arises from the classical mass-action system ®(G,):
0 e e X
However, the equilibrium x* = 1 is not vertex-balanced for the generalized mass-action system

(G, D, 5), but is complex-balanced for the classical mass-action system ®(G,).

Example 3.2. To illustrate the definition of vertex-balanced steady states, we consider Example 2.2
again. A vertex-balanced steady state is a point x = (x,x)! € Rio satisfying five polynomial
equations, one equation for each vertex of the graph G:

Vi: KipXp = K21X1X§,

Vo i K21X1X§ = KX,

Vs KuXiXy = KizXs + Ks3x|xs, (3.5)
V4 (Ka3 + K4s)X] = K3uX)Xo,

Vs © K53XA1‘X§ = K45X%.

However, a positive steady state x = (x;, x;)! € Rzo has to satisfy only two polynomial equations:

dxl
2 3 2 2 4.2
0= E = KipX2 — Ko X1 Xy + K34X(X2 — Kq3X] + 2K45X1 - 3K53X1X2,
dx (3.6)
_ &M 2 _9 3 o) 249 2
= E = K12Xp — K21 X1 X5 — 2K34 X Xp + 2ZK43X| + 2K45X].

The two polynomial equations (3.6) are linear combinations of the five polynomial equations (3.5); thus
Z, € E,. This follows from the matrix expression of the associated dynamical system % =Y(AxD).

Complex-balanced equilibria of classical mass-action systems have been studied extensively. Some
of the classical results extend directly to the case of generalized mass-action systems, even when the
maps © and 0, assigning stoichiometric complexes and kinetic-order complexes respectively, are not
injective. For example, it is known that [6,7]: #

1) If Z, # @ for some k > 0, then the underlying graph G is weakly reversible.
i) If Z, # @ and x* € Z, then Z, = {x e R’ : Inx —Inx" € St =x"o exng.

iii) For a weakly reversible generalized reaction network, 66 = 0ifand only if Z, # @ for any choices
of rate constants k > 0.

£Some of these results were first proved in [7], under the assumption that ® and @ are injective, but the same proof goes through
without these hypotheses.
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iv) For a weakly reversible generalized reaction network, if 6 = 0, then for any choice of rate
constants k > 0, any positive steady state is a vertex-balanced steady state, i.e., E, = Z,.

In the example of the n-site phosphorlyation-dephosphorlyation system (Example 2.6), we noted
that 6 = g(; = 0. By statements (iii) and (iv) above, we conclude for any rate constants «, the set of
vertex-balanced steady states Z, is non-empty, and all positive steady states are vertex-balanced.
Moreover, the set of positive steady states is given by E, = Z, = x* o exp S+, where x* is any positive
steady state and S is the kinetic-order subspace, i.e., the vector space spanned by the differences of
kinetic-order complexes according to the edges in the graph. It should be noted that the n-site
phosphorlyation-dephosphorlyation system is multistationary when n > 2 [21,22], i.e., the system
admits multiple steady states within the same stoichiometric compatibility class. In other words, for
some choices of rate constants, there are multiple vertex-balanced steady states within some
stoichiometric compatibility class. This contrasts with a classical complex-balanced mass-action
system, where Z, meets every stoichiometric compatibility class at most once.

Example 3.3. There is another surprising way in which vertex balancing differs from classical
complex-balanced mass-action systems. While it is clear that Z, C E,, in generalized mass-action
systems it is possible that @ # Z, ¢ E,b. For example, consider the 1-dimensional generalized
mass-action system given by the weighted digraph G,

Vi e

V3 e——— e V4

and the maps O, O given by
Q) =) =0, D) =1,0() =3,
D(r3) = D(v3) =2,  D(vy) = 3,0(vy) = 1.
The associated dynamical system is

d
G Cs5x452— 1
dt

The point x* = 1 is a vertex-balanced steady state. The system also has two other steady states
x* ~ 0.27 and x* = 3.72, neither of which satisfy the vertex-balanced condition:

=" and 5(x%) = 5(x%)°.

In applications, the vector of rate constants k € R, is often not known precisely. Surprisingly, some
important results for complex-balanced equilibria in classical mass-action systems hold irrespective of
the precise values of the rate constants. We are interested in results for vertex-balanced equilibria of
generalized mass-action systems that are in this sense independent of the choice of rate constants. We
have observed that the solution trajectories are confined to a stoichiometric compatibility class xo + S,
where xo € R is an initial state and S is the stoichiometric subspace. Therefore, our object of study
is the intersection (xo + §) N Z, for any x, € R”, and any « € RZ.

SFor classical complex-balanced mass-action systems, it is always the case that Z, = E, [2].
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4. Problem reformulations

In the introduction, we have mentioned that the following questions are essentially equivalent:

1. When does a generalized mass-action system have exactly one vertex-balanced steady state within
each stoichiometric compatibility class, for any choice of rate constants?

2. Given vector subspaces S, S c R”, when does the intersection (xo +S) N (x* o exp :S'VL) consist of
exactly one point, for any xo, x* € RZ,?

n —1

3. Given vectors w',...,w",w,...,w" € R’ when is the generalized polynomial map on R?
defined by

n
fe@© =) e w
i=1
bijective onto the relative interior of the polyhedral cone generated by w!,...,w", for any x* €
RZ,?

Before we discuss the relationship between these problems in detail, let us first make a historical
note. When speaking of a weakly reversible classical mass-action system, Horn and Jackson [2]
proved that if the system has at least one complex-balanced equilibrium, then every stoichiometric
compatibility class has exactly one complex-balanced equilibrium. Indeed, they showed that every
positive steady state of such a system is complex-balanced and locally asymptotically stable within its
stoichiometric compatibility class. A complex-balanced equilibrium is globally stable within its
stoichiometric compatibility class when the network has a single connected component [23], or is
strongly endotactic [24], or when the system is in R® [25,26]. A general proof of global stability of
complex-balanced equilibrium within its stoichiometric compatibility class was proposed for all
complex-balanced systems in [27].

The first of the three questions above is phrased in the context of reaction networks. We start with
a generalized reaction network and suppose that for some rate constants «, there is a vertex-balanced
steady state x* € Z,. What is a condition (E) on the network (G, @, 5) for the existence of a vertex-
balanced steady state within every stoichiometric compatibility class? What is a condition (U) on
(G, @, D) so that a vertex-balanced steady state is unique within its stoichiometric compatibility class?
We would like to obtain conditions for these to hold or fail that are independent of the rate constants .
More precisely:

Problem 1. Let (G, @,5) be a generalized mass-action system. Suppose that Z, # @. What are
conditions (E) and (U) on (G, @, D), so that the following statements are true?

1. If (G, D, 5) satisfies condition (E), then there is at least one vertex-balanced steady state in every
stoichiometric compatibility class, i.e., (xo + ) N Z, contains at least one point for any xy € R,

2. If (G, O, 6) satisfies condition (U), then there is at most one vertex-balanced steady state in every
stoichiometric compatibility class, i.e., (xo + ) N Z, contains at most one point for any x, € R,

Recall that Z, = x* o exp S+ for any x* € Z,. Thus, the vertex-balanced steady states within any
stoichiometric compatibility class x, + .S belong to the intersection (xo +S) N (x* ocexp S+). This leads

us to the following reformulation of Problem 1:
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Problem 2. Let S, S C R" be vector subspaces. What are conditions (E) and (U) on S, S, so that the
following statements are true?

1. If S, S satisfy condition (E), then (xo+ S) N (x* o exp §L) contains at least one point, for any x,
x* €RY,.

2. IfS, S satisfy condition (U), then (xo +S) N (x* oexp S1) contains at most one point, for any x,,
x" eRZ,.

If a generalized mass-action system happens to be a classical mass-action system, then its
stoichiometric subspace § is also the kinetic-order subspace S. The existence and uniqueness of a
point in the intersection (xo + ) N (x* o exp S +) for any x,, x* € R”, is the content of Birch’s theorem
in algebraic statistics [15].

Another reformulation of the above problems was introduced by Miiller and Regensburger [7], in
terms of injectivity/surjectivity of an exponential map or a generalized polynomial map onto a
polyhedral cone. Such polynomial maps appear in other applications; for example, a renormalized
version of the generalized polynomial appears in computer graphics and geometric modelling, where
the map being injective implies that the curve or surface does not self-intersect [16].

Let x* € R, be an arbitrary vector, and S, S C R" be vector subspaces, with d = codim S,
d = codimS. Choose a basis for S* and let the basis vectors be the rows of the matrix W € R,
Similarly, choose a basis for S+ and let the basis vectors be the rows of W e R Write the two
matrices in terms of their columns: W = (w!,w?,--- ,w")and W = (WI,WZ, .-, w"). In this manner,
St =im(WT), S = ker W, and St = im(WT), S =ker W. Finally, write C°(W) for the relative interior
of the polyhedral cone C(W), i.e., C°(W) is the set of all positive combinations of {wi}j?:l. For any
x* € R”, define the maps

>0’

fe: RY - COW)CRY
£ W o) = 3L x&"w,

and

Fe: RY > CY(W)CRY,
/1 — W(x* o eWT/l) — ?:1 x;‘e<wl,/1)wi.

Problem 2 is equivalent to the following (see [6, 7] for details):

Problem 3. Let S, S C R" be vector subspaces. What are conditions (E) and (U) on S, §, so that the
following statements are true?

1. IfS, S satisfy condition (E), then the map f,- (respectively F.) is surjective onto Co(W), for any
x* e RY,.
2. IfS, S satisfy condition (U), then the map f,- (respectively Fy-) is injective, for any x* € RZ,,.
Miiller and Regensburger characterized when the maps f;-, Fy- are injective, namely, if and only if
o(S)No(S+) = {0} [7, Theorem 3.6]. Recall that, for a subset S C R”, its set of sign vectors o=(S) is

the image of vectors in § under the coordinate-wise sign function (Definition 5.1). They also provided
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a sufficient condition for bijectivity: if o(S) = 0'(§) and (+,+,---,+)" € o(S*), then f,, Fy are
bijective (and indeed, real analytic isomorphisms) [7, Proposition 3.9]. Our main result (Theorem 5.8)
can be regarded as a generalization of this result. Recently, Miiller, Hofbauer, and Regensburger have
used Hadamard’s global inversion theorem to characterize when f,-, F,. are bijective for arbitrary
x* e R, [28].

5. Main result

In previous work as well as in ours, the conditions (E) and (U) are stated in terms of sign vectors.
For a brief introduction to sign vectors of linear subspaces, we refer the reader to the appendix in [7].

Definition 5.1. Given a vector x € R”, we define its sign vector to be
o (x) = (sgn(xy), sgn(xz), - -+, sgn(x,)" € {0, +, —}". (5.1)

The set of sign vectors for a subset § € R” is the collection o(S) = {o(x) : x € §}.

We introduce a partial order on {0,+,—} by 0 < — and 0 < + (but no relation between — and +).
This induces a partial order on {0, +, —}": 7 < 7" if 7; < 7/, for all j. The closure of a set of sign vectors
A C {0, +, —}"is the set

A = {1 : there exists 7’ € A such that 7 < 7'}. (5.2)

We define an orthant! of R" to be a maximal subset of R” on which ¢ is constant. Geometrically,
the sign vector o(x) tells us which orthant O, the vector x lies in, while the closure @ refers to the
union of O, and its boundary. Finally, we define an orthogonality relation on {0, +, —}"; we say that
two sign vectors 7 and 7’ are orthogonal (denoted T L 7’) if

either7;- 7, =0forall1 < j<n
or there exist indices 7, j such that 7; - 7} = + and 7; - 7 = —,

where the product operation on signs is as one would expect:
+-+=—-—=+4 +-—=—, and +:-0=--0=0-0=0.

It is easy to see that if x, y € R" are orthogonal vectors, then o(x) L o (y).

We show in this section that if o(§) C 0'(§) and dim§ = dim :S’: then for any xo, x* € RY,

the intersection (xo + §) N (x* o exp 3‘1) contains exactly one point. The intuitive idea is that the
sign condition o(S) C 0'(§) is related to a transversal intersection of the two manifolds (x, + S) and
(x* oexpS+). If we have one intersection point, say x* € (x* + §) N (x* o exp S+), we cannot lose the
intersection point as we translate the affine plane from (x* + §) to (xo + 5).

We ﬁrst~show in Lemma 5.2 that our sign condition o°(S') C 0'(:57) implies the uniqueness condition
alS)n 0'~(S ) = {0} in [7]. In Lemma 5.4, we establish transversality of the manifolds (x + S') and
(x*oexpS+). Lemma 5.3 prevents our desired intersection point from escaping to the boundary of R” ,

IThis differs from the typical definition of an orthant of R”, which is full dimensional.
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or to infinity. Finally, these results lead to Theorem 5.7, concluding the existence and uniqueness of
a point in the intersection (xo + S) N (x* o exp S+). In Theorem 5.8 and Corollary 5.9, we apply this
result to generalized mass-action systems.

Lemma 5.2 (Uniqueness). Let S, S C R" be vector subspaces. If o(S) C 0'(5), then o(S) N 0'(§l) =
{0}. In particular, for any xo, x* € R the intersection (xo +S) N (x* o exp S Y contains at most one
point.

Proof. By assumption, o<(S) N o(S*) € (S) N o*(S*). We show that o<(S) N o(S*) = {0}. Let
TE <T(§) N G(:Sﬁ) be a sign vector. There exist vectors x € S and y € S* such that 7 < o(x) and
7 = 0(y). Itis easy to see that if 7 < o(x), and 7 L o(x), then 7 = 0. _
By [7], o(S) N o(S+) = {0} is necessary and sufficient for the intersection (xo + S) N (x* cexp S+)
to contain at most one point for any xo, x* € RZ,. O

Lemma 5.3 (Compactness). Let S, S C R" be vector subspaces, and let K C R be a compact subset,

and x* € RZ. Suppose o(S) C G(g). Then (K +S) N (x* oexp 31) is a compact subset of R .

Proof. LetI' = (K +S) N (x* oexp §l). Since x* o exp St ¢ R?,, the intersection I' also lies in the
positive orthant. We first show that I" is bounded away from infinity and from the boundary of RZ,.

Suppose that is not the case. Let x* € T be a sequence such that either limsup,_,, x* = oo or
liminf;_, xf = 0 for some index 1 < i < n. Passing to a subsequence, we may assume that

gimxf.‘:oo fori €I,
I}imxf:O fori € I,
]}imxf € (0, c0) fori € I,

where [y, I, I5 partition the index set {1,2,...,n},and I, U [, # @.

On one hand, x* € K + S, so decompose it as x* = v* + s*, where v € K and s* € §. Since K CR”
is compact, each component of v* is uniformly bounded from above and below from zero. Thus for
i € I;, we have sf? — 00; in particular, sf.‘ > ( for sufficiently large k. Similarly, if i € I,, then sf.‘ < 0 for
sufficiently large k, because s* + v — 0 and V¥ > 0 is bounded away from zero. Hence the sign of s¥

is constant for any i € I; U I, for sufficiently large k. Because o(s¥) € o(S) C 0'(5), there is a vector
ue S suchthaty; >0ifiel;andu; <0ifi € L.

On the other hand, x* € x* o exp 31’ that is, log (;‘—k) € §L, where the division is understood to be
component-wise. Hence, u L log (jﬁ—k) for all k, and we have

k k

¢ : : k
o~ o) Gl ol 5ol

iely L i€l L i€elz L

The sum over /5 is uniformly bounded for all k. Now let k — co. For i € I;, we know u; > 0 and xf.‘ -
o0, so the sum over /; is positive and unbounded. For i € I,, we know u; < 0 and xf — 0, so log (f{—k) -

—oo, so the sum over I, is also positive and unbounded. Consequently, 0 = lim;_,..{(u, log (;C—k)> = o0,
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a contradiction. Hence, I' C RZ, is bounded away from infinity and away from the boundary of the
positive orthant.

Next, we want to show that I' € R” is a closed subset. Let us fix £ > 0 such that I' lies inside the
hypercube Q = [e,&7!']" C RZ,. Being the intersection of two closed sets, O N (K + §) is closed. The
set QN (x"oexpS St is dlffeomorphlc to [loge,loge™ 1" N (Inx* + S+), which is again a closed set.
Therefore, the set (K + S) N (x* o eXpSL) =[ONK+S)]N[ON(x*oexp SL)] is the intersection of
two closed sets, and thus it is closed in RZ,,. m|

Two manifolds X and Y of R" intersect transversally if at each point p € X NY, their tangent spaces
span the entire Euclidean space, i.e., T,(X) + T,(Y) = R". We refer the reader to [29, 30] for the theory
of transversality and intersection.

Again, let xo, x* € R’ be two arbitrary vectors in what follows. In Lemma 5.2, we showed that

our sign condition o-(S ) C o-(§ ) implies o°(S) N 0'(§l) = {0}, which is equivalent to the intersection
(xg+S)N(x*o expSl) containing at most one point. Indeed, this weaker sign condition together
with dimS = dim$ is enough to conclude that the two manifolds xo + § and x* o exp § S+ intersect
transversally. This is the content of the follow lemma.

Lemma 5.4 (Transversality). Let S, S C R" be vector subspaces. Assume o(S) N 0'(§i) = {0}. Let x,
x* € R" be any two positive vectors. Then the tangent spaces of xo + S and x* o exp S+ satisfy

Tp(xo +S) N Tp(x* cexpS™) = {0)

for any point p € (xo+S) N (x* o exp :S'VL)
If we further assume that dim S = dim S, then Tp(xo+S)+Tp(x"oexpS S+) =R” for any intersection
pointp e (xog+S)N(x*oexpS L) i.e., Xo + S and x* o exp S+ intersect transversally.

Proof. For any intersection point p € (xo + §) N (x ) expSl), we note that Tp(xo + ) = S and
Ty(x* o expSL) =po S* and hence o (Ty(x" o exp S = a(SH).
Now consider x € Tj(xo +5) N Ty(x* o exp S S1). Then o(x) € o(S) N (S*+) = {0}, which implies
x = 0. Consequently, Tp(xo + S) N Tp(x* o expSl) = {0}.
If we further assume that dimS = dimS, we note that Ty(xo +8) + Tp(x™ o exp :S'VL) is of
dimension n. In other words, the manifolds x, + S and x* o exp S+ intersect transversally. O

Now we are ready to state and prove our main result. The proof starts with a known intersection
point, x* € (x* +S) N (x* oexp gl). Next, we translate the affine space (x* + 5) to (xo + §), creating a
(d + 1)-dimensional strip of the form K + §, where d = dim § and K is a compact subset of R . This
strip intersects x* o exp S+t transversally, and we use Corollary 5.6 below to conclude that the
intersection (K + §) N (x* o exp 31) is a one-dimensional manifold, whose boundary lies on the
boundary of the affine strip K + S. Finally, we conclude the existence of a boundary point on xy + S
by the uniqueness condition.

Consider the following differential topology result:

Theorem 5.5 ( [30, Theorem 3.5.1]). Let X and Y be manifolds and Z C Y a submanifold, where Z
and Y are boundaryless. Let f : X — Y be a smooth map. Suppose f intersects Z transversally and
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flox also intersects Z transversally. Then f~'(Z) is a submanifold of X with boundary d(f~1(Z)) =
0X N f~1(Z), and codimy(f~1(Z)) = codimy(Z).

Consider the setting where the ambient manifold is ¥ = RZ,. If f is the inclusion map of a
submanifold X into R, to say that the maps f and fl,x intersect the manifold Z transversally is

equivalent to the manifolds X and X intersect Z transversally. The preimage f'(Z) is the
submanifold X N Z. Moreover, the dimension of the intersection X N Z is given by the equation

dimX —dim(X N Z) = codimy(X N Z) = codingo(Z) =n-—dimZ.
In other words, dim(X N Z) = dim X + dim Z — n. We arrive at the following corollary:

Corollary 5.6. Let X, Z C R be submanifolds, where Z is boundaryless. Suppose X intersects
Z transversally and 0X also intersects Z transversally. Then X N Z is a manifold with boundary
(X NZ)=0XnNZand of dimension dm(X N Z) = dim X + dimZ — n.

Our main result is:

Theorem 5.7. Let S, S C R" be vector subspaces of equal dimension with o(S) C o (S). Then for any
positive vectors x, x* € R, the intersection (xo + S) N (x* o exp S ) consists of exactly one point.

Proof. Let xo, x* € R”, be arbitrary positive vectors. Lemma 5.2 implies that the intersection (xo+S)N
(x* oexp §L) contains at most one point. Consider first x* € xo + §. Clearly, (xo +S) N (x* oexp :Sﬁ) =
{x*}.

Now consider the case when x* ¢ xo + S. Let d = dimS. We define a (d + 1)-dimensional affine
strip, which we will intersect with (x*oexp S*). To define this affine strip, we consider the interpolation
function

K: [0,1] — R”

>0

0 B oOxp+(1-90)x".

Since the line segment K([0, 1]) € RZ is compact, the intersection (K([0, 1])+S)N(x* oexp :91) CRY,
is compact by Lemma 5.3. Moreover, the manifolds K([0, 1])+S and x*oexp S+ intersect transversally,
as a consequence of Lemma 5.4, i.e.,

T,(K([0,1]) + §) + Tp(x* 0 expS*) 2 Tp(x* + §) + Tp(x* o expS*) = R".

By Corollary 5.6, the intersection I' = (K([0,1]) + S) N (x* o exp §l) is a manifold with boundary
oI' COK(0,1D+S)=(x"+S)U(xg+S). In addition, I is 1-dimensional because

dim(") = dim(K ([0, 1]) + §) + dim(x™ o expgl) —n=1+dimS +dimS*-n=1.

Consider the connected component I C I' containing the point x*. The point x* must be an
endpoint of I'*; otherwise uniqueness fails at K(dyp) + S for some small 6, > 0. Since I'* is compact, it
is a curve with two endpoints. As oI C d" = (x* + ) U (xo + §), by uniqueness the other endpoint of
I must be in xy + §. Thus, a point exists in (xy + 5) N (x* o exp gL). O

We apply Theorem 5.7 to show the existence and uniqueness of vertex-balanced steady state for a
generalized mass-action system.
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Theorem 5.8 (Vertex-balanced steady states of a generalized mass-action system). Let (G, @, 5) be
a weakly reversible generalized reaction network, with stoichiometric subspace S and kinetic-order

subspace S. Assume that dim S = dim S and o(S) C 0'(§ ). Then the following statements hold:

i) Suppose for some rate constants k, the generalized mass-action system (G, ®, ®) admits a vertex-
balanced steady state x*. Then every stoichiometric compatibility class contains exactly one
vertex-balanced steady state.

i) 66 = 0 if and only if the generalized mass-action system (G, ©, 5) admits a vertex-balanced
steady state x* for all rate constants k. In this case, every stoichiometric compatibility class
contains exactly one vertex-balanced steady state.

iii) Under the premises of i), additionally suppose 6 = 0. Then every stoichiometric compatibility
class contains exactly one positive steady state, which is vertex-balanced.

Proof. As x™ is a vertex-balanced steady state for (G, @, 5), the set of vertex-balanced steady state is
Z, = X" oexp St By Theorem 5.7, Z, intersects the stoichiometric compatibility class x, + S exactly
once for any x, € RY. This proves statement i).

The first part of statement ii) is the content of [6, Theorem 1(a)]. By statement i), we conclude that
every stoichiometric compatibility class contains exactly one vertex-balanced steady state.

If in addition, 6¢ = O, then E, = Z,, i.e., there are no positive steady states that are not
vertex-balanced.  Consequently, there exists a unique steady state within each stoichiometric
compatibility class, which is vertex-balanced. This proves statement iii). O

We state a simpler version of iii) in the theorem above.

Corollary 5.9. Let (G, D, 5) be a weakly reversible generalized reaction network, with stoichiometric

subspace S and kinetic-order subspace S. Suppose that dim S = dim S, a(S) C 0'(5), and 6g = gG =
0. Then for any choice of rate constants, every stoichiometric compatibility class contains exactly one
positive steady state, which is vertex-balanced.

We have focused almost exclusively on the existence and uniqueness of vertex-balanced steady
states for generalized mass-action systems. For complex-balanced equilibria of classical mass-action
systems, more is known. For example, complex-balanced equilibria are locally asymptotically stable
within their stoichiometric compatibility classes. They are conjectured to be globally stable in their
stoichiometric compatibility classes; this is known as the global attractor conjecture [13,27]. In
particular, it has been shown that a complex-balanced equilibrium of a mass-action system is globally
stable within its stoichiometric compatibility class if the network has a single connected
component [23], or is strongly endotactic [25,26], or if the system is in R? [25,26]. A proof of the
global attractor conjecture in full generality has been proposed in [27].

For planar generalized mass-action systems (in particular, S-systems), local and even global
stability of vertex-balanced steady states have been characterized in [31-33]. For generalized
mass-action systems of arbitrary dimension, necessary conditions for linear stability have been given
in [14]. Obviously, it is not true that a vertex-balanced steady state is always globally stable within its
stoichiometric compatibility class, since it is possible for a generalized mass-action system to have
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multiple vertex-balanced steady states within the same stoichiometric compatibility class. Consider,
for example, the following generalized mass-action system:

0 X1 + X2
(2Xy) (X1 +2X,)
where each box is a vertex of the graph; the top entry in each box is the stoichiometric complex of that

vertex (0 and X, + X;), and the bottom entry in the parentheses is the kinetic-order complex (2X; and
X +2X5). The associated dynamical system of this generalized mass-action system is given by

dXI = sz KX X2
—Q = — KX
dt ! z
—— = KX] — KX1X;.
dt

One can check that the set of vertex-balanced steady states is Z, = {(>,7) : t > 0}. If xo = (0,&)7
where 0 < ¢ < }—P then there are two vertex-balanced steady states in xo + S = {(r,e +r) : r € R}. In
particular, this implies that these vertex-balanced steady states cannot be globally stable in their
stoichiometric compatibility class.

Moreover, it is also possible for a unique vertex-balanced steady state (within its stoichiometric
compatibility class) to be unstable. Consider the generalized mass-action system:

4 7 4 7

X] 2X2
(2X4) Tk (X2)
J -

e N e N
2X, K X,
(X1) Tk (2X3)
J -

Its associated dynamical system is

dxl
—— = —kX} + KXy — 2KX| + 2KX3,
dt
dXQ
—= = 2kx —2KkXy + KX| — KXZ.
dt
This is an example of a reversible generalized mass-action system with 6 = 66 = 0, and its

stoichiometric subspace S and its kinetic-order subspace S are R2. There is a unique positive steady
state x* = (1,1)7, which is vertex-balanced; nonetheless, it can be shown that this steady state is a
saddle point. Moreover, all solutions that start outside its stable manifold converge to the origin or
infinity; in particular, the system is neither persistent nor permanent.

6. An illustrative example

We conclude by applying Theorem 5.8 to the following example of a family of generalized mass-
action systems. Let a, b, x; > 0. Consider the generalized mass-action system (G, ©, ®)
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0 K12 X; + X,
0) (X1 +aXy)

X3+ Xy
(bX] + X3+ X4)

At each vertex (box), a stoichiometric complex (top entry) and a kinetic-order complex (second entry
in parentheses) are assigned. Let x; be the concentration of species X;, for 1 < i < 4, and x =
(x1, X2, X3, X4)T . The stoichiometric complexes and kinetic-order complexes are

yl :(07070,0)T’ y2 :(1’ I’O’O)T’ y3 :(0307171)T7
¥y, =(0,0,0,0)7, vy, =(1,a,0,0)7, ¥y, =(b,0,1,1)T.
The associated dynamical system is
dx y y 5 5
7 kX" (yy = 1) + k23x” (y3 — y,) + k32X (¥, — ¥3) + k3127 (¥ — y3)
1 -1 1 0
_ 1 + al™ + b 1 + b
= K12 0 K23X1Xy 1 K32 X X3X4 1 K31 X1 X3X4 ~1l
0 1 -1 -1
Another way to write the system of differential equations is
dxl a b
I = K12 — K23X1Xy + K32X[X3X4,
dXQ a b
I = K12 — K23X1Xy + K32X[ X3X4,
dx
d_t3 = K3 X1 Xy — (K3 + K31)x}1’x3x4,
dX4 a b
d_ = K23X1X5 — (K32 + K31)X| X3X4.
t
The stoichiometric subspace and the kinetic-order subspace are
1\ (O 1\ (b
{10 = al |0
S = spany ol 11l and S = spany ol'l1
0) \1 0) \1
respectively. Their sign vectors are
0y (+) (0 () (-
Of 1+ 10| |-| |-
O-(S) - O ’ + s + ’ + ’ O s s
0) \+) \+) \+) \0O
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and

+
)
|
|

9 b b 9

+
+
+
(en)

0y (+) (+

- of 1+ 10—t |- |-
o) =1lol-1 4
0) \+) \+

+) \+ 0

+

where the dots indicate the negatives of the listed sign vectors. By visual inspection, we find that

a(S) C a(g). Moreover, one can check that the deficiency ds and the kinetic-order deficiency EG are
zero. Therefore, Corollary 5.9 applies and we conclude that, for any choice of rate constants, every
stoichiometric compatibility class contains exactly one positive steady state, which is vertex-balanced.
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